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Abstract
An interval vector is a {0, 1}-vector where all the ones appear consecutively. An

interval vector polytope is the convex hull of a set of interval vectors in Rn. We study

several classes of interval vector polytopes which exhibit interesting combinatorial-

geometric properties. In particular, we study a class whose volumes are equal to the

catalan numbers, another class whose legs always form a lattice basis for their a�ne

space, and a third whose face numbers are given by the pascal 3-triangle.
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Chapter 1

Introduction

An interval vector is a {0, 1}-vector in Rn such that the ones (if any) occur consecu-

tively. These vectors can nicely and discretely model scheduling problems where they

represent the length of an uninterrupted activity, and so understanding the combi-

natorics of these vectors is useful in optimizing scheduling problems of continuous

activities of certain lengths.

Much of this work is first done in a paper on which I was a cowriter of at the

MSRI-UP in 2012.[BDDPR]

In this thesis we consider interval vectors as geometric points in Rn and our goal

is to understand their geometric relationship to eachother To do this we take sets

of interval vectors as vertices of objects called polytopes, which are n-dimensional

generalizations of 2d polygons or 3d polyhedra. We call a polytope constructed from

interval vectors an interval vector polytope, introduced in [Da]. In essence, this project

catalogues di↵erent interval vector polytopes and proves some elegant and interesting

properties about them.

In chapter 3, we first consider the polytope formed by taking the convex hull of

every interval vector in Rn (section 3.1), and notice that it has volume C

n

the n-th
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catalan number. The surprising fact that this polytope, named the complete interval

vector polytope is a catalanotope is interesting on its own, but what is more fascinating

is that many of its subpolytopes (generated by taking smaller sets of interval vectors

in Rn) also have very interesting structure to them.

For example, in section 3.2 we consider the fixed interval vector polytope which

is the polytope whose vertices are all the interval vectors in a dimension with a

fixed interval length (i.e. the same number of ones). This polytope turns out to be a

unimodular simplex (which is the generalization of a unit triangle). This is interesting

because a unimodular simplex is the ’smallest’ polytope possible whose vertices are

all integer valued, and it can tessellate to fill the entire plane hitting each lattice

point. Essentially its legs form a basis for the lattice points of the plane.

Finally, we consider the interval pyramid, which is the polytope whose vertices

are the standard unit vectors in Rn, plus the interval vectors with one 0. Though

this may seem like an arbitrary selection of interval vectors as vertices, we still see

the interval pyramid exhibiting fascinating properties. It’s volume is very easily

calculated to be 2(n � 2) and its face numbers (the number of faces the polytope has

in each dimension) reflect a combinatorial sequence called the pascal 3-triangle, which

is like Pascal’s triangle summed with a shifted Pascal’s triangle, and thus is a sum

of binomial coe�cients. 3 While each of these results are at least mildly interesting,

together, they seem to say something quite deep. Essentially, the geometric locations

of the interval vectors on the plane are such that, even seemingly arbitrary sets of

interval vectors create beautiful combinatorial-geometric objects. Somehow a number

of famous combinatorial sequences are contained within the geometric relationships

between interval vectors, making them geometric objects of note.

The second chapter of this thesis introduces the necessary terminology and ba-

sic theorems necessary to study convex polytopes and their combinatorial structure.
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Much of my preliminary research in the field of convex polytopes and their combina-

torics in general can be found in [Gr] and [Zi], and a for lattice polytopes and Ehrhart

theory, in [Be]. Many definitions are pulled from these sources, which would be good

to consult for a more complete introduction to the field.

In this second chapter we define the convex hull, the a�ne subspace, and introduce

lattice polytopes and the basics of Ehrhart theory. We also introduce posets and

explain how they represent the face structure of a polytope, so that we can define

duality of a polytope. Finally we introduce basic graph theory for use in certain proofs

later in the paper. Those already familiar with this material may skip to chapter 3,

though a brief skim of the first chapter may familiarize the reader with the notation

we use.

The third chapter introduces interval vector polytopes and proves basic results

about the entire class of polytopes. We then present the results on the complete and

fixed interval vector polytopes. The entire fourth chapter is dedicated to studying the

face structure, volume and duality of the interval pyramid. The final chapter presents

some open questions and suggests future work for further study.
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Chapter 2

Preliminaries

2.1 Convex Polytopes

The definitions in this section are adapted from [Gr], [Zi], and [Be]. Intuitively, given

a set of vertices in R2 we can ’connect the dots’ to form a polygon. This idea is

precisified and generalized to Rn with the following definition.

Definition 1. If A = {v

1

, . . . , v

k

} ⇢ Rn, we define the convex hull of A to be the set

of nonnegative linear combinations of elements of A whose coe�cients sum to 1.

conv(A) :=

(
�

1

v

1

+ �

2

v

2

+ · · · + �

k

v

k

| �

1

, �

2

, . . . , �

k

2 R�0

and
kX

i=1

�

i

= 1

)
.

Definition 2. A convex polytope P ✓ Rn is the convex hull of finitely many points

in Rn.

Example 1. Let V = {(0, 0), (0, 1), (1, 0), (1, 1)} ⇢ R2. Then conv(V ) = I ⇥ I is the

unit square in R2.

We can envision a polytope in Rn might have less than n dimensions (for example,
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(0, 0) (1, 0)

(1, 1)(0, 1)

Figure 2.1: conv(V ).

a square embedded in 3 space). Such an object still spans a subspace of its entire

ambient space which we call the polytope’s a�ne space.

Definition 3. Let A = {v

1

, v

2

. . . , v

k

} ⇢ Rn. The a�ne hull of A is defined as the

set of linear combinations of elements of A whose coe�cients sum to 1.

a↵(A) :=

(
�

1

v

1

+ �

2

v

2

+ · · · + �

k

v

k

|
kX

i=1

�

i

= 1

)
.

This is similar to the definition of the convex hull, without the restriction that

all the coe�cients are nonnegative. The a�ne hull of a set corresponds to the a�ne

subspace of Rn spanned by the convex polytope generated by that set.

Example 2. Let U = {(0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0)} ⇢ R3. Then conv(U) ⇢ R3

is the unit square lying flat on the xy plane and a↵(U) is the xy plane itself, {x 2

R3 | x

3

= 0}. Notice a↵(U) is a 2 dimensional vector space.

Example 3. Let W = {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1)} ⇢ R3. Then conv(W ) is

the unit square hovering at the plane {x

3

= 1} ⇢ R3. Then a↵(W ) is exactly the plane

{z = 1} ⇢ R3. We notice that this a�ne subspace is not a linear subspace, but can still

be viewed as a 2 dimensional vector space with addition defined as (a, b, 1)+(c, d, 1) =

5



y

z

x

conv(U)

conv(W )

Figure 2.2: Non full dimensional polytopes.

(a + c, b + d, 1).

We would like a polytope to have a unique vertex set, but notice that various sets

could have the same convex hull, so the vertices of a polytope P = conv({v

1

, . . . , v

k

}) ⇢

Rn is not well defined as just {v

1

, . . . , v

k

}. Instead we must find a minimal set which

generates P .

Definition 4. We call a set of points convexly independent if each point is not in

the convex hull of the rest. That is, A is convexly independent if for all v 2 A,

v /2 (conv(A \ {v}).

The following proposition allows us to uniquely define the vertex set of a polytope.

Proposition 1. [Gr] Let A, B ✓ Rn be two convexly independent sets. If conv(A) =

conv(B), then A = B.

This justifies us in defining the vertex set as follows.

Definition 5. Let P ✓ Rn be a convex polytope. The vertex set of P, denoted vert(P)

is defined as the set of convexly independent points whose convex hull is P.
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(0, 0) (1, 0)

(1, 1)(0, 1)

(1
2

,

1

2

)

Figure 2.3: Convexly dependent point in B.

Example 4. The set B = {(0, 0), (0, 1), (1, 0), (1, 1), (1/2, 1/2)} is not convexly inde-

pendent because (1/2, 1/2) = 1

2

(0, 1)+1

2

(1, 0) so that (1/2, 1/2) 2 conv(A\{(1/2, 1/2)}).

The set A = {(0, 0), (0, 1), (1, 0), (1, 1)} is convexly independant, and conv(A) =

conv(B). The vertex set of the polytope vert(conv(B)) = A.

We can similarly define a�ne independence of a set.

Definition 6. A set of points is called a�nely independent if each point is not in the

a�ne hull of the rest. That is, A is a�nely independent if for all v 2 A, v /2 a↵(A).

Now that we have uniquely defined vertices, we can begin to discuss the dimension

of a convex polytope P .

Definition 7. We define the a�ne space of a convex polytope to be the a�ne hull of

its vertices. We can always view the a�ne space of dimension d of a polytope as a

vector space, and we define the dimension of P ⇢ Rn to be the dimension of its a�ne

space. We denote this dim(P), and we call P a d�polytope. If d = n, then P is full

dimensional.

Notice that the polytopes described in examples 2 and 3 are 2 dimensional poly-

topes embedded in 3 dimensional space, so they are not full dimensional. On the other

7



Figure 2.4: 1, 2, and 3 dimensional simplices

hand, the polytope described in example 1 is full dimensional. A very important class

of d-dimensional polytopes are those with exactly d + 1 vertices.

Definition 8. A d dimensional polytope with exactly d + 1 vertices is called a d-

simplex.

Simplexes are very important, because they have a very uniform structure, and

their volumes are very easy to compute (in fact, I will define volume using simplexes).

Most importantly, any polytope can be triangulated, that is can be expressed as

the union of simplexes. Since the volume of each simplex is easy to compute, a

triangulation of a convex polytope makes the volume easy to compute.

Example 5. A line segment is a 1-simplex. A triangle is a 2-simplex. A tetrahedron

is a 3-simplex.

2.2 Lattice Polytopes

Most of the polytopes we consider are those with integral vertices, called lattice poly-

topes. All examples considered so far are lattice polytopes.

Definition 9. A point p 2 Zn is called a lattice point of Rn. A lattice polytope is a

polytope whose vertices are all lattice points.
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Definition 10. [Be] Let A ✓ Rn be a d-dimensional a�ne subspace. A set {v

1

, . . . , v

d

}

of d integer valued vectors in Rn is said to be a lattice basis for A if, fixing a lattice

point p 2 A, any other lattice point q 2 A can be expressed as an integral linear

combination of the lattice basis, plus p. That is any lattice point q 2 A can be written

as

q = p + �

1

v

1

+ . . . + �

d

v

d

with each �

i

2 Z. The lattice basis of an a�ne subspace A is essentially a basis for

the lattice points of A viewed as a vector space with origin p.

Definition 11. We call a d-simplex P with vertex set {v

1

, . . . , v

d+1

} to be a uni-

modular d-simplex, if the legs {v

2

� v

1

, v

3

� v

1

, . . . , v

d+1

� v

1

} form a lattice basis for

a↵(P).

Example 6. Let P = conv ({(0, 0), (0, 1), (1, 0)}). Then the legs of this polytope are

(1, 0) and (0, 1) which form a lattice basis for R2. So P is a unimodular simplex.

We can now assign a normalized volume of 1 to any unimodular simplex, so that

for any arbitrary d-polytope P , we define its normalized volume with respect to

unimodular d-simplexes having volume 1. Thus, we can triangulate P into unimodular

d-simplexes, and the number of simplexes in such a triangulation is the normalized

volume of P , denoted vol(P). It is known that this definition of volume is well-

defined.[Be]

Example 7. If P = conv ({(0, 0), (0, 1), (1, 0), (1, 1)}), then we can triangulate it via

P
1

= conv ({(0, 0), (0, 1), (1, 0)}) and P
2

= conv ({(0, 1), (1, 0), (1, 1)}). Both P
1

and

P
2

are unimodular, and P = P
1

[ P
2

so that the vol(P) = 2.
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(0, 0) (1, 0)

(1, 1)(0, 1)

P
1

P
2

Figure 2.5: Triangulation of the unit square.

Proposition 2. [Da] Let P 2 Rn be a full dimensional n-simplex with vertex set

{v

0

, . . . , v

n

}. Then:

vol(P) = det(v
1

� v

0

, v

2

� v

0

, . . . , v

n

� v

n

).

This determinant is called the Cayley-Menger determinant.

Notice that we would expect the volume of the 2-cube to be 1. It turns out that

for a d-polytope P the the normalized volume of P is d! times the volume of P .

2.2.1 Ehrhart Theory

How a polytope behaves when it is dilated or contracted can tell us important things

about its combinatorial structure. For t 2 Z�0

, the t-dilation of a polytope P is

tP := {tv | v 2 P}.

Each lattice d-polytope P has associated with it an Ehrhart polynomial, denoted

LP(t). When t 2 Z�0

, the polynomial yields the number of lattice points in the t

th

dilate of the polytope. It is known that the constant term of any Ehrhart polynomial

10



1 4 9 16 25LP(t) 1 3 6 10 15LQ(t)

Figure 2.6: The Ehrhart polynomials of the unit triangle and unit square produce

the triangle numbers and square numbers respectively.

is 1, and that the degree of this polynomial is the dimension d of P . Importantly, the

leading coe�cient of the Ehrhart polynomial is its volume, i.e. 1

d!

vol(P).[Be]

Example 8. Let P = conv({(0, 0), (0, 1), (1, 0), (1, 1)}). Then LP(t) = (t+1)2, which

are the square numbers as we would expect. Notice that the leading coe�cient is 1,

therefore the volume of the square is 1, and the normalized volume is 2.

Example 9. Let Q = conv({(0, 0), (0, 1), (1, 0)}). Then LQ(t) = (t)(t+1)

2

which are

the triangular numbers as we would expect. We notice that the leading coe�cient is

1

2

, therefore the volume of the triangle is 1

2

and the normalized volume is 1 as desired

(since the triangle is unimodular).

Call a transformation lattice preserving if it takes a lattice basis to a lattice ba-

sis. Linear, lattice preserving bijections between polytopes preserve combinatorial

structure in the following way.

Proposition 3. [Be] A linear, lattice preserving bijection between polynomials pre-

serves the Ehrhart polytnomial. Thus if P and Q are polytopes, and T : P ! Q is a

linear lattice preserving bijection, then LP(t) = LQ(t).

11



2.3 Faces, Face Lattices and the Dual

A lot of the interesting combinatorial data in a convex polytope lives within its face

structure. That is, the way faces of di↵erent dimensions intersect can often have

very interesting combinatorial properties. A question we hope to answer in chapter

4, is whether the interval pyramid is self-dual. In this section we define the necessary

terminology to begin to try and solve this problem. We first rigorously define the

inequality description of a polytope and use that to define the faces of a polytope,

stating basic but important theorems. We then briefly review posets and define the

face lattice of a polytope as a poset. Next we define the dual form of a polytope and

define what it would mean for a polytope to be self-dual.

2.3.1 Faces of a Polytope

The sequence of definitions and results in this section are adapted from [Zi]. Proofs

of all these results can be found there.

Definition 12. Let P ✓ Rn. If c 2 Rn, we define the linear equality c · x  c

0

to be

valid for P if it is satisfied for all points x 2 P .

Definition 13. A face F of a d-polytope P ⇢ Rn is any set of the form:

F = P \ {x 2 Rn : c · x = c

0

}

where c · x  c

0

is a valid inequality. A face of a polytope is a polytope, and thus

has dimension. We call a face F a k�face of P if it has dimension k. A 0-face is

a vertex, a 1-face is called an edge, and a (d � 1)-face is called a facet. If P has f

k

12



k�faces, we define the f-vector of P to be

f(P) := (f
0

, f

1

, . . . , f

d�1

)

It turns out than any polytope defined by vertices can be equivalently defined

by it’s n � 1 dimensional faces, in what is called a facet description or inequality

description of the polytope. This is summarized in the following theorem.

Theorem 1. (See [Zi] theorem 1.1). P ⇢ Rn is a convex polytope if and only if it

can be described as

P = {x 2 Rn : c

i

· x  d

i

for some c

1

, . . . , c

m

2 Rn and d

1

, . . . , d

m

2 R}

This is the unique facet description exactly when each c

i

· x  d

i

is a valid inequality

describing an n � 1 dimensional face.

Example 10. The triangle P = conv({(0, 0), (0, 1), (1, 0)}) ⇢ R2 has 3 vertices v

1

=

(0, 0), v
2

= (0, 1), and v

3

= (1, 0). It also has three faces f

1

= {x = 0} \ P , f

2

= {y =

0}\P , and f

3

= {x+y = 1}\P. Thus P is a 2-dimensional polytope with 3 vertices

and 3 edges has f -vector f(P) = (3, 3), and its facet description is

P = {c 2 R2 : c · (�1, 0)  0, c · (0, �1)  0, c · (1, 1)  1}.

Example 11. Consider the unit 2-cube P = conv({(0, 0), (0, 1), (1, 0), (1, 1)}). Name

the vertices u

1

, u

2

, u

3

, u

4

respectively. We see that the linear inequality x

1

 1 is valid

for P. So g

1

= P \{x 2 R2 | x

1

= 1} is a 1 dimensional face of the 2-cube. Similarly,

�(x
1

+x

2

)  0 is a valid inequality, and g

2

= P \{x 2 R2 | x

1

+x

2

= 0} = {(0, 0)} =

u

1

is a zero dimensional face (or vertex) of the 2-cube. The 2-cubes facet description

13



v

1

v

2

v

3

f

1

f

2

f

3

Figure 2.7: The faces of the unit triangle.

g

2

= u

1

u

2

u

3

u

4

g

1

Figure 2.8: Some faces of the unit square.

is

P = {c 2 R2 : c · (�1, 0)  0, c · (0, �1)  0, c · (1, 0)  1, c · (0, 1)  1}.

Notice that for any d�polytope P , the inequality 0 · x  0 is valid, and 0 · x = 0

for all x 2 P , so that P is itself a d�face of P . Similarly, the inequality 0 · x  1

is valid, but 0 · x 6= 1 for any x 2 P . Thus ; is also always a face of P (defined to

have dimension �1). What follows is an important fact about the face structure of a

14



polytope.

Proposition 4. (See [Zi] proposition 2.3). (See for example: Ziegler Lectures on

Polytopes Proposition 2.3). Let P ✓ Rn be a polytope, and V its vertex set. Let F be

a face of P.

1. F is a polytope, with vertex set F \ V .

2. Every intersection of faces of P is a face of P.

3. The faces of F are exactly the faces of P that are contained in F .

4. F = P \ a↵(F ).

Example 12. Consider the 3-cube C

3

= conv(V ) where V = {(0, 0, 0), (0, 0, 1), (0, 1, 0),

(1, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 1, 1)}. We can consider the inequality x

1

 1

which is valid for C

3

and defines the face F = C

3

\ {x 2 C

3

: x

1

= 1}. We

know that this must be a polytope, and we know its vertex set is V

0 = F \ V =

{(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}. Thus F is the unit square lying flat on the plane

{x

1

= 1}.

Next consider the inequality x

2

 1 which is valid for C

3

and the face F̃ = C

3

\{x 2

C

3

: x

2

= 1}, with vertex set Ṽ = F̃ \V = {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)} so that

F̃ is the unit square lying flat on the plane {x

2

= 1}.

We know that F\F̃ must be a face of C

3

as well, and its vertex set is {(1, 1, 0), (1, 1, 1)},

so that F \ F̃ is the line connecting those two points. It is also a face of C

3

defined

by the valid inequality x

1

+ x

2

 2.

2.3.2 The Face Lattice of a Polytope

We earlier introduced the concept of an f -vector of a polytope, which tells us the

number of faces of each dimension that a convex polytope may have. In fact, we can

15



x

2

x

3

x

1

F \ ˜F

F

F̃

Figure 2.9: Some faces of the unit 3-cube.

consider a more structured way to consider the faces of a polytope, using a poset

called a face lattice. Some terminology must first be introduced.

Definition 14. [Zi] A poset (S, ) is a finite set S equipped with a relation ‘’ which

satisfies the following properties.

1. Reflexivity: for all x 2 S, x  x.

2. Transitivity: if x  y and y  z then x  z.

3. Antisymmetry: if x  y and y  x then x = y.

For two elements x, y 2 S, if x  y or y  x then we say x and y are comparable.

A maximal element x 2 S is an element such that there is no y 2 S such that x  y.

A minimal element y 2 S is an element such that there is not x 2 S such that x  y.

A poset is bounded if there is a unique maximal element and unique minimal element.

A chain (of length n) is a list of elements x

1

, . . . , x

n

2 S such that x

1

 . . .  x

n

.

A bounded poset is graded if every maximal chain has the same length. For a poset

S, we define the opposite poset S

op to have the same underlying set as S, with the

relation x 
op

y being in S

op if and only if y  x holds in S. We define two posets

16



Figure 2.10: The poset (P ({x, y, z}),✓).[Ks]

(S, 
S

), (T, 
T

) to be isomorphic, denoted (S, 
S

) ⇠= (T, 
T

) if there is a bijection

f : S ! T such that for all x, y 2 S, it holds that x 
S

y if and only if f(x) 
T

f(y).

Example 13. The power set of {x, y, z} ordered by inclusion is the graded poset

(P ({x, y, z}, ✓)), of length 4. An example of a maximal chain is ; ⇢ {z} ⇢ {y, z} ⇢

{x, y, z}. Notice also that the opposite poset P{x, y, z}op is isomorphic to P{x, y, z}.

The face structure of a polytope can be nicely coded into posets in the following

way.

Definition 15. Let P be a d�polytope whose faces are the set F . Then we define

the face lattice of a convex polytope P to be (F , ✓), all the faces of P ordered by

inclusion, and call this poset L(P). The length of L(P) is d + 2.

Definition 16. Two polytopes P , Q ⇢ Rn are defined to be combinatorially isomor-

phic if their face lattices are isomorphic as posets, i.e. L(P) ⇠= L(Q).

Example 14. Two n�simplices are always combinatorially isomorphic, with face

lattices equivalent to the poset of the power set n + 1 elements, ordered by inclusion.
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Figure 2.11: The face lattice of a square pyramid.[Ep]

2.3.3 Duality

A natural construction to take for a polytope is to consider its dual. Intuitively, this

is turning a polytope inside-out, replacing each facet with a vertex and reconstructing

the polytope from there. An interesting class of polytopes are those which are self-

dual, meaning that the dual has the same combinatorial structure as the original

polytope. We make these notions more precise here.

Definition 17. For a d�polytope P, we define an interior point y 2 P to be a point

which is not contained in a face of P of dimension smaller than d. The collection of

interior points of P is called intP.

We hope to define the dual of a polytope P , but for the construction we use, we

must have that 0 2 intP . This can generally be achieved for any polytope (as long

as the polytope has nonempty interior) by a simple a�ne translation of the polytope

18



Figure 2.12: Taking the dual.[Zi]

so that 0 is in the interior.[Zi]

Lemma 1. ([Zi] Lemma 2.8). Let P be a polytope in Rn. If p 2 P can be represented

as p = 1

n+1

P
n

i=0

x

i

for n+ 1 a�nely independant points x

0

, . . . , x

n

2 P, then p is an

interior point of P.

The following construction is from [Zi].

Definition 18. Let P ✓ Rn be a polytope with 0 in the interior. The dual of P is

defined by

P� := {y 2 Rn : y · x  1 for all x 2 P},

where y · x = y

1

x

1

+ . . . + y

n

x

n

is the dot product.

Figure 2.3.3 shows a convex pentagon on a plane given by its five vertices, and

it’s dual given by five inequalities.

Definition 19. A polytope P ⇢ Rn with 0 in the interior is said to be self-dual if

L(P) ⇠= L(P�).

Proposition 5. ([Zi] Corollary 2.14)Let P ⇢ Rn be a polytope with 0 in the interior.

The face lattice of P� is the the opposite poset of P. That is L(P�) = (L(P))op.
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Corollary 1. A polytope P ⇢ Rn with 0 in the interior is self-dual if and only if

L(P) ⇠= L((P))op.

The following proposition confirms the idea that our defined notion of taking the

dual of a polytope in fact it replaces facets with vertices and so on.

Proposition 6. Let P ✓ Rn be a polytope with 0 in the interior, and vertex set

{v

1

, . . . , v

m

}. If c 2 Rn, then c 2 P� if and only if c · v

i

 1 for i = 1, . . . , m.

Proof. First if c 2 P�, then clearly c · v

i

 1 for all i = 1, . . . , m since c · x  1 must

be a valid inequality for all x 2 P (by how we defined the dual construction).

Conversely, assume c · v
i

 1 holds for each i. To show c 2 P� we must show that

c · x  1 for all x 2 P . Fix some x 2 P . We know that x = �

1

v

1

+ . . . + �

m

v

m

with
P

i

�

i

= 1 and each �

i

� 0. But then since c · v
i

 1 for each i, then �

i

(c · v
i

)  �

i

for

each i. Let us sum �

i

(c · v

i

)  �

i

for each i so that

�

1

(c · v

1

) + . . . + �

m

(c · v

m

)  �

1

+ . . . + �

m

= 1

Clearly �

i

(c · v

i

) = c · (�
i

v

i

) so that

c · (�
1

v

1

) + . . . + c · (�
m

v

m

)  1

c · (�
1

v

1

+ . . . + �

m

v

m

)  1

c · x  1

Since x was arbitrary, c · x  1 for all x 2 P , so that c 2 P�.

Definition 20. We define an a�ne translation of a polytope P ⇢ Rn to be just a

translation of all the points in the polytope by a single vector v 2 Rn. We denote the

20



P

P
v

Figure 2.13: A�ne translation of the unit triangle.

translated polytope

P
v

= P + v

Example 15. Let P = conv({(0, 0), (1, 0), (0, 1)}) and v = (1, 1). Then P
v

=

conv({(1, 1), (2, 1), (1, 2)}).

Notice that for any polytope P ⇢ Rn with nonempty interior, if v 2 int(P), then

0 2 int(P�v

). Thus it is not di�cult to have an a�ne translation of P with 0 on the

interior. It is important to notice that a�ne translation of a polytope does not a↵ect

the polytopes face lattice poset [Zi]. In fact, it does not a↵ect any of the combinatorial

data of the polytope, and so we are justified in calling P�

�v

the dual of P . Therefore,

we can restate Proposition 19 for the more general case of polytopes with nonempty

interiors.

Corollary 2. [Zi] Let P ⇢ Rn be a polytope with nonempty interior, and let v 2

int(P). Then,

L(P�

v

) = (L(P))op

Thus any P is self dual if any only if L(P) = (L(P))op.
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Figure 2.14: An example of a graph.

2.4 Basic Graph Theory

Relating to any interval vector polytope, there is associated a graph called the flow

dimension graph which tells us the a�ne-dimension of the polytope.[Da] I will in-

troduce the necessary basics of graph theory and wait until later to define the flow

dimension graph.

Definition 21. A graph is an ordered pair G = (V, E) where V is a set of vertices,

and E ✓ V ⇥ V is a set of edges between pairs of vertices.

Example 16. Consider the graph G = (V, E) with six nodes, where V = {1, 2, 3, 4, 5, 6},

and the edge set E = {(1, 2), (1, 5), (2, 3), (3, 4), (4, 5), (4, 6)}. Each element of E can

be visualized as an edge connecting the two vertices.

Definition 22. Two nodes a, b in a graph G = (V, E) are said to be connected if there

exists a path from a to b, that is there exist q

0

, . . . , q

s

2 V such that (a, q

0

), (q
0

, q

1

), . . . , (q
s

, b) 2

E. A connected component of a graph is a maximal set of vertices which are all con-

nected.

Notice that the poset in example 16 has one connected component.
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Chapter 3

Interval Vector Polytopes

We begin by defining interval vectors and interval vector polytopes in general. We

then consider several classes of interval vector polytopes and the interesting combi-

natorial properties that arise within them.

Definition 23. [Da] A {0, 1}�vector is a vector whose entries are all in the set

{0, 1}. An interval vector is a {0, 1}�vector in Rn such that the ones (if any) occur

consecutively. More precicely, a vector x = (x
1

, . . . , x

n

) 2 Rn for i < k, if x

i

= x

k

= 1,

then x

j

= 1 for all i  j  k. For i  j, we denote the ↵

i,j

:= e

i

+ . . . + e

j

where

each e

k

is the kth standard unit vector in Rn. We define the interval length of ↵

i,j

to

be j � i + 1, namely, the number of 1s appearing in the vector.

Example 17. Each standard unit vector is an interval vector with interval length 1.

(0, 1, 1, 1, 0, 0) = ↵

2,4

2 R6 is an interval vector with interval length 3. (1, 1, 1, 1) =

↵

1,4

2 R4 is an interval vector with interval length 4. The 0 vector is always trivially

an interval vector with interval length 0. (1, 0, 0, 1) is not an interval vector, since

there are 0s between the the first and fourth coordinates (both 1s). (0, 2, 2, 0) is not

an interval vector because it is not a {0,1}-vector.
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Definition 24. A lattice polytope whose vertices consist entirely of interval vectors

is called an interval vector polytope. If I ✓ Rn is a set of interval vectors, then

P
n

(I) := conv(I) is the corresponding interval vector polytope.

Example 18. P
2

({(0, 0), (0, 1), (1, 0)}), which is the triangle we have been considering

in many examples, is an interval vector polytope. Similarly, P
2

({(0, 0), (0, 1), (1, 0), (1, 1)})

which is the unit 2-cube is also an interval vector polytope.

Let [n] := {0, 1, . . . , n}. Then for any set S ✓ [n], we define I

S

= {interval vectors

with interval length t : t 2 S}. Define P
n

(I
S

), as the interval vector with vertices of

interval length in S. This is a useful notational device to allow us to easily define

interval vector polytopes coming from interval vectors of specific lengths.

Example 19. Let S = {2} ✓ [4]. Then P
4

(I
S

) = conv({(1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)}).

If T = {1, 2} ✓ [3] then P

3

(I
T

) = conv({(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)}).

We will look further at polytopes which are the convex hull of all interval vectors in

Rn: P
n

(I
[n]

) = conv{0, e
1

, e

2

, . . . , ↵

1,n

}.

Notice that the vertex set of an interval vector polytope is not di�cult to describe.

Lemma 2. Let I ⇢ Rn be a set of interval vectors. Then I is convexly independent.

Proof. Since a subset of a convexly independent set is convexly independent, it suf-

fices to show that the set of all interval vectors in Rn, I

[n]

, is convexly independent.

Consider ↵

i,j

where i can but does not need to equal j. Each other interval vector

either has a 0 in the entry where ↵

i,j

has a 1, or a 1 where ↵

i,j

has a 0.

If a vector of the first type (with a 0 in the kth entry that ↵

i,j

has a 1) were to

have nonzero coe�cient, then the sum of the rest of the coe�cients would be less

than 1. But then, since no interval vector has a value greater than 1 in the kth entry,

24



the kth entry of any convex combination would be less than 1, and thus certainly the

sum could not be ↵

i,j

.

If a vector of the second type (with a 1 in the kth entry where ↵

i,j

has a 0) were to

have nonzero coe�ent, then the kth entry of any convex combination would be greater

than 0, and thus the sum could certainly not be ↵

i,j

. Thus ↵

i,j

/2 conv(I{[n]} \ {↵

i,j

}),

and I{[n]} is convexly independent, along with all of its subsets.

Corollary 3. Let I ⇢ Rn be a set of interval vectors. Then the vert(P
n

(I)) = I.

3.1 The Complete Interval Vector Polytope

We call P

n

(I
[n]

) the Complete Interval Vector Polytope. We compute the normalized

volumes of the first few of these polytopes using polymake [Ga] and noticed a pattern.

Let us look at a few examples.

Example 20. P
1

(I
[1]

) = conv({0, 1}) = [0, 1] ⇢ R which is the unit interval.

vol(P
1

(I
[1]

)) = 1.

Example 21. P
2

(I
[2]

) = conv({(0, 0), (0, 1), (1, 0), (1, 1)}) ⇢ R2 which is the unit

2-cube.

vol(P
2

(I
[2]

)) = 2.

Example 22. P
3

(I
[3]

) = conv({e

1

, e

2

, e

3

, ↵

1,2

, ↵

2,3

, ↵

1,3

}) ⇢ R3. This looks like the

unit 3-cube with a corner cut out and vol(P
3

(I
[3]

)) = 5.

Example 23. P
4

(I
[4]

) = conv({e

1

, e

2

, e

3

, e

4

, ↵

1,2

, ↵

2,3

, ↵

3,4

, ↵

1,3

, ↵

2,4

, ↵

1,4

}) ⇢ R4.

vol(P
4

(I
[4]

)) = 14.

An important sequence of numbers that arises often in combinatorics is called the

Catalan numbers, {C

n

}1
n=1

, defined by
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x

2

x

3

x

1

Figure 3.1: The third complete interval vector polytope, P

3

(I

[3]

).

C

n

=
1

n + 1

0

B@
2n

n

1

CA (3.1)

These numbers are often the solutions to counting problems and represent, among

other things, the number of monotonic paths between opposite corners in an n ⇥ n

grid not crossing above the line y = x. We find this example in [St], along with over

200 occurrences of the catalan numbers in an appendix. The catalan numbers are

fascinating because of their frequent appearances in di↵erent combinatorial problems.

We notice that the first four numbers in the sequence are 1, 2, 5, 14, and some

computation shows the first 10 interval vector polytopes have Catalan volume.

In his paper [Po], Postnikov defines the complete root polytope Q

n

✓ Rn as the

convex hull of 0 and e

i

� e

j

for all i < j, and shows that the volume of Q

n

is C

n�1

.

As it turns out, we can provide a lattice preserving linear bijection between Q

n

and

P
n�1

(I
[n�1]

). By proposition 3, this implies the two polytopes have the same Erhart

polynomial, and since the first term of the Erhart polynomial is the volume of the

polytope, the two must share volumes.
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Figure 3.2: The fourth catalan number represented as monotonic paths in a 4 ⇥ 4

grid.[Dm]

Theorem 2. L

Qn(t) = LPn�1

(I

[n�1]

)

.

I will first present the proof by providing a lattice preserving linear bijection

between the two polytopes. To illustrate how it works, I then compute the transfor-

mation on a series of examples.

Proof. Each of the vertices of Q

n

are vectors with entries that sum to zero, so any

linear combination (and specifically any convex combination) of these vertices also

has entries who sum to zero:

X

i

x

i

=
X

j

y

j

= 0 =)
X

i

ax

i

+
X

j

by

j

= a

X

i

x

i

+ b

X

j

y

j

= 0.

Define B := {x 2 Rn|
P

n

i=1

x

i

= 0}; then Q

n

⇢ B. B is an (n � 1)-dimensional a�ne

subspace of Rn.

Consider the linear transformation T given by the n ⇥ n lower triangular (0, 1)-

matrix where t

ij

= 1 if i � j and t

ij

= 0 otherwise. Then the image

T (B) ✓ {x 2 Rn|x
n

= 0} =: A.
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A is also an n � 1 dimensional subspace of Rn. Since T has determinant 1, it is

injective when restricting the domain to B. For the same reason, we know that for

any y 2 A, there exists x 2 Rn such that y = T (x). But since y

n

=
P

n

i=1

x

i

= 0, then

x 2 B, so that T |
B

: B ! A is surjective, and therefore a linear bijection.

Now consider the projection ⇡ : A ! Rn�1 given by

⇡ ((x
1

, . . . , x

n�1

, 0)) = (x
1

, . . . , x

n�1

).

The transformation is clearly linear, and has the inverse

⇡

�1 ((x
1

, . . . , x

n�1

)) = (x
1

, . . . , x

n�1

, 0),

so that ⇡ is a bijection.

Now we show that the linear bijection ⇡ � T |
B

: B ! Rn�1 is a lattice-preserving

map. First we find a lattice basis for B. Consider the set

S := {e

i,n

= e

i

� e

n

|i < n}.

We notice that any integer point of B can be represented as

 
a

1

, . . . , a

n�1

, �
n�1X

i=1

a

i

!
=

n�1X

i=1

a

i

e

i,n

.

Any integer point of B is an integer combination elements of S, so S is a lattice basis

of B.

Note that ⇡ � T (e
i,n

) = e

i

+ · · · + e

n�1

=: u

i

. Therefore

⇡ � T (S) = {u

i

|i  n � 1} =: U.
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We notice that e

n�1

= u

n�1

and e

i

= u

i

� u

i+1

, so that each of the standard unit

vectors e

i

of Rn�1 is an integral combination of the vectors in U . Since the standard

basis is a lattice basis of Rn�1, so is U , thus ⇡ � T |
B

is a lattice-preserving map.

Since our bijection is linear and lattice-preserving, all we have left to show is that

the vertices of Q

n

map to those of P
n�1

(I
[n�1]

). By linearity, ⇡ � T (0) = 0, and given

any vertex ↵

i,j

for P
n�1

(I
[n�1]

), we know that ⇡ � T (e
i,j+1

) = ↵

i,j

where i < j +1  n

so that ⇡ � T |
B

maps vertices to vertices.

I’ll illustrate how this works in the following examples.

Example 24. Consider the third complete root polytope,

Q

3

= conv({0, e
1

�e

2

, e

2

�e

3

, e

1

�e

3

}) = conv({(0, 0, 0), (1, �1, 0), (1, 0, �1), (0, 1, �1)}).

Since the transformation is linear, it preserves convex combinations (since they are

just linear combinations), so we need only notice that it takes vertices to vertices.

⇡(T (0, 0, 0)) = ⇡(0, 0, 0) = (0, 0) = 0,

⇡(T (1, �1, 0)) = ⇡(1, 0, 0) = (1, 0) = e

1

,

⇡(T (1, 0, �1)) = ⇡(1, 1, 0) = (1, 1) = ↵

1,2

,

⇡(T (0, 1, �1)) = ⇡(0, 1, 0) = (0, 1) = e

2

.

These are exactly the vertices P

2

(I
[2]

).

Example 25. Consider the third complete interval vector polytope

P

3

(I
[3]

) = conv({(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}).
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Transforming the vertices we see

T

�1(⇡�1(0, 0, 0) = T

�1(0, 0, 0, 0) = (0, 0, 0, 0) = 0,

T

�1(⇡�1(0, 0, 1) = T

�1(0, 0, 1, 0) = (0, 0, 1, �1) = e

3

� e

4

,

T

�1(⇡�1(0, 1, 0) = T

�1(0, 1, 0, 0) = (0, 1, �1, 0) = e

2

� e

3

,

T

�1(⇡�1(1, 0, 0) = T

�1(1, 0, 0, 0) = (1, �1, 0, 0) = e

1

� e

2

,

T

�1(⇡�1(0, 1, 1) = T

�1(0, 1, 1, 0) = (0, 1, 0, �1) = e

2

� e

4

,

T

�1(⇡�1(1, 1, 0) = T

�1(1, 1, 0, 0) = (1, 0, �1, 0) = e

1

� e

3

,

T

�1(⇡�1(1, 1, 1) = T

�1(1, 1, 1, 0) = (1, 0, 0, �1) = e

1

� e

4

.

These are exactly the vertices of Q

4

.

A corollary to this theorem describes the normalized volume of the complete

interval vector polytope.

Corollary 4. vol(P
n

(I
[n]

)) = C

n

= 1

n+1

0

B@
2n

n

1

CA .

3.2 The Fixed Interval Vector Polytope

Given an interval length i and and a dimension n, we define the fixed interval vector

polytope P
n

(I{i}) ⇢ Rn as the convex hull of all interval vectors in Rn with interval

length i.

Example 26. The fixed interval vector polytope with n = 5, i = 3 is

P
5

(I{3}) = conv({(1, 1, 1, 0, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1)}) = conv({↵

1,3

, ↵

2,4

, ↵

3,5

}).
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Figure 3.3: P
3

(I{1}).

Example 27. The fixed interval vector polytope with n = 3, i = 1 is

P
3

(I{1}) = conv({(1, 0, 0), (0, 1, 0), (0, 0, 1)}) = conv({e

1

, e

2

, e

3

}).

This is a unit triangle in the a�ne subspace {x + y + z = 1} of R3.

The last example is not an exception. In fact, the main theorem of this section

shows us that that each fixed interval vector polytope is a unimodular simplex in its

a�ne subspace. The proof requires some graph theory.

3.2.1 Flow Dimension Graphs

This entire construction is due to [Da]. Related to any interval vector polytope, there

is associated a graph can be shown to tell us the a�ne-dimension of the polytope.

Here I define the flow dimension graph, which will allows us to prove the main theorem

of this section. For more information on flow dimension graphs and their construction

and uses see [Da].

Denote e

i,j

:= e

i

� e

j

for i < j. We define the set of elementary vectors as

31



Figure 3.4: The flow dimension graph G

5

(I{3}).

containing all such e

i,j

, each unit vector e

i

, and the zero vector. Let T be the lower

triangular (0, 1)-matrix, as in the proof of Theorem 2. We notice that T (e
i

) = ↵

i,n

and T (e
i,j

) = ↵

i,j�1

. So the image of an elementary vector is an interval vector. Since

T is invertible, for any set of interval vectors I, there is a unique set E of elementary

vectors such that T (E) = I, namely T

�1(I) = E .

Thus for any interval vector polytope P
n

(I) ⇢ Rn, we can construct the corre-

sponding flow-dimension graph G

n

(I) = (V, E) as follows. Let E = T

�1(I). We let

the vertex set V = [n], specify a subset V

1

= {j 2 V | e

j

2 E}, and define the edge set

E = {(i, j) | e

i,j

2 E}. Also we let k

0

denote the number of connected components C

of the graph G (ignoring direction) so that C \ V

1

= ;.

Example 28. Recall that the fixed interval-vector polytope with n = 5, i = 3 is

P
5

(I{3}) = conv{(1, 1, 1, 0, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1)}

The corresponding flow dimension graph of G

5

(I{3}) = (V, E) has vertex set V =

{1, 2, 3, 4, 5}. The corresponding elementary vectors are E = {e

1,4

, e

2,5

, e

3

}. Thus the

edge set E = {(1, 4), (2, 5)} and the specified subset V

1

= {3} ⇢ V . The constant k

0

representing the number of connected components of the graph not intersecting V

1

is

k

0

= 2.
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Theorem 3. [Da] If 0 2 a↵(I), then the dimension of P
n

(I) is n � k

0

. Else, if

0 /2 a↵(I) then the dimension of P
n

(I) is n � k

0

� 1.

For P
n

(I{i}), we have I = {↵

j,j+i�1

| j  n � i + 1} which translates to the

elementary vector set E = {e

k,k+i

| k  n � i} [ {e

n�i+1

}. We can define the

corresponding flow-dimension graph G

n

(I{i}) = (V, E) where V = {1, . . . , n} and

E = {(k, k + i) | k 2 [n � i]} corresponding to each e

i,j

2 E . Also V

1

:= {n � i + 1}

corresponding to e

n�i+1

2 E .

Lemma 3. Let a, b be nodes in the flow-dimension graph G

n

(I{i}) = (V, E). Then a

and b are connected i↵ a ⌘ b mod i.

Proof. Assume without loss of generality a  b. Suppose a and b are connected by

the path q

0

, . . . , q

s

2 V . Therefore by definition of E, we have

q

0

= a + i

q

1

= q

0

+ i = a + 2i

...

q

s

= q

s�1

+ i = a + (s + 1)i

b = q

s

+ i = a + (s + 2)i

Thus a ⌘ b mod i by definition.

Now suppose that a ⌘ b mod i where a  b, then there exists m 2 N such that

b = a + mi

= a + (m � 1)i + i.
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Since b and a+ (m � 1)i di↵er by i, then by definition of E, there is an edge between

these nodes. Call this edge (q
t

, b) 2 E. Similarly, we have

a + (m � 1)i = a + (m � 2)i + i )(q
t

, q

t�1

) 2 E

a + (m � 2)i = a + (m � 3)i + i )(q
t�1

, q

t�2

) 2 E

...

a + 2i = (a + i) + i )(q
1

, q

0

) 2 E

a + i = a + i )(q
0

, a) 2 E.

Hence q

0

, q

1

, . . . , q

t

2 V , define a path from a to b, so a and b are connected.

Proposition 7. P
n

(I{i}) is an (n � i)-dimensional simplex.

Proof. By Lemma 3 we know there are i connected components in the flow-dimension

graph G

n

(I{i}) and since V

1

has only one element, k

0

= i � 1. Thus by Theorem 3

the dimension of P
n

(I{i}) is n � i. Since P
n

(I{i}) has n � i + 1 vertices, it is an

(n � i)-dimensional simplex.

Theorem 4. P
n

(I{i}) is an (n � i)-dimensional unimodular simplex.

Proof. Consider the a�ne space where the sum over every i

th coordinate is 1,

A =

(
x 2 Rn

�����
X

j⌘kmod i

x

j

= 1, 8 k 2 [i]

)
.
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Since the vertices of P
n

(I{i}) have interval length i, they are in A. Thus P
n

(I{i}) ⇢ A.

We want to show that the w

1

, w

2

, . . . , w

n�i

of P
n

(I{i}) form a lattice basis for A

where

w

1

= ↵

1,i

� ↵

n�i+1,n

w

2

= ↵

2,i+1

� ↵

n�i+1,n

...

w

n�i

= ↵

n�i,n�1

� ↵

n�i+1,n

.

We will do this by showing that any integer point p 2 A can be expressed as a integral

linear combination of the proposed lattice basis, that is, there exist integer coe�cients

Y

1

, . . . , Y

n�i

so that Y

1

w

1

+ . . . + Y

n�i

w

n�i

+ ↵

n�i+1,n

= p.

We first notice that p can be expressed as

0

B@p

1

, p

2

, . . . , p

n�i

,

X

jn�i

j⌘t�i+1mod i

(�p

j

) + 1,
X

jn�i

j⌘t�i+2mod i

(�p

j

) + 1, . . . ,
X

jn�i

j⌘n=mod i

(�p

j

) + 1

1

CA

by solving for the last term in each of the equations defining A. Let

Y

t

=

8
>>>><

>>>>:

p

1

t = 1

p

t

� p

t�1

1 < t  i

p

t

� Y

t�i

i < t  n � i

Then each Y

t

is an integer. We claim that

Y

1

w

1

+ · · · + Y

n�i

w

n�i

+ ↵

n�i+1,n

= p.

Clearly the first coordinate is p

1

since w

1

is the only vector with an element in the first

coordinate. Next consider the t

th coordinate of this linear combination for 1 < t  i,
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by summing the coe�cients of all the vectors who have a 1 in the t

th position:

Y

t

+ Y

t�1

+ Y

t�2

+ · · · + Y

1

= p

t

� p

t�1

+ p

t�1

� p

t�2

+ · · · + p

2

� p

1

+ p

1

= p

t

We next consider the t

th coordinate of the combination for i < t  n � i by summing

the coe�cients of the vectors who have a 1 in the t

th position.

Y

t

+ Y

t�1

+ · · · + Y

t�i+1

= (p
t

� Y

t�1

� · · · � Y

t�i+1

) + Y

t�1

+ · · · + Y

t�i+1

= p

t

Finally, we consider the t

th coordinate of the combination for n � i < t  n, noticing

that each coordinate from w

1

to w

t

has a �1 in the (t� i)th position and ↵

n�i+1,n

has

a 1 in this position. Thus we get:

�(Y
1

+ Y

2

+ · · · + Y

t�i

) + 1.

Applying the two relations we have defined between coordinates, and calling hti the

least residue of tmod i, we see:

�(Y
1

+ Y

2

+ · · · + Y

t�i

) + 1 = �(Y
1

+ Y

2

+ · · · + Y

t�2i

+ p

t�i

) + 1

= �(Y
1

+ Y

2

+ · · · + Y

t�3i

+ p

t�2i

+ p

t�i

) + 1

= �

0

B@Y

1

+ Y

2

+ · · · + Yhti +
X

i<jn�i

j⌘tmod i

p

j

1

CA+ 1

= �

0

B@
X

jn�i

j⌘tmod i

p

j

1

CA+ 1.

Thus p = Y

1

w

1

+ Y

2

w

2

+ · · ·+ Y

n�i

w

n�i

+ ↵

n�i+1,n

and so w

1

, . . . , w

n�i

form a lattice

basis of A. So P
n

(I{i}) and is a unimodular simplex.
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Corollary 5. volP
n

(I{i}) = 1.

To help with understanding this proof, I will walk through an example.

Example 29. Consider again P

5

(I{3}) as in example 28. We saw that the number of

connected components not intersecting V

1

is k

0

= 2. We also know that 0 /2 a↵(I{3})

so that by theorem 3, dim(P
5

(I{3})) = 5 � 2 � 1 = 2. So P
5

(I{3}) is a 2 dimensional

simplex. Since each vertex is, we also know that P
5

(I{3}) is a subset of the a�ne

space

A =

⇢
x 2 R5

����x1

+ x

4

= 1, x
2

+ x

5

= 1, x
3

= 1

�
.

But since this is 2 dimensional, we know that A is in fact the a�ne hull of P
5

(I{3}).

So to show that this polytope is a unimodular simplex, we must notice that its legs

{w

1

, w

2

} = {(1, 1, 1, 0, 0)�(0, 0, 1, 1, 1), (0, 1, 1, 1, 0)�(0, 0, 1, 1, 1)} form a lattice basis

for A.

Take any lattice point p 2 A, it can be written as (x
1

, x

2

, 1, 1 � x

1

, 1 � x

2

). If we

let Y

1

= x

1

and Y

2

= x

2

� x

1

, then

Y

1

w

1

+ Y

2

w

2

+ ↵

3,5

= x

1

(1, 1, 0, �1, �1) + (x
2

� x

1

)(0, 1, 0, 0, �1) + (0, 0, 1, 1, 1)

= (x
1

, x

1

+ x

2

� x

1

, 1, �x

1

1, �x

1

� x

2

+ x

1

+ 1)

= (x
1

, x

2

, 1, 1 � x

1

, 1 � x

2

) = p.

Since, ↵

3,5

is a lattice point of A, p is an arbitrary lattice point of A and each Y

i

is

integral, then {w

1

, w

2

} is a lattice basis of A and P

5

(I{3}) is unimodular.
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Chapter 4

The Interval Pyramid

Given a dimension n, we define the interval pyramid P
n

(I{1,n�1}) ✓ Rn to be the

convex hull of all the standard unit vectors of Rn along with the two interval vectors

with interval length n � 1: ↵

1,n�1

and ↵

2,n

Example 30. For n = 3 and n = 4 and in general,

P
3

(I{1,2}) = conv({(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)}),

P
4

(I{1,3}) = conv({(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1)}),

P
n

(I{1,n�1}) = conv({e

1

, e

2

, . . . , e

n

, ↵

1,n�1

, ↵

2,n

)}.

We can use the flow dimension graph to show that dim(P
n

(I{1,n�1})) = n, so that

its a�ne space is all of Rn.

Proposition 8. The dimension of P
n

(I{1,n�1}) is n.
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Figure 4.1: The flow dimension graph of the interval pyramid: G(I{1,n�1}))

Proof. For n � 3, the vertices of P
n

(I{1,n�1

}) form the set

I =

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

e

1

= (1, 0, . . . , 0, 0)

e

2

= (0, 1, . . . , 0, 0)

...

e

n

= (0, 0, . . . , 0, 1)

↵

1,n�1

= (1, 1, . . . , 1, 0)

↵

2,n

= (0, 1, . . . , 1, 1)

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

.

We convert the interval vectors to the corresponding elementary vector set

E = {e

1,2

, e

2,3

, . . . , e

n�1,n

, e

1,n

, e

2

, e

n

}.

From this we construct the flow-dimension graph G(P
n

(I{1,n�1})) = (V, E) as seen in

Figure 4.1, where V = [n] and

E = {(k, k + 1)|k 2 [n � 1]} [ {(1, n)}

corresponding to each e

i,j

in E . The subset of vertices V

1

= {2, n} (circled in Figure
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4.1) corresponds to each e

i

in E . Since the underlying graph is connected, we know

k

0

= #{connected components C in G(P
n

(I{1,n�1

})) such that C \ V

1

= ;} = 0.

Next we notice that

1

n � 2
e

1

+
1

n � 2
e

2

+ · · · + 1

n � 2
e

n�1

� 1

n � 2
↵

1,n�1

= 0

where the sum of the coe�cients is

n � 1

n � 2
� 1

n � 1
=

n � 2

n � 2
= 1

So 0 2 a↵(I) and by Theorem 3, dim(P
n

(I{1,n�1

})) = n � k

0

= n.

4.1 f-vector of the Interval Pyramid

Recall that the f -vector of a polytope tells us the number of faces a polytope has of

each dimension. We will see that the f -vector of P

n

(I{1,n�1}) with n � 3, is precisely

the n

th row of the Pascal 3-triangle without 1’s. The Pascal 3-triangle [Az] is an

analogue of Pascal’s Triangle, where the third row, instead of being 1 2 1, is replaced
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Interval-Vector Polytopes
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Background

A convex polytope is formed
by taking the convex hull of
a set A = {v1, v2, . . . , vn

} ⇢ Rd,
conv(A), which is defined as

8
<

:�1v1 + �2v2 + · · · + �

n

v

n

����1, �2, . . . , �n

2 R�0 and
nX

i=1

�

i

= 1

9
=

; .

A simplex is an n-dimensional polytope with
n + 1 vertices.

Given an n-dimensional polytope P with f

k

k-dimensional faces, the f -vector of P is
written as

f (P) := (f0, f1, . . . , fn�1).

Example 1. Tetrahedron
Simplex: 3-dimensional polytope, 4 vertices

f -vector: (4,6,4)

4 vertices, 6 edges, 4 planes

Denote the volume of a polytope P as vol(P).

An interval vector [1] is a (0, 1)-vector x 2 Rn

such that, if x

i

= x

k

= 1 for i < k, then x

j

= 1

for every i  j  k.

Example 2. Interval vectors

(1, 1, 0), (0, 0, 0, 0), (0, 0, 1, 1, 1, 1, 0)

Let ↵

i,j

:= e

i

+ e

i+1 + · · · + e

j

for i  j where e

i

is the i

th standard unit vector.

Example 3. For n = 6

e2 = (0, 1, 0, 0, 0, 0)

e5 = (0, 0, 0, 0, 1, 0)

↵2,5 = (0, 1, 1, 1, 1, 0)

Abstract: An interval vector is a (0, 1)-vector where all the ones appear consecutively. Polytopes whose vertices
are among these vectors have some astonishing properties. We present a number of interval-vector polytopes,
including one class whose volumes are the Catalan numbers and another class whose volumes are the even
numbers and face numbers mirror Pascal’s triangle.

1. Complete Interval-Vector Polytope

Let I
n

= {↵

i,j

|i, j 2 [n], i  j}.

The complete interval-vector polytope is
defined as PI

n

:= conv(I
n

).

We form a lattice-preserving bijection between
the complete interval-vector polytope and
Postnikov’s complete root polytope in [2].
Theorem 1. The volume of the n-dimensional
interval-vector polytope is the nth Catalan
number.

vol(PI
n

) =
1

n + 1

✓
2n

n

◆
.

2. Fixed Interval-Vector Polytope
Given an interval length i and a dimension n

we define the fixed interval-vector polytope
Q

n,i

as the convex hull of all vectors in Rn

with interval length i

Q
n,i

:= conv({↵

j,j+i�1|j  n � i + 1}).

We project Q
n,i

down to its ambient
dimension and prove using Dahl’s
flow-dimension graph and the
Cayley-Menger determinant

Theorem 2.Q
n,i

is an (n � i)-dimensional
unimodular simplex.

Example 4. The fixed interval-vector polytope
with n = 5, i = 3 is

Q5,3 = conv
�
(1, 1, 1, 0, 0) , (0, 1, 1, 1, 0) , (0, 0, 1, 1, 1)

�
.

Flow-dimension graph of Q5,3 :

3. Interval Pyramid

Given a dimension n, define P
n,1 to be the

convex hull of all vectors in Rn with interval
length 1 or n � 1.

Example 5. For n = 4,

P4,1 = conv
�
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1)
�
.

Theorem 3. The f -vector for P
n,1 for n � 3 is the

n

th row of the Pascal 3-triangle.

n = 1: 3
n = 2: 4 4
n = 3: 5 8 5
n = 4: 6 13 13 6
n = 5: 7 19 26 19 7
n = 6: 8 26 45 45 26 8

Triangulation of the base of P
n,1:

We apply the Cayley-Menger determinant to
each simplex formed by pyramiding over the
triangulation of P

n,1 to prove:

Theorem 4. vol (P
n,1) = 2(n � 2) for n � 3

4. Generalized Interval Pyramid

Due to the interesting properties of P
n,1, we

studied a related class of polytopes

P
n,i

:= conv(e1, . . . , en

, ↵1,n�i

, ↵2,n�i+1, . . . , ↵i+1,n)

where n > 2 and i  n

2 .

Example 6. For n = 5 and i = 2

P4,2 = conv
�
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)
�

Proposition 1. The dimension of P
n,i

is n.

Proposition 2. Let

B = conv
�
{e1, e2, . . . , ei

, e

n�i+1, . . . , en

,

↵1,n�i

, ↵2,n�i�1 . . . , ↵

i+1,n}
�
.

Then adding each vector in {e

i+1, ei+2, . . . , en�i

}
sequentially pyramids over the previous base.

Finally, we have conjectured the volume of P
n,i

and plan to prove it by proving a triangulation
of the base of P

n,i

contains 2i simplices whose
volume as one pyramids over them is
n � (i + 1).

Conjecture 1.

vol(P
n,i

) = 2i(n � (i + 1)).
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Figure 4.2: The base of the interval pyramid.

with 1 3 1, and then the same addition pattern is followed as in Pascal’s triangle.

n = 1: 3

n = 2: 4 4

n = 3: 5 8 5

n = 4: 6 13 13 6

n = 5: 7 19 26 19 7

n = 6: 8 26 45 45 26 8

(4.1)

The proof of this correspondence requires a few preliminary results. First we define

the face B = conv({e

1

, e

n

, ↵

1,n�1

, ↵

2,n

}) ✓ P
n

(I{1,n�1}) as the base of the interval

pyramid.

Lemma 4. The base of the interval pyramid is 2 dimensional.

Proof. We first consider A = conv(e
n

, ↵

1,n�1

, ↵

2,n

). The corresponding elementary

vectors of the vertex set are {e

1,n

, e

2

, e

n

}. So we build the flow-dimension graph as

seen in Figure 4.1, G(A)) = (V, E) where V = [n], E = {(1, n)} corresponding to

e

1,n

. The subset V

1

= {2, n} (circled in Figure 2) corresponds to e

2

and e

n

. This

41



graph has n � 1 connected components, two of which contain elements of V

1

so that

k

0

= n � 3.

If we let �

1

e

n

+ �

2

↵

1,n�1

+ �

3

↵

2,n

= 0, we first notice that �

2

= 0 since ↵

1,n�1

is

the only vector with a nonzero first coordinate. But this implies that �

1

= �

3

= 0.

Since the coe�cients cannot sum to 1, we conclude that 0 /2 a↵(e
n

, ↵

1,n�1

, ↵

2,n

).

So now by Theorem 3

dim(conv(e
n

, ↵

1,n�1

, ↵

2,n

)) = n � k

0

� 1 = n � (n � 3) � 1 = 2.

Finally e

1

= (1)↵
1,n�1

+ (�1)↵
2,n

+ (1)e
n

is in the a�ne hull of A and does not add

a dimension. Thus we conclude that dim(B) = 2.

Corollary 6. Each e

i

for 2  i  n � 1 adds a dimension to P
n

(I{1,n�1}), that is

e

i

/2 a↵ I{1,n�1}) \ {e

i

}.

Proof. This follows from Theorem 4.1 and Lemma 4. Since the base of the interval

pyramid B has dimension 2 and P
n

(I{1,n�1}) has dimension n, then the n�2 remaining

vertices must add the remaining n � 2 dimensions. Clearly none can add more than

one, so each must add precisely one dimension.

Lemma 5. The base of the interval pyramid, B has f -vector (4, 4).

Figure 4.3: G(A): The flow dimension graph of part of the base of the interval

pyramid.
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Proof. Since B has dimension 2, f

1

= f

0

. We know that {e

n

, ↵

1,n�1

, ↵

2,n

} are three

vertices of B since they form a 2-dimensional object. If e

1

2 conv(e
n

, ↵

1,n�1

, ↵

2,n

)

then

e

1

= �

1

e

n

+ �

2

↵

1,n�1

+ �

3

↵

2,n

(4.2)

where the coe�cients sum to 1. Since ↵

1,n�1

is the only vector with a nonzero coordi-

nate in the first position, that implies �

2

= 1. This in turn implies that �

1

= �

3

= 0,

contradicting (4.2). So e

1

/2 conv(e
n

, ↵

1,n�1

, ↵

2,n

) and therefore forms a fourth vertex.

Thus f

0

= 4 = f

1

completing the proof.

We can tie all this together with the following theorem. First we define (as in [Gr])

a d-pyramid P

d as the convex hull of the union of a (d�1)-dimensional polytope K

d�1

(the basis of P

d) and a point A /2 a↵(Kd�1)) (the apex of P

d).

Theorem 5. [Gr] If P

d is a d-pyramid with (d � 1)-dimensional basis K

d�1 then

f

0

(P d) = f

0

(Kd�1) + 1

f

k

(P d) = f

k

(Kd�1) + f

k�1

(Kd�1) for 1  k  d � 2

f

d�1

(P d) = 1 + f

d�2

(Kd�1).

Example 31. Consider P
3

(I{1,2}). The vertices of the base are {e

1

, e

3

, ↵

1,2

, ↵

2,3

},

which has f�vector (4, 4). The vertex (0, 1, 0) serves as an apex over the base, and

completes the pyramid, which now by Theorem 5 has f�vector (5, 8, 5).

Since each vertex of the interval pyramid which is not a vertex of B is a�nely

independent, we can imagine each one as the apex of a pyramid, and imagine the

interval pyramid as being formed adding each apex one by one as a succession of

pyramids over pyramidal bases all the way down to B.
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e

3

↵

2,3

e

1

↵

1,2

e

2

Figure 4.4: The 3 dimensional interval pyramid, with the base shaded in dark gray.

We notice that the rows of Pascal’s 3-triangle act in the same manner as face

numbers for pyramids, and we claim the face numbers for P
n

(I{1,n�1}) can be derived

from Pascal’s 3-triangle.

Theorem 6. The f -vector for P
n

(I{1,n�1}) for n � 3 is the n

th row of the Pascal

3-triangle.

Proof. Let I = {e

1

, e

2

, . . . , e

n

, ↵

1,n�1

, ↵

2,n

} be the vertex set for P
n

(I{1,n�1}) with

n � 3, and call R
k

= conv(I \ {e

k

, e

k+1

, . . . , e

n�1

}) for 1  k < n. Then it is clear

that P
n

(I{1,n�1}) is the convex hull of the union of the (n � 1)-dimensional polytope

R
n�1

and e

n�1

/2 a↵(R
n�1

) (by Corollary 6), and thus is a pyramid and its face

numbers can be computed as in Theorem 5 from the face numbers of R
n�1

.

Notice next that R
n�1

is the convex hull of the union of the (n � 2)-dimensional

polytope R
n�2

and e

n�2

/2 a↵(R
n�2

) (again by Corollary 6), so we can compute the

face numbers of R
n�1

from those of R
n�2

as in Theorem 5.

We can continue this process until we get that R
3

is the convex hull of R
2

and

e

2

/2 a↵(R
2

). But we notice that R
2

= B is the base of the interval pyramid, so

by Lemma 5, f

0

(R
2

) = f

1

(R
2

) = 4. From here we can build using f -vectors of

P
n

(I{1,n�1}) from Theorem 5 which are exactly those of the Pascal 3-triangle. We

do this n � 1 times to reach P
n

(I{1,n�1}), and since (4,4) is the second row of the
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triangle, then the f -vector of P
n

(I{1,n�1}) is the n

th row of the Pascal 3-triangle, as

desired.

We can rewrite (4.1) as

2 + 1

3 + 1 3 + 1

4 + 1 6 + 2 4 + 1

5 + 1 10 + 3 10 + 3 5 + 1

6 + 1 15 + 4 20 +6 15 + 4 6 + 1

7 + 1 21 + 5 35 + 10 35 + 10 21 + 5 7 + 1

(4.3)

which is Pascal’s triangle added to a shifted Pascal’s triangle. Thus we can derive a

formula for the number of k-faces for P
n

(I{1,n�1}) in terms of binomial coe�cients.

Corollary 7. For n � 3, f

k

(P
n

(I{1,n�1})) =

0

B@
n � 1

k

1

CA+

0

B@
n + 1

k + 1

1

CA.

4.2 Volume of the Interval Pyramid

The base B of the interval pyramid can be easily triangulated into

4
1

= conv(e
1

, e

n

, ↵

1,n�1

) and 4
2

= conv(e
n

, ↵

1,n�1

, ↵

2,n

).

Since the remaining vertices are a�nely independent and triangulations of a base

extend to a pyramid, this extends to a triangulation of P
n

(I
1,n�1

) into 2 n-simplexes

S

1

= conv(e
1

, e

2

, . . . , e

n�1

, e

n

, ↵

1,n�1

) and S

2

= conv(e
2

, . . . , e

n�1

, e

n

, ↵

1,n�1

, ↵

2,n

).
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Background

A convex polytope is formed
by taking the convex hull of
a set A = {v1, v2, . . . , vn

} ⇢ Rd,
conv(A), which is defined as

8
<

:�1v1 + �2v2 + · · · + �

n

v

n

����1, �2, . . . , �n

2 R�0 and
nX

i=1

�

i

= 1

9
=

; .

A simplex is an n-dimensional polytope with
n + 1 vertices.

Given an n-dimensional polytope P with f

k

k-dimensional faces, the f -vector of P is
written as

f (P) := (f0, f1, . . . , fn�1).

Example 1. Tetrahedron
Simplex: 3-dimensional polytope, 4 vertices

f -vector: (4,6,4)

4 vertices, 6 edges, 4 planes

Denote the volume of a polytope P as vol(P).

An interval vector [1] is a (0, 1)-vector x 2 Rn

such that, if x

i

= x

k

= 1 for i < k, then x

j

= 1

for every i  j  k.

Example 2. Interval vectors

(1, 1, 0), (0, 0, 0, 0), (0, 0, 1, 1, 1, 1, 0)

Let ↵

i,j

:= e

i

+ e

i+1 + · · · + e

j

for i  j where e

i

is the i

th standard unit vector.

Example 3. For n = 6

e2 = (0, 1, 0, 0, 0, 0)

e5 = (0, 0, 0, 0, 1, 0)

↵2,5 = (0, 1, 1, 1, 1, 0)

Abstract: An interval vector is a (0, 1)-vector where all the ones appear consecutively. Polytopes whose vertices
are among these vectors have some astonishing properties. We present a number of interval-vector polytopes,
including one class whose volumes are the Catalan numbers and another class whose volumes are the even
numbers and face numbers mirror Pascal’s triangle.

1. Complete Interval-Vector Polytope

Let I
n

= {↵

i,j

|i, j 2 [n], i  j}.

The complete interval-vector polytope is
defined as PI

n

:= conv(I
n

).

We form a lattice-preserving bijection between
the complete interval-vector polytope and
Postnikov’s complete root polytope in [2].
Theorem 1. The volume of the n-dimensional
interval-vector polytope is the nth Catalan
number.

vol(PI
n

) =
1

n + 1

✓
2n

n

◆
.

2. Fixed Interval-Vector Polytope
Given an interval length i and a dimension n

we define the fixed interval-vector polytope
Q

n,i

as the convex hull of all vectors in Rn

with interval length i

Q
n,i

:= conv({↵

j,j+i�1|j  n � i + 1}).

We project Q
n,i

down to its ambient
dimension and prove using Dahl’s
flow-dimension graph and the
Cayley-Menger determinant

Theorem 2.Q
n,i

is an (n � i)-dimensional
unimodular simplex.

Example 4. The fixed interval-vector polytope
with n = 5, i = 3 is

Q5,3 = conv
�
(1, 1, 1, 0, 0) , (0, 1, 1, 1, 0) , (0, 0, 1, 1, 1)

�
.

Flow-dimension graph of Q5,3 :

3. Interval Pyramid

Given a dimension n, define P
n,1 to be the

convex hull of all vectors in Rn with interval
length 1 or n � 1.

Example 5. For n = 4,

P4,1 = conv
�
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (1, 1, 1, 0), (0, 1, 1, 1)
�
.

Theorem 3. The f -vector for P
n,1 for n � 3 is the

n

th row of the Pascal 3-triangle.

n = 1: 3
n = 2: 4 4
n = 3: 5 8 5
n = 4: 6 13 13 6
n = 5: 7 19 26 19 7
n = 6: 8 26 45 45 26 8

Triangulation of the base of P
n,1:

We apply the Cayley-Menger determinant to
each simplex formed by pyramiding over the
triangulation of P

n,1 to prove:

Theorem 4. vol (P
n,1) = 2(n � 2) for n � 3

4. Generalized Interval Pyramid

Due to the interesting properties of P
n,1, we

studied a related class of polytopes

P
n,i

:= conv(e1, . . . , en

, ↵1,n�i

, ↵2,n�i+1, . . . , ↵i+1,n)

where n > 2 and i  n

2 .

Example 6. For n = 5 and i = 2

P4,2 = conv
�
(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),

(0, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0), (0, 0, 1, 1)
�

Proposition 1. The dimension of P
n,i

is n.

Proposition 2. Let

B = conv
�
{e1, e2, . . . , ei

, e

n�i+1, . . . , en

,

↵1,n�i

, ↵2,n�i�1 . . . , ↵

i+1,n}
�
.

Then adding each vector in {e

i+1, ei+2, . . . , en�i

}
sequentially pyramids over the previous base.

Finally, we have conjectured the volume of P
n,i

and plan to prove it by proving a triangulation
of the base of P

n,i

contains 2i simplices whose
volume as one pyramids over them is
n � (i + 1).

Conjecture 1.

vol(P
n,i

) = 2i(n � (i + 1)).
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Figure 4.5: Triangulation of the base of the interval pyramid

We know these are full dimensional, so we can recall from Proposition 2 that the

volume of a simplex is easily computed using the Cayley Menger determinant. Recall

that for P 2 Rn, a full dimensional n� simplex with vertex set {v

0

, . . . , v

n

},

vol(P) = det(v
1

� v

0

, v

2

� v

0

, . . . , v

n

� v

n

).

So this triangulation allows us to easily calculate the volume of the interval pyramid.

Lemma 6. The determinant of the n ⇥ n-matrix

2

66666666664

0 1 1 · · · 1

1 0 1 · · · 1

. . .

1 · · · 1 0 1

1 1 · · · 1 0

3

77777777775

is (�1)n�1(n � 1).

Proof. Let A

n

be the n ⇥ n matrix whose diagonal entries are 0, and all entries o↵

the diagonal are 1. E.g.,
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A

2

=

2

64
0 1

1 0

3

75

and so det(A
2

) = �1. Assume det(A
k

) = (�1)k�1(k�1). A

k+1

is the (k+1)⇥(k+1)-

matrix of the form

A

k+1

=

2

66666666664

0 1 · · · 1 1

1 0 1 · · · 1

. . .

1 1 · · · 0 1

1 1 · · · 1 0

3

77777777775

.

Subtracting the second row from the first, which does not change the value of the

determinant, will give us the matrix

2

66666666664

�1 1 0 · · · 0

1 0 1 · · · 1

. . .

1 1 · · · 0 1

1 1 · · · 1 0

3

77777777775

.

Now the determinant of A

k+1

is the sum of two determinants by cofactor expansion.

Specifically it is (�1) det(A
k

) minus the determinant of the matrix obtained by taking

out the first row and second column. We know that (�1) det(A
k

) = (�1)k(k � 1) by

the inductive hypothesis. So what we have left to compute is the determinant of the
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(k ⇥ k)-matrix 2

66666666664

1 1 · · · 1 1

1 0 1 · · · 1

. . .

1 1 · · · 0 1

1 1 · · · 1 0

3

77777777775

.

We will subtract the first row from each of the rows below it, also not changing the

determinant, to give us the upper triangular matrix

2

666666666666664

1 1 · · · 1 1 1

0 �1 0 · · · 0 0

0 0 �1 0 · · · 0

. . .

0 0 · · · 0 �1 0

0 0 · · · 0 0 �1

3

777777777777775

whose determinant is (�1)k�1. Furthermore,

det(A
k+1

) = (�1) det(A
k

) � (�1)k�1

= (�1)k(k � 1) + (�1)k

= (�1)kk.

Therefore, by induction, det(A
n

) = (�1)n�1(n � 1), for all n 2 Z�2

.

Theorem 7. vol
�
P

n

(I{1,n�1})
�
= 2(n � 2) for n � 3

Proof. In order to calculate the volume of P
n

(I{1,n�1}) we will first triangulate the
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2-dimensional base of the pyramid from Lemma 4

4
1

= conv(e
1

, e

n

, ↵

1,n�1

) and 4
2

= conv(e
n

, ↵

1,n�1

, ↵

2,n

).

Let x be a point in the base, then for some �

i

� 0, where
4X

i=1

�

i

= 1,

x = �

1

e

1

+ �

2

e

n

+ �

3

↵

1,n�1

+ �

4

↵

2,n

= (�
1

+ �

3

, �

3

+ �

4

, · · · , �

3

+ �

4

, �

2

+ �

4

)

= (�
1

� �

4

)e
1

+ (�
2

+ �

4

)e
n

+ (�
3

+ �

4

)↵
1,n�1

= (�
1

+ �

2

)e
n

+ (�
1

+ �

3

)↵
1,n�1

+ (�
4

� �

1

)↵
2,n

.

So x is a point in 4
1

if �

1

� �

4

and x is a point in 4
2

if �

4

� �

1

. Thus 4
1

and 4
2

is a triangulation of the 2-dimensional base of the pyramid.

By Corollary 6, each e

2

, · · · , e

n�1

adds a dimension so that the convex hull of these

points and 4
1

is an n-dimensional simplex. The same can be said of 4
2

. Call these

simplices S

1

and S

2

respectively. Thus S

1

and S

2

triangulate P
n

(I{1,n�1}). Therefore

the sum of their volumes is equal to the volume of P
n

(I{1,n�1}). In order to calculate

the volume of S

1

and S

2

, we will use the Cayley Menger determinant [Da] once again.

Consider S

1

, whose volume is the determinant of the matrix


e

1

� ↵

1,n�1

e

2

� ↵

1,n�1

. . . e

n

� ↵

1,n�1

�
=

2

666666666666664

0 �1 �1 · · · �1 �1

�1 0 �1 · · · �1 �1

�1 �1 0 �1 · · · �1

. . .

�1 �1 · · · �1 0 �1

0 0 0 · · · 0 1

3

777777777777775

.
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Cofactor expansion on the last row will leave us with the determinant, up to a sign,

of the (n � 1) ⇥ (n � 1) matrix

2

66666666664

0 �1 �1 · · · �1

�1 0 �1 · · · �1

. . .

�1 · · · �1 0 �1

�1 �1 · · · �1 0

3

77777777775

, (4.4)

which when ignoring sign by Lemma 6 is n � 2. Therefore the volume of S

1

is n � 2.

Now consider the Cayley Menger determinant of S

2

, the determinant of


↵

1,n�1

� ↵

2,n

e

2

� ↵

2,n

e

3

� ↵

2,n

· · · e

n

� ↵

2,n

�
=

2

666666666666664

1 0 0 0 · · · 0

0 0 �1 �1 · · · �1

0 �1 0 �1 . . . �1

. . .

0 �1 �1 · · · 0 �1

�1 �1 �1 · · · �1 0

3

777777777777775

.

By cofactor expansion on the first row we are left with the positive determinant of

the matrix (4.4) which is n�2. Therefore the volume of S

2

is n�2 and so the volume

of P
n

(I{1,n�1}) is 2(n � 2), as desired.

4.3 Duality of the Interval Pyramid

Since the interval pyramid has a symmetric f -vector, it is natural to wonder about

its duality. That is, if we replace each k face with an n � k face (take the dual of the
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polytope), are you left with an identical polytope? How does the volume and face

lattice structure change? Clearly the f -vector will remain the same, but I wonder

whether the interval pyramid is actually self-dual.

Recall that in Section 2.3.3, we o↵ered the following construction to define the

dual of a polytope P ⇢ Rn for the cases where 0 2 int(P).[Zi]

P� := {y 2 Rn : y · x  1 for all x 2 P},

where y · x = y

1

x

1

+ . . . + y

n

x

n

is the dot product. But we know that 0 /2

int(P
n

(I{1,n�1})) for any interval pyramid. Still, we noted in the previous section that

we can a�nely translate a polytope so that 0 is in the interior without losing any

information about the face structure or volume.

Let us take several examples of translating the interval pyramid so that it contains

zero and taking the dual.

Example 32. Consider P
3

(I{1,2}) = conv((1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)).

Call the vertex set V . Let v =
�
1

2

,

1

2

,

1

4

�
The a�ne translation

(P
3

(I{1,2}))v = conv

✓
V �

✓
1

2
,

1

2
,

1

4

◆◆

leaves the structure of the polytope intact and has zero in its interior as we will show.

First let’s call the translated vertices of (P
3

(I{1,2}))v (in order) v

1

, . . . , v

5

. Then notice

that

v

1

+ v

2

+ v

3

+ v

4

=

0

BBBB@

1/2

�1/2

�1/4

1

CCCCA
+

0

BBBB@

�1/2

1/2

�1/4

1

CCCCA
+

0

BBBB@

�1/2

�1/2

1/4

1

CCCCA
+

0

BBBB@

1/2

1/2

�1/4

1

CCCCA
=

0

BBBB@

0

0

0

1

CCCCA
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Thus if we let �

1

= . . . = �

4

= 1/4 and �

5

= 0. Then

�

1

v

1

+ . . . + �

5

v

5

=
1

4
(v

1

+ . . . + v

4

) = 0

With �

1

+ . . . + �

5

= 1 and each �

i

� 0.

Applying to dual construction to this translated polytope gives us a half space

description for (P
3

(I{1,2}))�
v

given by the following inequalities:

1

2
x

1

� 1

2
x

2

� 1

4
x

3

 1

�1

2
x

1

+
1

2
x

2

� 1

4
x

3

 1

�1

2
x

1

� 1

2
x

2

+
3

4
x

3

 1

1

2
x

1

+
1

2
x

2

� 1

4
x

3

 1

�1

2
x

1

+
1

2
x

2

+
3

4
x

3

 1.

Example 33. Consider P
4

(I{1,3}) = conv({(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)

(1, 1, 1, 0), (0, 1, 1, 1)}). Call the vertex set V . Letting u =
�
2

5

,

2

5

,

2

5

,

1

5

�
, we can trans-

late this polytope so that 0 is an interior point as follows:

(P
4

(I{1,3}))u = conv

✓
V �

✓
2

5
,

2

5
,

2

5
,

1

5

◆◆
.

Now we can apply the dual construction and have ((P
4

(I{1,3})))�
u

given by the following
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ineqalities:

3

5
x

1

� 2

5
x

2

� 2

5
x

3

� 1

5
x

4

 1

�2

5
x

1

+
3

5
x

2

� 2

5
x

3

� 1

5
x

4

 1

�2

5
x

1

� 2

5
x

2

+
3

5
x

3

� 1

5
x

4

 1

�2

5
x

1

� 2

5
x

2

� 2

5
x

3

+
4

5
x

4

 1

3

5
x

1

+
3

5
x

2

+
3

5
x

3

� 1

5
x

4

 1

�2

5
x

1

+
3

5
x

2

+
3

5
x

3

+
4

5
x

4

 1.

We want to prove that 0 is an interior point of the translated interval pyramid.

We first recall lemma 1[Zi].

Lemma 7. [Zi] Let P be a polytope in Rn. If p 2 P can be represented as p =

1

n+1

P
n

i=0

x

i

for n+1 a�nely independant points x

0

, . . . , x

n

2 P, then y is an interior

points of P.

Proposition 9. Let P
n

(I{1,n�1}) be the n dimensional interval pyramid. Let u =
�

2

n+1

,

2

n+1

, · · · ,

2

n+1

,

1

n+1

�
. Then 0 is an interior point of (P

n

(I{1,n�1}))u. This a�ne

translation doesn’t disturb any combinatorial structure (i.e. it is a purely linear trans-

lation leaving all structure of the polytope intact, essentially just repositioning the

origin).

Proof. First we show that 0 2 (P
n

(I{1,n�1}))u. The vertex set of (P
n

(I{1,n�1})))u is

{v

1

, . . . , v

n+2

} = {e

1

� u, e

2

� u, . . . , e

n

� u, ↵

1,n�1

� u, ↵

2,n

� u}.
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Recall that ↵

1,n�1

= e

1

+ . . . + e

n�1

and notice that:

v

1

+ . . . + v

n+1

= (e
1

� u) + . . . + (e
n

� u) + (↵
1,n�1

� u)

= e

1

+ . . . + e

n

+ (e
1

+ . . . + e

n�1

) � (n + 1)u

= 2e
1

+ . . . + 2e
n�1

+ e

n

� (2, . . . , 2, 1) = 0

So if we let �

1

= . . . = �

n+1

= 1

n+1

and �

n+2

= 0, then

�

1

v

1

+ . . . + �

n+2

v

n+2

=
1

n + 1
(v

1

+ . . . + v

n+1

) = 0

Notice that v

1

, . . . , v

n+1

are n + 1 a�nely independent points. This is easier to

show using the untranslated vertices e

1

, . . . , e

n

, ↵

1,n�1

(which is equivalent). Clearly

the unit vectors are each a�nely independent, and a↵(e
1

, . . . , e

n

) = {x 2 Rn :
P

i

x

i

=

1} 63 ↵

1,n�1

. So since v

1

, . . . , v

n+1

are n+1 a�nely independent points in P
n

(I{1,n�1})�

u, we can refer to the previous lemma to notice that since 0 = 1

n+1

P
n+1

i=1

v

i

then 0 is

in fact an interior point of (P
n

(I{1,n�1}))u.

We recall Proposition 6 to take the dual construction and calculate the half space

description of the interval pyramid in general (albeit translated).

Proposition 10. Let P ✓ Rn be a polytope with 0 on its interior, and vertex set

{v

1

, . . . , v

m

}. If c 2 Rn, then c 2 P� if and only if c · v

i

 1 for i = 1, . . . , m.

This is enough to give us the facet description we need.

Corollary 8. Let u =
�

2

n+1

,

2

n+1

, · · · ,

2

n+1

,

1

n+1

�
and assume that P

n

(I{1,n�1})u has

vertices {v

1

, . . . , v

n+2

}. Then we define the dual by:

�
P

n

(I{1,n�1})
�
�

u

= {c 2 Rn : c · v

i

 1 for i = 1, . . . , n + 2}
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Thus,
�
P

n

(I{1,n�1})
�
�

u

has the following inequality description.

0

@
X

i2[n�1],i 6=j

�2

n + 1
x

i

1

A+

✓
1 � 2

n + 1

◆
x

j

� 1

n + 1
x

n

 1 for all j 2 [n � 1]

 
n�1X

i=1

✓
� 2

n + 1
x

i

◆!
+

n

n + 1
x

n

 1

 
n�1X

i=1

✓
1 � 2

n + 1

◆
x

i

!
� 1

n + 1
x

n

 1

�2

n + 1
x

1

+

 
n�1X

i=2

✓
1 � 2

n + 1

◆!
+

n

n + 1
x

n

 1.

Proof. Because we know that the f -vector of the interval pyramid is symmetric, we

know that there are exactly n+2 facets of the dual of the interval pyramid. Because

of the Proposition 10, we know that a point is in the dual of the interval pyramid if

and only if it satisfies the n+2 facet equations given, so these facets are su�cient to

completely describe the dual of the interval pyramid. But because we know we need

at least n+2 facets, we know as well that they are necessary. Thus this is a complete

facet description of (P
n

(I{1,n�1}))�
u

.

Recall that two polytopes are called combinatorially isomorphic if their face lat-

tices are isomorphic as posets. If a polytope is combinatorially isomorphic to its dual

then we call the polytope self dual. Let u be as defined in the previous corollary, to

prove that the interval pyramid is self dual we must prove that

L(((P
n

(I{1,n�1})
�

u

) ⇠= L(P
n

(I{1,n�1})).

But by proposition 2 we know that

L((P
n

(I{1,n�1}))
�

u

) ⇠= L((P
n

(I{1,n�1}))
op

.
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And because the a�ne translation preserved all of the combinatorial structure of the

polytope we know that:

L((P
n

(I{1,n�1})u)
op ⇠= L((P

n

(I{1,n�1})))
op

.

So in fact, to show that the interval pyramid is self dual, we need only to show that:

(L(P
n

(I{1,n�1})))
op ⇠= L(P

n

(I{1,n�1}))

To fully understand the combinatorial self-duality of the interval pyramid, we must

fully describe its face lattice in general.
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Chapter 5

Open Questions

First we note that we have not yet answered the question on the self-duality of the

Interval Pyramid. To do so, we must get a general look at its face lattice poset and

see if we can prove an isomorphism between that poset and its opposite. Computing

examples in Sage and Polymake for the first 10 Interval Pyramids leads me to this

first conjecture.

Conjecture 1. Let P
n

(I{1,n�1}) ⇢ Rn be the interval pyramid.

(L(P
n

(I{1,n�1})))
op ⇠= L(P

n

(I{1,n�1}))

That is, the interval pyramid is self dual.

As the nature of this project was cataloguing an interesting class of combinatorial

polytopes, and we only touched on a few initially, there is plenty of interesting work

to be done further investigating polytopes with di↵erent sets of interval vectors as

vertices. Since all of the collections of interval vectors we’ve considered thus far

have yielded very interesting combinatorial properties when considered as vertices

of lattice polytopes, there is a good chance that there are many interesting interval
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vector polytopes left to study. Some possibilities are P
n

(I�i

) or P
n

(Ii

), where the

interval vectors all have length greater than or less than some fixed constant. Here is

one more interval vector polytope we have begun doing work on.

5.1 Generalized Interval Pyramid

We can make a generalization of the previous polytope by defining the generalized

interval pyramid P
n

(I{1,n�i}) to be the convex hull of all the standard unit vectors in

Rn and all the interval vectors with interval length n� i. We restrict ourselves to the

cases where n � 2 and i  n

2

.

Example 34. For n = 6 and i = 2,

P
6

(I{6,2}) = conv(e
1

, e

2

, e

3

, e

4

, e

5

, e

6

, ↵

1,3

, ↵

2,4

, ↵

3,5

, ↵

4,6

).

We are able to generalize many of the results from the interval pyramid. The

important similarity is that the generalized interval pyramid is an n dimensional

polytope, which is formed as a series of pyramids over a 2i dimensional base. I hope

to focus on triangulating this base in general. Repeated computations in of examples

in polymake [Ga] have led to the following conjecture.

Conjecture 2. vol(P
n

(I{1,n�i})) = 2i(n � (i + 1))

In all the examples I considered, the f -vector was a combination of pascals triangle

rows, and so the face numbers should all be easily expressible in terms of binomial

coe�cients. This is an area for further study.
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