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Abstract

Clustering is an important task in network analysis, with applications in
fields such as biology and the social sciences. We present a novel inference
algorithm for the Stochastic Block Model (SBM), a well known network
clustering model. Previous inference in this model typically utilizes Markov
Chain Monte Carlo or Variational Bayes, but our method is the first to
utilize Stochastic Variational Inference to allow the SBM to scale to massive
networks. We derive both Variational Bayes and Stochastic Variational
Inference algorithms for the SBM, and empirically demonstrate the superior
speed and accuracy of Stochastic Variational Inference on synthetic and real

networks.
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Bayesian Inference and
Probabilistic Modeling

1.1 Probabilistic Modeling

Given the vast amount of readily available information today, efficient and accurate
techniques for analyzing data have become crucial [29]. Probabilistic modeling has
proven to be a critical aspect of modern artificial intelligence research, providing effec-
tive tools for managing the vast amount of data available in the sciences and everyday
life. Probabilistic models have been applied to a variety of domains with great suc-
cess, including functional analysis of genes [39], identification of spam emails [28], and
predicting an online customer’s future purchases [20], and many others (see [51]). In
particular, the goal of this thesis is to derive a new inference algorithm for a specific
probabilistic model for clustering large networks. We demonstrate the efficacy of our

model by applying it to real and synthetic networks.

1.2 Graphical Models

For the past several decades, researchers in machine learning and statistic have em-
ployed probabilistic graphical models as a tool for modeling data. In essence, these
types of models combine graph theory with probability, allowing a user to encode as-
sumptions about their data in the structure of a graph. In a graphical model, nodes
are used to represent random variables, and edges or lack of edges denote conditional

dependence assumptions between random variables [1].
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1.3 Bayesian Inference

In every graphical model, there is an underlying statistical model. For example, many
well known statistical models, such as Kalman filters, hidden Markov models, and
Ising models can be formulated using graphical models [31]. Often, the hardest aspect
of modeling is developing efficient algorithms for fitting observed data to the proposed
model. In many scenarios, it is common to encode prior beliefs about the structure
of data in the form of unobserved variables, also referred to as latent or hidden. The
goal then is to infer the values of these latent variables, thereby allowing us to learn
something about the unseen structure of our data. For instance, in a simple clustering
model, we might suppose that each observation belongs to some unobserved cluster,
so that every observation has an associated latent variable denoting its cluster assign-
ment. In the realm of Bayesian latent variable modeling, the ultimate goal is to infer
the posterior distribution over model parameters and latent variables, given the ob-
served data. This is accomplished via Bayes’ Theorem. Calculation of the posterior
allows us to make predictions efficiently about unobserved observations via the predic-
tive distribution, and is also important in uncovering latent structure in our data in an

unsupervised setting.

Suppose we have some general latent variable model, where we denote our data X,
the latent variables z, and the parameters of the model 6. Bayes’ Theorem tells us
that the posterior distribution p(z,8|X) over the latent variables and parameters, con-

ditioned on the data, can be expressed as

(2,01X) = pf(jl,z;;(?c]?(:,’oe))‘ (1.1)

That is, the posterior is equal to the likelihood of our data given the latent variables and

model parameters p(X |z, 0), multiplied by the prior distribution over latent variables

and parameters p(z, ), normalized by the evidence, p(X) = fz fo p(X, z,0).

However, for all but the simplest of models, the posterior distribution is intractable
to compute. This is due to the evidence term (the denominator) in Bayes’ Theorem, as
this requires marginalization over all latent variables and parameters in what generally

is an intractable sum or integral. This has led to a variety of approximate inference



1.3 Bayesian Inference

Figure 1.1: Approximating an arbitrary multivariate Gaussian (green) with a product of
two independent Gaussians (red).

techniques that attempt to provide a good approximation to the posterior distribution.

In general, two broad types of posterior inference exist. The first collection of tech-
niques, commonly referred to as sampling methods or Markov Chain Monte Carlo meth-
ods, attempt to draw samples from the posterior distribution. Typically, samples are
drawn via a Markov Chain that provably converges in the limit of infinite samples to
the true posterior [49]. Given a large number of samples, it is then possible to make
Monte Carlo estimates of the posterior distribution to whatever degree of accuracy

required [12].

The second class of inference algorithms are commonly referred to as variational meth-
ods [54]. These techniques offer a deterministic alternative to sampling, through the
maximization of a lower bound on the marginal likelihood of the data. Typically, the
main idea is to posit a simpler family of distributions, dependent on some set of vari-
ational parameters, and then to optimize the parameters of that family to be as close
to the true posterior as possible. As a simple example, suppose that we would like to
approximate the distribution of a multivariate normal distribution with unknown mean
and covariance matrix. One possible approach would be to find the closest multivariate
normal with diagonal covariance matrix as an approximation; equivalently, we assume
that the distribution we would like to estimate factorizes as a product of independent

univariate normals (see Figure 1.1 [9]).
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Variational methods offer better computational efficiency than MCMC methods, and
this is the main reason they are frequently used [22]. In most applications, variational
methods converge to their final values much faster than the time necessary to draw a
large number of MCMC samples [11]. This comes at a tradeoff of a slightly less accurate
approximation, as MCMC methods provably converge to the true distribution in the
limit of infinite samples. However, for many real-world applications involving massive
data sets, MCMC methods are much slower and variational methods offer a significant
boost in speed [22]. For the remainder of this thesis, we will be primarily concerned

with variational methods.

1.4 Outline

The remainder of this thesis is structured as follows. In Section 2, we present a survey
of a variety of important network models. We begin with a few historically important
examples before transitioning to more state-of-the-art methods. In Section 3, we focus
exclusively on one particular model of clustering networks, and derive two inference
algorithms for the model, one of which is capable of scaling easily to large datasets. In
Section 4 we present experimental results, and we conclude with a brief discussion in

Section 5.



Models for Network Data

2.1 Introduction

Networks are commonplace in many aspects of daily life, and mathematical models of
networks are increasingly important in understanding and explaining real world phe-
nomena. Examples of networks permeate the physical, biological and social sciences,
arising in applications such as food webs [6], economic networks [13], social networks
[38], and metabolic and protein interaction networks [16]. Additionally, the Internet
and World Wide Web both form massive networks that play a crucial role in modern

society [45].

One of the most important tasks in network analysis is clustering, commonly referred
to as community detection in this setting. Community detection answers important
questions about many different types of networks. The goal of clustering is to find
groups of nodes that exhibit similarities in their linking structure, and are more con-
nected to each other than to other nodes, For instance, we may be interested in finding
blocs of countries with similar trading patterns in an economic network, and we would
hope that our results agree with known international treaties [8]. In biology, commu-
nity detection in metabolic networks allows us to determine which genes or proteins
strongly interact with each other [16]. Finally, community detection poses an impor-
tant marketing problem in social media networks, where advertisers are interested in
targeting their advertisements depending on the community membership of the people

in the social network [57]. See Figure 2.1a for an example of a clustered network. See



2. MODELS FOR NETWORK DATA

(a) Synthetic network: 80 nodes, 4 (b) Erdds-Rényi graph: probability
clusters. 0.05 of an edge between nodes.

Figure 2.1: Synthetic network examples.
[42] for a thorough introduction to network modeling.

As a result, there exists a seemingly infinite amount of literature devoted to mod-
els of networks. In this section, we present a brief survey of a small selection of models
for networks. This section is by no means comprehensive, and is only intended to give
a flavor of the types of models for networks that exist before we concentrate on one
particular model for the duration of this thesis. We begin with random graph models,
transition to the well-known Stochastic Block Model (SNM), which is the main model
we are interested in, and conclude with several models extending the SBM in important

ways.

2.2 Erdos-Rényi Random Graphs

A network, also known as a graph in the math literature, consists of a set of vertices,
or nodes, and a set of edges specifying links between certain pairs of nodes. A network
may be either directed, where an edge from node ¢ to j does not necessarily imply an
edge in the opposite direction, or it may be undirected where an edge from ¢ to j is
equivalent to an edge from j to i. The degree of a node is defined to be the number of

edges connected to it.

The simplest model for graph construction is the Erdés-Rényi model for random graphs,
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first studied by P. Erdés and A. Rényi in the 1950s [17]. In this model, a graph on
N vertices is constructed by drawing edges independently between pairs of nodes with
some probability p. Figure 2.1b shows an example of an Erd6s-Rényi graph. It is easy
to show that if each of the N vertices in the graph is connected to an average of z
edges, then p = z/(N — 1). Under this model, all graphs with N vertices and M edges
are equally probable, with probability p™ (1 — p)(@*M . This model has been exten-
sively studied, and has many interesting properties. As detailed in [43], random graphs
have proven to be valuable modeling tools in epidemiology. Individuals correspond to
vertices in the graph, and diseases are capable of being transmitted via the edges. In
this setting, a common assumption is that contacts between individuals are random
and uncorrelated, so that they form a random graph. However, random graphs have a
number of shortcomings in most applications. In particular, a considerable weakness
of the random graph model is that it does not exhibit clustering or communities in
most cases. Another limitation of the random graph model is the fact that the degree
distribution of vertices under the model is Poisson distributed, a property atypical of
most real networks, which frequently exhibit a power law in their degree distributions:
the so-called scale-free networks [5]. Random graphs with arbitrary degree distribu-
tions are developed in [43], extending the Poisson degree distribution limitation of the

Erdos-Renyi model.

2.3 Barabasi-Albert Model of Preferential Attachment

As mentioned previously, the Poisson degree distribution of random graphs is a major
shortcoming of the model. Since most real networks exhibit power laws in their de-
gree distributions, this is a property desirable in models of networks. The well-known
Barabasi-Albert network model extends the random graph model in two important re-
spects, producing a model capable of generating graphs with degree distributions that
exhibit scale-free power laws [5]. This model allows for networks to expand continuously
in time and continue to add new vertices. For instance, in the scenario of the World
Wide Web, more and more websites are continually added every day to the existing
network. The important contribution of the model is the notion of preferential attach-
ment of nodes in the generative process of the network. This formalizes the intuition

that a more connected node is more likely to receive new links in the network. This
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often makes sense: for example, new web pages generally link preferentially to hubs, or
websites with very high degree like Google or Wikipedia, than to relatively unknown
pages. Under this model, the probability distribution of the degrees or connectivities of
vertices is P(k) o< k=7, where typically 2 < v < 4, so that it has a fat tail allowing for
the possibility of vertices with very high degree. This differs from the random graph
model, which exhibits exponential decay in the degree distribution, making vertices

with very high connectivity extremely unlikely.

2.4 Exponential Family Random Graphs

While the Barabasi-Albert model allows for scale-free power law distributions in degree,
it is still a relatively simplistic model. An important class of models that extend the
random graph model in a different direction is the Exponential Family Random Graph
model (ERGM). Also known as p* models, they were originally introduced in [56] as an
extension to the more simplistic pl model of [27]. Practical MCMC inference methods

for these models are developed in [53].

ERGM models are very useful for creating network models that match certain observed
properties of real networks as closely as possible, but without extensively detailing the
specific generative process that underlies the formation of any individual network. A
large quantity of literature exists that applies these ERGM models to social networks,

and [50] provides a good introduction to this specific application.

In the rest of this section, we briefly highlight the main ideas of ERGM models, follow-
ing from [18] which provides an extensive introduction to the subject. The general goal
is obtain a statistical ensemble of networks, which is the collection of all possible net-
work configurations § = {G} that the given network may be expected to attain, as well
as a probability distribution P(G) over G. Under the ERGM model, the probability of
any particular graph follows P(G) o e (@) where H(G) denotes the Hamiltonian of
the graph, which determines the properties of networks in the ensemble. The Hamil-
tonian is an objective function that assigns a score to each graph, and is of the form
H(G) =), 0;x;(G). The {x;} is the set of graph observables, or specific measurable

properties of the graph in question. The number of edges, the degree sequence of nodes,
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and the clustering coefficient are all examples of graph observables. The {6;} are en-
semble parameters, which are assigned in such a fashion that the observed value x; of
a graph observable for the true network is equal to the expectation of x; with respect

to the probability distribution P(G). That is,

Elz;] = Y 2i(G)P(G) = x}. (2.1)
Ge§

The 0; that appear in the Hamiltonian are then calculated from the constraints imposed
by Eqn. (2.1). Once these are calculated and the probability distribution P(G) has
been computed, it is possible to calculate the expected value of other quantities of
interest in our ensemble that perhaps were not directly measured for our true network.
This is a very powerful yet simple result, and is one of the main reasons ERGMs are
widely used in network analyses. For example, an ERGM model allows us to rigorously
compute an estimate of the clustering coefficient of a graph given only some simple
statistic such as the average degree of a node. It is interesting to note that the Erd&s-
Rényi random graph model may be seen as a specific example of an ERGM model,
where average degree is the graph observable. For this simple example it is possible to
analytically calculate the Hamiltonian and the corresponding probability distribution

it induces, but for most real examples, numerical techniques must be employed.

2.5 Spectral Clustering

We now shift our attention from the more general network models of the previous sec-
tions to models that focus on clustering of networks, as this task is ultimately the one
we are most interested in within this thesis. One of the most popular network cluster-
ing techniques, widespread for its simplicity and effectiveness, is spectral clustering. A
thorough treatment of spectral clustering can be found in [44] and [4]. In what follows
we point out the main steps of the method and leave the details and theoretical justi-

fication to the references.

The main idea of spectral clustering is to use the eigenvectors of a graph Laplacian
of the network to embed the data in a lower-dimensional latent space. The embedded
nodes are then clustered using standard clustering techniques, e.g. k-means [9]. This

is similar in spirit to the method of kernel Principal Components Analysis, a common
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form of dimensionality reduction in machine learning that relies on the eigenvectors of

a data matrix [7].

Though many variants of the algorithm exist, we highlight the method in [44]. Suppose
we are given the n x n adjacency matrix A;; for a network, where entry a;; denotes
the presence of an edge from vertex ¢ to vertex j (and may or may not be weighted).
Spectral clustering is an easily described procedure for estimating the k& community
memberships of the nodes. First, if the network is directed we symmetrize the matrix
A in some fashion to obtain a symmetric matrix A. Two common transformations
are A=A+ AT, and A = AT A [36]. Next, a graph Laplacian L is constructed; in
this case we use L = D1/24AD~1/2 where D is a diagonal matrix such that element
dy; = Zj flij. Next, a partial eigendecomposition is performed on L, to obtain the k
eigenvectors x1, ...,z associated with the k largest eigenvalues. From this, an n X k
matrix X is constructed by putting the eigenvectors into the columns of X, and then
normalizing the rows of X. Finally, treating the rows of X as points in the lower-
dimensional space R¥, a simple clustering algorithm, usually k-means, is applied to the
embedded points. The resulting cluster assignment of row ¢ of X corresponds to the

cluster assignment for node i in our original network represented in A.

Despite the simplicity of spectral clustering and the promising results it can produce, it
is somewhat unsatisfying compared to methods involving statistical modeling in that it
provides no measure of uncertainty as a clustering technique. Each node is assigned a
hard label to a cluster, and there is no method for evaluating the uncertainty in cluster
assignments. Additionally, spectral clustering lacks strong theoretical guarantees that
exist for other methods, although there are interesting connections to the well-studied
field of spectral graph partitioning. It is known that there are certain simple synthetic

examples where spectral clustering fails to provide reasonable answers [40].

2.6 Stochastic Block Model

One of the most widely used models for clustering a network is the Stochastic Block
Model (SBM). First introduced in [26], it has since gained widespread popularity due

to its simplicity and effectiveness. Formulated as a Bayesian latent variable model, the

10



2.6 Stochastic Block Model

SBM posits hidden clustering structure in the network, in the form of a latent cluster
assignment for every node. Then, conditioned on this cluster membership, edges are

drawn i.i.d. from some simple distribution.

We restrict our attention to the case of directed networks, though a similar model exists
for the undirected case. Assume there are N nodes in the network and we specify the
number of clusters to detect, K. The model specifies three sets of latent variables: a
vector of cluster assignments z = {z;} |, a vector of cluster probabilities m = {m; } X |,
and a K x K matrix of edge probabilities 6 = {le}l{_{’l:l. The full generative process is

given in Algorithm 1, and Figure 2.2 presents the graphical model.

Given a, b, a, K.
Draw 7 ~ Dirg(a).

for +=1:N do
| Draw cluster assignment, z; ~ Multinomial(7r).

end

for k,/=1:K do

| Draw probability of edge from cluster k to cluster I, 0y, ~ Beta(a, b).
end
for i,j=1:N (i # j) do

| Draw edge, or non-edge, from node i to node j, y;; ~ Bernoulli(f.,.,).

end
Algorithm 1: Generative Process for the SBM

In the generative model, we draw 7 from a K —dimensional Dirichlet distribution, a
probability distribution on finite probability distributions (equivalently, on K —dimensional
nonnegative vectors that sum to 1). The graphical model provides a visual represen-
tation of the dependencies between the hidden and observed variables in the model as
a directed acyclic graph, but is equivalent in content to the generative process. Small
shaded circles denote hyperparameters, shaded circles denote observed variables, and
unshaded circles denote latent variables. Arrows in the graph denote conditional de-
pendencies. For instance, the observed variable y;; denoting the presence of an edge
or non-edge from nodes i to j depends on the cluster assignments of these nodes, z;

and z;, as well as the matrix of link probabilities €, hence the arrows in the figure.

11
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©)
"R

Figure 2.2: Graphical Model for the SBM

The plate notation denotes replication of iid random variables; in this case, there are
N(N —1) total iid edges that must be drawn. Conversely, only a single 7 and 6 are

constructed, hence the lack of plates around them.

However, for all its expressive power, the SBM is quite simplistic and makes several
limiting assumptions, which are relaxed in a number of extensions to the model. Al-
though we will focus exclusively on this model in the later sections of this thesis, we
dedicate the rest of this section to a few models which extend the SBM in important

ways.

2.7 The Infinite Relational Model

An obvious limitation of the SBM is the fact that the number of clusters K must be
fixed a priori. In practice, it is common to use some measure of model fit such as
held-out likelihood to determine the optimal number of clusters, but this demands an

expensive cross-validation scheme. The Infinite Relational Model (IRM) [30] relaxes

12
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this assumption by reformulating the problem as a nonparametric Bayesian model,
where a potentially infinite number of clusters are allowed to be discovered as more
data is observed without the need to specify K. Another important contribution of
the IRM is that it can handle more general data in the form of m relations involving
n types. In contrast, the SBM is typically only applied to networks, which can be
interpreted as a single binary relation R : V' x V — {0,1} that maps pairs of nodes to

binary edges.

Restricting ourselves to the network setup, i.e., a single binary relation on a single
type, the problem of clustering can be interpreted as partitioning the set of vertices in
some fashion. The SBM assumes a fixed number K of disjoint subsets in the partition,
and this is seen through the use of the parametric Dirichlet distribution as a prior for
the cluster weights 7. The key difference in the generative process of the IRM is its
use of a nonparametric prior distribution that places some probability mass on all pos-
sible partitions. This nonparametric prior is known as the Chinese Restaurant Process
(CRP) [47]. In the generative process specified by the CRP, as each data point is as-
signed to a cluster, each cluster attracts a new member with a probability proportional
to its current size. Since it is always possible for new observations to be assigned to a
new cluster, in theory the CRP allows for a countably infinite number of clusters to be
used. However, the use of the CRP is mainly out of mathematical convenience, and it
may not be the best choice in certain scenarios, for instance if we expect the clusters

to be roughly equal in size [30].

2.8 Mixed Membership Stochastic Blockmodel

The Mixed Membership Stochastic Blockmodel (MMSB) [2] provides an extension of
the SBM in a different direction. As the name suggests, the MMSB allows for a node
to coexist in multiple clusters simultaneously, and hence its nodes exhibit mixed mem-
bership in multiple communities. Similar to the SBM, however, the MMSB fixes the
number of clusters K, in advance. In the generative process of the model, every node
J in the network is assigned a K-dimensional mixed membership vector 7; ~ Dir(«)
drawn from a Dirichlet prior that specifies its community memberships. This is an

important addition to the standard SBM, and allows for a more expressive model. For

13
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instance, in a social network application, a person can coexist in several communi-
ties, for instance a community of friends, a community of family, and a community
of coworkers. The rest of the generative process of the MMSB is similar to that of
the SBM, the main contribution being these individual mixed membership vectors per

node, instead of a single cluster assignment.

2.9 Nonparametric Latent Feature Relational Model

As a final example to conclude this section, we introduce the nonparametric latent fea-
ture relational model (LFRM) [37]. Similar to the IRM, it is a Bayesian nonparametric
model, but otherwise presents a different framework, in which each node in a network
has a set of binary-valued latent features that influence its relations with other entities.
It is nonparametric in that the goal is to infer a binary N x K matrix Z of entities
and features, where there are N nodes but the number of features K is unspecified a
priori, and is instead learned appropriately by the model. Since K is not specified, a
nonparametric prior distribution on infinite binary matrices, the Indian Buffet Process
(IBP), is used. The IBP is a prior distribution on binary matrices with a finite number
of rows and an infinite number of columns [21]. However, with probability one the
feature matrix drawn for a finite number of nodes will have only a finite number of

non-zero features.

Additionally, a K x K weight matrix W is specified, which influences the probabil-
ity of there being a link between two nodes depending on which features they contain.
In particular, conditioned on Z and W, the links are assumed to be independent, where

the probability of a link existing from node i to node j is
Py =1Z W) =0(ZWZ]). (2.2)

The function o : R — [0,1] is a squashing function, e.g., the sigmoid or probit. In
the scenario where there is a single feature for every node in the network, this setup
is equivalent to the SBM. However, the LFRM allows nodes to exhibit more than one
feature, which provides a more expressive model than the SBM alone, as there are

many features that may influence the probability of a link between two nodes.

14



2.9 Nonparametric Latent Feature Relational Model

Throughout this section, we have presented a variety of models for networks, with
the focus on models for clustering of networks. In the next section, we return our at-
tention to the simple framework of the SBM, and derive two inference algorithms that
can be used to infer an approximation to the full posterior over the latent variables in

the model.

15
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3

Inference Algorithms for the
Stochastic Block Model

3.1 Overview

In this section, we derive two algorithms that address the problem of posterior inference
for the stochastic block model. First, we review and then derive mean-field variational
inference applied to the SBM. Then, we derive stochastic variational inference for the
model, a related inference technique that hinges upon stochastic optimization to yield
a scalable inference algorithm. Although variational inference has been applied before

to the SBM [32], stochastic variational inference has never been applied to the SBM.

3.2 Mean Field Variational Inference

As discussed briefly in Section 1, variational inference converts the problem of posterior
inference into an optimization problem. We accomplish this by positing a variational
family of distributions indexed by a set of free parameters, and then optimize these
parameters to find the member of this family that is as close to the true posterior
as possible. Here closeness between distributions is measured in terms of Kullback-
Liebler (KL) Divergence, a non-symmetric metric between probability distributions.
We minimize the KL Divergence from the variational distribution to the posterior
distribution via maximization of the evidence lower bound (ELBO), a lower bound on
the logarithm of the marginal probability of the data, denoted p(Y), where Y is the
adjacency matrix of the network. Following [25], we derive the ELBO and show that it
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is equal to the KL divergence up to an additive constant. We accomplish this first by
defining a “variational distribution” over the hidden variables in the stochastic block

model, which we denote ¢(7,z,0). Then, applying Jensen’s Inequality, we have
log p(Y) = log / > p(Y,7,0,2) (3.1)
™0

= log /OZp(Y,Tr,H,Z)(M (3.2)

q(m,z,0)
B p(Y,m,0,z)
-tos (2, [" 2557 ) 33
2 EQ[log p(Ya ™, 0’ Z)] - Eq[log q(ﬂ-a zZ, 0)] (34)
S L(q). (3.5)

Note that the ELBO consists of two terms, both dependent on the variational distri-
bution g: the expected log probability of the joint distribution, and the entropy of the

variational distribution.

In an equivalent formulation (see [54]) we may write the KL divergence from ¢ to

P as:

KL(q(n,z,o)|p(7r,9,z|Y))é/ 3 log (W) q(m,2,0) (3.6)

05 (m,0,z|Y)
= E,[log ¢(7,z,0)] — E,[log p(7,0,z|Y)] (3.7)
= Ey[log q(7,2,0)] — E,[log p(Y, 7, 0,2)] + E,llog p(Y)]
(3.8)
= —L(q) + const (3.9)

where the final term includes a constant factor because log p(Y) does not depend on
the variational distribution ¢. Hence, maximizing the ELBO is simultaneously equiva-
lent to maximizing the data log-likelihood and minimizing the KL divergence from the

variational distribution to the true posterior.

We restrict the choice of the family of variational distributions ¢ to one that is tractable,
as that is the motivation for this approximation. The most common approach is to take
q to be in the mean-field family, where each latent variable is independent and con-

trolled via its own variational parameter. In particular, the marginals of the variational
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distribution for each set of latent variables should belong to the same member of the
exponential family as the complete conditionals in the original model [25]. We define

our variational distribution for the SBM as follows:

N K

Q(W7Z70|A7V7775) = q(ﬂ-’A)Hq(zl’Vl Hq eklh/klvékl (310)
i=1 k.l

q(m|A) ~ Dirg () (3.11)

q(zilv;) ~ Multinomial(v;) (3.12)

4Okt Yr1s Or1) ~ Beta( v, Oxr)- (3.13)

In particular, A € RE, v; € [0,1]% such that Zle v = 1 for each i € {1,...,N},

v € ]Rf XK and 8 € Rf *K Note the normalization constraint on each v;.

Having defined both the generative process for the SBM and our variational distri-

bution ¢, we may now expand the ELBO in Equation (3.4):

L(q) = Eqflog p(w|a)] + Eqlog p(z|m)] + Eqllog p(6la, b)] + Ey[log p(Y|z, 0)]

— Ey[log q(m|\)] — Ey[log q(z|v)] — Ey[log ¢(0]y, d)] (3.14)
K K
=(a-1)) |v W(Z)\k>
j=1 k=
N K K 1
+ZZVU _\II(Z)\k)]
i=1 j=1 k=1

K
+ 3 (e = 1)) = W + Sr2)) + (b= 1)(¥(5k1) — ¥ (pa + kL))

ij=1 k,l=1
iA]
K K K K
—log T (Z )\k> +) log T(A) = D (A — 1) [T()) - ¥ (Z )\k>]
k=1 j=1 j=1 k=1
N K
— Z Z vijlog v;;
i=1 j=1

K
+ > —log T(vkt + 6xt) + log T'(ir) + log T(6x1) — (= 1) (¥ (k) — ¥ (ks + Or2))
k=1

— (6k1 — 1)(¥ (k1) — ¥ (vt + 1)) + const. (3.15)
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and combine the terms with no dependence on the variational parameters into an

additive constant. Here ¥ denotes the digamma function

U(z) = %log I(z) = ?/((j))

where I' is the gamma function, a real-valued extension of the factorial function. We
make use of the fact that for a Dirichlet distributed random vector, x ~ Dir(a) we
have E[log z;|a] = ¥(a;) — ¥(3_; ;). This is easily seen by writing the Dirichlet dis-
tribution in exponential family form, and setting the derivative of the log normalizer

equal to the expected sufficient statistic [10].

We may interpret the entries in A as characterizing the relative weights of the clus-
ters, so that a large value of \; compared to the other entries means that cluster 7 is
larger than the others. v characterizes the probability of each node belonging to the set
of K clusters (i.e., v;; is the probability that node i is in cluster j). Note the inherent
normalization constraint this induces, so that each row of the matrix v (or each vector
v;) must be normalized. Finally, together -y and dy; describe the probability that a
link exists from cluster k to cluster [, via a Beta distribution with these values as its

shape parameters.

3.2.1 Coordinate Ascent Inference Derivation

Having defined the ELBO defined in Equation (3.15) as our objective function, we
optimize via coordinate ascent. We iteratively optimize each variational parameter
while holding the other parameters fixed. Note that it is possible to derive closed form
updates for each parameter for the SBM. More generally, this will always be possible
for models where the complete conditionals and the corresponding variational families
are in the exponential families [25]. The general approach to the derivation is to start
with Equation (3.15) and consider only terms with a dependence on the parameter in

question, then take a derivative, set to zero and solve.

We now derive the updates for each variational parameter. We begin with the up-

date for A. For notational convenience, let A = Zszl Ai. We derive the update for A;,

20



3.2 Mean Field Variational Inference

j €{1,...,K}. The appropriate terms of the ELBO are:

K K N
Ly, =D (a=DEO) = TN+ YD vi[T () — T(V)]
k=1 k=1 1=1
K
—log T(A) +1log T(Y;) = (M = D(T() = ¥(N)) (3.16)
k=1
K
=log [(\;) —log T(\) + > (a + Z Vit — M) (T (Ag) — T(N)). (3.17)
k=1

Taking the derivative with respect to A; of Equation (3.17) and setting to zero yields

N K N
0=10'()\) (a +Y vy - Aj> 4003 <a +) v - )\k> (3.18)
=1

k=1 =1

from which we obtain the update equation:

N
>‘j = a+ZV¢j. (319)

Next, we restrict our attention to updating v and 8. We derive the update for 7, oz
for k,1 € {1,..., K} simultaneously as they are coupled and both parameterize ;.

The relevant terms from the ELBO are:

Los = (=1 (W) — V(v + 0r)) + (b — 1)(VU(6p1) — ¥ (yrt + O1))

N
+ Z VikVjt [Yi (W (Yrt) — W (0xt)) + W (pt) — W (pt + 1))
Z;;:Jl

—log I'(7vki + 6p1) +log T'(yar) +log T'(6x1) — (ver — 1) (W (1) — Y (ke + Oxt))

— (O — D)(P(0rt) — Y vkt + O51))- (3.20)
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Taking the derivative with respect to vx; and setting to zero yields:

0= (a—1)(¥(ve) = V(v + 01)) — (b — 1)V (i + Ort)

N
+ > vy ¥ () = ¥ (i + )]
— (vt — D) (¥ (via) — ' (vt + 0ra1)) + (00 — 1) (90 + Ort) (3.21)
N
=V (y)(a— v+ > vikViyis)
N
— \IJI(’Ykl + 5kl)(a +b— 0 — Vel + Z Viijl)- (3.22)
From this we acquire the update equations
N
Yl = Q@ + Z VikVj1Yij (323)
N
S =b+ > vkl — uij). (3.24)
i,j=1
i

Note that taking the derivative of Equation (3.20) with respect to dy; results in the

same updates.

Finally, we derive the update for v. The relevant terms from the ELBO are

Loy =vii(T(A;) — ¥(A) — log vyy)

N K
+vii D> vt [Yin (P (v) — W (850)) + ¥ (651) — Uy + 651)
n=1 =1

+ Yni (U (1) — W (815)) + W (d15) — W (i + 1)) (3.25)

We are careful to include all the terms from line four of Equation (3.15) that depend

on v;;. Taking the derivative yields

0=V(\;) —P¥(\) —log v — 1

N K
A v [in (T (v0) — ©(653)) + U(850) — V(s + 6j0)
n=1 (=1
n#i
+ Yni (VU (1) — W (835)) + W (615) — ¥ (v; + 65)] (3.26)
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which gives the update equation

N K
Vij X exp{\ll(/\j) — \IJ()\) + Z Z Unl [yin(\lj(’)/jl) - \Ij(éjl)) + \D(éjl) - \Ij(’yjl + 5ﬂ)

n=1 |=1
i (W 3) = W(03)) + W (1) = W +0y)] |- (3.27)

Note the proportionality, since we must enforce the constraint that Z]K: 1 vij = 1 for

this to be a valid probability.

The procedure for coordinate ascent mean field variational inference for the SBM is

given in Algorithm 2.

Given a, b, o, K.
Randomly initialize A, ~, d,v.

while ELBO not converged do
Local step:

for i=1:N, j=1:K do
| Update v;; via Equation (3.27).
end
Global step:
for £,/=1:K do
| Update vy and oy via Equations (3.23), (3.24).
end
for j=1:K do
| Update A\ via Equations (3.19).

end

end
Algorithm 2: Coordinate Mean Field Variational Inference for the SBM

However, there exists a glaring inefficiency in this procedure [25]. Note that we ran-
domly initialize all of our variational parameters. However, each local step of the
algorithm involves iteration over the entire collection of data, continually using what
are likely bad values of the parameters. While tractable for small to medium sized data
sets, this quickly becomes intractable for large networks. Intuitively, it seems that if
we can gain some information about how to update our global variational parameters

from a subset of the data, we should exploit this and avoid iterating over the whole
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collection of data for each local step. This is the key insight into the scalable algorithm

we derive in the next section, called stochastic variational inference [25].

3.3 Stochastic Variational Inference

In this section we present the main ideas of stochastic variational inference, and derive
this inference algorithm applied to the Stochastic Blockmodel. We tackle the issues
raised at the end of the previous section via stochastic optimization. Additionally, we

utilize natural gradients to improve the efficiency.

3.3.1 Natural Gradients

We briefly diverge to discuss natural gradients. The natural gradient of a function is
a generalization of the familiar Euclidean gradient, except that it takes into account
the geometry of the parameter space of the function. As discussed thoroughly in [3],
it can be shown that the use of natural gradients for maximum likelihood estimation

give faster convergence than the Euclidean gradient.

We motivate the use of the natural gradient with a brief example [25]. The prob-
lem with the Euclidean gradient is that the Euclidean distance metric is not the most
natural distance metric for the space of probability distributions. Consider two uni-
variate normal distributions, N(0, 100, 000) and N(100, 100, 000). The distance between
these parameter vectors is 100, yet the two distributions are quite similar, as they are
both diffuse normal distributions centered near the origin. Conversely, consider the dis-
tributions N(0,0.001) and N(0.01,0.001). Though they differ by only 0.01 in parameter
vectors, these distributions are so strongly peaked that they barely overlap at all. This
motivates the intuition behind using an alternative distance metric in our parameter

space.

The particular distance metric we use is the symmetrized KL Divergence, given by

D1 (p,q) = Dir(pllg) + Dxr(allp)- (3.28)

This choice of distance is more intuitive, and would correct the example mentioned in

the previous paragraph. It depends on the distributions themselves, and not on how
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they are parameterized. When we use this as our distance metric in our parameter
space, the gradient it induces is known as the natural gradient, and this is the form
of gradient we use when we develop stochastic variational inference for our model.
Another nice property of the natural gradients is that they actually end up being easier

to compute than traditional Euclidean gradients [25].

3.3.2 Stochastic Optimization

The intuition behind stochastic variational inference is to use stochastic optimization
to obtain noisy estimates of the natural gradient in our optimization of the variational

objective (the ELBO), with a decreasing step size p;. If the step sizes satisfy

Zpt =00 (3.29)
Y i< (3.30)

then the algorithm provably converges to a local optimum of the objective function [48].
In practice, we set pr = (19 + t)~". The parameter x € (0.5,1] is the learning rate and
determines the speed at which the step sizes decay, and 79 > 0 is a forgetting parameter
that downweights early iterations. This results in a scalable inference algorithm, as
noisy estimates of the gradient (especially the natural gradient) are easy to compute.
An additional nice property is that following noisy estimates of the gradient allows the
learning procedure to escape shallow local optima of complex objective functions that

the true gradient might have been stuck in. For details, refer to [25].

3.3.3 Stochastic Variational Inference Derivation

The full derivation of stochastic variational inference for the general setting of any
exponential family model is given in [25]. However, the important point is that there
are again simple closed form updates for the parameters of our model. As before, we
iterate between a local and global step. However, now in the local step we sample
a subset & of edges and the nodes 8 they correspond to from the network, and only
update the parts of v that depend on € and 8. For now, we avoid specifying exactly
how we identify such subsets, but the algorithm is general in the sense that we maintain
a correct optimization algorithm as long as the natural gradients estimated from the

subsample are unbiased estimates of the true gradient. In the experimental section to
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follow we briefly discuss sampling strategies. A more thorough discussion is given in

19].

Given a, b, o, K.
Randomly initialize X, ~,d, v.
Set step size schedule p;.

fort=0:00do
Sample a subset € of edges and corresponding nodes 8.

Local step:

Update v; ¥V nodes i € 8§ via Equation (3.27) (reweighted if necessary).
Global step:

Compute A, ¥, and 5, using only 8, €, and v;, Vi € 8§ using Equations (3.19),
(3.23), and (3.24), reweighted appropriately.

Update:

7= pd

8t =61 4+ pid

A=A A

end

Algorithm 3: Stochastic Variational Inference for the SBM

In Algorithm 3, we present the pseudocode for Stochastic Variational Inference. Note
the similarity to the previous coordinate ascent algorithm. The only difference is in
the specific update equations, which depend on the sampling method chosen, and we
provide the concrete equations in the Experiments section for the sampling scheme that

we employ.
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4

Experiments

4.1 Introduction

In this section, we evaluate the efficiency and accuracy of the stochastic variational in-
ference algorithm derived in Section 3. After much experimentation with initialization
of these methods, it became clear that initialization of these algorithms is a delicate
matter. In the literature, it is common to initialize variational algorithms on the order
of 1,000 times to achieve good results [35]. However, due to limited computational
resources, it was infeasible for us to run this many random restarts for each setting of
the parameters we test, as we are often interested in testing hundreds or thousands of
parameter combinations per experiment. As a result, instead of initializing our meth-
ods entirely randomly, which tended to yield bad results, we instead initialize using a
simpler algorithm run for a brief time (spectral clustering from Section 2). In particu-
lar, we use only a small number of eigenvectors (typically 10) in our spectral embedding
regardless of the chosen K , and we greatly reduce the convergence criterion for the
spectral decomposition methods used so that they converge much faster, trading off
accuracy in the eigenvector computation for a huge increase in speed. Finally, instead
of using the traditional k-means algorithm as is standard for spectral clustering, we uti-
lize an online version of kmeans from [52], which runs significantly faster. This kmeans
variant subsamples the data, similar in spirit to the motivation for our methods, and
we only run it for one or two full iterations so that it is never allowed to converge. The
purpose of this nonrandom initialization is to give our algorithm a slight push in the

right direction to quickly m