
Generating Random Factored Gaussian Integers, Easily

Noah Lebowitz-Lockard
Advisor: Carl Pomerance

June 6, 2013

Abstract

We introduce an algorithm to generate a random Gaussian integer with the uniform

distribution among those with norm at most N , along with its prime factorization.

Then, we show that the algorithm runs in polynomial time. The hard part of this

algorithm is determining a norm at random with a specific distribution. After that,

finding the actual Gaussian integer is easy. We also consider the analogous problem

for Eisenstein integers and quadratic integer rings.

1

1 Generating Random Factored Numbers, Easily

Consider the following problem:

Given a positive integer N , generate a random integer less than or equal to N with
uniform distribution, along with its factorization in polynomial time. (In this context, poly-
nomial time refers to a polynomial in the number of digits of N , not the size of N . So, the
running time of our algorithm should be O(logk N), for some real k.)

At first glance, this seems very simple. Simply choose a random integer in the range [1, N]
and factor it. However, there are no known polynomial time factorization algorithms. But,
the problem does not explicitly state that we need to factor anything. We need a random
factored number, not a method to factor random numbers.

In 1988, Eric Bach presented an algorithm without any factorizations at all in his pa-
per “How to Generate Random Factored Numbers” [2]. Bach’s algorithm requires O(logN)
primality tests. In 2003, Adam Kalai presented another algorithm in his “Generating Ran-
dom Factored Numbers, Easily”, which used O(log2 N) primality tests [1]. Though Kalai’s
algorithm is slower, it is also easier to understand and we shall spend the rest of the paper
discussing modifications of it.

Also note that though we will not factor any numbers, every one of the algorithms pre-
sented in this paper will perform primality tests, which we can run in polynomial time. The
two polynomial time primality algorithms are the Miller-Rabin Test and the Agrawal-Kayal-
Saxena (AKS) Algorithm. A programmer running the algorithms in this paper should use ei-
ther of the two primality tests just mentioned. Because Kalai’s algorithm requires O(log2 N)
primality tests, using Miller-Rabin or AKS enables the algorithm to run in polynomial time.
Either of these algorithms could be used as a subroutine within the program.

Strictly speaking, the Miller-Rabin Test can only check compositeness. Running Miller-
Rabin once will either tell you that a given number is composite or the test will be incon-
clusive. If you run the test many times, and it is consistently inconclusive, then the given
number is almost certainly prime. By running the test many times, we can be arbitrarily
accurate, i.e. the probability of error is less than ✏ for a given positive real ✏.

For a given function f , we define Õ(f) as O(f logk f), where k is some positive real
number. Note that logk f grows much more slowly than f . Running the Miller-Rabin Test
on N once has a running time of Õ(log2 N) assuming we perform multiplications using a
Fast Fourier Transform [12]. If the Generalized Riemann Hypothesis is true, then the Miller-
Rabin Test becomes deterministic after running it O(log2 N) times. In this scenario, we
could determine whether or not a given integer is prime in Õ(log4 N) time [8].

AKS will tell you whether a given number is prime or composite with perfect accuracy,
but it is significantly slower. AKS runs in Õ(log15/2 N) time [1]. Specifically, AKS runs
in O((logN)15/2(2 + log logN)c) for some constant c. H. W. Lenstra and Carl Pomerance
recently found a faster deterministic algorithm that runs in time O((logN)6(2+ log logN)c)
[9]. If perfect accuracy is required, then we suggest Lenstra and Pomerance’s algorithm. If
you can settle for very good accuracy, then we suggest Miller-Rabin.

2

2 Kalai’s Algorithm

Here is the algorithm from Adam Kalai’s “Generating Random Factored Numbers, Easily”
[7].

Algorithm 1. Given a positive integer N , this algorithm produces a random positive integer
r  N , along with its factorization, with uniform distribution.

1. Create a list of integers s
1

� s
2

� . . . � s
k

= 1, where s
1

is chosen uniformly at
random in [1, N] and if s

i

has been chosen and s
i

> 1, then s
i+1

is chosen uniformly at
random in [1, s

i

]. Call this list S. The procedure terminates when 1 is chosen. When
the procedure terminates, go to Step 2.

2. Let r be the product of the prime elements of S.

3. If r > N , return to Step 1. Otherwise, output r, along with its prime factorization,
with probability r/N . If you did not output r, return to Step 1.

For example, let N = 100. The algorithm might generate the list [98, 41, 38, 3, 3, 1].
When we multiply the prime elements of the list, we obtain 369, so we would create a new
list. We might obtain [70, 5, 5, 2, 1], in which case we would output 50 with probability 0.5.
We have to prove two facts about this algorithm.

1. The algorithm generates each r  N with probability 1/N .

2. The algorithm expects to use O(log2 N) primality tests.

How do we determine the probability of obtaining r? Consider the following “generalized
prime factorization” of r:

r =
Y

pN

p↵p .

(Throughout this paper, p will always be a prime.)
For any p  N , p↵p is the highest power of p that is a factor of r. Note that in our

definition, ↵
p

= 0 if p is not a factor of r. In a normal prime factorization, we would simply
ignore any prime that is not a factor of r, but in this case, we must include all primes less
than or equal to N .

In order for our algorithm to output r, the list must contain exactly ↵
p

copies of p for
each p  N . But, what is the probability that the list contains ↵

p

copies of p? Suppose we
have not yet finished our list and every element of the list so far is greater than or equal
to p. Then, it is still possible to add a copy of p to the list. The conditional probability
of choosing p given that you are choosing some number in [1, p] is 1/p. The conditional
probability of adding a number smaller than p is 1 � (1/p). The probability that the list
contains n copies of p is equal to the probability of adding one copy of p n times in a row,
then adding a number less than p, namely,

P (n copies of p) =
1

pn

✓
1� 1

p

◆
.

3

Let P ⇤(r) be the probability that the product of the primes in a list is equal to r. In other
words, P ⇤(r) is the probability of outputting r if we ran Kalai’s algorithm without Step 3.
We can use the equation above to determine the initial probability that we obtain r:

P ⇤(r) =
Y

pN

P (↵
p

copies of p) =
Y

pN

1

p↵p

✓
1� 1

p

◆
=
Y

pN

1

p↵p

Y

pN

✓
1� 1

p

◆
.

Notice that the product of 1/p↵ for all p  N is equal to 1/r. Also note that the product of
1� (1/p) is a function of N and not r. We can define M

N

as this product:

M
N

=
Y

pN

✓
1� 1

p

◆
.

We can express the product of obtaining r at the end of Step 2 more succinctly as

P ⇤(r) =
M

N

r
.

Here, r is any positive integer supported on the primes in [1, N]. Step 3 states that if r  N ,
then we should output r with probability r/N . Otherwise, we should not output r at all.
P (r) is equal to P ⇤(r) times the conditional probability that the algorithm outputs r given
that it is the product of the primes in the list. Here is the actual probability that we output
r:

P (r) = P ⇤(r) · r

N
=

M
N

r
· r

N
=

M
N

N
.

Note that the probability that we output r does not actually depend on the value of r, as
long as r  N . Thus, Kalai’s algorithm outputs every number less than or equal to N with
a uniform distribution.

Now, we have to prove that Kalai’s algorithm requires an average of O(log2 N) primality
tests. We will do this by showing that the algorithm produces an average of O(logN) lists
and by showing that the average list has O(logN) distinct elements.

We have just shown that the probability of the algorithm producing a list and outputting
r is M

N

/N . There are N possible numbers that we can output. The probability that the
algorithm terminates is equal to N(M

N

/N), or M
N

. Therefore, the expected number of lists
we have to produce is M�1

N

. In order to estimate M
N

, we introduce Mertens’ Two Theorems.
Our proofs of them come from [10]. The value of � comes from [6].

Definition. For any positive real number x,

A(x) =
X

px

log p

p
.

Theorem 1. For any real x � 1,

A(x) = log x+O(1).

4

If there were only finitely many primes, then the sum of (log p)/p for all prime p  x
would be bounded above by some constant C. But, log x diverges. Therefore, Theorem 1
provides an alternate proof for the infinitude of the primes.

Theorem 2. (Mertens’ First Theorem) As N approaches infinity, the sum of the reciprocals
of the primes that are less than or equal to N becomes asymptotic to log logN .

Proof. In order to take the sum of 1/p for all p  N , we will split it into two separate sums:

X

pN

1

p
=
X

pN

✓
log p

p

◆✓
1

log p

◆
=

1

logN

X

pN

log p

p
+
X

pN

log p

p

✓
1

log p
� 1

logN

◆
.

Theorem 1 makes the first sum easy to handle:

1

logN

X

pN

log p

p
=

A(N)

logN
= 1 +O

✓
1

logN

◆
.

The second sum is more di�cult. It appears as though we should be able to write it in terms
of A(N), but it is di�cult to see how. We can rewrite the argument by de-telescoping it, i.e.
writing it as a sum of terms that contract:

1

log p
� 1

logN
=

N�1X

n=p

✓
1

log n
� 1

log(n+ 1)

◆
.

Therefore,

X

pN

log p

p

✓
1

log p
� 1

logN

◆
=
X

pN

log p

p

N�1X

n=p

✓
1

log n
� 1

log(n+ 1)

◆
.

We can switch the sums around. Instead, we are taking the sum of (1/ log n)�(1�log(n+1))
for all p  n and all n from 2 to N � 1:

X

pN

log p

p

✓
1

log p
� 1

logN

◆
=

N�1X

n=2

✓
1

log n
� 1

log(n+ 1)

◆X

pn

log p

p

=
N�1X

n=2

A(n)

✓
1

log n
� 1

log(n+ 1)

◆
.

Observe that 1/ log t, like all di↵erentiable functions, is the integral of its own derivative:

N�1X

n=2

A(n)

✓
1

log n
� 1

log(n+ 1)

◆
=

N�1X

n=2

A(n)

Z
n+1

n

1

t log2 t
dt.

5

For any t in the half-open interval [n, n + 1), A(t) = A(n) because a prime must be all
primes are integers. Every prime that is less than or equal to t is also less than or equal to
n. Therefore, A(t) is a constant over the interval [n, n+ 1], allowing us to move A(n) inside
the integral:

N�1X

n=2

A(n)

Z
n+1

n

1

t log2 t
dt =

N�1X

n=2

Z
n+1

n

A(t)

t log2 t
dt =

Z
N

2

A(t)

t log2 t
dt.

Once again, we break our expression into a sum and put asymptotic estimates on both of
its components: Z

N

2

A(t)

t log2 t
dt =

Z
N

2

1

t log t
dt+

Z
N

2

A(t)� log t

t log2 t
dt.

For the first integral, Z
N

2

1

t log t
dt = log logN � log log 2.

Theorem 1 states that A(t) = log t + O(1). Therefore, |A(t) � log t| is bounded above by
some positive constant C. Hence,

����
Z

N

2

A(t)� log t

t log2 t
dt

����  C

����
Z

N

2

1

t log2 t
dt

���� = C

✓
1

log 2
� 1

logN

◆
= O(1).

Putting all of this together gives us our result:

X

pN

1

p
= log logN +O(1).

Theorem 3. (Mertens’ Second Theorem) Let � = 0.5772 . . . be the Euler-Mascheroni Con-
stant. Then,

lim
N!1

M
N

logN = e�.

Proof. Let x be a real number with absolute value less than 1. The Taylor Expansion of
log(1 + x) is

x� x2

2
+

x3

3
+ . . . = �

1X

k=1

(�x)k

k
.

Let x = �1/p for some prime p. Making this substitution gives us

log

✓
1� 1

p

◆
= �

✓
1

p
+

1

2p2
+ . . .

◆
= �

1X

k=1

1

kpk
.

We can also separate out the first term and put the other terms into a separate sum. Ul-
timately, we will prove that for su�ciently large primes p, only the first term really a↵ects

6

our proof. This makes sense on an intuitive level. As p approaches infinity, 1/p2 becomes
meaningless next to 1/p. We have

log

✓
1� 1

p

◆
= �1

p
�

1X

k=2

1

kpk
.

At this point, we take the logarithm of M
N

in order to use this result.

logM
N

= log
Y

pN

✓
1� 1

p

◆
=
X

pN

log

✓
1� 1

p

◆
= �

X

pN

1

p
�
X

pN

1X

k=2

1

kpk
.

Mertens’ First Theorem states that the sum of 1/p for all p  N is asymptotic to log logN .
We will prove that the other sum in the equation above is on a smaller order and may be
ignored. For any prime p,

1X

k=2

1

kpk
<

1X

k=2

1

2pk
=

1

2

1X

k=2

1

pk
=

1

2p(p� 1)
 1

p2
.

Therefore,
X

pN

1X

k=2

1

kpk
<
X

pN

1

p2
<

1X

n=1

1

n2

.

We can prove that the sum of the reciprocals of the squares converges. Note that the number
m is equal to the integral of m over an interval of unit length. That allows us to put the
integral into the last part of the equation:

1X

n=1

1

n2

= 1 +
1X

n=1

1

(n+ 1)2
= 1 +

1X

n=1

1

(n+ 1)2
= 1 +

1X

n=1

Z
n+1

n

1

(n+ 1)2
dx.

Observe that for any real x in the interval [n, n + 1], 1/x2 > 1/(n + 1)2. Therefore, the
integral of 1/x2 on the range [n, n+1] is greater than the integral of 1/(n+1)2. We can use
this fact to set an integral as the upper bound for our sum:

1X

n=1

1

n2

= 1 +
1X

n=1

Z
n+1

n

1

(n+ 1)2
dx < 1 +

X

n=1

Z
n+1

n

1

x2

dx = 1 +

Z 1

n=1

1

x2

dx = 2.

(To be exact, the sum of the reciprocals of the squares is ⇡2/6, but that is beyond the scope
of this paper.) To summarize, we have two di↵erent limits:

X

pN

1

p
⇠ log logN,

X

pN

1X

k=2

1

kpk
= O(1).

Therefore,

lim
N!1

logM
N

log logN
= �1.

7

We raise e to both sides in order to obtain an asymptotic limit for M
N

:

lim
N!1

M
N

= e� log logN +O(1) = O(log�1 N).

In the equation above, C is some constant. Though we will not prove it here, C = e�. Though
it is di�cult to prove, one could verify the value of C by calculating M

N

and log�1 N for
very large values of N .

From this point onward, whenever we refer to Mertens’ Theorem, we will be referring
to his second theorem. We expect to create M�1

N

lists. As N approaches infinity, the ratio
between M

N

is asymptotic to e� logN . Hence, M
N

= O(logN) and Kalai’s algorithm creates
an average of O(logN) lists. But, how many distinct elements does a list contain? Let n be
an integer that is less than or equal to N . The probability that the list contains at least one
copy of n is 1/n. If the list contains a copy of n, then we must check if n is prime exactly
once. Otherwise, we do not have to check whether or not n is prime. The expected number
of times the algorithm checks if n is prime when processing a given list is 1/n. By additivity
of expectation, the expected number of primality tests required for a given list is

1 +
1

2
+ . . .+

1

N
=

NX

n=1

1

n
.

We can write both an upper and lower bound for this sum. Consider the integral of (1/x)dx
as x goes from 1 to N . We can split this integral into a sum of smaller integrals as follows:

Z
N

1

1

x
dx =

N�1X

n=1

Z
n+1

n

1

x
dx.

The minimum value of 1/x on the interval [n, n+ 1] is 1/(n+ 1). The length of the interval
[n, n+ 1] is 1. Thus,

N�1X

n=1

Z
n+1

n

1

x
dx >

N�1X

n=1

1

n+ 1
=

1

2
+

1

3
+ . . .+

1

N
.

Adding 1 to both sides gives us a useful inequality:

1 +
1

2
+ . . .+

1

N
< 1 +

Z
N

1

1

x
dx = 1 + logN.

The maximum value of 1/x on the interval [n, n+ 1] is 1/n, so that

logN =

Z
N

1

1

x
dx =

N�1X

n=1

Z
n+1

n

1

x
dx <

N�1X

n=1

1

n
<

NX

n=1

1

n
= 1 +

1

2
+ . . .+

1

N
.

8

We can now write both an upper and lower bound for our sum. We have

logN <

NX

n=1

1

n
< 1 + logN.

Our takeaway is that
NX

n=1

1

n
= O(logN).

Thus, the expected number of primality tests the algorithm performs for a given list is
O(logN). Since we’ve seen that the expected number of lists is O(logN), Kalai’s algorithm
does an average of O(log2 N) primality tests.

3 The Gaussian Problem

Our new goal is to generate a random Gaussian integer with norm less than or equal to given
integer N , along with its factorization into Gaussian primes. From here on, N(z) will be the
norm of the complex number z. Our plan of attack will be as follows:

1. Find a formula for G(r), the number of Gaussian integers in the first quadrant with a
given norm r.

2. Modify Kalai’s Algorithm so that the probability of outputting a given r is proportional
to G(r).

3. For a given r, along with its factorization into rational primes, produce a random
Gaussian integer with norm r, along with its factorization into Gaussian primes.

The Gaussian integers have four units, unlike the rational integers, which have 2. Through-
out this section, we will only be concerned the outcome up to a unit. For simplicity, we may
assume that the Gaussian primes we generate are all in the first quadrant. If not, we multiply
them by a power of i and then they will be. However, this means that for a given output z,
we cannot obtain iz, �z, or �iz. To rectify this, the reader may insert a Step 4 at the end of
the algorithm. Step 4 multiplies the Gaussian integer that the algorithm was just outputted
by ik, where k is a random integer in the range [0, 4]. Units will not seriously concern us in
this section.

In order to find a formula, we will introduce the function D and then prove that G
is identical to D. We will do this by showing that G and D both possess a certain set
of properties, then proving that any two functions that possess all of these properties are
identical. In order to define D, we must define a few other functions first.

Definition. The divisor function d gives the number of positive divisors of a given integer.

9

Definition. Let r be a positive integer with the prime factorization used in the theorem
above. Let r

1

be the largest factor of r which only contains primes that are congruent to 1
mod 4. Let r

3

be the largest factor of r which only contains primes that are congruent to
3 mod 4. Note that with this notation, there exists some nonnegative integer k such that
r = 2kr

1

r
3

.

Definition. Let r be a positive integer. Let D(r) be the following function:

D(r) =

⇢
d(r

1

) r
3

is a square,
0 otherwise.

At this point, we shall define a new property of functions and prove that d, D, and G all
have this property.

Definition. A function f : N ! R is multiplicative if f(mn) = f(m)f(n) for all relatively
prime m, n.

Theorem 4. Let r be a positive integer with prime factorization pe1
1

. . . pem
m

. Then,

d(r) = (e
1

+ 1) . . . (e
m

+ 1).

Proof. Let r
0

be a factor of r. Any prime factor of r
0

must also be a prime factor of r. The
exponent of p

i

in r
0

can be any number that is less than or equal to e
i

. In other words,
r
0

= pf1
1

. . . pfm
m

, where each f
i

is an integer in the range [0, e
i

]. There are e
i

+ 1 possibilities
for each f

i

. Therefore, there are (e
1

+ 1) . . . (e
m

+ 1) factors of r.

Theorem 5. The function d is multiplicative.

Proof. Let a = pe1
1

. . . pen
n

and b = qf1
1

. . . qfm
m

be two relatively prime integers. Then, we can
determine d(ab) = d(a)d(b). It is easy to write out d(a)d(b):

d(a)d(b) = (e
1

+ 1) . . . (e
n

+ 1)(f
1

+ 1) . . . (f
m

+ 1).

Because a and b are relatively prime, there do not exist integers i and j such that p
i

= q
j

.
This makes writing ab especially easy:

ab = pe1
1

. . . pen
n

qf1
1

. . . qfm
m

.

We then apply the divisor function to ab:

d(ab) = (e
1

+ 1) . . . (e
n

+ 1)(f
1

+ 1) . . . (f
m

+ 1) = d(a)d(b).

Hence, d is multiplicative.

Theorem 6. The function D is multiplicative.

10

Proof. Once again, let a = pe1
1

. . . pen
n

and b = qf1
1

. . . qfm
m

. Suppose a
3

and b
3

are both squares.
Then, a

3

b
3

is a square. hence, D(ab) = d(a
1

b
1

) = d(a
1

)d(b
1

) = D(a)D(b). Suppose either
a
3

or b
3

is not a square. Then, a
3

b
3

is not a square. Hence, (ab)
3

is not a square. So,
D(ab) = 0 = D(a)D(b). Thus, D is multiplicative.

To prove that G is multiplicative, we need a few results.

Definition. A Gaussian prime is a Gaussian integer z such that if z = ab, where a and b
are Gaussian integers, then either a or b is a unit.

The fact that we can factor Gaussian integers comes from the following theorem:

Theorem 7. (Fundamental Theorem of Gaussian Integers) [11] “The expression of an in-
teger as a product of primes is unique, apart from the order of the primes, the presence of
unities, and ambiguities between associated primes.”

At this point, we will present an outline of the proof of the Fundamental Theorem.

Definition. [5] Let R be a commutative ring. The subset I of R is an ideal if I is a group
under addition and for any a 2 I and r 2 R, ar is an element of I.

Definition. An element a of R is irreducible if it is not a unit and its only divisors are 1
and itself up to a unit.

It may seem as though we have just defined a prime, but in fact, for the Gaussian integers,
the two concepts are one and the same.

Definition. An element p 2 R is prime if for any a, b 2 R such that p|ab, either p|a or p|b.
Definition. A ring R is a unique factorization domain if for every r 2 R, there is a unique
way of writing r as the product of irreducible elements, up to a change in units.

Definition. A ring R is a principal ideal domain if for every ideal I ✓ R, there exists some
element r 2 R such that I = {rx | x 2 R}.
Definition. A ring R is a Euclidean domain if there exists a function � : R ! N that
satisfies the following two properties:

1. For any a, b 2 R\{0}, �(ab) � �(a)�(b).

2. For any a, b 2 R with b 6= 0, there exist q, r 2 R such that �(r) < �(b) or both a = bq+r
and �(r) < �(b).

The Euclidean algorithm is an e�cient method for finding the greatest common divisor
of two numbers. When a ring is a Euclidean domain, it means that the Euclidean algorithm
applies to the ring. Therefore, we can define an analogous notion of a gcd for the Gaussian
integers.

Theorem 8. Primes and irreducibles are identical in a unique factorization domain.

11

Theorem 9. Every Euclidean domain is a principal ideal domain.

The reason that this theorem is true is that the gcd of all the elements of an ideal must
be contained in the ideal. Every element of the ideal must be a multiple of that element.
Alternately, every multiple of the element must be contained in the ideal.

Theorem 10. Every principal ideal domain is a unique factorization domain.

Theorem 11. The Gaussian integers form a Euclidean domain.

Putting all these theorems and definitions together proves the Fundamental Theorem of
Gaussian Integers. Because the Gaussian integers from a Euclidean domain, they must form
a principal ideal domain and a unique factorization domain.

Theorem 12. G is multiplicative.

Proof. For a given integer n, let G
n

be the set of all Gaussian integers with norm n. By
definition, G(n) is the size of G

n

. Let a and b be two relatively prime integers. We shall prove
that G(ab) = G(a)G(b) by creating a bijection from G

a

⇥ G
b

to G
ab

. Define the function
f : G

a

⇥G
b

! G
ab

as f(x, y) = xy.
To prove that f is a bijection, we must show that it is injective and surjective. Suppose

f(x, y) = f(x
0

, y
0

) for some x
1

, x
2

2 G
a

and y
1

, y
2

2 G
b

. Then, x
1

y
1

= x
2

y
2

. So, x
1

y
1

and
x
2

y
2

have the same factorization into Gaussian primes. Let z be a Gaussian prime that
divides x

1

y
1

. If the norm of z divides a, then z must divide both x
1

and x
2

, but not y
1

and
y
2

. Otherwise, the norm of z divides b and z divides y
1

and y
2

, but not x
1

and x
2

. It is
impossible for z to divide both a and b because a and b are relatively prime. Therefore, x

1

and x
2

are composed of the exact same Gaussian primes, implying that (x
1

, x
2

) = (y
1

, y
2

).
Every element of G

ab

has at most one inverse. Therefore, f is injective.
Now, we must prove that f is surjective. Let w 2 G

ab

. By definition, N(w) = ab. Let p
be a prime factor of ab where pn is the largest power of p that divides ab. There exists some
Gaussian integer with norm pn that divides w. Either pn divides a or pn divides b. Let w

1

be the product of the Gaussian integers with norm pn that divide a and w
2

be the product
of the Gaussian integers with norm pn that divide b. Then, w

1

has norm a and w
2

has norm
b. Also, w = w

1

w
2

. All this implies that f(w
1

, w
2

) = w and f is surjective. Hence, f is
bijective and G(ab) = G(a)G(b). By definition, G is multiplicative.

At this point, we will determine G(pn) where p is a prime and n is a positive integer.
First, we shall introduce the notion of a quadratic residue.

Definition. Let p be an odd prime and a be an integer that is not a multiple of p. We say
that a is a quadratic residue mod p if the equation x2 ⌘ a mod p has a solution. Otherwise,
a is a quadratic non-residue. To express the quadratic residues compactly, we use a Legendre
symbol: ✓

a

p

◆
=

⇢
1 a is a quadratic residue mod p,

�1 a is a quadratic non-residue mod p.

12

The Legendre symbol can be easily calculated for specific values of a and p with a
congruence.

Theorem 13. (Euler’s Criterion) [4] Let p be an odd prime. Then,
✓
a

p

◆
⌘ a

p�1
2 mod p.

For this section, we will only need to know whether or not �1 is a quadratic residue for
a given prime p. This can be easily solved with the following theorem and its corollary. In
Section 10, we will use other values of a.

Corollary 1. Let p be an odd prime. Then, �1 is a quadratic residue mod p if and only if
p ⌘ 1 mod 4.

Proof. Let p ⌘ 1 mod 4. Then, p � 1 is a multiple of 4. Therefore, (p � 1)/2 is even and

(�1)
p�1
2 = 1. By the theorem above, �1 is a quadratic residue.

Suppose p ⌘ 3 mod 4. Then, p�1 ⌘ 2 mod 4 and (p�1)/2 is odd. Hence, (�1)
p�1
2 = �1.

By the theorem above, �1 is a quadratic non-residue.

In order to address Point 1, we shall prove the following theorem, which determines the
number of Gaussian integers with norm p, where p is a prime. We treat two Gaussian integers
as equal if one divided by the other is a power of i. In other words, you could transform one
Gaussian integer into the other simply by rotating it with a series of right angles.

Later in this section, we will introduce an algorithm for finding solutions to x2 ⌘ a mod p
in the case where such a solution exists.

Theorem 14. A Gaussian prime in the first quadrant possesses exactly one of the following
three properties:

1. The Gaussian integer is equal to 1 + i.

2. It is equal to p, where p is a prime that is congruent to 3 mod 4.

3. Its norm is p, where p is a prime that is congruent to 1 mod 4.

Proof. 1 + i has norm 2. Any factor of 1 + i must have norm 1 or 2. But, 1 + i is the only
Gaussian integer in the first quadrant. Therefore, 1 + i is a Gaussian prime.

Let p be a a prime that is congruent to 3 mod 4. We can prove that the only Gaussian
factors of p are 1 and p. Let a + bi be a Gaussian prime with norm p. Then, a2 + b2 = p,
which is impossible because the sum of two squares cannot be congruent to 3 mod 4. There
are no Gaussian primes with norm p. p is a Gaussian prime.

Let p be a prime that is congruent to 1 mod 4. We already proved that �1 is a quadratic
residue of p. Therefore, there exists some positive integer x < p such that x2 ⌘ �1 mod p.
Let z be the gcd of x + i and p. The norm of x+ i is a multiple of p, but not p2, while the
norm of p is p2. The norm of z must be the gcd of |x+ i| and p2, which is p. So, p has some
proper Gaussian prime factor, namely z.

13

Theorem 15. For a prime p, we have

G(p) =

8
<

:

2 p ⌘ 1 mod 4,
0 p ⌘ 3 mod 4,
1 p = 2.

Proof. It is easy to see why this theorem is true for p = 2 and p ⌘ 3 mod 4. The only Gaussian
integers with norm 2 have the form ±1 ± i. However, all of these numbers are considered
the same because the quotient of any pair of them is a power of i. Thus, G(p) = 2.

Let p ⌘ 3 mod 4. Suppose a+ bi has norm p. Then,
p
a2 + b2 =

p
p. Hence, a2 + b2 = p.

Every square is equivalent to 0 or 1 mod 4. So, a2+ b2 is 0, 1, or 2 mod 4. But, p ⌘ 3 mod 4.
Hence, a2 + b2 = p has no solutions. If p ⌘ 3 mod 4, then G(p) = 0.

Finally, suppose p ⌘ 1 mod 4. Once again, suppose a + bi has norm p and a2 + b2 = p.
The Corollary states that �1 is a quadratic residue mod p. There exists some solution to
the equation x2 ⌘ �1 mod p. Therefore, x2 +1 is a multiple of p. There exists some integer
k such that x2 + 1 = kp. We can factor x2 + 1 in the Gaussian integers:

x2 + 1 = (x+ i)(x� i).

Thus, (x + i)(x � i) is a multiple of p. But, p cannot divide either x + i or x � i because
their imaginary components are ±1, which is not a multiple of p. Both x+ i and x� i share
a common factor with p, that is not p itself. To find this common factor, simply calculate
gcd(x + i, p). Suppose z is a Gaussian integer that is not a unit that divides p, but is not
a multiple of p. Then, |z| is a proper divisor of p2. The only possibilities are |z| = 1 and
|z| = p. Because z is not a unit, |z| 6= 1. Thus, |z| = p. Let a + bi = z. Then, a + bi is a
Gaussian integer with norm p.

As an example of the construction in the proof above, consider p = 41. There exist some
a, b 2 Z

+

such that a2 + b2 = p because p ⌘ 1 mod 4. One solution to x2 + 1 ⌘ 0 mod 41 is
x = 9. So, we want to find the gcd of 9 + i and 41. Just as in Z, we may use the Euclidean
Algorithm:

gcd(9 + i, 41) = gcd(9 + i, 41� 4(9 + i)) = gcd(9 + i, 5� 4i).

Note that 5 � 4i divides 9 + i. Specifically, 9 + i = (5 + 4i)(1 + i). Hence, the gcd of 9 + i
and 5� 4i is 5� 4i. Hence, 5� 4i is our Gaussian integer of norm 41. We confirm this fact
by noting that 52 + 42 = 41.

Now that we know G(p), we can find G(pn).

Theorem 16. For any prime p and positive integer n:

G(pn) =

8
<

:

(1 + (�1)n)/2 p ⌘ 3 mod 4,
n+ 1 p ⌘ 1 mod 4,
1 p = 2.

14

Proof. Let p ⌘ 1 mod 4 and let z be a Gaussian integer with norm pn. Then, z is the product
of n Gaussian integers with norm p. But, there are exactly two Gaussian integer with norm
p, up to a unit. These two integers have the forms a + bi and a � bi, for some a, b 2 Z

+

.
Therefore, z = (a + bi)m(a� bi)n�m, where m is a nonnegative integer. Thus, m can range
from 0 to n. So, there are n+ 1 possibilities for z.

Let p = 2 and let z be a Gaussian integer with norm 2n. Then, z is the product of n
Gaussian integers with norm 2. However, 1 + i is the only Gaussian integer with norm 2.
Hence, z = (1 + i)n, implying that z is unique.

Let p = 3 and let z be a Gaussian integer with norm pn. Once again, z is the product of
n Gaussian integers with norm p. But, there are no Gaussian integers with norm p, implying
that z cannot exist.

Note thatD(pn) = G(pn). We introduce a theorem that shows that G andD are identical.

Theorem 17. Let f and g be two multiplicative functions. If f(pn) = g(pn) for all prime p
and positive n, then f and g are identical.

Proof. Let r be a positive integer with prime factorization pe1
1

. . . pek
k

. By assumption, we
have:

f(r) = f(pe1
1

. . . pek
k

) = f(pe1
1

) . . . f(pek
k

) = g(pe1
1

) . . . g(pek
k

) = g(pe1
1

. . . pek
k

) = g(r).

f and g are identical.

Note that G(pn) = D(pn) for all prime p and positive n. This proves the following result.

Theorem 18. For a positive integer r,

G(r) =

⇢
d(r

1

) r
3

is a square,
0 otherwise.

In Kalai’s algorithm, the probability that r is the product of the prime elements of a list
was 1/N . We want the probability to be proportional to G(r)/N . The next few section will
be spent finding such an algorithm and proving that it accomplishes this task.

We still need a way to solve the congruence x2 ⌘ �1 mod p, where p is a prime that is
congruent to 1 mod 4.

Algorithm 2. Given an prime p ⌘ 1 mod 4, this algorithm produces a solution to the
congruence x2 ⌘ �1 mod p.

1. Choose a random integer a in the interval [2, p � 2]. Let x ⌘ a(p�1)/2 mod p. If
x ⌘ �1 mod p, then output a(p�1)/4. If x ⌘ 1 mod p, choose a new value of a.

The process for finding a square root of �1 is randomized. Let a be an integer. Eu-
ler’s Criterion states that a is a residue if and only if a(p�1)/2 ⌘ 1 mod p. Observe that
(a(p�1)/2)2 ⌘ ap�1 ⌘ 1 mod p. So, a(p�1)/2 must be congruent to one of the two square roots

15

of 1, which are 1 and �1. If a is a quadratic non-residue, then a(p�1)/2 ⌘ �1 mod p. There-
fore, x(p�1)/4 is one of the square roots of �1 mod p. Half of all elements of F⇤

p

are quadratic
residues and the other half are non-residues. All our algorithm does is find a non-residue
and raises it to an exponent of (p� 1)/4. On average, we will have to choose 2 values of a.
Once, you have found the square root a, simply take the gcd of a+ i and p.

Here is an example. Let p = 53. We choose a random integer a in [2, 51], say 6. Then,
we calculate 6(53�1)/2 ⌘ 626 ⌘ 1 mod 53. We choose a new number. Let a = 2. We calculate
226 ⌘ �1 mod 53. We output 213 ⌘ 30 mod 53. Let’s confirm this: 302 = 900 ⌘ �1 mod 53.
Our algorithm produced 30, which is a square root of �1 mod 53.

Observe that to calculate a(p�1)/2 mod p, one does not actually have to calculate a(p�1)/2.
Use a fast modular exponentiation algorithm. To calculate a general ax mod b, write the
binary form of x. Then, obtain a raised to every power of 2 that is less than or equal to x by
squaring the previous value and reducing it mod b. Finally, multiply the necessary powers
of a together.

At this point, we know how many Gaussian integers have a given norm and how to
generate Gaussian primes with a given norm. This leads us to an important conclusion
about how to extend Kalai’s Algorithm to the Gaussian integers. Generate each integer
r with a probability proportional to d(r

1

). Output r if r is a Gaussian norm. Generate
a random Gaussian integer with norm r with uniform distribution. At this point, we will
demonstrate a procedure to generate the random Gaussian integers with a given norm and
its prime factorization.

Algorithm 3. Given a positive integer r, along with its factorization, this algorithm produces
a random Gaussian integer with norm r, up to a power of i, with uniform distribution.

1. Let z = 1. For each p that divides r, do one of the the following three things.

2. If p = 2, multiply z by (1 + i)↵2.

3. If p ⌘ 3 mod 4, multiply z by p↵p/2.

4. If p ⌘ 1 mod 4, determine the positive solutions to the equation a2 + b2 = p. Choose a
random integer m in the interval [0,↵

p

]. Multiply z by (a+ bi)m(a� bi)↵p�m.

4 Choosing 1 Less Often

Definition. The 2-uniform probability distribution on {1, . . . N} is half as likely to choose
1 as it is to choose any other number.

Consider a 2-uniform version of Kalai’s algorithm. Let the probability of choosing 1 in
the interval [1, N] be ⇢. Then, the probability that we choose any other integer must be 2⇢.
But, the probability that we choose some number must be equal to 1. We have

(2N � 1)⇢ = 1,

16

which implies that

⇢ =
1

2N � 1
.

We plan to choose integers from 1 to N , then multiply them by 2 and subtract 1, ensuring
that we only obtain odd numbers. This begs the question, “Why not choose odd numbers
from the get go?” For the next algorithm, we do just that. We get to replace every instance
of 2s� 1 with s, making the algorithm easier to understand.

Algorithm 4. Given a positive integer N , this algorithm produces a random positive integer
r  N , along with its factorization, where the probability of obtaining r is proportional to
G(r).

1. Let M be the largest odd number that is less than or equal to N . Create a list s
1

�
s
2

� . . . � s
k

= 1 of all odd numbers, where s
1

is 1 with probability 1/M and any odd
element of [3, N] with probability 2/M . If s

i

has already been chosen, then let s
i+1

equal
1 with probability 1/s

i

and any other odd integer in the interval [3, s
i

] with probability
2/s

i

.

2. Let r be the product of the prime s
i

for each s
i

in the list.

3. Multiply r by 2 with probability 1/2. If you just added a 2, repeat this step. Otherwise,
go to Step 4.

4. If r > N or r
3

is not a square, do not output r and return to Step 1. Otherwise, output
r with probability rd(r

1

)/(2⌦0(r)N).

How does this change the probability distribution? Given an integer r, we compute
the probability that the algorithm outputs r. First, we must solve a simpler problem. We
compute the probability that we obtain n copies of the number s > 1 in a given list. As
long as it is possible to choose s, we will choose it with probability 2/s. If we have chosen
a number less than s, then the probability of choosing s is 0. We have to choose n s’s in a
row and then choose a number smaller than s. This occurs with a probability

P (n copies of s) =

✓
2

s

◆
n

✓
1� 2

s

◆
.

Let P ⇤(r) be the probability that the number r is produced in Step 2. Then,

P ⇤(r) =
Y

pN

✓
2

p

◆
↵p
✓
1� 2

p

◆
.

Once again, we can write the probability that r is the product of each prime 2p� 1 with the
following equation:

P (r) =
Y

pN

✓
2

p

◆
↵p Y

pN

✓
1� 2

p

◆
.

17

We may keep the Kalai’s definition of r, namely

r =
Y

pN

p↵p .

This allows us to write the probability of obtaining r in a more compact manner:

P (r) =
1

r

Y

pN

2↵p
Y

pN

✓
1� 2

p

◆
.

To simplify this further, we must introduce some new symbols.

Definition. Let the factorization of n be pe1
1

. . . pek
k

. Then, ⌦(n) = e
1

+ . . . e
k

. In other
words, ⌦(n) is the sum of the number of prime factors of n, counted with multiplicity. Let
⌦

0

(n) be the sum of the number of odd primes factors of n, counted with multiplicity.

The use of the symbol ⌦ allows us to write our probability more succinctly:

P ⇤(r) =
2⌦0(r)

r

Y

2p�1N

✓
1� 2

2p� 1

◆
.

Note that the product of 1 � 2/(2p � 1) for all 2p � 1  N is independent of r. Call this
number L

N

. We use ⌦
0

, instead of ⌦ because only insert copies of 2 during Step 3. The
probability has a new equation, namely

P ⇤(r) =
2⌦0(r)L

N

r
.

Once again, we output r with probability r/N , leading to a simpler equation for P (r):

P (r) =
2⌦0(r)L

N

N
.

But, we can do better. We wanted the probability that we outputted r to be proportional
to d(r

1

), not 2⌦(r). However, d(r
1

) is less than 2⌦0(r). So, instead of outputting r with
probability r/N , output r with probability (rd(r

1

))/(2⌦0(r)N). Here is the probability that
we obtain r:

P (r) =
2⌦(r)L

N

r
· rd(r1)
2⌦(r)N

=
L
N

d(r
1

)

N.
However, a probability can never be greater than 1. So, we must verify the following in-
equality:

rd(r
1

)  2⌦0(r)N.

We already know that r  N . Therefore, it is su�cient to prove that d(r
1

)  2⌦0(r). This
time, let the prime factorization of r be 2kpe1

1

. . . pen
n

. Every factor of r
1

is also a factor of r.
Therefore, d(r

1

)  d(r), giving us

d(r
1

)  d(r/2k) = (e
1

+ 1) . . . (e
n

+ 1)

18

and
2⌦0(r) = 2e1+...+en = 2e1 . . . 2en .

For any nonnegative integer m, m+ 1  2m. Hence, d(r
1

)  2⌦(r). Therefore,

rd(r
1

)

2⌦(r)N
 1.

5 Proof That Algorithm 4 Works

To verify that Algorithm 4 works, we must prove two statements.

1. If r is a Gaussian norm, then the probability that the algorithm outputs r is propor-
tional to d(r

1

). Otherwise, the algorithm does not output r at all.

2. The algorithm runs in polynomial time.

We proved Statement 1 in the previous section and showed that the probability that the
algorithm outputs r is

P (r) =
L
N

G(r)

N
.

In the previous section, we proved that the algorithm generates Gaussian norms with a
probability proportional to the number of Gaussian integers that have that norm. Now, we
must prove that the algorithm runs in polynomial time. To do this, we set an upper bound
on the number of primality tests that the algorithm will require. This upper bound will
have the form O(logk N) for some positive k. Here is the probability that the algorithm will
generate some Gaussian norm after making a list:

P (output) ⇠
X

rN

L
N

G(r)

N
=

L
N

N

X

rN

G(r).

By definition, G(r) is the number of Gaussian integers of norm r. Therefore, the sum of
G(r) for all r  N is equal to the number of Gaussian integers with norm  N . As N goes
to infinity, this sum becomes asymptotic to the area of a the upper quarter of a circle with
radius

p
N . Hence, we can make this substitution for large N :

P (output) =
L
N

N

✓
⇡N

4

◆
=

⇡L
N

4
= O(L

N

).

We can approximate L
N

by noting that its formula is very similar to the formula for M2

N

:

L
N

=
Y

2<pN

✓
1� 2

p

◆
.

19

Clearly, 4M2

N

� L
N

. We have L
N

/M2

N

 4. Here is the formula for M2

N

:

M2

N

=
Y

pN

✓
1� 1

p

◆
2

=
Y

pN

✓
1� 2

p
+

1

p2

◆
.

We will prove that L
N

/M2

N

is bounded below by a positive number:

L
N

M2

N

= 4
Y

2<pN

✓
1� 2

p

◆✓
1� 2

p
+

1

p2

◆�1

= 4
Y

2<pN

✓
p� 2

p

◆✓
p2

p2 � 2p+ 1

◆

= 4
Y

2<pN

p2 � 2p

p2 � 2p+ 1
= 4

Y

2<pN

✓
1� 1

(p+ 1)2

◆
 4

Y

2<pN

✓
1� 1

p2

◆
< 4

Y

p prime

✓
1� 1

p2

◆
.

For a given prime, p, we can expand (1� (1/p2))�1:

✓
1� 1

p2

◆�1

= 1 +
1

p2
+

1

p4
+

Hence,
L
N

M2

N

< 4
Y

p prime

1X

i=0

1

pi
.

For any integer n, there is exactly one 1/n2 term in the sum. Thus, the term on the right
is equal to 4 times the sum of the reciprocals of the squares, which we already proved is at
most 2. Now, we can plug this into our earlier inequality and multiply both sides by M2

N

:

L
N

< 8M2

N

.

Therefore, L
N

= O(log2 N). The expected number of lists is on the order of 1/L
N

, which is
O(log2 N).

At this point, we have to determine how many distinct elements occur in a list. The
probability that the list contains least one copy of 2p� 1 is 2/(2p� 1).

E(length of list) =
X

2<nN

n odd

2

n
= O(logN).

The expected number of distinct elements in a list is O(logN). The expected number of
lists is O(log2 N). Therefore, the expected number of primality tests is O(log3 N).

6 Improvement

We can make an improvement to this algorithm by adding one extra step. This improvement
reduces the expected time from O(log3 N) to O(log2 N). Strictly speaking, this improvement

20

is not necessary for our algorithm. Our goal was simply to create a polynomial time algorithm
and O(log3 N) is polynomial time. However, a O(logN) time reduction is nothing to ignore.
This section is important because it shows that our algorithm runs as quickly as Kalai’s,

Here is the improvement. In the previous algorithm, we simply threw away r if r
3

is
not a square. Instead, we divide r by a certain number T and output r/T with a certain
probability. Once again, N is our input and M is the largest odd number that is less than
or equal to N .

Algorithm 5. Given a positive integer N , this algorithm produces a random positive integer
r  N , along with its factorization, with a probability proportional to G(r). This algorithm
serves the same function as Algorithm 4. However, Algorithm 4 requires O(log3 N) primality
tests, while this algorithm only requires O(log2 N) primality tests.

1. Let M be the largest odd number that is less than or equal to N . Create a list s
1

� s
2

�
. . . � s

k

= 1 of odd numbers, where s
1

is 1 with probability 1/M and any odd element
of [3, N] with probability 2/M . If s

i

has already been chosen, then let s
i+1

equal 1 with
probability 1/s

i

and any other odd integer in the interval [3, s
i

] with probability 2/s
i

.

2. Let r be the product of the prime s
i

for each s
i

in the list.

3. Multiply r by 2 with probability 1/2. If you just added a 2, repeat this step. Otherwise,
go to Step 4.

4. Let T be the product of all distinct prime factors of r that are congruent 3 mod 4 and
occur an odd number of times in the prime factorization of r. Let R = r/T . If R  N ,
output R with probability Rd(R

1

)/(2⌦(r)N). If you did not output R, return to Step 1.

The change in this algorithm is that instead of throwing r away if it is not a Gaussian
norm, we divide it by a number T and output r/T with a certain probability. To show that
this is acceptable, we must prove three statements.

1. The number r/T is a Gaussian norm, whether or not r is not a Gaussian norm.

2. Our modification outputs every Gaussian norm R with a probability proportional to
d(R

1

).

3. Our modification improves the expected running time by a factor of logN .

Let p be a prime factor of r
3

. Let pk be the largest power of p that is a factor of r. If
k is even, then pk is also a factor of R because we do not divide by p. If k is odd, then we
divide by p. In this case, pk�1 is the largest power of p that divides R. If p is a prime factor
of r

3

, then p occurs an even number of times in the prime factorization of R. Hence, R
3

is a
square because every one of its prime factors occurs an even number of times. When R

3

is
a square, R is a Gaussian norm.

Let R be a Gaussian norm. We can list all values of r such that R = r/T . By definition,
R is formed from r by dividing every prime that is congruent to 3 mod 4 that occurs an odd
number of times in the prime factorization of r from r. So, T can be any square-free product
of prime numbers that are congruent to 3 mod 4 and are less than or equal to N .

21

Definition. Let P ⇤(r) is the probability of arriving at r after Step 3. Let P̃ (r) be the
probability of outputting r with our new algorithm. Let r 7! R mean that R is the largest
factor of r that is also a Gaussian norm.

Theorem 19. Let r be a positive integer whose prime factors are less than or equal to N .
Then, P ⇤(r) = 2⌦(r)L

N

/r for all r.

In order to output R, we must obtain RT , where T can be any square-free product
of prime numbers that are congruent to 3 mod 4 and are less than or equal to N . The
probability of outputting R is the sum of P ⇤(RT) for all T times the probability that the
algorithm decides to output R upon selecting it. Hence,

P̃ (R) =
Rd(R

1

)

2⌦(R)N

X

r 7!R

P ⇤(r) =
Rd(R

1

)

2⌦(R)N

X

r 7!R

2⌦(r)L
N

r
=

d(R
1

)L
N

N

X

r 7!R

2⌦(r/R)

(r/R)
.

Observe that r/R can be any square-free product of primes that are less than or equal to N
and are congruent to 3 mod 4. Taking a sum over all possible r/R is equivalent to taking
the sum of all of these products. Let P(N) be the set of all such products. The set of all
possible values of r/R is independent of R. Let n be a positive integer and p be a prime.
Then, ⌦(np) = ⌦(n) + 1. Thus,

X

n2P(N)

2⌦(n)

n
=
Y

p⌘3(4)

pN

✓
1 +

2

p

◆
.

The product of 1 + (2/p) for all prime p  N is on the order of log2 N . However, we are
only taking the product over the primes that are congruent to 3 mod 4. Hence, it is on the
order of logN . We can summarize all of this with

P̃ (R) =
d(R

1

)L
N

N

Y

p⌘3(4)

pN

✓
1 +

2

p

◆
.

We can asymptotically estimate the product of 1+(2/p) using a method similar to our proof
of Mertens’ Theorem [10]. First, we will consider all primes less than or equal to N , then
we will modify our argument so that we only consider primes that are also congruent to 3
mod 4. We write the logarithm of 1 + (2/p) for a prime p > 2 using a Taylor Expansion:

log

✓
1 +

2

p

◆
=

2

p
� 4

2p2
+

8

3p3
� . . . = �

1X

k=1

1

k

✓
�2

p

◆
k

.

Then, we write the log of the product as a sum of log’s:

log

0

BB@
Y

pN

p⌘3(4)

✓
1 +

2

p

◆
1

CCA =
X

pN

p⌘3(4)

log

✓
1 +

2

p

◆
= �

X

pN

p⌘3(4)

1X

k=1

1

k

✓
�2

p

◆
k

.

22

For each p, there is an infinite sum. To deal with these infinite sums, we use a method
similar to the one we used to prove Mertens’ Theorem. We separate the first terms of all of
those sums from the other terms as follows:

�
X

pN

p⌘3(4)

1X

k=1

1

k

✓
�2

p

◆
k

= 2
X

pN

p⌘3(4)

1

p
�
X

pN

p⌘3(4)

1X

k=2

1

k

✓
�2

p

◆
k

.

Putting an upper bound on the second term is the easy part:
�����

1X

k=2

1

k

✓
�2

p

◆
k

����� 
1X

k=2

1

k

✓
2

p

◆
k

 1

2

1X

k=2

✓
2

p

◆
k

=
2

p(p� 2)

Observe that
��������

X

pN

p⌘3(4)

1X

k=2

1

k

✓
�2

p

◆
k

��������

X

pN

p⌘3(4)

2

p(p� 2)

X

pN

p⌘3(4)

6

p2
<

1X

n=1

6

n2

.

We established earlier that the sum of the reciprocals of the squares is a positive constant.
Therefore, the sum written above is bounded above by a constant.

Once again, we need to estimate the sum of the reciprocals of the primes. However, we
are only considering primes that are less than or equal to N and congruent to 3 mod 4. A
partial summation argument similar to the proof of Mertens’ First Theorem gives us

X

pN

p⌘3(4)

1

p
=
X

pN

p3(4)

log p

p
· 1

log p
=

1

logN

X

pN

p⌘3(4)

log p

p
�
Z

N

2

0

BB@
X

pt

p⌘3(4)

log p

p

1

CCA d

✓
1

log t

◆
.

The problem is that we no longer want the sum of (log p)/p for all primes p  N . We
need to also have the additional condition that p ⌘ 3 mod 4. There is a theorem that lets
us handle this problem.

Theorem 20. [10] Let a and m be relatively prime integers with m > 0. For any positive
real number x,

X

px

p⌘a(m)

log p

p
=

1

�(m)
log x+O(1),

where �(m) is the number of numbers that are less than or equal to m and relatively prime
to m.

Intuitively, Theorem 20 makes sense. Dirichlet’s Theorem states that in the long run
every integer that is relatively prime with m is equally likely to occur as the residue of a

23

prime mod m. Therefore, we would expect that the sum of (log p)/p would behave similarly.
However, we will not prove that statement here. In our case, a = 3 and m = 4. Observe
that �(4) = 2 because the only positive integers that are less than and relatively prime to 4
are 1 and 3. Hence,

1

logN

X

pN

p⌘3(4)

log p

p
=

1

logN

✓
1

2
logN +O(1)

◆
=

1

2
+O

✓
1

logN

◆
.

We can also use Theorem 20 to evaluate the integral:

Z
N

2

0

BB@
X

pt

p⌘3(4)

log p

p

1

CCA d

✓
1

log t

◆
=

Z
N

2

1

t log2 t

✓
1

2
log t+O(1)

◆
dt

There exists some positive constant E such that
Z

N

2

1

t log2 t

✓
1

2
log t+O(1)

◆
dt 

Z
N

2

1

t log2 t

✓
1

2
log t+ E

◆
dt

=

Z
N

2

1

2t log t
dt+

Z
N

2

E

t log2 t
dt =

1

2
log logN � 1

2
log log 2 +O

✓
1

logN

◆
.

Putting all this together gives us

X

pN

p⌘3(4)

1

p
=

1

logN

X

pN

p⌘3(4)

log p

p
�
Z

N

2

0

BB@
X

pt

p⌘3(4)

log p

p

1

CCA d

✓
1

log t

◆

=
1

2
+O

✓
1

logN

◆
+

1

2
log logN � 1

2
log log 2 +O

✓
1

logN

◆
.

In other words, X

pN

p⌘3(4)

1

p
=

1

2
log logN +O(1).

We now have

log

0

BB@
Y

pN

p⌘3(4)

✓
1 +

2

p

◆
1

CCA = log logN +O(1).

Raising e to both sides allows us to estimate our product.

Y

pN

p⌘3(4)

✓
1 +

2

p

◆
⇠ O(logN).

24

This equation shows we have decreased the expected number of lists by a factor of O(logN).
Therefore, we expect to make O(logN), instead of O(log2 N) lists. The expected number of
primality tests for a given list is O(logN). Hence, we expect to make O(log2 N) primality
tests, just like in Kalai’s algorithm.

7 Eisenstein Integers

The Gaussian integers are the elements of the ring Z[
p�1]. But, what would would happen

if we considered Z[3
p�1]? Then, we would have a new ring. The elements of Z[3

p�1] are
known as the Eisenstein integers and they form a triangular lattice in the complex plane.
Let ⇠

3

= e2⇡i/3. We can write any Eisenstein integer as a linear combination of ⇠
3

and 1.
Here is the norm of an arbitrary Eisenstein integer:

N(x+ y⇠
3

) = N

x+ y

�1

2
+

p
3

2
i

!!
= N

 ⇣
x� y

2

⌘
+

y
p
3

2
i

!
=
⇣
x� y

2

⌘
2

+

y
p
3

2

!
2

Simplifying this expression gives us our norm:

N(x+ y⇠
3

) = x2 � xy + y2.

When we considered the Gaussian integers, we defined a function D that determined how
many ways a given integer could be written as the sum of two squares. Now, we want
to know how many ways a given integer can be written in the form x2 � xy + y2. Once
again, we answer this question for the primes and work our way up to an arbitrary integer r.
The Gaussian integers had four units, while the Eisenstein integers have six (the powers of
e⇡i/3). Therefore, the actual answer that we obtain will be one sixth of the actual number of
Eisenstein integers with norm r. Think of this as only considering the solutions that occur
in the upper right sextant of the complex plane. Once again, units are not a serious issue.

Theorem 21. [4] Let d = b2�4ac. Then, there exist integral x and y that solve ax2+ bxy+
cy2 = n if and only if h2 ⌘ d mod 4n has a solution in h.

For example, consider x2+y2. The discriminant is �4. To determine whether x2+y2 = n
has any solutions, we would see if we can solve h2 ⌘ �4 mod 4n. Any possible values of h
would be even. Let h0 = h/2. Then, h02 ⌘ �1 mod n. As we saw before, if n is prime, then
h = 2 or h is equivalent to 1 mod 4.

For the Eisenstein integers, we want to solve x2 � xy + y2 = n. The discriminant is �3.
Hence, we want to find all solutions to h2 ⌘ �3 mod 4n. Since 4n is even, h must be odd.
Thus, h2 ⌘ �3 mod 4. We also want to determine when h2 ⌘ �3 mod n. We need to
determine all primes for which �3 is a quadratic residue. This is equivalent to saying that
both or neither of �1 and 3 are quadratic residues for a given prime p. 2 is a non-residue
mod 3. For primes greater than 3, we must introduce a new theorem.

25

Theorem 22. (Quadratic Reciprocity Law) Let p and q be odd primes. If both p and q are
congruent to 3 mod 4, then ✓

p

q

◆
= �

✓
q

p

◆
.

Otherwise, ✓
p

q

◆
=

✓
q

p

◆
.

Using the Quadratic Reciprocity Law, we can determine when 3 is quadratic residue.
Simply let q = 3. Let p be an odd prime greater than 3. If p ⌘ 3 mod 4, then

✓
3

p

◆
= �

⇣p
3

⌘
.

Otherwise, ✓
3

p

◆
=
⇣p
3

⌘
.

It is easy to determine whether or not p is a residue mod 3. 1 is a residue and 2 is a non-
residue. The product of two residues or two non-residues is a residue, while the product of
a residue and a non-residue is a non-residue. If p ⌘ 3 mod 4 and p ⌘ 2 mod 3, then 3 is a
residue mod p. 3 is also a residue if p ⌘ 1 mod 4 and p ⌘ 1 mod 3. In any other case, 3 is
a non-residue. Thus, whether or not 3 is a residue mod p only depends upon the value of p
mod 12. ✓

3

p

◆
=

⇢
1 p ⌘ 1, 11 mod 12,

�1 p ⌘ 2, 5, 7 mod 12.

We already know when �1 is a residue mod p, namely
✓�1

p

◆
=

⇢
1 p ⌘ 1, 2 mod 4,

�1 p ⌘ 3 mod 4.

�3 is a residue mod p if and only if both or neither of �1 and 3 are residues. We can combine
our previous two formulae:

✓�3

p

◆
=

⇢
1 p ⌘ 1, 7 mod 12,

�1 p ⌘ 2, 5, 11 mod 12.

Finally, note that |2 + ⇠
3

| = p
4� 2 + 1 =

p
3. 3 is an Eisenstein norm. From this informa-

tion, we can write a new theorem.

Theorem 23. A prime number is the norm of an Eisenstein integer if and only if it is
congruent to 1, 3, or 7 mod 12.

Recall that with the Gaussian integers 2 was a special case in that there was exactly one
Gaussian integer with norm 2. For the Eisenstein integers, 3 is the special case. We can
enumerate the number of Eisenstein integers with a given norm with the following definitions
and theorem.

26

Definition. Let E(r) be the number of Eisenstein integers with the norm r.

Definition. Let r be a positive integer. Let r
1

be the largest factor of r which only contains
primes that are congruent to 1 mod 3. Let r

2

be the largest factor of r which only contains
primes that are congruent to 2 mod 3. With this notation, there exists some nonnegative
integer k such that r = 3kr

1

r
2

.

Theorem 24. Let r be a positive integer. Let E(r) be the number of Eisenstein integers
with norm r. Then,

E(r) =

⇢
d(r

1

) r
2

is a square,
0 otherwise.

Given a prime number p, we need a way of generating the Eisenstein integers with norm
p. This is equivalent to finding a pair of nonnegative integers (x, y) such that x2�xy+y2 = p.
We can use the approach analogous to the one we used for Gaussian integers. In the Gaussian
case, we wanted to solve x2 + y2 = p. So, we let y = 1. We found a value of x such that p
divides x2 + 1. Then, we let took the gcd of x+ i and p.

For the Eisenstein case, we may use a similar process. Let y = 1. Now, we want to find
a value of x such that p divides x2 � x+ 1. However,

x3 + 1 = (x+ 1)(x2 � x+ 1).

Therefore, p must also divide x3 + 1. We intend to find a solution to the congruence x3 ⌘
�1 mod p with x 6⌘ �1 mod p. Before, we can do that, we have to show there is such
a solution. Note that p ⌘ 1 mod 3. Fermat’s Little Theorem states that if a < p, then
ap�1 ⌘ 1 mod 3. In our situation, p � 1 is a multiple of 3. Therefore, a(p�1)/3 is a cube
root of 1 mod 3. So, �a(p�1)/3 is a cube root of �1. This observation allows to create the
following algorithm for cube roots:

Algorithm 6. Given a prime p ⌘ 1 mod 3, this algorithm produces a positive integer x that
satisfies the congruence x3 ⌘ �1 mod p.

1. Choose a random value of a in the interval [2, p � 2]. Let x ⌘ a(p�1)/3 mod p. If
x ⌘ ±1 mod p, then output �x.

The process for finding cube roots is randomized. But, one in every three elements of
F
p

has an order of at most (p � 1)/3. [Phrase this without using group theory.] So, the
probability that a given value of a will be successful will be 1/3. On average, we will have
to choose 3 values of a. Once, you have found the cube root a, simply take the gcd of a+ ⇠
and p.

Here is an example of this algorithm in action. Let p = 61. We choose a number a from
2 to 59, say 33. Next, we raise it to our exponent: 33(61�1)/3 = 3320 ⌘ 1 mod 43. Because
we obtained 1, we have to choose a new number. Let a = 6. This time, 620 ⌘ 47 mod 43.
Our solution is �47, which is equivalent to 14 mod 61. To check this, we observe that
143 + 1 = 2745 = 45 · 61. Now, we take the gcd of 14 + ⇠ and 61, like so:

gcd(14 + ⇠, 61) = gcd(14 + ⇠, 5� 4⇠) = 5� 4⇠.

We could tell that 5 � 4⇠ was the gcd because its norm is 41. Thus, 5 ± 4⇠ are the two
distinct Eisenstein primes with norm 41.

27

8 Eisenstein Algorithm

In this section, define r
1

as the largest factor of r where every prime factor is congruent to 1
mod 3. Define r

3

as the largest factor of r where every prime factor is congruent to 2 mod 3.
The number of Eisenstein integers in the first sextant with a norm r is d(r

1

) if r
3

is a square
and 0 otherwise. We must modify our Gaussian algorithm accordingly.

In the Gaussian problem, 2 was the only special case. Now, however, we still cannot
obtain 2. But, 2 is just another number that is congruent to 2 mod 3 and we must treat it
as such. The probability that there are n copies of 2 in the list should be proportional to 2n.
We do not have to treat 2 any di↵erently.

One special case is 3 because it is the only prime that is not congruent to 1 or 2 mod 3.
The probability that there are k copies of 3 should be proportional to 1/3k. Define ⌦

1

(n) as
the number of prime factors of n, excluding 3 up to multiplicity. Just as we used ⌦

0

in the
case of the Gaussian integers, we use ⌦

1

here.

Algorithm 7. Given a positive integer N , this algorithm produces a random positive integer
r  N , along with its factorization, with probability proportional to E(r).

1. Let M be the largest odd number less than or equal to N . Create a list s
1

� s
2

� . . . �
s
k

= 1 of odd numbers, where s
1

is 1 with probability 1/M , where M is the number
of odd numbers less than or equal to N and any odd element of [3, N] with probability
2/M . If s

i

has already been chosen, then let s
i+1

equal 1 with probability 1/s
i

and any
other odd integer in the interval [2, s

i

] with probability 2/s
i

. If s
i

= 3, discard it and
go Step 2.

2. Add a 2 to S with probability 1/2. If you just added a 2, repeat this step. Otherwise,
go to Step 3.

3. Let r be the product of the prime s
i

for each s
i

in the list. If r > N or r
3

is not a
square, do not output r. Otherwise, output r with probability rd(r

1

)/(2⌦1(r)N). If you
did not output r, return to Step 1.

We can improve our Eisenstein algorithm just as we did with the Gaussian integers by
adding a step that is exactly the same. Simply replace the r

1

that refers to a product of
primes that congruent to 1 mod 4 with an r

1

that refers to a product of primes that are
congruent to 1 mod 3.

9 Quadratic Integer Rings

In this section, we shall generalize our algorithms for the Gaussian and Eisenstein integers to
quadratic integer rings. Unfortunately, unique factorization is impossible for many of these
rings, which renders the problem unsolvable as we have stated it. We will show that we can
factor any ideal into prime ideals, then modify our previous algorithms so that they apply
to ideals, rather than numbers.

28

We form a ring by adjoining Z with
p
D. In other words, Z[

p
D] = {a+ b

p
D | a, b 2 Z}.

If D ⌘ 1 mod 4, then this ring is contained in a larger ring, which the next two definitions
elaborate [5].

Definition. Let K be a field containing Q. An element ↵ 2 K is an algebraic integer if ↵
is the root of some monic polynomial with integral coe�cients.

Definition. For a square-free integer d, O is the largest subring of algebraic integers con-
tained in Q[

p
D].

Theorem 25. For a given square-free d, O
D

= Z[!], with

! =

⇢ p
D D ⌘ 2, 3 mod 4,

(1 +
p
D)/2 D ⌘ 1 mod 4.

Proof. Observe that

a+ b
p
D = (a� b) + 2b

1 +

p
D

2

!
.

Hence, Z[
p
D] ✓ O. Though we have called O a quadratic integer ring, we have gotten

ahead of ourselves. Namely, we have not proved that O is actually a ring.
Now, we have to prove that O is actually a ring. If D ⌘ 2, 3 mod 4, then O = Z[

p
D],

making it a ring. For d ⌘ 1 mod 4, we still have O is a subset of C, which is also a ring. To
prove that O is a ring, we merely have to show that it is closed. For a, b, c, d 2 Z,

a+ b

1 +

p
D

2

!!
c+ d

1 +

p
D

2

!!
=

 ✓
a+

b

2

◆
+

b
p
D

2

! ✓
c+

d

2

◆
+

d
p
D

2

!

=

✓
ac+

2(ad+ bc) + bd(D + 1)

4

◆
+

(ad+ bc+ bd)
p
D

2

=

✓
ac+

bd(D � 1)

4

◆
+ (ad+ bc+ bd)

1 +

p
D

2

!
.

Because D ⌘ 1 mod 4, (D � 1)/4 is an integer. Therefore, the answer has the desired form.
To finish the proof, we show that O contains every subring of algebraic integers of Q[

p
D].

Let ↵ be an algebraic integer in Q[
p
D]. Then, ↵ = a + b

p
D, where a and b are both

rational numbers. If b = 0, then ↵ is a rational number. (The only rational roots of a monic
polynomial with integer coe�cients are integers.)

If b 6= 0, then ↵ is a root of x2 � 2ax+ (a2 � b2D), its minimal polynomial. In this case,
2a and a2 + b2 are both integers. Hence, 4a2 and 4(a2 � b2D) are both integers, implying
that 4b2D is an integer. Because D is square-free, 2b must be an integer as well. Let x = 2a
and y = 2b. Then, x2 � y2D ⌘ 0 mod 4. If D ⌘ 2, 3 mod 4, then x and y are both even. If
D ⌘ 1 mod 4, then x and y are both even or both odd.

29

This theorem shows us that the Gaussian and Eisenstein integers both form quadratic
integer rings. However, those were special cases because they were unique factorization
domains. Quadratic integer rings do not generally satisfy this property. Instead, we try
to produce an arbitrary ideal, along with its factorization. For each prime p that does not
divide D, the ideal Ap represents every multiple of p in Z[

p
D].

Definition. For any two ideals I
1

and I
2

that are both contained in a ring R, the product
of I

1

and I
2

is the set of all elements of R that can be written as a finite sum of elements of
the form ab with a 2 I

1

and b 2 I
2

.

Theorem 26. The product of two ideals is also an ideal.

Proof. Let I
1

and I
2

be ideals contained in a ring R. Let x and y be elements of I
1

I
2

. By
definition, x and y can be written as finite sums of elements of the form ab with a 2 I

1

and
b 2 I

2

. So, x + y also a finite sum of such elements. Hence, I
1

I
2

is closed under addition.
Let e be the additive identity of R. Then, e 2 I

1

, I
2

because they are both subgroups of
R. Therefore, e 2 I

1

I
2

. Note that I
1

I
2

obeys the associative property because R obeys
it. Let x 2 I

1

I
2

. There exist a
1

, . . . , a
n

, b
1

, . . . , b
n

such that x = a
1

b
1

+ . . . + a
n

b
n

. Then,
�a

1

, . . . ,�a
n

2 I
1

because I
1

is a group. Hence, �x = (�a
1

)b
1

+ . . . + (�a
n

)b
n

is also an
element of I

1

I
2

. So, I
1

I
2

is a group under addition.
Observe that I

1

I
2

is closed under multiplication. Because I
1

I
2

is a subring of R, it obeys
all of the other properties of a ring except that it might not contain the multiplicative
identity. Let x = a

1

b
1

+ . . . + a
n

b
n

2 I
1

I
2

and r 2 R. We can prove xr 2 I
1

I
2

. Consider
a
i

b
i

r for some positive integer i  n. Then, b
i

r is an element of I
2

because b
i

2 I
2

and I
2

is
an ideal. So, a

i

(b
i

r) is an element of I
1

I
2

because it is the product of an element of I
1

and
an element of I

2

. Hence, xr, which is the sum of all a
i

b
i

r, must also be an element of I
1

I
2

.
Therefore, I

1

I
2

is an ideal.

Definition. [10] Let p be a prime number.

1. If Ap = P
1

P
2

, where P
1

and P
2

are distinct prime ideals, then p is split.

2. If Ap is a prime ideal, then p is inert.

3. If Ap = P 2, where P is a prime ideal, then p is ramified.

Theorem 27. For any prime p and square-free integer D, p is split, inert, or ramified in
O

D

.

In the Gaussian integers, 2 is ramified, primes that are congruent to 1 mod 4 are split,
and primes that are congruent to 3 mod 4 are inert. In the Eisenstein integers, 3 is ramified,
primes that are congruent to 1 mod 3 are split, and primes that are congruent to 2 mod 3
are inert. For a given D, we can determine which primes satisfy which properties with two
theorems from [11], presented without proof.

Theorem 28. Let p be an odd prime. If p divides D, then p is ramified. If D is a quadratic
residue mod p, then p is split. Otherwise, p is inert.

30

Theorem 29. If D ⌘ 2, 3 mod 4, then 2 is ramified. If D ⌘ 1 mod 8, then 2 is split.
Otherwise, 2 is inert.

Given these two theorems, we can determine whether a given prime p is ramified, split,
or inert mod D. Instead of having r

1

and r
3

, we introduce new symbols.

Definition. For two positive integers r and D, r
I

is the largest divisor of r where every
prime factor is inert in Z[

p
D], r

R

is the largest divisor of r where every prime factor is
ramified in Z[

p
D], and r

D

is the largest divisor of r where every prime factor is split in
Z[
p
D].

In order to tell whether a prime number is an inert, ramified, or split, we need an
algorithm that determines whether or not a given prime p is a quadratic residue mod D.
Before we can introduce this algorithm, we must introduce the Jacobi symbol, which is an
extension of the Legendre symbol.

Definition. [3] Let m be an odd number with prime factorization pe1
1

. . . pen
n

and let a be
any integer. Then, the Jacobi symbol is defined as

⇣ a

m

⌘
=

nY

i=1

✓
a

p
i

◆
ei

,

where the right side is a product of Legendre symbols.

The di↵erence between the Jacobi symbol and the Legendre symbol is that for the Legen-
dre symbol the number on the bottom must be a prime, while for the Jacobi symbol, it does
not have to be. However, if m is prime, then the Jacobi and Legendre symbols are equal.
The Jacobi symbol is an extension of the Legendre symbol because it has more possible
inputs, but it is equal to the Legendre symbol whenever the Legendre symbol is defined.

Here is an algorithm for the Legendre symbol. For a given prime p and integer a that is
not a multiple of p, the algorithm determines whether or not x2 ⌘ a mod p has an integral
solution. Our algorithm calculates a Legendre symbol by calculating the corresponding
Jacobi symbol. It takes advantage of the fact that the Quadratic Reciprocity Law applies
to Jacobi, as well as Legendre, symbols. We base an algorithm upon continually reducing
the size of the numbers involved until they are so small that we can calculate the Legendre
symbol directly.

Algorithm 8. Given a prime p and a positive integer a < p, this algorithm determines
whether or not a is a quadratic residue mod p.

1. Reduce a mod p. Separate the powers of 2 out of the numerator. In other words,
suppose a ⌘ 2kr mod p, where r is odd. Then,

✓
a

p

◆
=

✓
2

p

◆
k

✓
r

p

◆
.

Observe that 2 is a quadratic residue mod p if and only if p ⌘ ±1 mod 8 [11].

31

2. At this point, r < p. Use the Quadratic Reciprocity Law to switch the places of r and
p. If the denominator is composite, factor it into primes. If r = 1, go to Step 3.
Otherwise, return to Step 1.

3. Multiply all of the Legendre symbols together.

The following example illustrates our algorithm in action. Let p = 307 and a = 119.
Then,

✓
119

307

◆
= �

✓
307

119

◆
= �

✓
307

7

◆✓
307

17

◆
= �

✓
6

7

◆✓
1

17

◆
= �

✓
2

7

◆✓
3

7

◆✓
1

17

◆

=

✓
2

7

◆✓
7

3

◆✓
1

17

◆
=

✓
2

7

◆✓
1

3

◆✓
1

17

◆
= 1 · 1 · 1 = 1.

Our algorithm shows that 119 is a quadratic residue mod 307. Note that in the above
equation, every term refers to a Jacobi symbol, as well as a Legendre symbol.

Definition. Let r be a positive integer with prime factorization 2kpe1
1

. . . pen
n

. We write
v
2

(r) = k. In other words, v
2

(r) is the exponent of 2 in the prime factorization of r.

We want to generalize Kalai’s Algorithm to a quadratic integer ring O
D

. Here is an
algorithm that produces the integer r  N with a probability proportional to the number of
ideals with norm r. We will elaborate on Step 5 shortly.

Algorithm 9. Given integers N and D with N positive, this algorithm produces a random
ideal with norm  N in O

D

with uniform distribution.

1. Let M be the largest odd number less than or equal to N . Create a list s
1

� s
2

�
. . . � s

k

= 1, where s
1

is 1 with probability 1/M and any odd element of [3, N] with
probability 2/M . If s

i

has already been chosen, then let s
i+1

equal 1 with probability
1/s

i

and any other odd integer in the interval [3, s
i

] with probability 2/s
i

.

2. Let r be the product of the prime s
i

for each s
i

in the list.

3. If D ⌘ 1 mod 8, multiply by 2 with probability 3/4. Otherwise, multiply by 2 with
probability 1/2. If you just added a 2, repeat this step. Otherwise, go to Step 4.

4. If r > N or r
I

is not a square, do not output r and return to Step 1. If you did not
return to Step 1, check the value of p mod 8. If D ⌘ 1 mod 8, output r with probability

3

4

✓
2

3

◆
v2(r) rd(r

S

)

2⌦0(r)N
.

Otherwise, output r with probability rd(r
S

)/(2⌦0(r)N). If you did not output r, return
to Step 1.

5. Generate a random ideal with norm r.

32

The instances of 3/4 in this algorithm may seem strange. However, there is an argument
for them. In the Gaussian integers, 2 was ramified. In the Eisenstein integers, 2 was inert.
In those cases, rd(r

S

)/2⌦0(r)N could not be larger than 1. However, if 2 is split, then this is
no longer true. Theorem 29 states that 2 is split in O

D

if and only if D ⌘ 1 mod 8.
Consider the following example. We want to choose a positive integer r  N in O

D

.
However, say N = 2k for some positive k and D ⌘ 1 mod 8. So, 2 is split in O

D

. We choose
r = 2k. Then,

rd(r
S

)

2⌦0(r)N
=

2k(k + 1)

2k
= k + 1 > 1.

A probability can never be greater than 1. That is why we need a special case for when 2
is split. We can prove that our new algorithm solves this problem. Let 2 be split and let r
have the following prime factorization:

r = 2v2(r)
Y

2<pN

p↵p .

We cannot obtain an even number after the first two steps. We can, however, determine the
probability of obtaining r/2v2(r), which is the largest odd factor of r. For a given odd prime
p, the conditional probability of obtaining a copy of p, given that we are only looking at odd
numbers that are at most p is equal to 2/p. Therefore, the probability of obtaining r/2v2(r)

is Y

2<pN

✓
2

p

◆
↵p
✓
1� 1

p

◆
=

2⌦0(r)L
N

r/2v2(r)
,

where

L
N

=
Y

2<pN

✓
1� 1

p

◆
.

During Step 3, we want to obtain exactly v
2

(r) copies of 2. The probability of multiplying r
by 2 is always 2/3. We want to obtain v

2

(r) copies of 2, then choose not to add another 2.
The probability of doing this is

1

4

✓
3

4

◆
v2(r)

.

We now have the probability that we obtain r after Step 3:

P ⇤(r) =
1

4

✓
3

4

◆
v2(r) 2⌦0(r)L

N

(r/2v2(r))
=

1

4

✓
3

2

◆
v2(r) 2⌦0(r)L

N

r
.

Now, we have to prove that we output norms with the correct distribution. We want the
probability of outputting r to be proportional to d(r

S

). We output r with probability

P (r) =
3

4

✓
2

3

◆
v2(r) rd(r

S

)

2⌦0(r)N
P ⇤(r) =

3

4

✓
2

3

◆
v2(r) rd(r

S

)

2⌦0(r)N
· 1
4

✓
3

2

◆
v2(r) 2⌦0(r)L

N

r

33

=
3

16

✓
d(r

S

)L
N

N

◆
.

In Step 4, we output r with a certain probability. By definition, a probability must be at
most one. Therefore, we need to prove the following:

3

4

✓
2

3

◆
v2(r) rd(r

S

)

2⌦0(r)N
 1.

First, we note that r  N . Observe that

d(r
S

) = (v
2

(r) + 1)d(r
S

/2v2(r))  (v
2

(r) + 1)d(r/2v2(r)) = (v
2

(r) + 1)
Y

2<pN

(↵
p

+ 1)

and
2⌦0(r) =

Y

2<pN

2↵p .

For any ↵
p

, ↵
p

+ 1  2↵p . But, we cannot make the statement d(r
S

) < 2⌦0(r) because of the
v
2

(r) + 1 term. We can write

d(r
S

)  (v
2

(r) + 1)2⌦0(r).

So far, we have established that r  N and d(r
S

)  (v
2

(r) + 1)2⌦0(r). To finish the proof,
we show that

3

4

✓
2

3

◆
v2(r)

 1

v
2

(r) + 1
 2⌦0(r)N

rd(r
S

)
.

Let n = v
2

(r). We can prove this inequality through induction on n. For this argument, we
will check the inequality for n = 0 and 1 by hand. Then, we will prove it for n > 1 using
induction. For n = 0, we have

3

4

✓
2

3

◆
0

=
3

4
 1 =

1

0 + 1
.

For n = 1, we have
3

4

✓
2

3

◆
1

=
1

2
=

1

1 + 1
.

Now, we use induction. Suppose the inequality is true for some positive n. We want to prove
it for n+ 1. We write

3

4

✓
2

3

◆
n+1

=
2

3
· 3
4

✓
2

3

◆
n

 2

3

✓
1

n+ 1

◆
=

2

3

✓
1 +

1

n+ 1

◆✓
1

n+ 2

◆
.

For any positive integer n, 1 + 1/(n+ 1)  3/2. Therefore,

3

4

✓
2

3

◆
n+1

 1

n+ 2
,

34

completing our inductive proof. We have finally proved

3

4

✓
2

3

◆
v2(r) rd(r

S

)

2⌦0(r)N
 1,

finishing our proof.
There is an alternate process one can use if 2 is split. In Step 3, replace 3/4 with

(n + 3)/(2n + 4), where n is the number of copies of 2 that the algorithm has already
multiplied. Then, Step 4 outputs r with probability rd(r

S

)/(2⌦0(r)N), regardless of whether
or not 2 is decomposed.

Just as before, we can make this algorithm run more quickly. In this case, we define T
as the largest square-free product of inert prime factors of r for which v

p

(r) is odd. Then,
we divide r/T and output this number instead.

Step 5 requires some exposition. Given an integer r, along with its factorization, how
do we generate a random ideal with norm r? First, we solve the analogous problem for pn,
where p is a prime and n is a nonnegative integer. Recall that in the case of the Gaussian
integers, we had three possibilities. If p = 2, then output (1 + i)n. If p ⌘ 3 mod 4, then
output pn/2. If p ⌘ 1 mod 4, then output (a+ bi)k(a� bi)n�k, where k is a random integer in
the range [0, n]. For a general ring, we do something similar. In the cases below, (x) refers
to the ideal generated by x and (x

1

, x
2

) refers to the ideal generated by x
1

and x
2

.

Algorithm 10. Given a prime p, a positive integer n, and an integer D, this algorithm
produces a random ideal in O

D

with norm pn with uniform distribution, assuming such an
ideal exists.

1. If p is inert, output (p)n/2.

2. If p is ramified, there exists some ideal P such that (p) = P 2. Specifically, P =
(a+ b

p
D), where a2 + b2D = p. To find a and b, solve the congruence a2 ⌘ p mod d.

Output P n.

3. If p is split, then there exists some x such that x+
p
D has a norm that is a multiple

of p. Specifically, x2 ⌘ �D mod p. Output (x +
p
D, p)k(x�p

D, p)n�k, where k is a
random integer in the interval [0, n].

In order to perform Step 1, we need a square root algorithm.

Algorithm 11. [3] Given a prime p and a quadratic residue a, this algorithm produces a
solution to the congruence x2 ⌘ a mod p.

1. Check the value of p mod 8. If p ⌘ 3 mod 4, go to Step 2. If p ⌘ 5 mod 8, go to Step
3. If p ⌘ 1 mod 8, go to Step 4.

2. Output a(p+1)/4 mod p.

3. Let c ⌘ a(p+3)/4 mod p. If c ⌘ a mod p, output a(p+3)/8 mod p. Otherwise, output
2(p�1)/4a(p+3)/8 mod p.

35

4. Pick random elements of [2, p� 1] until you find a quadratic non-residue mod p. Call
this number d. Write p�1 as 2st, where t is odd. Let A = at mod p and D = dt mod p.
Let m = 0.

5. For each positive integer i < s, increase m by 2i if (ADm)2
s�1�i ⌘ �1 mod p. Output

a(t+1)/2Dm/2 mod p.

Proof. Earlier we mentioned this formula about the Legendre symbol:
✓
a

p

◆
⌘ a(p�1)/2 mod p.

In the algorithm above, a is always a quadratic residue mod p, meaning that the Legendre
symbol is equal to a. Hence, we now have a congruence, namely

a(p�1)/2 ⌘ 1 mod p.

Suppose p ⌘ 3 mod 4. Then, p + 1 ⌘ 0 mod 4, which implies that (p + 1)/4 is an integer.
Let x ⌘ a(p+1)/4. We can prove that x is a solution by evaluating x2 mod p:

x2 ⌘ a(p+1)/2 ⌘ a(p�1)/2a ⌘ a mod p.

Suppose p ⌘ 5 mod 8. Then, (p + 3)/8 is an integer. Let c ⌘ a(p+3)/4 mod p. Note that
a(p+3)/4 = a(p�1)/4a. Earlier, we established that a(p�1)/2 ⌘ 1 mod p. Therefore, a(p�1)/4 must
be a square root of 1 mod p, implying that it is congruent to ±1. We obtain

c ⌘ (±1)a ⌘ ±a mod p.

If c ⌘ a mod p, then x = a(p+3)/8 is a solution to the congruence x2 ⌘ a mod p. Assume
c ⌘ �a mod p. If we multiply our current value of x by the square root of �1 mod p, then
we will have a solution.

We can prove that 2(p�1)/2 ⌘ �1 mod p. By our theorem above, this is equivalent to
showing that 2 is a quadratic non-residue mod p. Hardy andWright state that 2 is a quadratic
non-residue for all primes that are congruent to ±3 mod 8 [6]. Hence, 2 is a quadratic non-
residue mod p and x = 2(p�1)/2a(p+3)/8 is a solution to the congruence x2 ⌘ a mod p.

Finally, we have to prove that the algorithm works for p ⌘ 1 mod 8. The part of the
algorithm that assumes this congruence can actually apply to any odd prime p. However,
for other values of p, we have faster methods.

At the beginning of the for loop, i = 1. Fermat’s Little Theorem states that any number
raised to the power of p� 1 is congruent to 1 mod p. Thus,

(ADm)2
s�1

= (atdmt)2
s�1 ⌘ (adm)2

s�1
t ⌘ (adm)(p�1)/2 ⌘ ±1 mod p.

If (ADm)2
s�1 ⌘ 1 mod p, then we do not change m. Otherwise, we let m = 2. At that

poin, (ADm)2
s�1 ⌘ 1 mod p. The process continues as follows: whenever we increment i,

(ADm)2
s�i�1

is either still equivalent to 1 mod p or it is equivalent to �1. If it is equivalent

36

to �1 mod p, then we increase m by 2i and it is equivalent to 1 again. By the time Step 4
is complete, we have a value of m satisfying the congruence

(ADm)s�1�(s�1) ⌘ ADm ⌘ 1 mod p.

By definition, m is a sum of powers of 2 with positive exponent. Therefo re, m is even. Let
x ⌘ a(t+1)/2Dm/2 mod p. To confirm that x is a solution to x2 ⌘ a mod p, we use our results
to evaluate x2 mod p:

x2 ⌘ at+1Dm mod p.

We already showed that ADm ⌘ 1 mod p. Multiplying both sides of the congruence by A
will simplify it:

Ax2 ⌘ at+1(ADm) ⌘ at+1 mod p.

By definition, A ⌘ at mod p. Making this substitution gives us

atx2 ⌘ at+1 mod p.

By assumption, a and p are relatively prime. Therefore, we may divide both sides of the
congruence by at, finishing our proof:

x2 ⌘ a mod p.

For any integer a that is a quadratic residue mod p, our algorithm produces a solution to
the congruence x2 ⌘ a mod p.

10 Conclusion

Adam Kalai and Eric Bach both solved a seemingly contradictory problem. Their algo-
rithms generate a random integer r less than or equal to a given number N with uniform
distribution, along with the factorization of r, without actually factoring any numbers. We
have generalized Kalai’s algorithm to the Gaussian integers, the Eisenstein integers, and to
arbitrary quadratic integer rings. Each time we used the same approach. Choose an integer
r with a probability proportional to the number of number of elements of the ring with norm
r. Then, we generate a random element of the ring with norm r. The central idea remained
the same: generate the primes, then build the “factored” number out of them.

When you run the original versions of the algorithms in this paper, they require O(log3 N)
primality tests. For the Gaussian, Eisenstein, and quadratic cases, we observed that the
algorithms generate a lot of integers which are not actually norms of any elements. Then,
it simply discarded those norms. Because most integers are not norms of any of the rings
we studied, this proved to be a waste. So, we found a way of turning integers that were
not norms into integers that were without interfering with the probability distribution of the
norms. This process cut the running time to O(log2 N) primality tests.

A primality test requires O((logN)6(2 + log logN)c) time for some constant c, so our
algorithms, like Kalai’s, runs in at most O((logN)8(2 + log logN)c) time. Whether or not a

37

polynomial time factorization algorithm exists is still unknown. If so, then there is a much
easier solution to the problems we have solved: Choose a random integer less than or equal
to N with the correct distribution, factor it, and generate primes in the specific ring with
the correct norm. Though such an algorithm would run in polynomial time, it would not
necessarily be as fast as ours.

38

11 Bibliography

1. Agrawal, M., Kayal, N., Saxena, N., PRIMES is in P, Annals of Mathematics, volume
160(2), pp 781� 793, 2004.

2. Bach, E., How to Generate Factored Random Numbers, SIAM Journal of Computing,
volume 17, pp 179� 193, 1988.

3. Crandall, R., Pomerance, C., Prime Numbers: A Computational Perspective, Springer-
Verlag, New York, NY, 2001.

4. Davenport, H., The Higher Arithmetic, Eighth Edition, Cambridge University Press,
Cambridge, UK, 2008.

5. Dummit, D., Foote, R., Abstract Algebra, Third Edition, Wiley and Sons, Hoboken,
NJ, 2004.

6. Hardy, G. H., Wright, E. M., An Introduction to the Theory of Numbers, Sixth Edition,
Oxford University Press, Oxford, UK, 2008.

7. Kalai, A., Generating Random Factored Numbers, Easily, Journal of Cryptology, vol-
ume 16(4), pp 287� 289, 2003.

8. Koblitz, N., A Course in Number Theory and Cryptography, Second Edition, Springer-
Verlag, New York, NY, 1994.

9. Lenstra, H. W., Pomerance, C., Primality testing with Gaussian periods, to appear,
2011.

10. Pollack, P., Not Always Buried Deep: A Second Course in Elementary Number Theory,
AMS Press, Providence, RI, 2009.

11. Ribenboim, P., Classical Theory of Algebraic Numbers, Springer-Verlag, New York,
NY, 2001.

12. Schoof, R., Four primality testing algorithms, Algorithmic Number Theory: Lattices,
Number Fields, Curves, and Cryptography, Cambridge University Press, Cambridge,
UK, 2008.

39

