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Abstract

In this thesis, we study the Type B Planar Rook Monoid PRB
k and give a set of genera-

tors and relations for it. We then study the regular representation of the G-edge colored
version of the Planar Rook Algebra PRk(n;G) for a group G and completely decom-
pose the regular representation in the case that G is a finite abelian group and show
that in this case PRk(n;G) is a semisimple algebra. We then determine the branch-
ing rules and define an indexing set for the irreducible representations of PRk(n;G)
using combinatorial objects. Then we present an example of a small nonabelian group
G for which PR1(n;G) is not a semisimple algebra.
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Chapter 1

Introduction

Let Sn be the group of permutations of [n] and V be the permutation representation of
Sn. Martin [8] and Jones [7] independently studied the centralizer algebra EndSn(V ⊗k),
the algebra of endomorphisms of V ⊗k which commute with the diagonal action of Sn on
V ⊗k. This algebra, called the Partition Algebra, has been studied extensively by various
mathematicians including Halverson and Ram in [5]. This thesis studies the Representation
Theory of group-edge colorings of subalgebras of the Partition Algebra.

We can view the symmetric group Sk in terms of diagrams and then use this to act on
V ⊗k. By Classical Schur-Weyl duality, the centralizer of Sk under this action is then the
general linear group GLn(C). In Chapter 3, we then take the set of subdiagrams of these
permutation diagrams where we remove edges and define a monoid structure on this set,
which is called the Rook Monoid Rk and has been studied by [4]. If we then consider
only those diagrams whose edges do not cross, we obtain a submonoid of Rk, the Planar
Rook Monoid, which we denote PRk. We can then consider the span of the Planar Rook
diagrams and define the subalgebra PRk(n), which is a subalgebra of the Partition Algebra.
The special case when n = 1 has been studied by Herbig in [6].

In [1], Bloss studies the centralizer of the wreath product G ≀ Sn of a group G with Sn,
EndG≀Sn(V ⊗k), and characterizes it as a diagram algebra consisting of partition diagrams
whose edges are oriented and labeled with elements of G. This algebra is called the G-
edge colored Partition Algebra Pk(n;G). In Chapter 4, we study the regular representation
of the subalgebra of Pk(n;G) consisting of Planar Rook diagrams, which we denote by
PRk(n;G), for finite abelian groups G. Note that we no longer have to consider the edges
oriented when we restrict to these diagrams since we can assume that all edges are oriented
upward. We find a complete decomposition of the regular representation of PRk(n;G)
in order to show that the algebra is semisimple and to find all of its finite-dimensional
irreducible representations. We then determine which irreducible subrepresentations of
the regular representation are distinct and determine how each of them decomposes into
irreducible representation after restricting the action to PRk−1(n;G) and draw the Bratteli
Diagram for the case G = Z2.

Mousley, Schley and Shoemaker study the Planar Rook Algebra colored with r colors
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in [9]. Note that this algebra is distinct from the Zr-edge colored Planar Rook Algebra.
In the Planar Rook Algebra colored with r colors, multiplication of colored diagrams is
defined so that when two edges colored with different colors meet they cancel each other
out. In the Zr-edge colored Planar Rook Algebra, these edges form an edge labeled with
the product of the group elements corresponding to the two edges.
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Chapter 2

Preliminaries

2.1 Representation Theory
In this section, we will give the basic preliminary definitions and theorems utilized in this
thesis. For more detailed descriptions and examples, see [2]. Let us start with the definition
of an associative algebra, which is the primary mathematical object this thesis is concerned
with.

Definition 2.1.1. An associative algebra over a field F is a vector spaceA over F equipped
with a multiplication operation A × A → A, which we write as juxtaposition (a, b) ↦ ab,
which is associative and bilinear.

For the purposes of this thesis, all algebras are assumed to be associative and containing
a multiplicative identity.

An example of an algebra is the group algebra over a field F of a group G, denoted
by F [G] or CG in the case of F = C, is the algebra generated by the F -span of the set
{xg ∣ g ∈ G} where multiplication is defined as xgxg′ = xgg′ and extended linearly. Often,
we write g in place of xg.

Given two algebras A and B over the field F , an algebra homomorphism from A to
B is a linear map φ ∶ A → B preserving the multiplication operation and sending the
multiplicative identity of A to the multiplicative identity of B.

A representation of an algebra A over a field F (also called a left A-module) is a F -
vector space V together with an algebra homomorphism ρ ∶ A → EndV , where EndV is
the algebra of linear maps from V to itself. For a ∈ A and v ∈ V , ρ(a)(v) is usually denoted
by av. This thesis will be concerned with classifying all representations of an algebra. We
will also look at subrepresentations of a representation V of A, which are subspaces U ⊆ V
which are invariant under all linear maps ρ(a) for all a ∈ A. Given a subrepresentation U
of V , we may define a new algebra homomorphism ρ′ ∶ A→ EndU which takes each a ∈ A
to the restriction of ρ(a) to U .

A representation V is irreducible if its only subrepresentations are 0 and V itself. This
thesis will mainly be concerned with classifying all irreducible representations of our al-
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gebra. To do this, we will look at the regular representation of the algebra A, which is the
representation with V = A and ρ(a)(b) = ab for a and b in A, where ab is the product of a
and b in the algebra A.

The radical of a finite dimensional algebra A, denoted Rad(A), is the set of all ele-
ments of A which act by 0 in all irreducible representations of A. We then call the algebra
semisimple if Rad(A) = 0.

A representation is completely reducible if it can be expressed as the direct sum of
irreducible representations of A.

By the following proposition, finding a complete decomposition of our algebra will tell
us a lot about A and its irreducible representations.

Proposition 2.1.2. [3, Proposition 2.16] For a finite dimensional algebra A over field F ,
the following are equivalent:

1. A is semisimple.

2. ∑i(dimVi)2 = dimA, where the Vi’s are the irreducible representations of A.

3. A ≅ ⊕iMatdi(F ) for some di, a direct sum of matrix algebras with entries in F .

4. Any finite dimensional representation of A is completely reducible.

5. The regular representation of A is a completely reducible representation.

The tensor product V ⊗W of two vector spaces V and W over field F is the quotient
of the space whose basis is given by the formal symbols v ⊗w for v ∈ V and w ∈W by the
subspace spanned by the elements

i. (cv)⊗w − c(v ⊗w)

ii. v ⊗ (cw) − c(v ⊗w)

iii. (v + v′)⊗w − v ⊗w − v′ ⊗w

iv. v ⊗ (w +w′) − v ⊗w − v ⊗w′

for all c ∈ F and v, v′ ∈ V and w,w′ ∈W
We can then define the kth tensor power of V , V ⊗k = V ⊗⋯⊗ V (k copies of V ). If V

and W are representations of an algebra A with actions ρV and ρW , then the representation
V ⊗W of A is defined by the action

ρ(a)(v ⊗w) = ρV (a)(v)⊗ ρW (a)(w).
for each a ∈ A.

The wreath product of a finite groupGwith the symmetric group Sn, denoted byG ≀Sn,
is the group with underlying set given by the Cartesian product Gn × Sn, where Gn is the
direct product of n copies of G, and multiplication given by

(g, σ)(h, τ) = (g(σ(h)), στ)
where σ(h) is the element of Gn whose entries are the entries of h permuted by σ.
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Chapter 3

Rook Monoids

The Planar Rook Monoid and its regular representation have been studied in [6]. The goal
of this chapter and Chapter 4 is to generalize these results to edge colorings of the Planar
Rook Monoid and its associated algebra. This chapter focuses on a Type B analogue of
the Planar Rook Monoid, which we realize as Z2-edge colorings of planar rook diagrams.
We will see in Chapter 4 how this is a special case of the G-edge colorings of the Partition
Algebra for a group G defined in [1], where in this case G = Z2.

3.1 The Rook Monoid
For each positive integer k, the Rook Monoid Rk can be defined as the set of bijections
d ∶ S → T where S and T are some subsets of [k] = {1,2, . . . , k} with multiplication
defined as such: Let d ∶ S → T and d′ ∶ S′ → T ′ be elements of Rk. Let I = S ∩ T ′, the
intersection of the domain of d with the range of d′. Then we define the product of d and
d′ (in that order) to be the function d ○ d′ with domain (d′)−1(I) and range d(I) defined
by d ○ d′(s) = d(d′(s)) for each s in the domain (d′)−1(I). We can visualize the element
d ∶ S → T of Rk as a diagram consisting of two rows of k vertices with top row and bottom
row labeled 1,2, . . . , k from left to right and edges connecting the vertices in the bottom
row corresponding to S to the vertices in the top row corresponding to T .

For example, let k = 4 and d ∶ {1,2,4} → {1,3,4} is the function that sends 1 ↦ 3,
2↦ 1 and 4↦ 4. Then we can visualize this as the diagram:

Domain →

Range → 1 2 3 4

1 2 3 4

Often, we will draw these diagrams without the numbers. If d′ ∶ {1,2,4} → {2,3,4} is
the function that sends 1↦ 2, 2↦ 4, and 4↦ 3, this corresponds to the diagram:
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Then to get the product d ○ d′, we can first stack d on top of d′:

d =

d′ =

Then we identify the vertices in the two middle rows:

d =

d′ =

Then for each of the two diagrams, only keep the edges that are incident with an edge
in the other diagram. Then we remove the middle row of vertices to create a new diagram,
which corresponds to a unique element ofRk. In this case, d○d′ corresponds to the diagram

d ○ d′ =

Then the set has an identity, which is the identity map i ∶ [k] → [k] and corresponds to
the diagram with k vertical edges:

i =

Therefore, Rk forms a monoid, which is simply a set with a multiplication operation
and an identity element for that operation.

Let the rank of an element d ∶ S → T ofRk, denoted rk(d), is the size of S (equivalently
the size of T or the number of edges in the associated diagram). Note that for d, d′ ∈ Rk,

rk(d ○ d′) ≤min{rk(d), rk(d′)}.

For details on the Rook Monoid’s representations and characters see [4] or [11].
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3.2 The Planar Rook Monoid
This thesis focuses on the Planar Rook Monoid which we denote PRk, which is the sub-
monoid of the Rook Monoid consisting of order-preserving functions. These elements
correspond to diagrams whose edges do not cross. For example,

is not an element of the Planar Rook Monoid since two of its edges cross, but

is an element of the Planar Rook Monoid since it is an order-preserving function from
{1,2,4} to {2,3,4}, meaning that none of its edges cross. It is easy to show that the
product of two of these order-preserving functions is again an order-preserving function,
so it is closed under the multiplication operation, and PRk contains the identity element
i ∶ [k]→ [k]. Therefore, it is indeed a submonoid of Rk.

Note that given two subsets S and T of [k] of the same size, there exists a unique
element d ∶ S → T of PRk, since d is forced to map the mth largest element of S to the mth

largest element of T .

Proposition 3.2.1. The number of elements in PRk is (2k
k
).

Proof. Given an element d ∈ PRk with rank 0 ≤ ` ≤ k, d is completely determined by its
domain S and range T . Since there are (k

`
) choices for S and (k

`
) choices for T , the total

number of elements must be
k

∑
`=0

(k
`
)
2

which is well-known to be exactly (2k
k
). We can see this more directly by taking the empty

diagram with two rows of k vertices and choosing k of the 2k vertices. Then we can define
a unique element d ∈ PRk with domain equal to the set of chosen vertices in the bottom
row of the diagram and range equal to the set of unchosen vertices in the top row.

Herbig found a presentation of PRk in [6], which we will use in the following section.

Theorem 3.2.2. The monoid PRk has a presentation on generators `1, `2, . . . , `k−1, and
r1, r2, . . . , rk−1 with relations:

i. `3i = `2i = r2i = r3i
ii. (a) riri+1ri = riri+1 = ri+1riri+1
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(b) `i`i+1`i = `i`i+1 = `i+1`i`i+1

iii. (a) ri`iri = ri
(b) `iri`i = `i

iv. (a) ri+1`iri = ri+1`i
(b) `i−1ri`i = `i−1ri
(c) `iri`i+1 = ri`i+1
(d) ri`iri−1 = `iri−1

v. ri`i = `i+1ri+1

vi. If ∣i − j∣ ≥ 2 then ri`j = `jri, rirj = rjri, `i`j = `j`i

for all i and j for which each term in the relation is defined.

For 1 ≤ i ≤ k − 1, `i is associated with the diagram

`i =
1 i − 1 i i + 1 i + 2 k

and ri is associated with the diagram

ri =
1 i − 1 i i + 1 i + 2 k

3.3 The Planar Rook Monoid of Type B
We define the Planar Rook Monoid of Type B, denoted PRB

k , to be the set of colored
diagrams dc where d ∶ S → T is an element of PRk and c ∶ S → Z2 is a coloring of S with
Z2. This is equivalently a coloring of the edges of the diagram associated to d if we say
that the coloring of an edge is the coloring of the vertex in S which is incident to that edge.
Here we view Z2 as the multiplicative group on the set {1,−1}. Then if dc and d′c′ are two
elements of PRB

k , then their product is defined to be

dc ○ d′c′ = (d ○ d′)c′′

where d ○ d′ ∶ S → T is the product of d and d′ in PRk and c′′ ∶ S → Z2 is defined as

c′′(s) = c(d′(s))c′(s),
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so the coloring of the edge that is the result of two incident edges in the product of the
diagrams is the product of the colorings of those two original edges.

For example, let dc be an element of PRB
k with d ∶ {1,3,4}→ {2,3,4} and c ∶ {1,3,4}→ Z2

defined by c(1) = 1, c(3) = −1, c(4) = −1. Let d′c′ be another element with d′ ∶ {1,2} →
{1,3} and c′ ∶ {1,2} → Z2 defined by c(1) = −1, c(2) = −1. Then dc ○ d′c′ corresponds to
the diagram:

− −

dc =

− −d′c′ =

= − = dc ○ d′c′

Since the left-most edges are colored −1 and +1, the color of the resulting edge in the
product is −1, and since the color of the next two edges to the right is −1 and −1, the color
of the resulting edge in the product is +1.

Let the rank of an element dc of PRB
k be the rank of its underlying diagram d.

Proposition 3.3.1. The number of elements in PRB
k is ∑k

`=0 2
`(k
`
)2.

Proof. The proof is the same as that for PRk, except now we have 2` many colorings for a
diagram of rank `, since we can color each edge with either 1 or −1.

These numbers are called the Central Delannoy Numbers in the literature. For more
combinatorial objects counted by the Central Delannoy Numbers and various formulae for
Central Delannoy Numbers, see [12].

We will now focus on a presentation of the Planar Rook Monoid of Type B.

Theorem 3.3.2. PRB
k has a presentation on generators `1, `2, . . . , `k−1, and r1, r2, . . . , rk−1

and p1, p2, . . . , pk with relations 1 – 6 in Theorem 3.2.2, including the following relations:

vii. p2i = 1

viii. (a) piri = ripi+1
(b) pi+1`i = `ipi

ix. (a) pi`i = `i = `ipi+1
(b) pi+1ri = ri = ripi

x. If ∣i − j∣ ≥ 2 or j = i + 1, pirj = rjpi and pi`j = `jpi

xi. pipj = pjpi

for all i and j for which each term in the relation is defined.
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Here, ri and `i correspond to the same diagrams as in Theorem 3.2.2 with trivial color-
ing (every edge colored with +1). The generator pi corresponds to the diagram:

pi =
1 i − 1 i i + 1

−

k

We will rely on the following Lemma by Herbig.

Lemma 3.3.3 (Herbig [6]). Every element of PRk is a product of `i and ri (or the identity).

Proof. We will show that every element of PRk can be written as a word on the letters `i
and ri. Let ei be

ei =
1 i − 1 i i + 1 k

Then note that

ei = ri`i, for 1 ≤ i ≤ k − 1

ek = `k−1rk−1

Let d ∈ PRk with domain S and range T and rank m. Then let us define ṡ =maxS and
ṫ = maxT and let Ṡ = {ṡ + 1, ṡ + 2, . . . , k} and let Ṫ = {ṫ + 1, ṫ + 2, . . . , k}. Then we can
decompose d as

d = RTEmLS

where RT , Em and LS are the diagrams

RT ∶ [m] ∪ Ṫ → T ∪ Ṫ
Em ∶ [m]→ [m]
LS ∶ S ∪ Ṡ → [m] ∪ Ṡ

For example, if k = 8 and d ∶ {2,4,5,6}→ {1,2,5,7}, then d decomposes as

d = =
= LS
= E4

= RT

Let us also define for 1 ≤ a < b ≤ k

Ra,a = La,a = 1

Rb,a = rb−1rb−2⋯ra
La,b = `a`a+1⋯`b−1

10



Then if S = {s1 < s2 < ⋯ < sm = ṡ} and T = {t1 < t2 < ⋯ < tm = ṫ} then we can express
RT , Em and LS as

RT = Rt1,1Rt2,2⋯Rsm,m

Em = em+1em+2 . . . ek
LS = Lm,tmLm−1,tm−1⋯L1,t1

so we see that every element can be written as a word on `i and ri in this way.

Using the same example from our proof, the complete decomposition of d ∶ {2,4,5,6}→
{1,2,5,7} is:

RT

E4

LS

Proof of Theorem 3.3.2. It is easy to see that pi as shown above along with ri and `i as
shown earlier satisfy relations 7 – 11. Let P̂RB

k be the monoid generated by ˆ̀
i, r̂i, p̂i with

relations 1 – 11. By Theorem 3.2.2,

P̂Rk ∶= ⟨ˆ̀i, r̂i⟩ ≅ PRk.

We also know that PRk sits in PRB
k , since the submonoid of PRB

k with trivial coloring
(every edge colored with +1) is isomorphic to PRk. Let ψ ∶ P̂Rk → P̂RB

k be the inclusion
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map and let φ ∶ P̂RB
k → PRB

k be the homomorphism defined by

φ(ˆ̀i) = `i
φ(r̂i) = ri
φ(1̂) = 1

where 1̂ is the identity in P̂RB
k and 1 is the identity element of PRB

k , which is the identity
map on [k] with trivial coloring. Since the `i, ri and pi satisfy all of the same relations that
the ˆ̀

i, r̂i, and p̂i do, φ must be a well-defined monoid homomorphism, and we have the
following commutative diagram:

P̂RB
k PRB

k

P̂Rk

ψ

φ

φ ○ ψ

Suppose that dc ∈ PRB
k with domain T , range S and coloring c ∶ T → Z2, then if c1 is the

trivial coloring of d (every edge has color +1), then

dc =
⎛
⎝ ∏
t∈c−1(−1)

pt
⎞
⎠
⋅ dc1 ,

(Note: the order of the multiplication does not matter since all pi commute with each other)
but dc1 is in ψ(P̂Rk) so dc1 is a product of `i and ri, so dc is a product of `i, ri and pi. If
dc =∏j∈J xj where xj ∈ {`i, ri, pi} then

d = φ(∏
j∈J
x̂j)

where

x̂j =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ˆ̀
i xj = `i
r̂i xj = ri
p̂i xj = pi

so φ is surjective.
We call a standard word on P̂RB

k associated to the diagram dc ∈ PRB
k with d ∶ S → T

and c ∶ S → Z2 a word of the form

B̂cR̂
T ÊmL̂S

where
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B̂c = ∏
t∈c−1(−1)

p̂t

and R̂T , Êm and L̂S are defined analogously as before:

R̂T = R̂t1,1R̂t2,2 . . . R̂sm,m

Êm = êm+1êm+2 . . . êk
L̂S = L̂m,tmL̂m−1,tm−1 . . . L̂1,t1

such that

R̂a,a = L̂a,a = 1̂

R̂b,a = r̂b−1r̂b−2 . . . r̂a
L̂a,b = ˆ̀

a
ˆ̀
a+1 . . . ˆ̀b−1

for 1 ≤ a < b ≤ k, and êi is defined as

êi = r̂i ˆ̀i, for 1 ≤ i ≤ k − 1

êk = ˆ̀
k−1r̂k−1

We have shown that φ is surjective, so ∣P̂RB
k ∣ ≥ ∣PRB

k ∣. In order to show that φ is an
isomorphism, we will show that any element of P̂RB

k is equal to a standard word. Since
there is exactly one standard word for each diagram in PRB

k , this shows that ∣P̂RB
k ∣ = ∣PRB

k ∣
and hence that φ is an isomorphism.

By [6, Theorem 4], we can write any element of P̂RB
k with trivial coloring as a standard

word with B̂c = 1̂.
Let us prove that any word on the letters ˆ̀

i, r̂i, and p̂i is equal to a standard word by
induction on the length of the word. We know that 1̂, the unique word of length 0, is trivially
a standard word. Suppose any word of length n is equal to a standard word and suppose ŵ
is a word of length n + 1. By our inductive hypothesis, the subword of ŵ consisting of the
last n letters is equal to a standard word, so

ŵ = x (B̂cR̂
T ÊmL̂S)

for some subsets S and T of [k], m = ∣S∣ = ∣T ∣ and c ∶ T → Z2, with x ∈ {ˆ̀i, r̂i, p̂i}.
Suppose c−1(−1) = {t1, t2, . . . , tn} ⊂ T and x = rq for some q, then by the relations,

r̂qp̂t1 p̂t2 . . . p̂tn =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

p̂t1−1r̂qp̂t2 . . . p̂tn t1 = q + 1

r̂qp̂t2 . . . p̂tn t1 = q
p̂t1 r̂qp̂t2 . . . p̂tn ∣t1 − q∣ ≥ 2 or t1 = q − 1

13



We can continue moving r̂q right until

r̂qŵ = p̂j1 , p̂j2 , . . . p̂jn′ r̂qR̂T ÊmL̂S

for some j1, j2, . . . , jn′ ≤ k. We can allow the j’s to be distinct since the p̂j commute with
each other and two p̂j cancel each other. Since r̂qR̂T ÊmL̂S is a word on ri and `i, it can be
rewritten as a standard word R̂T ′Êm′L̂S′ so that

r̂qŵ = p̂j1 , p̂j2 , . . . p̂jn′ R̂T ′Êm′L̂S′

where m′ = ∣T ′∣ = ∣S′∣. Note that we can do the same process for x = ˆ̀
qŵ to obtain a word

of the same form, and for x = p̂q, this is easy.
In order for this new word to be a standard word, we need the product of the p̂ji to

represent a coloring of the diagram associated to the sets S′ and T ′, so we need each ji to
be in T ′. Suppose there is some p̂j in this word such that j ∉ T ′.

If j > maxT ′, then if we push p̂j to the right, it will commute with every ri in R̂T ′ . By
the relations and the definition of êi,

p̂j êi =
⎧⎪⎪⎨⎪⎪⎩

êi if i = j
êip̂j if i ≠ j

Therefore, we can push p̂j to the right through Êm′ until we get to êj , which will cancel p̂j
and we end up with the same word, minus p̂j .

If j ≤ maxT ′, we know that p̂j commutes with all r̂i such that j ≠ i or i + 1. We also
know that the first appearance of r̂j in R̂T ′ occurs to the left of the first appearance of r̂j−1,
so we can push p̂j to the right until we get to r̂j , which will cancel p̂j and we are left with
the same word, minus p̂j . After canceling all of the ji ∉ T ′, we are left with a standard word,
completing our argument that all words on ˆ̀

i, r̂i and p̂i are equal to a standard word.
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Chapter 4

The G-edge Colored Planar Rook
Algebra

Just as we have defined a monoid PRB
k consisting of planar rook diagrams whose edges are

colored with the elements of Z2, we can define a monoid PRk(G) consisting of diagrams
dc where d ∈ PRk and d ∶ S → T , and c ∶ S → G. If d′c′ ∈ PRk(G) as well, then we define
the product

dc ○ d′c′ = (d ○ d′)c′′
where d ○ d′ ∶ S → T is the product of d and d′ in PRk and c′′ ∶ S → G is defined as

c′′(s) = c(d′(s))c′(s),

Note that the order of multiplication of these two elements in G is important since we are
talking about any group, not necessarily abelian. We also see that this set has an identity,
which is the identity diagram d ∶ [k] → [k] with trivial coloring (the map which takes
everything to the identity of G). Let us denote the set of colorings c (for a fixed group G)
of d by Col(d),

Col(d) ∶= {c ∣ c ∶ S → G}
From the monoid PRB

k , we can obtain a collection of algebras PRk(n;G) with n ∈ C/{0}.
Let PRk(n;G) = CPRk(G), the C−span of the set of G-edge colored planar rook dia-
grams, and let the product of two diagrams dc and d′c′ in the algebra (which we write as
juxtaposition of the two elements) be defined

dcd
′
c′ ∶= nσ(dc ○ d′c′)

where if d ∶ S → T and d′ ∶ S′ → T ′, σ = k − ∣T ∪ S′∣, the number of vertices in the
middle row which are not incident to any edge during the composition operation of the
two diagrams d and d′, and dc ○ d′c′ is again the product of the diagrams in the underlying
monoid PRk(G).

For example, in the algebra PRk(n;Z2), the elements are generated by the Type B
planar rook diagrams and
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− −

dc =

− −d′c′ =
= n1 − = dcd′c′

since the number of vertices in the middle row (after identification) that are not incident
to any edge is 1. We have defined these algebras to be subalgebras of the G-edge Colored
Partition Algebra Pk(n;G). For more information on theG-edge Colored Partition Algebra
and its representation-theoretic importance, see [1].

4.1 PRk(n;G) for Finite Abelian Groups
Let us now study PRk(n;G) with G be a finite abelian group. We will decompose its
regular representation into a direct sum of irreducible represenations, determine which of
these irreducible representations are distinct, and determine how its irreducible representa-
tions restrict to representations of PRk−1(n;G). We will viewG as the direct sum of cyclic
groups

G = Cq1 ⊕Cq2 ⊕ ⋅ ⋅ ⋅ ⊕Cqm
where we view Cq as the additive group structure on the set {0,1, . . . , q − 1} modulo q.
Then a typical element g ∈ G is

g = (g1, g2, . . . , gm)

where 0 ≤ gi < qi for each i.

4.1.1 Regular Representation
Recall that the regular representation of PRk(n;G) is the representation of PRk(n;G)
over itself, and the action of an element in PRk(n;G) on an element of the representation
PRk(n;G) is just defined by multiplication from the left in the algebra.

Definition 4.1.1. Given a group G, call a G-partition of [k] a set

A = {Ag ∶ g ∈ G}

of pairwise disjoint subsets Ag of [k] (blocks) indexed by the group elements g ∈ G (Note:
The blocks in A may not partition the entire set [k], i.e. ⋃A = ⋃g∈GAg may be a proper
subset of [k]).

If A is a G-partition of [k], then for any c ∶ S → G such that ⋃A ⊆ S, define the
complex number

α(A, c) =∏
g∈G

∏
i∈Ag

∏
1≤j≤m

(ζqj)gjc(i)j (4.1)

where ζqj is the root of unity e2πi/qj and the empty product is defined naturally as 1.
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Definition 4.1.2. IfA is aG-partition of [k] and d ∈ PRk with d ∶ S → T such that⋃A ⊆ S,
then define

d(A) ∶= {d(Ag) ∶ g ∈ G},
the G-partition of [k] where the block indexed by g ∈ G is d(Ag).

Also, let us denote the domain of a diagram d ∈ PRk as dom(d) and the range (equiva-
lently the image) of d as img(d)

Lemma 4.1.3. Let dc ∈ PRk(G), and let d′c′ ∈ PRk(G) such that img(d′) ⊆ dom(d).

i. If dc ○ d′c′ = d′′c′′ then for any G-partition A of [k] we have

α(A, c′′) = α(d′(A), c)α(A, c′).

ii. If A1 and A2 are G-partitions of [k] such that ⋃A1 and ⋃A2 are disjoint and both
contained in dom(d), then

α(A1 ∪A2, c) = α(A1, c)α(A2, c)

where A1 ∪A2 is the G-partition of [k] where the block indexed by g ∈ G is Ag1 ∪A
g
2.

Proof. These are both immediate from the definition of α and the fact thatG is abelian.

Given A1 and A2, G-partitions of [k], define a partial relation ≤ on these set partitions
where

A1 ≤ A2 iff Ag1 = A
g
2 for all g ≠ 0 and A0

1 ⊆ A0
2.

where 0 is the identity element (0,0, . . . ,0) ∈ G. If T ⊆ [k] such that ∣T ∣ = ∣⋃A∣, we can
define the element yTA ∈ PRk(n;G) in terms of the α function:

yTA = ∑
A1≤A

(−∣G∣
n

)
∣A0/A0

1∣

∑
c∈Col(d∣⋃A1

)
α(A1, c) (d∣⋃A1)c (4.2)

where d∣⋃A1 is the diagram d with domain restricted to ⋃A1. Note that the colorings of the
edges coming from ⋃g≠0Ag contribute to the coefficient of that diagram in the sum, but not
A0. Let us consider the span over C of all yTA for a fixed G-partition A:

Y k
A = spanC{yTA ∶ T ⊆ [k] and ∣T ∣ = ∣⋃A∣}.

Proposition 4.1.4. Let d′c′ ∈ PRk(G) and d ∶ ⋃A → T . Then the product of d′c′ with yTA in
PRk(n;G) has the form

d′c′y
T
A =

⎧⎪⎪⎨⎪⎪⎩

nk−rk(d
′)α(d(A), c′)−1 yd

′(T )
A if T ⊆ dom(d′)

0 if T /⊆ dom(d′)

Before we prove this proposition, let’s look at an example of this multiplication.
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Example 4.1.5. Let n = k = 3 and let G = Z2 be the additive group on {0,1} modulo 2
this time (before we were thinking of Z2 as the multiplicative group on {±1}). Then let us
look at the actions of various colored diagrams on yTA where A0 = {3} and A1 = {1} and
T = {1,2} (now we represent edges colored with 1 by tick marks and edges colored by 0
without tick marks).

y
{1,2}
({1},{3}) = ∑

A+1⊆{3}
(−2
3

)
∣{3}/A+1 ∣

∑
c coloring

of d∣{1}∪A+
1

α{1},c(d∣{1}∪A+1)c

= ( − − + − − − − )+(−2
3

)( − − )

y
{1,2}
({1},{3})

= (3 −3 +3 −3 )+(−2
3

) (9 −9 ) = 0

− y
{1,2}
({1},{3})

= (3 − −3 +3 − −3 )+(−2
3

) (9 − −9 ) = 0

− y
{1,2}
({1},{3})

= (3 − −3 − +3 −3 )+(−2
3

) (3 −3 ) = 0

− y
{1,2}
({1},{3})

= (3 − −3 +3 − − −3 − )+(−2
3

) (3 − −3 )

= −3[( − − + − − − − )+(−2
3

)( − − )]

= −3y{1,2}({1},{3})
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In order to prove Proposition 4.1.4, let us first write each yTA element in terms of other
elements in Y k

A .

Claim 4.1.6.

yTA = ∑
c∈Col(d)

α(A, c)dc − ∑
A1<A

(∣G∣
n

)
∣A0/A0

1∣
y
d(⋃A1)
A1

Proof. Inserting the definition of yd(⋃A1)
A1

into the right side gives us

= ∑
c∈Col(d)

α(A, c)dc−

∑
A1<A

(−1)∣A0/A0
1∣ (− ∣G∣

n
)
∣A0/A0

1∣ ⎛
⎝ ∑
A2≤A1

(− ∣G∣
n

)
∣A0

1/A0
2∣

∑
c∈Col(d∣⋃A2

)
α(A2, c)(d∣⋃A2)c

⎞
⎠

= ∑
c∈Col(d)

α(A, c)dc − ∑
A1<A

∑
A2≤A1

(−1)∣A0/A0
1∣ (− ∣G∣

n
)
∣A0/A0

2∣

∑
c∈Col(d∣⋃A2

)
α(A2, c)(d∣⋃A2)c

For a given A2 < A, the coefficient of

(− ∣G∣
n

)
∣A0/A0

2∣

∑
c∈Col(d∣⋃A2

)
α(A2, c)(d∣⋃A2)c

is going to be the sum over all ` of the number ofA1 such thatA2 ≤ A1 < A and ` = ∣A0
1/A0

2∣.
Since there are (∣A0/A0

2∣
`

) many of these, we have

−
∣A0/A0

2∣−1

∑
`=0

(−1)∣A0/A0
2∣−` (∣A

0/A0
2∣

`
)

= −
∣A0/A0

2∣

∑
`=1

(−1)` (∣A
0/A0

2∣
`

) = −(0 − 1) = 1

so our formula gives

yTA = ∑
c∈Col(d)

α(A, c)dc − ∑
A2<A

(− ∣G∣
n

)
∣A0/A0

2∣

∑
c∈Col(d∣⋃A2

)
α(A2, c)(d∣⋃A2)c

which exactly agrees with our original definition of yTA.

Claim 4.1.7. Given d′c′ ∈ PRk(G), d ∈ PRk, and A a G-partition of [k], if
d(⋃g≠0Ag)/dom(d′) ≠ ∅ then

∑
c∈Col(d)

α(A, c)d′c′dc = 0
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Proof. Suppose s ∈ Aĝ for some ĝ ≠ 0 such that d(s) ∉ dom(d′). For each
c′ ∈ Col(d∣(⋃A)/{s}), we can break up the sum into the smaller sums

∑
c∈Col(d)
c∣S/{s}=c′

α(A, c)d′c′dc = nk−∣T∪dom(d′)∣
⎛
⎜⎜⎜
⎝

∑
c∈Col(d)
c∣S/{s}=c′

α(A, c)
⎞
⎟⎟⎟
⎠
(d′c′ ○ (d∣(⋃A)/{s})c′)

but now

∑
c∈Col(d)
c∣S/{s}=c′

α(A, c) = (∏
g∈G

∏
s≠i∈Ag

∏
1≤j≤m

(ζqj)gjc
′(i)j) ∑

c∈Col(d)
c∣S/{s}=c′

∏
1≤j≤m

(ζqj)ĝjc(s)j

but we have

∑
c∈Col(d)
c∣S/{s}=c′

∏
1≤j≤m

(ζqj)ĝjc(s)j = ∏
1≤j≤m

⎛
⎝

qj−1

∑
gj=0

((ζqj)ĝj)gj
⎞
⎠
.

Since ĝ ≠ 0, there must be some j such that ĝj ≠ 0, so for this j
qj−1

∑
gj=0

((ζqj)ĝj)gj = (
(ζqj)ĝjqj − 1

(ζqj)ĝj − 1
) = ( 1 − 1

(ζqj)ĝj − 1
) = 0

so the whole product above must be 0, thus the whole sum must be 0.

Proof of Proposition 4.1.4. Now that we have a recursive formula for the basis vectors, we
can apply induction on the size of A0.
Base Case: As our base case, let A be such that A0 = ∅. By definition,

yTA = ∑
c∈Col(d)

α(A, c)dc

so
d′c′y

T
A = ∑

c∈Col(d)
α(A, c)d′c′dc.

Suppose that T /⊆ dom(d′), then since A0 = ∅, d(⋃g≠0Ag)/dom(d′) ≠ ∅, so by Claim
4.1.7 this sum is 0.

Suppose that instead T ⊆ dom(d′). Then for every c′′ ∈ Col(d′ ○ d), (d′ ○ d)c′′ = d′c′ ○ dc
for a unique c ∈ Col(d), so using the formula in Claim 4.1.3 we have

d′c′y
T
A = ∑

c∈Col(d)
α(A, c)d′c′dc

= nk−rk(d′)α(d(A), c′)−1 ∑
c∈Col(d)

α(d(A), c′)α(A, c)(d′c′ ○ dc)

= nk−rk(d′)α(d(A), c′)−1 ∑
c′′∈Col(d′○d)

α(A, c′′)(d′ ○ d)c′′

= nk−rk(d′)α(d(A), c′)−1yd
′(T )
A .
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Inductive Step: Assume that our hypothesis is true for all d′c′ and yTA with ∣A0∣ < N for
some integer N > 0. Suppose we have yTA with ∣A0∣ = N .

d′c′y
T
A = ∑

c∈Col(d)
α(A, c)d′c′dc − ∑

A1<A
(∣G∣
n

)
∣A0/A0

1∣
d′c′y

d(⋃A1)
A1

Let T 0 ∶= d(A0) and let T + = d(⋃g≠0Ag). Then we have three cases:

i. ∣T 0/dom(d′)∣ = 0 and ∣T +/dom(d′)∣ = 0

ii. ∣T 0/dom(d′)∣ > 0 and ∣T +/dom(d′)∣ = 0

iii. ∣T +/dom(d′)∣ > 0

Case 1: If ∣T 0/dom(d′)∣ = 0 and ∣T +/dom(d′)∣ = 0 then T ⊆ dom(d′) and

d′c′y
T
A = ∑

c∈Col(d)
α(A, c)d′c′dc − ∑

A1<A
(∣G∣
n

)
∣A0/A0

1∣
d′c′y

d(⋃A1)
A1

=nk−rk(d′)α(d(A), c′)−1 ∑
c′′∈Col(d′○d)

α(A, c′′)(d′ ○ d)c′′

− ∑
A1<A

(∣G∣
n

)
∣A0/A0

1∣
nk−rk(d

′)α(d(A1), c′)−1 yd
′○d(⋃A1)
A1

but α(d(A1), c′) = α(d(A), c′) for all A1 < A since d(Ag) = d(Ag1) for all g ≠ 0 and d(A0)
does not contribute to the α coefficient, so this is

=nk−rk(d′)α(d(A), c′)−1
⎛
⎝ ∑
c′′∈Col(d′○d)

α(A, c′′)(d′ ○ d)c′′ − ∑
A1<A

(∣G∣
n

)
∣A0/A0

1∣
y
d′○d(⋃A1)
A1

⎞
⎠

=nk−rk(d′)α(d(A), c′)−1 yd
′(T )
A

Case 2: If ∣T 0/dom(d′)∣ > 0 and ∣T +/dom(d′)∣ = 0, for each c′′ ∈ Col(d′ ○ d) there are
∣G∣∣T 0/dom(d′)∣ many choices for c ∈ Col(d) such that d′c′ ○ dc = (d′ ○ d)c′′ . Also,

d′c′dc = nk−∣T
0∪dom(d′)∣ d′c′ ○ dc = nk−rk(d

′)−∣T 0/dom(d′)∣ d′c′ ○ dc.

Therefore, if we let A0 < A be the G-partition of [k] such that A0
0 = d−1(T 0 ∩ dom(d′)),

∑
c∈Col(d)

α(A, c)d′c′dc = (∣G∣
n

)
∣T 0/dom(d′)∣

nk−rk(d
′)α(d(A), c′)−1 ∑

c′′∈Col(d′○d)
α(A0, c

′′)(d′○d)c′′
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By our inductive hypothesis and the fact that T + ⊆ dom(d′), d′c′y
d(⋃A1)
A1

= 0 if A0
1 /⊆

d−1(T 0 ∩ dom(d′)), so

∑
A1<A

(∣G∣
n

)
∣A0/A0

1∣
d′c′ y

d(⋃A1)
A1

= ∑
A1≤A0

(∣G∣
n

)
∣A0/A0

1∣
d′c′ y

d(⋃A1)
A1

= ∑
A1≤A0

(∣G∣
n

)
∣A0/A0

1∣
nk−rk(d

′)α(d(A1), c′)−1 yd
′○d(⋃A1)
A1

but α(d(A1), c′) = α(d(A), c′) like before, so we need to show that

(∣G∣
n

)
∣T 0/dom(d′)∣

∑
c′′∈Col(d′○d)

α(A, c′′)(d′ ○ d)c′′ = ∑
A1≤A0

(∣G∣
n

)
∣A0/A0

1∣
y
d′○d(⋃A1)
A1

The right side is equal to:

∑
A1≤A0

(∣G∣
n

)
∣A0/A0

1∣
y
d′○d(⋃A1)
A1

= ∑
A1≤A0

(∣G∣
n

)
∣A0/A0

1∣ ⎛
⎝ ∑
A2<A1

(−∣G∣
n

)
∣A0

1/A0
2∣

∑
c∈Col(d′○d∣⋃A2

)
α(A2, c)(d′ ○ d∣⋃A2)c

⎞
⎠

= ∑
A1≤A0

∑
A2<A1

(−1)∣A0
1/A0

2∣ (∣G∣
n

)
∣A0/A0

2∣

∑
c∈Col(d′○d∣⋃A2

)
α(A2, c)(d′ ○ d∣⋃A2)c

For all A2 < A0, the coefficient of

∑
c∈Col(d′○d∣⋃A2

)
α(A2, c)(d′ ○ d∣⋃A2)c

in this sum is

∣T 0∩dom(d′)∣−∣A0
2∣

∑
`=0

(−1)` (∣G∣
n

)
∣A0/A0

2∣
(∣T

0 ∩ dom(d′)∣ − ∣A0
2∣

`
)

= (∣G∣
n

)
∣A0/A0

2∣
(1 − 1)∣T 0∩dom(d′)∣−∣A0

2∣ = 0.

For A2 = A0, the coefficient of

∑
c∈Col(d′○d∣⋃A0

)
α(A0, c)(d′ ○ d∣⋃A0)c = ∑

c′′∈Col(d′○d)
α(A, c′′)(d′ ○ d)c′′
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is

(∣G∣
n

)
∣A0/A0

0∣
= (∣G∣

n
)
∣T 0/d(A0

0)∣
= (∣G∣

n
)
∣T 0/(T 0∩dom(d′))∣

= (∣G∣
n

)
∣T 0/dom(d′)∣

Case 3: Finally, if ∣T +/dom(d′)∣ > 0 then by Claim 4.1.7,

∑
c∈Col(d)

α(A, c)d′c′dc = 0.

For all A1 < A, since T + ⊆ d(⋃A1) and T + /⊆ dom(d′), then d(⋃A1) /⊆ dom(d′). Then by
our inductive hypothesis

d′c′y
d(⋃A1)
A1

= 0

so the whole sum is 0.
Therefore, the claim follows by induction.

Note that this multiplication in the algebra is exactly the action in the regular represen-
tation. We want to show that the yTA form a basis of the algebra. First we start with a lemma
and then prove that they do form a basis.

Lemma 4.1.8. Let d ∈ PRk with d ∶ S → T and rk(d) = `. For any colorings c and c′ of d,

∑
A ∶⋃A=S

α(A, c)−1α(A, c′) =
⎧⎪⎪⎨⎪⎪⎩

∣G∣` if c = c′
0 if c ≠ c′

(4.3)

Proof. If c = c′ then α(A, c)−1α(A, c′) = 1. Since the number of colorings of d is ∣G∣`, the
sum must be ∣G∣`.

If c ≠ c′, then let s ∈ S such that c(s) ≠ c′(s). For each A, a G-partition of [k] such
that ⋃A = S/{s}, then for g ∈ G let Ag be the G-partition of [k] such that Ag

′
g = Ag′ for all

g′ ≠ g and Agg = Ag ∪ {s}. Then

∑
g∈G

α(Ag, c)−1α(Ag, c′) = α(A, c)−1α(A, c′)∑
g∈G

( ∏
1≤j≤m

(ζqj)gjc(s)j)
−1

( ∏
1≤j≤m

(ζqj)gjc
′(s)j)

= α(A, c)−1α(A, c′)∑
g∈G

∏
1≤j≤m

((ζqj)c
′(s)j−c(s)j)gj

= α(A, c)−1α(A, c′) ∏
1≤j≤m

⎛
⎝

qj−1

∑
gj=0

((ζqj)c
′(s)j−c(s)j)gj

⎞
⎠

Since c(s) ≠ c′(s), there is some j such that c(s)j ≠ c′(s)j so

qj−1

∑
gj=0

((ζqj)c
′(s)j−c(s)j)gj =

((ζqj)c
′(s)j−c(s)j)qj − 1

(ζqj)c
′(s)j−c(s)j − 1

= 1 − 1

(ζqj)c
′(s)j−c(s)j − 1

= 0,

hence (4.3) sums to 0.
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Proposition 4.1.9. The set of yTA whereA is aG-partition of [k] forms a basis of PRk(n;G).

Proof. We know that

#{yTA} =
k

∑
`=0

∣G∣`(k
`
)
2

= dimPRB
k (n)

since we can create a one-to-one correspondence between the elements yTA and colored
diagrams by associating the element yTA with the diagram with domain ⋃A and range T ,
where we color the edge incident to s in the domain with the group element corresponding
to the block in A containing s.

Then it is enough to show that every colored diagram dc ∈ PRB
k is in

Y ∶=∑
A

Y k
A = spanC{yTA ∶ A a G-partition, T ⊆ [k], ∣T ∣ = ∣⋃A∣}

since the colored diagrams dc form a basis of PRB
k (n), by construction. We argue by

induction on rank:
Base Case: For dc ∈ PRk(n;G) with rk(d) = 0, dc = y∅A∅ the empty diagram, where A∅ is
the G-partition such that Ag∅ = ∅ for each g ∈ G.
Inductive Step: Assume inductively that for ` > 0, all colored diagrams of rank less than `
are in Y . Recall that by Claim 4.1.6 we can rewrite yTA recursively as:

yTA = ∑
c∈Col(d)

α(A, c)dc − ∑
A1<A

(∣G∣
n

)
∣A0/A0

1∣
y
d(⋃A1)
A1

(4.4)

Let dc ∈ PRk(n;G) with d ∶ S → T and rk(d) = ` (Note that c is a fixed coloring of the
diagram d now), and let

ydc = ∑
A s.t. ⋃A=S

α(A, c)−1 yTA

but by (4.4), this is equal to

= ∑
A s.t. ⋃A=S

α(A, c)−1
⎛
⎝ ∑
c′∈Col(d)

α(A, c′)dc′ − ∑
A1<A

(∣G∣
n

)
∣A0/A0

1∣
y
d(⋃A1)
A1

⎞
⎠

= ∑
A s.t. ⋃A=S

∑
c′∈Col(d)

α(A, c)−1α(A, c′)dc′ − ∑
A s.t. ⋃A=S

∑
A1<A

(∣G∣
n

)
∣A0/A0

1∣
α(A, c)−1yd(⋃A1)

A1

The coefficient of dc′ in ydc is exactly the expression in (4.3), which is nonzero if and only
if c = c′. Therefore, the first sum evaluates to ∣G∣`dc and the rank of all of the diagrams
in the sum ydc − ∣G∣`dc must be less than `. By our inductive assumption, each of those
diagrams is in Y , so ydc − ∣G∣`dc ∈ Y hence ydc ∈ Y .

Theorem 4.1.10. Each Y k
A is an irreducible subrepresentation of the regular representation

on PRk(n;G).
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Proof. By Proposition 4.1.4, the action of an element of PRk(n;G) on a basis element is
either a constant multiple of another basis element or 0, so Y k

A is a subrepresentation of the
regular representation.

Furthermore, given yTA and yT ′A basis elements in Y k
A , let d ∶ T → T ′ and let c1 ∶ S → G

be the trivial coloring, i.e. c1 is the trivial map c1(s) = 0 for all s ∈ S. Then dc1 y
T
A =

nk−∣T ∣ y
d(T )
A = nk−∣T ∣ yT

′
A , so every basis element generates Y k

A .
Let

y = ∑
T s.t. ∣T ∣=∣⋃A∣

λT y
T
A ≠ 0.

Then there exists some T ′ such that λT ′ ≠ 0, so if we let d ∶ T ′ → T ′ and c1 be the trivial
coloring, then

dc1 y = ∑
T s.t. ∣T ∣=∣⋃A∣

λT dc1 y
T
A = nk−∣T ′∣λT ′ yT

′
A

since the only subset with size ∣T ′∣ such that it is contained in T ′ is T ′ itself, and this element
generates Y k

A , so every element generates the whole space. Therefore, Y k
A is irreducible.

Therefore, we have completely decomposed the regular representation into a direct sum
of irreducible representations, and the following theorem is immediate.

Theorem 4.1.11. The algebra PRk(n;G) decomposes in the following way into a direct
sum of irreducible sub-representations of its regular representation

PRk(n;G) = ⊕
A a G-partition of [k]

Y k
A

Proposition 4.1.12. The algebra PRk(n;G) is semisimple and any finite dimensional ir-
reducible representation of PRk(n;G) is isomorphic to Y k

A for some G-partition of [k].

Proof. By Theorem 4.1.11, the algebra’s regular representation is completely reducible.
By Proposition 2.1.2, the algebra is then semisimple.

Now that we know what all of the finite dimensional irreducible representations look
like, let us now look at which ones are distinct.

Proposition 4.1.13. Y k
A1

≅ Y k
A2

as representations of PRk(n;G) if and only if ∣Ag1∣ = ∣Ag2∣
for all g ∈ G, ⋃A1 = {x1 < x2 < ⋯ < xp} and ⋃A2 = {y1 < y2 < ⋯ < yp} where xi ∈ Ag1 if
and only if yi ∈ Ag2 for all i.

Let us begin with the following Lemma:

Lemma 4.1.14. If Y k
A1

≅ Y k
A2

as representations then ∣⋃A1∣ = ∣⋃A2∣.
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Proof. Let us assume that ∣⋃A1∣ ≠ ∣⋃A2∣ and suppose without loss of generality that
n1 = ∣⋃A1∣ < ∣⋃A2∣ = n2, then let d = ([n1], [n1]) with c1 the trivial coloring of d, then d
zeroes Y k

A2
: given yTA2

, then if T ⊆ dom(d), n2 = ∣T ∣ ≤ ∣dom(d)∣ = n1 < n2, a contradiction.
However, d does not zero all of Y k

A1
, e.g. y[n1]

A1
. Therefore, the two representations are not

isomorphic since no isomorphism will preserve the action of d.

Proof of Proposition 4.1.13. Suppose that ∣Ag1∣ = ∣Ag2∣ for all g ∈ G, ⋃A1 = {x1 < x2 < ⋯ <
xp} and ⋃A2 = {y1 < y2 < ⋯ < yp} where xi ∈ Ag1 if and only if yi ∈ Ag2. Then we have the
following map:

φ ∶ Y k
A1
→ Y k

A2

yTA1
↦ yTA2

which is linearly extended to all of Y k
A1

. Let d′ ∶ ⋃A1 → T and d′′ ∶ ⋃A2 → T . Then for
any dc ∈ PRk(n;G),

dc φ(yTA1
) = dc yTA2

=
⎧⎪⎪⎨⎪⎪⎩

α(d′′(A2), c)nσyd(T )
A2

if T ⊆ dom(d)
0 if T /⊆ dom(d)

where σ = k − rk(d). Since the sets in A1 and A2 are in the same order relative to each
other by hypothesis, d′′(Ag2) = d′(A

g
1) for each g ∈ G, so this is

=
⎧⎪⎪⎨⎪⎪⎩

α(d′(A1), c)nσφ(yd(T )
A1

) if T ⊆ dom(d)
0 if T /⊆ dom(d)

=
⎧⎪⎪⎨⎪⎪⎩

φ(α(d′(A1), c)nσyd(T )
A1

) if T ⊂ dom(d)
φ(0) if T /⊆ dom(d)

= φ(dc yTA1
)

Since the yTA1
and yTA2

form bases of Y k
A1

and Y k
A2

, respectively, this must be an isomorphism.
Now suppose that Y k

A1
≅ Y k

A2
as representations, then Lemma 4.1.14 tells us that ∣⋃A1∣ =

∣⋃A2∣. By hypothesis, there exists

φ ∶ Y k
A1
→ Y k

A2

an isomorphism of representations. For each T , let

φ(yTA1
) = ∑

∣U ∣=∣T ∣
λTU y

U
A2

for some λTU ∈ C. Fix a T and construct the diagrams d′c′ , d
′′
c′′ ∈ PRk(G) from yTA1

and yTA2

where c′ and c′′ are trivial colorings of the diagrams

d′ ∶ ⋃A1 → T

d′′ ∶ ⋃A2 → T

Also, let et ∶ [k]/t→ [k]/t and ct be the trivial coloring of et.
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If T = ∅ then ⋃A1 = ⋃A2 = ∅ and we are done since Y k
A∅ = Y k

A∅ . Otherwise, let t ∈ T .
Then

0 = φ(0) = φ(etct yTA1
) = etct φ(yTA1

)
= ∑

∣U ∣=∣T ∣
λTU e

t
ct y

U
A2

= ∑
∣U ∣=∣T ∣
t∉U

λTU y
U
A2

Since the yUA2
are linearly independent, λTU = 0 for all U such that t ∉ U . Since ∣U ∣ = ∣T ∣ for

each U , λTU = 0 for all U except U = T . Otherwise, T ⊈ U which is a contradiction. So

φ(yTA1
) = λTT yTA2

.

Let λT ∶= λTT , let T = {t1, t2, . . . , t∣T ∣}, and let eT ∈ PRk such that eT ∶ T → T . Let
1 = (1,1, . . . ,1) ∈ G, and for each 1 ≤ i ≤ ∣T ∣ let ci be the coloring of eT such that for all
1 ≤ ` ≤ ∣T ∣,

ci(t`) = δi,`1
Let ⋃A1 = {x1 < x2 < ⋅ ⋅ ⋅ < xp} and ⋃A2 = {y1 < y2 < ⋅ ⋅ ⋅ < yp}. Suppose that there
exists i such that xi ∈ Aĝ1 and yi ∈ Aĥ2 for some ĝ ≠ ĥ in G. Then ti = d′(xi) ∈ d′(Aĝ1) and
ti = d′′(yi) ∈ d′′(Aĥ2), so let’s hit yTA1

and its image under φ with eTci and see what happens:

φ(eTci yTA1
) = φ(nk−∣T ∣α(d′(A1), ci) yTA1

) = nk−∣T ∣α(d′(A1), ci)λT yTA2
(4.5)

Since φ is an isomorphism of representations, this must be equal to

eTci φ(yTA1
) = eTci(λT yTA2

) = nk−∣T ∣α(d′′(A2), ci)λT yTA2
, (4.6)

but

α(d′(A1), ci) =∏
g∈G

∏
`∈d′(Ag

1)
∏

1≤j≤m
(ζqj)gj ci(`)j

α(d′′(A2), ci) =∏
g∈G

∏
`∈d′′(Ag

2)
∏

1≤j≤m
(ζqj)gj ci(`)j

and since ci(`) is nonzero if and only if ` = ti,

α(d′(A1), ci) = ∏
1≤j≤m

(ζqj)ĝj ci(ti)j = ∏
1≤j≤m

(ζqj)ĝj

α(d′′(A2), ci) = ∏
1≤j≤m

(ζqj)ĝj ci(ti)j = ∏
1≤j≤m

(ζqj)ĥj

which must be distinct given that ĝ and ĥ are distinct. We know that (4.5) and (4.6) must be
equal but the coefficients α(d′(A1), ci) and α(d′′(A2), ci) are distinct. Therefore, λT = 0
for every T , so φ = 0, which is a contradiction. Therefore, our hypothesis is false and
xi ∈ Ag1 if and only if yi ∈ Ag2 for each i.
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4.1.2 Branching Rules and Bratteli Diagram
Now that we have analyzed the irreducible representations of the algebras PRk(n;G) for
each k, we want to determine how they relate to each other. We can think of the monoids
PRk(G) as a series of monoids all contained in each other:

PR0(G) ⊆ PR1(G) ⊆ PR2(G) ⊆ ⋯

and we can think of the algebras PRk(n;G) as a series of algebras all contained in each
other:

PR0(n;G) ⊆ PR1(n;G) ⊆ PR2(n;G) ⊆ ⋯
where we identify the colored diagram dc ∈ PRk(G) with the element d∗c∗ ∈ PRk(G) such
that

dom(d∗) = dom(d) ∪ {k},
img(d∗) = img(d) ∪ {k},

c∗∣img(d) = c,
c∗(k) = 0.

This amounts to taking the diagram dc, adding a vertex to the bottom and top rows on the
right, and connecting these vertices with an edge colored with 0. For our Type B examples,
this looks like

− ↔ −

Let us look at the action of PRk−1(n;G) on Y k
A . Let

X ∶= span{yTA ∶ k ∈ T}
Z ∶= span{yTA ∶ k ∉ T}

Both of these spaces are PRk−1(n;G)-invariant by Proposition 4.1.4. Let us now show that
both are irreducible PRk−1(n;G) representations.

Let yTA, y
T ′
A ∈ X , then if d ∶ T → T ′ and c is the trivial coloring of d, dc yTA = yT ′A and

d ∈ PRB
k−1 since k ∈ T ∩ T ′, so each yTA generates X .

Let
x = ∑

T⊆[k]
k∈T

λT y
T
A ≠ 0

with λT ∈ C. Then there is some λT ≠ 0, so let d ∶ T → T and c be the trivial coloring of d.
Then

dcx = λT yTA
and dc ∈ PRB

k−1, so each element of X generates X so X is irreducible.
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Let yTA, y
T ′
A ∈ Z and now let d ∶ (T ∪ {k}) → (T ′ ∪ {k}) and c be the trivial coloring,

then d ∈ PRB
k−1 and dc yT

′
A so the basis elements generate Z.

Let
z = ∑

T⊆[k]
k∉T

λT y
T
A ≠ 0

then there is a T such that λT so let d ∶ (T ∪ {k}) → (T ∪ {k}) and c the trivial coloring,
then

dc z = λT yTA
and d ∈ PRB

k−1 so Z is also irreducible.
We can see from Proposition 4.1.13 that a set of distinct irreducible representations of

PRk(n;G) is the ones corresponding toG-partitions A such that ⋃A = ∅ or ⋃A = [`] for
some 1 ≤ ` ≤ k. Let us see how these representations restrict as PRk−1(n;G)-modules
(representations).

Proposition 4.1.15. Let k > 0. If A is a G-partition of [k] such that ⋃A = [`] where
1 ≤ ` < k, then as a PRk−1(n;G)-module Y k

A decomposes as:

Y k
A ≅ Y k−1

A/{`} ⊕ Y k−1
A

where if ` ∈ Ah, then A/{`} is the G-partition A1 of [k] with Ag1 = Ag for all g ≠ h and
Ah1 = Ah/{`}. If ⋃A = ∅, the left summand is dropped, and if ` = k, the right summand is
dropped.

Proof. The case ⋃A = ∅ is trivial.
Let ` > 0. We saw that Y k

A breaks up into the direct sum X ⊕Z, as defined above. Then
X ≅ Y k−1

A/{`} and Z ≅ Y k−1
A . If ` = k then Z = 0 and X ≅ Y k−1

A/{`}.

We see that we can index the irreducible representations Y k
A with a sequence of elements

in G:
Let the sequence (g1, g2, . . . , g`) with 0 ≤ ` ≤ k denote the irreducible representation

Y k
A with i ∈ Ag iff gi = g. For example, if G = Z2, k = 6 and ∣⋃A∣ = ` = 5 with A1 =

{1,3} and A0 = {2,4,5}, then we can represent the representation with the sequence S =
1,0,1,0,0 of length ` where we put 1s in the 1st and 3rd places and 0s elsewhere. Let us
draw the irreducible representations of each PRk(n;G) as a graph, with these sequences
representing the representations. We list the sequences representing the irreducibles of
PRk(n;G) on the kth row and draw an edge between the sequence S on the kth row and
S′ on the (k − 1)th row if the irreducible represented by S′ shows up in the decomposition
of the irreducible represented by S as a PRk−1(n;G)-module. By Proposition 4.1.15, we
draw an edge between S and S′ if S = S′ or S′ is the subsequence of S after removing the
last element. See Figure 4.1 for the first four levels of the Bratteli diagram for PRk(n;Z2).
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(∅)

(∅)

(∅)

(∅)

(0)

(0)

(0)

(1)

(1)

(1)

(0,0) (0,1) (1,0) (1,1)

(0,0) (0,1) (1,0) (1,1)

(0,0,0)(0,0,1)(0,1,0)(0,1,1)(1,0,0)(1,0,1)(1,1,0)(1,1,1)k = 4

k = 3

k = 2

k = 1

Figure 4.1: Bratteli Diagram for G = Z2 (Type B)

4.2 PRk(n;G) for G finite, non-abelian
We have shown in the last section that PRk(n;G) is semisimple when G is a finite abelian
group. We show in this section that there exists a k and non-abelian group G such that
PRk(n;G) is not semisimple for any n ≠ 0. Note that the basis vectors yTA which give
a complete decomposition of the regular representation into a direct sum of irreducible
subrepresentations were defined in terms of the roots of unity, since every cyclic group can
be embedded into the multiplicative group of complex numbers by mapping elements in the
cyclic group to roots of unity. However, we cannot extend this construction to non-abelian
groups.

Proposition 4.2.1. Let Sm be the symmetric group on the set [m]. Then the algebra
PR1(n;S3) is not semisimple for any n ≠ 0.

Proof. The symmetric group S3 contains the elements 1, (12), (23), (13), (123) and (132)
in cycle notation. For more information on the symmetric group and cycle notation, see
[10]. Therefore, the seven colored diagrams in the algebra are

1 (12) (23) (13) (123) (132)

where we write the label of the edge in the diagram next to that edge. By Proposition 2.1.2,
the sum of the squares of the dimensions of the irreducible representations of PR1(n;G)
must add to the dimension of PR1(n;S3). Since the set of colored diagrams form a basis
of the algebra, its dimension is 7. The only way that 7 decomposes as a sum of square
integers is
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7 =22 + 12 + 12 + 12

=12 + 12 + 12 + 12 + 12 + 12 + 12

so if PR1(n;G) is semisimple then its regular representation is completely reducible and
must either decompose into a direct sum of seven 1-dimensional representations or two
2-dimensional irreducible representations and four 1-dimensional representations. Both
cases require that the regular representation of PR1(n;S3) have at least three distinct 1-
dimensional subrepresentations. We will show that there are only two distinct 1-dimensional
subrepresenations of the regular representation in order to get a contradiction. Suppose that
the non-zero element

v = a0 +a1
1

+a2
(12)

+a3
(23)

+a4
(13)

+a5
(123)

+a6
(132)

in the algebra generates a 1-dimensional representation, then if we hit v with the diagram
with one edge labeled with (12), the result must be a multiple of v. After multiplying on the
left with this diagram, the labels of the edges are multiplied by (12) on the left, resulting
in the element

a0 +a1
(12)

+a2
1

+a3
(123)

+a4
(132)

+a5
(23)

+a6
(13)

Since this is a multiple of v, suppose it is cv for some c ∈ C, then

a0 = ca0
a2 = ca1
a1 = ca2
a3 = ca5
a5 = ca3
a4 = ca6
a6 = ca4

so a1 = ca2 = c2a1, a2 = ca1 = c2a2, and so on. Therefore, either all ai = 0 for i > 0 for c = 1.
Now if we hit v with the diagram with one edge colored with (23), the result is

a0 +a1
(23)

+a2
(132)

+a3
1

+a4
(123)

+a5
(13)

+a6
(12)
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so since this is also a multiple of v, suppose it equals ev for some e ∈ C, then

a0 = ea0
a1 = ea3
a3 = ea1
a2 = ea6
a6 = ea2
a4 = ea5
a5 = ea4

and again, either ai = 0 for all i > 0 or e = 1.
If ai = 0 for all i > 0, then since v is nonzero, a0 ≠ 0, so the representation generated is

the set of complex multiples of the empty diagram.
If one of the ai is nonzero, then c = e = 1 and by the equations above, a1 = a2 = a3 =

a4 = a5 = a6. Then if we hit v with the empty diagram we get

na0 +a1 +a2 +a3 +a4 +a5 +a6

which equals 7a1 + na0 times the empty diagram. Since this must be a multiple of v and
a1 ≠ 0 this element must equal zero, so 6a1 + na0 = 0. Therefore, a0 = −6a1/n and the
representation generated by v must be equal to

spanC{ −
6

n
+

1
+

(12)
+

(23)
+

(13)
+

(123)
+

(132)
}

Therefore, there are only two distinct 1-dimensional subrepresentations of PR1(n;S3), a
contradiction, so PR1(n;S3) is not semisimple.

It is unclear whether PRk(n;G) is not semisimple for any finite nonabelian group,
k > 0 and n ≠ 0, although we have only explored this one example in order to show that the
basis of yTA elements constructed in this thesis which decompose PRk(n;G) for G finite
abelian cannot be extended easily to all groups.
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