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Hermit Points on an Octahedron

Abstract

Consider a three-dimensional polyhedron. If we define the distance between two points on

the polyhedron to be the length of a shortest path between them – restricting ourselves

to the surface of the polyhedron – then hermit points are those points that are furthest

apart. The question of hermit points appears quite simple. Yet determining the location of

hermit points has proved impressively complex. It was not until around 2008 that papers

conclusively solving the location of hermit points on a rectangular prism were published

[3]; these papers show that the hermit points on a box are not necessarily the diagonally

opposed vertices that might seem to most intuitive. In the following pages we will explore

the hermit points on a regular octahedron. Consider a point p on a regular octahedron O.

By working with the idea of the cut locus p, examining various unfolding maps of O, and

looking at voronoi regions on these unfolding maps, it can be seen that the furthest point

from p is its antipode. From this conclusion it follows quickly that the hermit points of O

are the vertices of O.
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Introduction

Let’s say you take two tiny people - we’ll call them Alf and Meg - and plop them down

on the surface of an octahedron. Looking around Alf will realize that there are infinitely

many paths he can use to get to Meg, staying on the octahedron’s surface. It follows from

a generalization of the Hopf-Rinow Theorem to length spaces [? ] that one of these paths

achieves the infinum length of all these paths . We’ll call any such path a trail from Alf to

Meg. Now let’s suppose Alf and Meg actually cannot stand each other (you chose rather

poorly in populating this octahedron). Where can Alf and Meg stand such that the trail

between them is a long as possible?

These two points - the points on the octahedron with the maximum trail between them

- are what we will call the hermit points of the octahedron . This is the term used by Hess

et al. when examining the same question on a rectangular prism [3]. In the following pages

we examine the hermit points on a regular octahedron: an octahedron whose faces are all

equilateral triangles.
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Section 1

We start with an investigation of geodesics on the surface of an octahedron.

Definition For our purposes, a geodesic γ on a body M is a path that is locally distance-

minimizing. More formally, a continuous map γ : I → M on an interval I of the reals is a

geodesic if for every t ∈ U there is a δ such that for t1 ∈ (t− δ, t) and t2 ∈ (t, t+ δ) γ is the

distance minimizing path between γ(t1) and γ(t2).

Note that according to this definition the interval I upon which a geodesic γ is defined

can be any interval of the reals: closed, half-closed, or open. We also do not require that γ

be normalized.

Proposition 1.1. If γ : [0, ε]→M is a distance minimal path between γ(0) and γ(ε), then

γ is a geodesic.

Proof. Suppose γ is not a geodesic. Then γ is not locally distance minimizing and so there

is a point t ∈ [0, ε] where γ does not minimize. Hence we can choose t1 < t < t2 with a path

σ : [t1, t2]→ M such that σ(t1) = γ(t1), σ(t2) = γ(t2), and σ is strictly shorter that γ from

γ(t1) to γ(t2). Define ρ : [0, ε]→M by

ρ(t) =

γ(t) if t ∈ [0, t1) ∪ (t2, ε]

σ(t) if t ∈ [t1, t2]

Then the distance from γ(0) to γ(ε) along ρ is strictly shorter than the distance along γ,

a contradiction.

Now let us examine geodesics on an ocathedron. Clearly if we have a geodesic γ restricted

to the face of an octahedron then γ must be a straight line.

Proposition 1.2. Any geodesic containing an edge point of an octahedron must pass through

the edge at angle complement to the angle of indicence. That is, suppose γ : (−ε, ε) → O

is a geodesic and γ(0) is an edge point of O. Choose a point p that lies on the same edge

as γ(0). Then there must be a δ < γ such that for t1 ∈ (−δ, 0) and t2 ∈ (0, δ) the sum of

the angle between rays γ(t1)γ(0) and γ(0)p, with the angle between the rays γ(t2)γ(0) and

γ(0)p, must equal π.
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Proof. Suppose to the contrary that there is no such δ. Then for any neighborhood V of 0

we can choose t1 < 0 < t2 ∈ V such that the sum of the angles between the rays γ(t1)γ(0),

γ(0)p and γ(t2)γ(0), γ(0)p is not π. Choose t1 and t2 close enough to 0 so that γ(t1) and

γ(t2) lie on the faces on either side of γ(0). Let σ be a line between γ(t1) and γ(t2) such that

σ passes through the edge containing γ(0) at angle complement to its angle of incidence. Let

A ⊂ O denote the area bounded by γ and σ. We can unfold A, mapping it isometrically to a

subset of the euclidean plane (where the metric on A is just the length of a minimal geodesic

between two points). The image of A under this unfolding is a triangle, and applying the

triangle inequality we see that σ is a shorter path from γ(t1) to γ(t2) than γ. Since we can

find such t1, t2 for any neighborhood of 0, this contradicts the minimality of γ.

Proposition 1.3. Consider an octahedron O. No geodesic on O can contain a vertex as

an interior point. That is, if a geodesic γ : I → O has a vertex in its image then I must

contain at least one of its endpoints, the image of which is a vertex of O.

Proof. Suppose on the contrary that γ : (−ε, ε)→ O is a geodesic and γ(0) is a vertex of O.

Consider points a ∈ (−ε, 0] and b ∈ [0, ε). If γ(a) and γ(b) lie on the same face, then γ(a),

γ(0), and γ(b) form a triangle. Hence the distance from γ(a) to γ(b) is less than that along

γ, a contradiction.

If γ(a) and γ(b) lie on adjacent faces then the angle sum between the rays γ(a)γ(0) and

γ(b)γ(0) must be less than π. This follows from the fact the sum of the angles of the four

faces meeting at any vertex must be less that 2π and that the angle in each face must be

the same. Hence, by the triangle inequality, the distance between γ(a) and γ(b) must be

less than the distance along γ.

Finally, suppose γ(a) and γ(b) are on opposite faces. Since the sum of the angles of the

faces meeting at γ(0) must be less that 2π, there must be a direction of travel from γ(a) to

γ(b) such that the rays γ(a)γ(0) and γ(b)γ(0) have an angle sum less than π in this direction.

Again applying the triangle inequality we see that the distance from γ(a) to γ(b) must be

less than the path traced by γ. In all cases the distance from γ(a) to γ(b) is strictly less

than the distance along γ, contradicting the minimality of γ.

Definition Given two points p and q on an octahedron O I will call a distance minimal

geodesic between them a trail between p and q. The existence of such a geodesic follows

from an extension of the Hopf-Rinow Theorem to length spaces [? ].
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Define the distance d(p, q) from p to q as the length of a trail γ between p and q. It is

easy to check that this is indeed a metric on O.

Definition For any point p on an octahedron O, let Fp denote the set of all points furthest

from p. In other words,

Fp = {q ∈ O|d(r, p) ≤ d(q, p)∀r ∈ O}

.

Definition Let p be a point on an octahedron O. Then γp will denote any geodesic starting

at p. That is, γp is a geodesic γp : [0,∞)→ O or γp : [0, ε)→ O such that γp(0) = p.

Definition For any geodesic γp, γp minimizes on a subset of [0,∞) which, by continuity,

is either of the form [0, to] or [0,∞). If the former is true we call γp(to) the cut point of p

along γp.

Definition Let p be a point on a closed surface O. The cut locus of p is the collection of

all cut points of p.

Proposition 1.4. Let p be a point on an octahedron O and let Cp denote the cut locus of

p. Then Fp ⊂ Cp.

Proof. I prove that if q /∈ Cp then q /∈ Fp. Suppose a point q ∈ O is not in Cp. Let

γp : [0, t1] → O be a distance-minimal geodesic from p to q with γ(t1) = q. As q is not in

the cut locus of p, it is not a cut point of γp and hence we can find an ε such that γp is a

minimizing path on [0, t1 + ε]. Thus d(p, γp(t1 + ε)) > d(p, q), and so q /∈ Fp.

Theorem 1.5. Let p be a point on an octahedron O. Suppose q is in the cut locus of O.

Then one of the following must hold:

1. q is a vertex of O

2. There are two geodesics γ, ρ : [0, 1] → O such that γ(0) = ρ(0) = p, γ(1) = ρ(1) = q,

and the distances from p to q along γ and ρ are the same.
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Proof. I first show that if v is a vertex of O then v is in the cut locus of p. Let vo ∈ O

be a vertex. Note than O is path-connected. As such, the set of all paths from p to vo is

non-empty and we can choose a distance-minimal path from p to vo. This distance-minimal

path must be a geodesic (by proposition 1.1), so we can let γp : [0, ε]→ O be a normalized

minimal geodesic with γ(ε) = vo. We know that vo cannot be an interior point in the range

of γ and hence γ(ε) = vo must be the cut point of p along γ.

Now suppose that γp : [0,∞) → O is a normalized geodesic and γp(to) (the cut point of

p along γp) is not a vertex of O. Because γp(to) is not a vertex we can extend γp beyond to

to to + ε. Construct a sequence of geodesics {σj} as follows:

• take a sequence of real numbers {εn} such that εn < ε for all n and εn → 0.

• let σj be the normalized minimizing geodesic from p to γp(to + εj).

Consider {σ′j(0)}. At this point the argument varies slightly by whether or not p is a vertex,

and edge point, or a face point. We will step through the argument carefully for the case

where p is a vertex, and not repeat it in entirety for the other two cases.

If p is a vertex then consider each of its four adjacent faces along with their corresponding

σji(0) (the σji that leave p through that particular face). In one of these four subsets of

{σj} there must be a subsequnce {σjn(0)}such that {σ′jn(0)} is convergent. Since the plane

along this side of the octahedron is compact, σ′jn(0)→ σ′(0) for some σ. If p is on an edge

or a face we can use similar arguments to find such a σ. By continuity, σ must be a distance

minimizing geodesic to γ(to). I claim that σ 6= γ.

Suppose to the contrary that σ = γ. For the sake of simplicity, look first at the case

where p is a vertex point. Since σ = γ, σ and γ must leave p along the same face. Call

this face F ⊂ O and consider the space of tangent vectors at p of curves that leave p

through F . Take the exponential map on this space, expFp , taking tangent vectors to O.

By definition, σj(ti) = γ(to + εj) for some ti < to + εj. Since σ′j → γ′, there must be a σj

in any neighborhood of γ and so for any neighborhood U of toσ
′(0) there must be a j such

that tiσ
′
j(0), (to + εj)γ ∈ U and expFp(tiσ

′
j(0)) = expFp((to + εj)γ. This means that expFp is

not singular at toγ
′(0), which, since O is essentially flat, cannot be true.

The cases where p is an edge point or a face point are very similar: in the edge case we

look at one of the two faces on either side of p, and in the face case we can actually use
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the tangent plane at p. In both cases the contradict the singularity of the esponential map,

showing that we must have σ = γ

Definition Intuitively, an unfolding of an ocathedron O is a flat shape obtained by cutting

O so that it can lie flat. We formalize this notion by saying that a subset U ⊂ R2 is an

unfolding of an octahedrom O if U is connected, closed, and there is a continuous surjective

map fU : U → O such that fU is a local isometry and fU resricted to the interior of U is an

open map. We will call such a map a folding map from O to U .

Note that this definition become problematic when we try to examine an unfolding that

requires different faces of an octahedron to overlap. A more accurate definition - one that

accounts for such overlap - would define an unfolding as a locally isometric immersion of the

universal cover of O\{v}, where {v} are the vertices of O. However, this definition is more

cumbersome and so for now we will leave our definition as it stands.

This definition allows for a point p on an octahedron O to be represented by multiple

points on an unfolding. In fact, much of this paper will be spent examining an unfolding on

which several faces of an octahedron are represented twice.

Proposition 1.6. Let U ⊂ R2 be an unfolding of an octahedron O and fU : U → O an

unfolding map. Then if γ : I → O is a geodesic on O, f−1(γ(I)) is the disjoint union of

straight lines.

Proof. First suppose γ : A ⊂ R → O is a geodesic on O, and take t ∈ A. We then have

three cases:

1. t is not an endpoint of A and f−1(γ(t)) is not in the boundary of U . Then we can

choose ε such that for all t1, t2 ∈ (t − ε, t + ε), γ is the minimizing geodesic between

γ(t1) and γ(t2), and f−1(γ(t1)) and f−1(γ(t2)) lie in a neighborhood of f−1(γ(t)) on

which f is isometric. Take t1 < t < t2 ∈ (t − ε, t + ε). I claim that that f−1(γ(t))

lies on the line between f−1(γ(t1)) and f−1(γ(t2)). For if f−1(γ(t)) did not lie on the

same line as f−1(γ(t1)) and f−1(γ(t2)) then we would have, by the triangle inequality

on U ⊂ R2,

d(γ(t1), γ(t2)) = d(f−1(γ(t1)), f
−1(γ(t2)))

< d(f−1(γ(t1)), f
−1(γ(t))) + d(f−1(γ(t)), f−1(γ(t2)))

= d(γ(t1), γ(t)) + d(γ(t), γ(t2))
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= d(γ(t1), γ(t2)),

a contradiction.

Thus for all t1 < t < t2 ∈ (t−ε, t+ε), f−1(γ(t)) must lie on the same line as f−1(γ(t1))

and f−1(γ(t2)). This means that f−1 ◦ γ must be locally straight at t. Since t was

arbitrary – under the conditions that it not be an endpoint of A and f−1(γ(t)) not be

in the boundary of U – f−1 ◦ γ must be a straight line across any continuous stretch

of all such t. For take a closed interval [0, ε] of such t. We can cover [0, ε] with open

intervals which f−1 ◦γ map to straight segments. By compactness be can take a finite

subcover. As this is a cover of open intervals, the intervals must overlap. Patching

these intervals together we see that their pre-image under γ−1 ◦ f – the pre-image of

γ([0, ε]) – must be a straight line.

2. f−1(γ(t)) is in the boundary of U . If we can find an ε such that f is isometric on

(f−1 ◦ γ)((t− ε, t+ ε)) then we can apply the above argument.

Suppose then that we can find no such ε. I claim that in this case f−1 ◦ γ is discontin-

uous at f−1 ◦ γ(t). We know from 1.) that, locally, f−1 ◦ γ approaches f−1 ◦ γ(t) in a

straight line. By assumption, we cannot find an ε such that (f−1 ◦ γ)((t− ε, t+ ε)) is

a connected straight line on U . Thus either f−1 ◦ γ passes through (f−1 ◦ γ)(t) at an

acute angle or is discontinuous at (f−1 ◦ γ)(t). Since the first option would mean that

f is not locally isometric at (f−1 ◦ γ)(t), f−1 ◦ γ must be discontinuous at (f−1 ◦ γ)(t).

3. Finally, suppose t is an endpoint of A but f−1(γ(t)) is not in the boundary of U . By

the continuity of γ and the continuity of f−1 on the interior of U , f−1(γ(t)) is either

an endpoint of f−1 ◦ γ or at a point of self-intersection of f−1 ◦ γ.

The above conclusions, taken together, show that f−1 ◦ γ(A) is a collection of straight lines

with any discontinuities occuring at the boundary of U and the image of the the endpoints

of A.

Lemma 1.7. If L ⊂ U is a straight, closed line then f(L) has the same length as L

Proof. Since L is a geodesic on U we can cover L with open intervals {Ui}i∈I on which L

is distance minimizing. Furthermore, as f is a local isometry we can cover L with open
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intervals {Vj}j∈J on which f is isometric. Take {Ui ∩Vj|i ∈ I, j ∈ J}. This is an open cover

of L by sets on which L is minimal and f is isometric. By compactness we can take a finite

subcover {W1, ...,Wn}. In order to cover L these intervals must overlap and we can choose

points q1, ..., qn+1 from the overlaps such q1 and qn+1 are the endpoints of L, L is distance

minimizing from qi to qi+1 for all i, and f is isometric on {qi, qi+1}. These properties imply

that the length of f(L) is the sum of the distances between qi and fqi+1 for all i, which is

exactly the length of L.

Lemma 1.8. If L ⊂ U is a straight line then f(L) is a geodesic.

Proof. This follows directly from the fact that straight lines are geodesics on any subset of

R2, the definition of distance, and that f is a local isometry.

Definition Take a metric space X and a subset {pj}j∈J ⊂ X. Then the voronoi region Rj

associated with the point pj, for some j ∈ J , is the set

Rj = {x ∈ X|d(x, pj) ≤ d(x, pi)∀i 6= i}

I will define the voronoi lines of {pj}j∈J to be

L = {x ∈ X|∃j 6= i s.t. x ∈ Rj ∩Ri}

= {x ∈ X|∃j 6= i s.t. d(x, pj) = d(x, pj) ≤ d(x, pk)∀k}

. Intuitively, the voronoi lines are the boundaries of the voronoi regions.

Theorem 1.9. Take a point p on an octahedron O and an unfolding U of O with unfolding

map fU . Let {qj} denote the set of all points in O such that there are geodesics γ 6= σ that

are minimal from p to qj. Suppose that for every γp : [0,∞) → O with cut point to and

γp(0) = p the following hold:

• There is a continuous straight line L ⊂ U such that fU(L) = γ([0, to]) .

• fU is injective on both f−1U ({qj}) and the voronoi lines of f−1U (p).

Then the image under fU of the voronoid lines of f−1U (p) along with the vertices of O is

exactly the cut locus of O.
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Proof. Our conditions suppose that each geodesic γp from p can be represesented as a straight

line on U for as long as γp is globally minimal. With this in mind, let Cp be the cut locus

of p, {vj} be the vertices of O, and Lf−1
U (p) be the voronoi lines of f−1U (p). We wish to show

that f(Lf−1
U (p)) ∪ {vj} = Cp.

By Theorem 1.5, Cp is the the set {qj}∪ {vj}. Thus it is sufficient to show fU(Lf−1(p)) =

{qj}. First take qi ∈ {qj}. Then we can find γ 6= σ : [0, to] → O, minimal geodesics with

γ(to) = σ(to) = qi. By supposition there are two straight lines L1 and L2 on U such that

fU(L1) = γ([0, to]) and fU(L2) = σ([0, to])

Thus we have two distinct straight lines from f−1U (p) to f−1U (q) for each point in these

two sets, and so f−1U (q) ⊂ Lf−1
U (p). Since we supposed that fU was injective on {qj}, this

means that there are two distinct, distance minimal lines from f−1U (p) to f−1U (q) and so

Uf
−1(q) ∈ Lf−1

U (p). As fU is continuous on the interior of U , L1 and L2 must have endpoints

that map to qi. And since fU is injective on f−1U ({qj}), these endpoints must be the same.

Hence f−1U (qi) is in the voronoi lines of f−1U (p) and so {qj} ⊂ fU(Lf−1
U (p)).

Now suppose q ∈ fU(Lf−1(p)). Then there is a point x ∈ U such that fU(x) = q and we can

choose y, z ∈ f−1U (p) such that there are two distinct minimum length, straight lines from y, z

to x. Call these lines L1 and L2. We know that fU(L1) and fU(L2) are globally minimizing

geodesics on O, since all globally minimizing geodesics can be represented as straight lines

on U . Furthermore, as fU is both a local isometry and injective at x, there must be a

neighborhood about x on which fU is injective. Thus we must have f(L1) 6= fU(L2). Hence

fU(x) = q ∈ {qj} and so fU(Lf−1
U (p)) ⊂ {qj}.
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Section 2

I now examine the cut locus of a regular octahedron, using the above claim to determine

Fp for any p on a regular octahedron. In order to understand the cut locus we will spend

the next several pages examining the unfolding which is shown on the next page. As this

unfolding depends on the point p we will call it Up and denote its unfolding map by fUp .

Boundary Lines on an Unfolding of the Octahedron

I start by defining some terminology that will make this examination easier. For the rest

of this section we will assume that we have an octahedron O and have chosen a point p of

the surface of O.

Definition The starting face of p is the face of O on which p resides (if p is on a vertex or

an edge it will not matter which of its faces we choose as the starting face).

Definition The secondary faces are those faces who share an edge with the starting face.

I will use the terms starting face and secondary face to refer both to the faces on the

octahedron and their pre-image under an unfolding map.

For the rest of this section we will focus on Up. Intuitively, Up is formed by cutting the

starting face into three pieces (cutting from p to each of its vertices) and unfolding along

these lines and the edges of the secondary faces. Each section of the starting face and

its secondary face appears twice. A diagram both of O and of Up are shown on the next

page. Note that the arrows on the diagram of Up represent the two ways a secondary face

is portrayed, in a sense rotating the secondary face around an inner vertex.
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I have labelled the faces of the diagram above. Faces 5a through 7b are secondary faces.

The starting face is cut into sections but will be called face 8. Face 1 is what I will call the

antipodal face of p. On Up I will use the term outer vertex of a secondary face to refer to the

vertex of a secondary face that does not intersect any of faces 2, 3, or 4. The inner vertices

of that face are the other two vertices.

Definition Note that on Up, f
−1(x) consists of six points. These points will be called point

representations and labelled r1 through r6.

In order to examine the cut locus of the ocathedron O we will look at the voronoi lines of

{r1, ..., r6}. Note that these voronoi lines can be determined from the perpendicular bisectors
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of all possible pairings of r1, ..., r6. A point z is in the voronoi lines of f−1(p) if and only

if it lies at the first intersection of a geodesic from a point-prepresentation and one of its

perpendicular bisectors.

Definition For linguistic simplicity I will call a perpendicular bisector between ri and rj

the boundary line between ri and rj, written riBrj = rjBri.

Note that in our chosen unfolding the six point-representations lie in a roughly cirlular

shape. I will say two point-representations are one apart if there is one point-representation

separating between them (clockwise or counterclockwise), two apart if there are two point-

representations between them, etc. In the following exploration I break the boundary lines

into four categories:

• A 1st category boundary line is a boundary line rjBri such that ri and rj are next to

each other and f is not injective on the sections of starting face that ri and rj lie on.

In other words, ri and rj lie on different representations of the same section of starting

face.

• A 2nd category boundary line is a boundary line rjBri such that ri and rj are next to

each other and f is injective on the sections of starting face ri and rj lie on.

• A 3rd category boundary line is a boundary line rjBri such that ri and rj are one

apart.

• A 4th category boundary line is a boundary line rjBri such that ri and rj are two

apart.
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1st Category Boundary Lines

For these argument refer to Figure 1 below. Let ri be one of the six point-representations

on Up. ri corresponds to one secondary face (in this case 6b), and we will refer to the vertex

of this secondary face nearest the center of the unfolding as ri’s interior point v . Let rj

denote the point-representation gotten by rotating r1’s secondary face around v by 2
3
π. Note

that d(r1, v) = d(rj, v). Thus riBrj passes through v. To determine the angle at which riBrj

FIG. 1.

passes through v, note that this angle must be the same as the angle α formed by the line

from ri to v with the edge of the secondary face.

With this in mind we look at a partial unfolding of O that maps a triangle to the starting

face and the three secondary faces – faces 5, 6, 7, and 8, shown in Figure 2. Each of the

lines from the pre-image of p to a corner of the larger triangle represents a line from a point-

representation rk to its interior vertex . Thus, applying the previous logic to each riBrxj
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where rxi and rxj share the same section of starting face, we determine the relationship

shown on Figures 2 and 3 below. Each such rxiBrxj starts at one of the inner vertices of

the unfolding. The angle they make with the edge of the inner face is a reflection over the

angle bisector of the angles shown in Figure 2

FIG. 2.

FIG. 3.

Proposition 2.1. The three 1st categoryboundary lines intersect at one point.

Proof. Take the triangle fin Figure 2 formed by the starting face and the three secondary

faces (faces 5, 6, 7, and 8). Draw lines from the pre-image of p to each of the vertices.
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Now compare that to the inner face of U with the 1st category boundary lines drawn on

(on Figure 3). Both of these are triangles with lines passing through each vertex. The lines

in the second case are gained from the first by reflecting them over their respective angle

bisectors.

Hence we have two triangles such that the first triangle has a point in the interior and

lines connecting this point to each of its three vertices. The second triangle also has lines

passing through its vertices, lines which are formed by reflecting the lines in the first triangle

over their perpendicular bisectors. It is known that in this situation the lines in the second

triangle meet at one point. I will sketch the proof of this fact below, as I will later need to

generalize it beyond triangles. The idea of this proof is credited to Doyle [? ].

Take the first triangle (an example is shown above). The three lines in this triangle form three

sub-triangles: draw a perpendicular bisector of each of these (labeled H1 through H3 on the

diagram below). Note that H1 = sin(a)L1, L1 = H2
sin(b) , etc. Combining these equalities, starting

at H1 and moving clockwise, we get

H1 = sin(a)
sin(b)

sin(c)
sin(d)

sin(e)
sin(f)H1

Hence sin(a)
sin(b)

sin(c)
sin(d)

sin(e)
sin(f) = 1.

Now look at the second triangle and the lines gained by flipping the lines of the first

triangle over their perpendicular bisectors. These lines, along with the edges of the triangle,

form three triangles. The question is whether or not we can fit these three triangles together

to form the larger triangle without overlapping them. Note that if start with h1 we can

shrink or stretch the subtriangle clockwise to fit it. This would make l1 = h1
sin(b)

and h2 =

l1sin(1) = h)1 sin(a)
sin(b)

. We can then scale the third subtriangle to fit this triangle. The

question is whether or not at this point the third triangle will fit the first subtriangle. Let

l3 denote the original length of the counter-clockwise side of the first subtriangle. Let l′3
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denote the clockwise side of the third subtraingle after the above process. Then, combining

trigonometric equalities,

l′3 = sin(c)
sin(f)

sin(a)
sin(d)

sin(e)
sin(b)

l3 = sin(a)
sin(b)

sin(c)
sin(d)

sin(e)
sin(f)

l3

But given what we know from above, this means l′3 = l3. Thus the three subtriangles fit

together.
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2nd Category Boundary Lines.

Figure 4 below will be helpful in understanding this argument. Take a point-representation

ri. Let rj denote the point-representation neighboring ri that does not share a secondary

face with ri. The secondary faces corresponding to ri and rj share a common vertex, v. Note

that d(ri, v) = d(rj, v), since on the octahedron these sections of the starting face meet at

p. Thus riBrj must pass through v. To determine the angle at which riBrj passes through

v note that this angle must be the same as the angle α formed by the line between ri and v

and the edge of the starting face, as shown below.

With this in mind we now examine the starting face. Note that all angles on Up between

FIG. 4.

point-representations and the vertices of their starting face sections can be represented on

the starting face by drawing lines from p to the three vertices of the starting face. Applying

the same logic that we used to determine riBrj we find the relationship shown in Figures 4
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and 5: take the triangle in Up composed of faces 1, 2, 3, and 4. Each 2nd category boundary

line, riBrj, passes through a vertex of this triangle. The angle each riBrj forms with this

triangle is a reflection over the angle bisector of the angle p makes with ri’s section of the

starting face.

FIG. 5.

FIG. 6.

Proposition 2.2. The 2nd category boundary lines intersect at one point.

Proof. This proof is the same as for the 1st category boundary lines, concluding that the

boundary lines intersect at what is called thier isogonal conjugate.
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3rd Category Boundary Lines

Once again, let ri be a point-representation on our unfolding. Let rj denote a point repre-

sentation one away from ri. To determine the location of riBrj it will not matter if rj is

clockwise or counter clockwise from ri.

FIG. 7.

Lemma 2.3. Let v be the outer vertex of the secondary face between ri and rj. Then

d(v, ri) = d(v, rj).

Proof. To follow this proof it will be very helpful to look Figure 7 above. Draw a line

between ri and v, and a line between rj and v. Consider the two triangles formed by these

lines and the pre-images va and v2 of the vertex that ri’s and rj’s secondary faces share (face

6 on the diagram). I claim that these two triangles are equivalent. We know that two of
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their sides are of equal length (labelled a and b in the diagram). What remains to show is

that the two angles, labeled η and µ, are the same. To see this, note first that the angles

labelled φ and ρ must sum to π
3
. Then

η = π
3

+ π
3

+ φ = π
3

+ π
3

+ (π
3
− ρ) = π − ρ = µ

Thus the two triangles are identical. Their longest sides, which have lengths d(ri, v) and

d(rj, v), must then be of equal length.

Hence riBrj must pass through v. To determine the angle at which riBrj passes through

v note that it must pass through v at the same angle as the angle nearest v in the triangles

just examined (this angle is labeled α). α is determined by the location of p: we see that α

is the angle formed by drawing a line from p to the face two away from the starting face, to

the vertex of that face furthest from the starting face.

To understand α better we turn to a partial unfolding Uo of O, shown directly above.

Uo is similar to Up but has face 8 at its center. It also does not include face 1. Draw a

line from f−1Uo
(p) to each of the vertices on Uo that are furthest from the starting face. We

label the angles that these lines creates at the vertices a though f . These are exactly the

angles formed by drawing a line from p to the face two away from the starting face, to the

vertex of that face furthest from the starting face. Applying he argument from the previous

paragraph to each of these angles we are able to determine each 3rd category boundary line

riBrj. The relationship between the two unfoldings is shown below. Each triBrj passes
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through an outer vertex of Up at an angle that is π
3

less than one of the angles in Uo. Note

that the angles are arranged in the same clockwise order.

Proposition 2.4. All 3rd category boundary lines intersect at one point.

Proof. Consider the two hexagons illustrated above. Each has six lines, one starting at each

vertex. The interior angles are the same in the second hexagon as in the first. A line starting

at a vertex v in the first hexagon corresponds to a line in the second hexagon that has been

reflected over the angle bisector at v. Looking at Up and Uo we see that this is exactly the

relationship described above in the 3rd category boundary lines: the hexagons can be gained

from the unfoldings by drawing lines between each of the relevant vertices. To prove the

proposition it will be sufficient to show that if the lines in the first hexagon intersect at one

point then so do those in the second, since the lines in Uo intersect at f−1UO
(p)

Suppose that the lines in the first hexagon intersect in one point. Consider the triangles

formed by the intersections, as shown above. We label each line segment l1, ..., l6 and draw

in lines representing the height of each triangle, labeled h1, ..., h6.

We see that

l1 = h1
sin(a)

h2 = l1f(A)

l2 = h2
sin(b)

h3 = l2sin(B)

etc.

Substituting in we get
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h1 = sin(F )
sin(f)

sin(E)
sin(e)

sin(D)
sin(d)

sin(C)
sin(c)

sin(B)
sin(b)

sin(A)
sin(a)

h1

or

1 = sin(F )
sin(f)

sin(E)
sin(e)

sin(D)
sin(d)

sin(C)
sin(c)

sin(B)
sin(b)

sin(A)
sin(a)

With this is mind, turn to the second hexagon. Consider the triangles formed by the reflected

lines (for example, a triangle with interior angles A and f). Since the sum of the unlabeled

angles of each of these triangles must be 2π, we know that we can size these triangles such

that they all meet at one vertex. The question is whether or not we can size the triangles

such that their unlabeled angles meet at one vertex and their sides align such that they form

a hexagon.

Start by selecting one triangle, T1. Size the triangle that is clockwise, T2, so that their

bordering sides are the same length. Repreat this for all the triangles, moving clockwise

around the hexagon. We will show that once you have completed this process, the size that

T6 requires T1 to be is ecaxtly the sixe that T1 originally was. In order to see this, label the

heights of the traingles H1, ..., H6 and the triangle sides l1, ..., l6. Note that the triangles will

fit together if and only if

H1

sin(A)
= H2

sin(a)

H2

sin(B)
= H3

sin(b)

...

H6

sin(F )
= H1

sin(f)

We can combine these inequalities, eliminating every Hi except for H1. Thus the triangles

will fit together if and only if

H1

sin(A)
sin(a)
sin(B)

sin(b)
sin(C)

sin(c)
sin(D)

sin(d)
sin(E)

sin(e)
sin(F )

= H1

sin(f)

or

H1
sin(a)
sin(A)

sin(b)
sin(B)

sin(c)
sin(C)

sin(d)
sin(D)

sin(e)
sin(F )

sin(f)
sin(F )

= H1

But this must be true since we showed above that

sin(a)
sin(A)

sin(b)
sin(B)

sin(c)
sin(C)

sin(d)
sin(D)

sin(e)
sin(F )

sin(f)
sin(F )

= ( sin(F )
sin(f)

sin(E)
sin(e)

sin(D)
sin(d)

sin(C)
sin(c)

sin(B)
sin(b)

sin(A)
sin(a)

)−1 = 1−1 = 1.
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4th Category Boundary Lines

Consider a point-representation ri on Up. Let rj denote the point-representation that two

away from ri.

Proposition 2.5. riBrj passes through the center face of tUp (face 1), at an angle that is

parallel to the perpendicular bisector of the two edges of the face nearest ri and rj.

FIG. 8.

Proof. We first show that riBrj is parallel to the perpendicular bisector of the edges nearest

ri and rj. To see this we will label the two outer vertices of ri’s and rj’s secondary faces

v1 and v2, respectively (fUp(v1) = fUp(v2). Note that the anges labeled α and β on the

unfolding below must sum to π
3
. In addition, the lengths of the line segments labeled a and

b must be the same. With this in mind, draw a line L through v1 that is parallel to the

edge of the secondary face nearest rj. Since α+ β = π
3
, the angle γ between L and the line

from v1 to ri must be equal to β. Thus rj is offset from v1 exactly as ri is offset from v2.

Thus the line between ri and rj is parallel to the line between v1 and v2, and so riBrj is

perpendicular to the line between v1 and v2. Thus riBrj is parallel to the the perpendicular

bisector of the two other edges of face 1.
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We now show that riBrj must intersect face 1. To do this, note that the intersection of

riBrj and and face 1 depends on the location of the point half-way between ri and rj. For

the sake of notation, call this point p. Let us start when ri is the vertex point v2. In this

case rj = v1 and p lies at the center of the line between v1 and v2. Since we know that a

movement in ri implies the exact same movement in rj, this also means that a movement

in ri implies the same movement in p. Thus all possible locations of p form a triangle equal

in size, shape, and orientation to the faces containing ri and rj, but shifted along the line

between the two. Hence we can see that p is furthest from the center face when ri is either

of the vertices not v2. In the case when ri is the vertex furthest from the center face, riBrj

passes through the vertex of face 1 closest to v2, and when ri is the other vertex riBrj passes

through the vertex nearest v1. Thus riBrj must always pass through face 1.

We will stop our investigation of 4th category boundary lines at this point. The claim

just proved will be sufficient for the following arguments.
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Section 3

Obtaining and Examining the Cut Locus Using Boundary Lines

Theorem 3.1. Up is sufficient to determine the cut locus for any point p on an octahedron.

Proof. Let Cp be the cut locus of p on O and and let Lf−1
Up

(p) be the voronoi lines of f−1Up
(p)

in Up. Let {vn} be the set of all vertices of O and {qj} denote the set of all points in O such

that there are geodesics γ 6= σ minimal from p to qj. Recall that according to Theorem 1.9,

fUp(Lf−1(p)) ∪ {vn} = Cp if

1. for every globally minimizing geodesic γp([0, t]) there is a continuous straight line L

such that fUp(L) = γp([0, t]).

2. fUp is injective on Vp and the pre-image of {qj}.

I claim that both of these conditions hold for Up. Start with the first condition. I will

show that if to is the cut point of γp then there is a straight line whose image is γp([0, to]).

This is sufficient to prove (1).

To do this, first note that is a geodesic γp neither passes through two distinct secondary

faces (or pass through the same secondary face twice) nor passes through a vertex, then γp

can be represented as a straight line on Up. As we know that no geodesics can pass through a

vertex, this means that if γp is a geodesic and γp([0, t]) does not pass through two secondary

faces then there is a straight line L ⊂ Up such that fUp(L) = γp([0, t]).

I claim that if to is the cut point of γp then γp([0, to]) cannot pass through two secondary

faces. Suppose by way of contradiction that γp([0, to]) does pass through two secondary

faces of O. Consider f−1Up
(γp([0, to])). γp passes through two secondary faces if and only if

fUp ◦ γp does. f−1Up
◦ γp must leave a point representation ri in a straight line. Given our

unfolding, f−1Up
◦ γp will leave from two point representations, passing immediately through

two different representations of the same secondary face. One of these lines will continue

straight into faces 2, 3, or 4, while the other line will, in a sense, ”join it there”. The only

way for f−1Up
◦ γp to pass through a second secondary face of U is to continue through the

triangle formed by faces 1, 2, 3, and 4 (since the only other way to reach the border of U is

to go through a vertex and geodesics cannot continue through vertices).

However, in order for f−1Up
◦γp([0, to]) to pass into another secondary face it must necessarily

cross a 1st or 2nd category boundary line. This holds since – from what we know of 1st
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and 2nd category boundary lines – 1st and 2nd category boundary lines cannot lie entirely

outside of the triangle formed by faces 1, 2, 3, and 4.

Thus if γp([0, to]) passes through two secondary faces then there must be a straight line

L on U from a point representation rj to (f−1Up
◦ γp)(to) such that L is shorter than (f−1Up

◦

γp)([0, to]). Since fUp(L) is a geodesic on O and the length of fUp(L) is the same as the

length of L, we have a geodesic from p to γp(to) that is shorter than γp). This contradicts

the minimality of γp([0, to]). Thus γp([0, to]) cannot pass through two secondary faces. Hence,

by what was shown two paragraphs earlier, there is a straight line L ⊂ Up such that fUp(L) =

γp([0, to]). THence (1) is proved.

It remains to show that fUp is injective on the voronoi lines of f−1Up
(p) and on f−1Up

({qi}).

In terms of the voronoi lines, recall what was shown in section 2. From this we can see that

the voronoi lines must lie entirely withing faces 1, 2, 3, and 4. As fUp restricted to these

faces in injective, fUp is injective on the voronoi lines.

In terms of {qi}, suppose fUp was not injective on f−1Up
({qi}). Given the definition of Up,

this would require that there be a point qj ∈ {qi} such that qj lies within a secondary face.

But then there would have to be two distinct minimal geodesics from p to a point on a

secondary face. By what was just shown, each of these geodesics must pass only through

the starting face and the secondary face on which qi lies. Clearly there are not two distinct

minimal geodesics which do this.

Thus Cp = fUp(Lf−1
Up

(p)) ∪ {vj}. Hence we can determine Cp from the voronoi lines of

f−1Up
(p) and pre-images of vertices of O on our unfolding.

Having seen that Up is sufficient to determine the cut locus of O, I turn to Fp. Note, before

we begin,that on a regular octahedron Fp cannot lie on a secondary face of p. Recall also

that Fp must be a subset of the cut locus. Hence there must be a subset of Lf−1
Up

(p)∪f
−1
Up

({vj}

that maps to Fp. Hence to determine the subset of Up that maps to Fp it will be sufficient

to look at the voronoi lines and vertices that lie on faces 1, 2, 3, and 4. On these faces the

pre-image of vertices of O are contained in Lf−1
Up

(p), as can be seen from our investigations in

Setion I, so we need only examine the voronoi lines Lf−1
Up

(p). Furthermore, fUp restricted to

faces 1, 2, 3, and 4 is an injection. Hence for the rest of this section we will act as though

fUp is injective.
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In order to determine the subset of Lf−1
Up

(p) that maps to Fp, introduce a function Dp.

Recall that Uo ⊂ Up denotes the union of the faces 1, 2, 3, and 4 on the unfolding Up. Then

Dp : Uo → R is defined by

Dp(y) = d(y, ri),

where ri is the point-representation in whose voronoi region y lies. Intuitively, D maps a

point of faces 1, 2, 3, or 4 to its distance from the nearest point representation. D is well

defined, since if y lies in the voronoi regions of multiple point-representations the distance

to y must be the same for all the point-representations.

Proposition 3.2. For q ∈ fUo(Uo), Dp(f
−1
Up

(q)) = d(q, p).

Proof. Take q ∈ f(Uo) and suppose f−1Up
(q) lies in the voronoi region of ri. Let L1 denote the

line from ri to f−1Up
(q). By Lemma 1.8, fUp(L1) must be a geodesic from p to q. Furthermore,

Lemma 1.7 tells us that L1 and fUp(L1) have the same length. Hence Dp(f
−1
Up

(q)) is the

length of fUp(L1), and it will suffice to show that fUp(L1) is the minimal geodesic from p to

q.

Suppose not. Then there must be a geodesic σ : [0, t] → O from p to q such that the

length of σ([0, t]) is strictly less than the length of fUp(L1). Since σ is minimal from p to q,

Theorem 3.1 tells us that there must be a straight line L2 ⊂ Up such that fUp(L2) = σ([0, t]).

Since both fUp(L1) and σ contain q and fUp is injective on q, L1 and L2 must both intersect

at q (their endpoints). As L1 and L2 are distinct lines, they must start from different point-

representations; let rj be the point representation that L2 starts at. Then L2 is a line from

rj to f−1Up
(q) which has the same length as σ([0, t]), which is strictly less that the length of

L1. This contradicts the fact that fUpf
−1(q) is in the voronoi region of ri.

Lemma 3.3. For any p ∈ O, Fp = fUp(D−1(max(D(Uo)))). Intuitively, this means that

p ∈ Fp if and only if there is a point x ∈ Up such that f(x) = p and x is as far from its

nearest point representation as possible.

Proof. Suppose q ∈ Fp. Then D(f−1Up
(q) = d(q, p) = max{d(r, p)|r ∈ O} = max(D(Uo)).

Thus f−1Up
(q) ∈ D−1(max(D(Uo))) and so q ∈ fUp(D−1(max(D(Uo)))).

Now suppose q ∈ fUp(D−1(max(D(Uo)))). Since fUp is injective on Uo and D is only

defined on Uo, this means f−1Up
(q) ∈ D−1(max(D(Uo))). Then D(f−1Up

(q)) = max(D(Uo)) =
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max{d(r, p)|r ∈ fUp(Uo)}. Recalling that this maximum must be achieved at Uo, we see that

D(f−1(q) = max{d(r, p)|r ∈ O}. Hence q ∈ Fp.

Thus in order to find Fp it will be sufficient to find the point in Up that is furthest from its

nearest point-representation. Since we showed earlier that Fp ⊂ fUp(Lf−1(p)), we need only

look for the point in Lf−1
Up

(p) which is the furthest from the point-representation in whose

voronoi region it is contained. I will eventually show that this point is the point at which

the 3rd category boundary regions intersect. From here on this point will be denoted by yo.

In order to prove this claim we will need a better understanding of the voronoi lines and

regions of f−1Up
(p). To this end we prove the following six lemmas about the voronoi lines.

Lemma 3.4. The union of the voronoi regions of f−1Up
(p) must cover the entire unfolding.

Proof. Suppose there is a point z on U such that z is contained in none of the voronoi regions

of f−1(p). Consider a line L1 from a point representation ri to z. As z is not in the voronoi

region corresponding to ri, L1 must cross a boundary line riBrj. So now consider the line

L2 from rj to z, which we know must be shorter than L1. Since z is not in the boundary

region corresponding to rj, is must cross a boundary line rjBrk. Consider the line L3 from

rk to z, which must be shorter than L2.

Continue repeating this process, choosing lines L1 < L2 < L3 < ... < Ln. We know

that there are only finitely many point-representations, so we will eventually have to use a
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point-representation rn twice. But this means that the line Lm from rn to z is strictly short

than itself, a contradiction.

Lemma 3.5. The voronoi region of a point-representation ri ∈ f−1Up
(p) is entirely determined

by its 1st, 2nd, and 3rd category boundary lines.

Proof. Suppose otherwise. Then there is a point-representation ri whose voronoi region is

partially determined by its 4th category boundary line. That is, there is a line L leaving ri

who intersects the 4th category boundary line corresponding to ri before it intersects any

of ri’s other boundary lines. This 4th category boundary line must thus pass within the

region determined by the two 3rd category boundary lines corresponding to ri. We know

from our previous investigation that the 4th category boundary line is parallel to the edge

of face 1 that is closest to ri. Thus, given the vertices that the 3rd category boundary lines

must leave from, this 4th category boundary line must pass closer to ri than yo, in a sense

”cutting yo off from ri” (see Figure 10). Now travel along this 4th category boundary line

until it intersects another boundary line corresponding to ri, say riBrj. Consider the area

A formed by the 4th category boundary line, riBrj, the 3rd category boundary line that

passes through ri’s secondary face, and the other 3rd category line closest to rj. Note that

this area can be contained in none of the voronoi regions of f−1Up
(p), contradicting Lemma

3.4.

FIG. 9.
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Lemma 3.6. Take a voronoi region or a point-representation ri ∈ f−1Up
(p). Then the voronoi

region Ri corresponding to ri must be partially determined by both ri’s 1st and 2nd category

boundary lines. That is, there are lines L1 and L2 leaving ri whose first intersections with a

boundary line of ri is with a 1st and 2nd category boundary line, respectively.

Proof. This follows directly from the fact that the 1st and second category boundary lines

of ri both start at an inner vertex of ri’s secondary face, from which they continue inside

the triangle formed by faces 1, 2, 3, and 4. Note that the 3rd category boundary lines

corresponding to ri start at the outer vertices of the secondary faces on either side of ri

and must stay contained within these faces. Hence the vertices from which the 1st and 2nd

category lines start must always be in the border of the voronoi region of ri.

Lemma 3.7. Consider a point representation ri. If the voronoi region Ri that corresponds

to ri does not contain yo, then both of the voronoi regions either side of Ri must.

FIG. 10.

Proof. Suppose that Ri does not contain the 3rd order point. Note that Ri must be a subset

of the region determined by the two 3rd category boundary lines corresponding to ri (see

figure 10 above). Thus if Ri does not contain yo there must be a 1st or 2nd category boundary
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line of ri that cuts across the 3rd order boundary lines. This boundary line, together with

the two 3rd order boundary lines, forms a triangle Ti that is not contained in Ri.

Now suppose that one of the boundary regions bordering Ri, say Rj, also does not contain

the 3rd order point. Then there is a triangle Tj formed by the two 3rd category boundary

lines of rj and another boundary line, such that Tj ∩Rj = ∅.

We see that Ti∩Tj 6= ∅. Hence there is a point z ∈ Ti∪Tj such that y /∈ Ri∪Rj. However,

since each boundary region is a subset of the region formed by its two 3rd category boundary

lines, there is no other boundary region that can contain z. Thus we have produced a point

that is contained in none of the voronoi regions, which we showed was imposible.

Lemma 3.8. Take a voronoi region or a point-representation ri ∈ f−1Up
(p). If the 1st and

2nd category boundary lines corresponding to ri intersect within the region determined by

ri’s two 3rd category boundary lines then they must intersect on the 3rd category boundary

lines corresponding to the point-representations on either side of ri.

FIG. 11.

Proof. For this argument it will be helpful to refer to Figure 11 above, on which an example

is given. On this diagram the three 3rd order boundary lines in question are labeled L1, L2,

and L3. Suppose by way of contradiction that the two second order lines intersect within the

region formed by the two 3rd order boundary lines, but not on the third one, L2. Now, the

1st category boundary line starting nearest L1 cannot cross L1 and the 2nd order boundary

line starting nearest L3, for otherwise we would have two neighboring boundary regions that
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do not contain the 3rd order point. Thus both of the 2nd order boundary lines must cross

L2. Consider the triangle formed by L2, the two 2nd order boundary lines, and their point of

intersection (in green). This triangle is neither in ri’s voronoi region nor the voronoi region

on whose side of L2 it lies. Hence there is no boundary region which contains this triangle,

which we have shown is not possible.

Lemma 3.9. Consider a point-representation ri ∈ f−1Up
(p). Suppose the 1st order boundary

line corresponding to ri passes out of the region formed by ri’s two 3rd category lines by

intersecting one of these lines, riBrj, at a point other than yo. Then ri’s 2nd category

boundary line cannot do the same.

Proof. Suppose the 1st category boundary line, riBrj, leaves the region by intersecting a

3rd category boundary line riBrm, and the 2nd category boundary line does the same. We

break this into two cases, both of which are illustrated on the next page.

1. riBrm is the third category line nearer to rj. Since we know from Lemma 3.8 that

riBrj and the 2nd category line cannot intersect within the region formed by the 3rd

category boundary lines, this means that the second category line must pass closer to

yo than riBrj. Consider the triangle Ti formed by the 2nd category boundary line,

riBrm, and the 3rd category line corresponding to the point-representations on either

side of ri. Neither of the voronoi regions on either side of ri can contain Ti, so Ti is

not in the union of the voronoi regions, a contradiction.

2. riBrm is the third category line further from rj. In this case Lemma 3.8 tells us that

this means riBrj must pass through region deermined by the 3rd category lines closer

to yo than the second category boundary line. Consider the triangle Tj formed by

riBrj, riBrm and the 3rd category line corresponding to the point-representations on

either side of ri. By the same reasoning as above Tj cannot be contained in any of the

voronoi regions, a contradiction.
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FIG. 12.

Lemma 3.10. Take a point representation ri ∈ f−1Up
(p). Let riBrj be a 1st, 2nd, or 3rd

category boundary line. Then for any point q ∈ riBrj∩Uo, as you move along riBrj towards

the point-representation two away from ri your distance from ri increases.

Proof. Note that the point closest to ri on riBrj will lie directly between ri and rj. As

you move away from this point your distance from ri will increase. Thus to prove the claim
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it will be sufficient to show that if rj is next to ri or one away from ri then the midpoint

between ri and rj must lie outside of Uo. (We consider only Uo rather than U because we

already know that the furthest point from p cannot lie on a secondary or starting face.) This

is obviously the case when rj is next to ri. To see that this holds for the case where rj is

one away from rj note that in this case the midpoint is as close as it can be to Uo when p is

a vertex of O, and the midpoint lies on the edge of Uo (which still means our distance from

ri will increase as we move away along riBrj).

Theorem 3.11. I now finally show that Fx = {fUp(yo)}.

Proof. I will show that for any z ∈ Lf−1
Up

(p), D(z) ≤ D(yo). Applying Lemma 3.3 and the

fact that f−1Up
(Fp) ∈ Lf−1(p), this means that Fx = {fUp(yo)}.

Let z ∈ Lf−1
Up

(p). Let ri be a point representation in whose vonoroi region z lies. Then we

know from Lemma 3.7 that z lies on a 1st, 2nd, or 3rd category boundary line corresponding

to ri. Call this boundary line riBrj (choosing one line if z is at an intersection). I examine

4 cases:

• Case 1: z lies on a 3rd category line corresponding to ri:

Since part of the border of ri’s voronoi region is determined by its 3rd category bound-

ary line, claims (re intersection of 1st and 2nd) tell us that this voronoi region must

contain yo. Hence we can follow riBrj to yo. Lemma 3.10 tells us our distance from ri

will increase constantly along this path, and so D(yo) > D(z).

• Case 2: riBrj is a 1st or 2nd category boundary line which continues through yo.

In this case follow riBrj to yo. Lemma 3.10 again tells us that the distance from ri

increases along this path, so D(yo) > D(z).

• Case 3: riBrj is a 1st or 2nd category boundary line which does not intersect one of

ri’s 3rd category lines.

In this case ri’s 1st and 2nd category lines must intersect within the region determined

by its 3rd category lines. Lemma 3.8 tells us that these lines must then intersect on the

3rd category boundary line which corresponds to the two point-representations next to

ri. Call them rj and rk. We can continue from z along riBrj until we intersect rkBrj

at a point zo. Our distance from ri will increase along this path and so D(zo) > D(z).
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When we reach zo there will be no direction within ri’s voronoi region that will increase

our distance from ri. However, zo lies in the voronoi region of rj, on a 3rd category

line of rj. Thus we can apply the arguments from Case 1 to zo, travelling a path of

increasing distance until we reach yo and D(yo) > D(zo) > D(z).

• Case 4: riBrj is a 1st or 2nd category boundary line which does intersect one of ri’s

3rd category lines.

In this case we can follow riBrj away from z until we intersect the 3rd category line

at a point zo. We can then follow this boundary line to yo. Lemma 3.10 again tells us

that D(yo) > D(zo) > D(z).

The only case not examined above is the case where z = yo, which is trivial. The

combination of these cases show that for any z ∈ Lf−1
Up

(p), D(yo) ≥ D(z). Furthermore, our

arguments also showed that D(yo) = D(z) only when yo = z. Hence yo = D−1(max(D(Uo)))

and so Fp = {fUp(yo)}.

Theorem 3.12. fUp(yo) is the antipode of p.

Proof. To see this let us return to the 3rd category boundary lines. Diagrams are provided on

the next page. Recall how we determined the 3rd category lines on Up: on Uo we drew lines

from f−1Uo
(p) to the outer vertices of faces 2, 3, and 4. Then, with Up oriented upside-down

from Uo, we drew corresponding lines on Up starting at the outer vertices of the secondary

faces, so that the angle a given line made with the edges of its face was flipped from the

corresponding lines in Uo. For example, from one of the representations of face 3 on Uo we

have a line going towards f−1Uo
(p) at an angle of a degrees. This corresponds to a line leaving

the vertex of face 6a in Up at an angle of π
3
− a. We also showed that the 3rd category

boundary lines intersect at yo.

Consider Up with the 3rd category lines drawn on, and choose two 3rd category lines that

start at opposing vertices. Consider the triangle formed by these two lines and the line that

joins their starting vertices. There are three such triangles on Up and they determine the

location of yo. Furthermore, we can see these same triangles on Uo, where they determine the

location of f−1Up
(p). Observe that the position of these triangles of face 8 is exactly opposite

their position on face 1. Hence yo is the antipode of f−1Up
(p).
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Section 4

In this section I use the fact that {Fp} is exactly the antipode of p to calculate the

distance from p to its furthest point, finally maximizing this as p moves over a face. For

any point p ∈ O let p′ denote the antipode of p. Clearly p′ must lie on the face opposite the

starting face of p. Let us consider the possible face-paths that we can take to get from p to

its opposite face. The minimum number of faces that we can use is four. If we travel over

four faces and do not pass through the opposite face we will necessarily have to pass through

two secondary faces (or the same secondary face twice). We know from the previous section

that if any line segment passes through two or more secondary faces, there is a shorter line

segment between the same two points. Thus to take the shortest path from p to p′ we must

take a four-face path.

FIG. 13.

Let us then consider all possible four-face paths from the starting face to the face opposite

it. There are six such paths, shown on figure 13 above. Each of these paths corresponds to
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a different line segment from x to x′. However, we can see that there is a symmetry such

that half of the line segments are essentially equivalent to the other half. To see this, take

a four face path. Flip the four faces over and translate them up until they lie ontop of the

four-face path across from its original location. The two paths are identical. Thus we need

only consider three paths from x to x′, shown on Figure 14.

Denote the lengths of the three paths by A, B, and C. If we place the three face-paths

on a coordinate grid with the lower left vertex the starting face at the origin, we can use

trigonometry and simple coordinate distances to determine the length of each path.

FIG. 14.

If we set the edge of a face to be equal to two units on a coordinate grid, we find the

following relationships. When the coordinates of a point p on the starting face are (x, y)
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then the coordinates of p′ are:

• Along path A: (y
√
3−x
2

,−2
√

3 + x
√
3+y
2

)

• Along path B: (3 + x,
√

3− y)

• Along path C: (−y
√
3−x
2

, 2
√

3 + −x
√
3+y
2

)

Calculating the distance from p = (x, y) to each of these points, we get the following lengths

of the three different paths:

• Length of A: 3x2 − 2
√

3xy − 6x+ y2 + 2
√

3y + 12

• Length of B: 4y2 − 4
√

3y + 12

• Length of C: 3x2 + 2
√

3xy − 6x+ y2 − 2
√

3y + 12

The distance from p to p′ is the minimum of these lengths. Note that while the specific

locations and path lengths depend on the scale we chose, the relative lengths of the paths

do not. To determine where on the starting face paths A, B, and C are minimal we set their

lengths equal to eachother.

• The lengths of A and C are equal when x = 1.

• The lengths of A and B are equal when y = x√
3
.

• The lengths of C and B are equal when y = 2−x√
3

Note that these are exactly the perpendicular bisectors of the starting face. Using these

inequalities we can see (and the reader can check) that A minimizes when p is in the lower

right third of the starting face, B minimizes when p is in the top third of the starting face,

and C minimizes when p is in the lower left third of the starting face. Consider the functions

fP that takes a point p on the starting face to the length of path P (where P is one of A, B,

or C) from p to p′. Define f(p) to be the minimum of {fA(p), fB(p), fC(p)} (diagram ???).

Then f gives the distance of a point p on a face to its antipode.

Given that we can rotate the entire diagram to turn one path into the position of another,

we know that fA, fB, and fC act the same on the thirds of the starting face on which they

minimize. Hence we need only consider one of these functions, restricted to the third on

which it minimizes, to determine which points p are furthest from their antipodes. It is clear
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that fB reaches its maximum value at the vertex of the starting face. Thus the distance

from p to its antipode is maximized when p is a vertes, and so the hermit points of a regular

octahedron are exactly all the vertices of this octahedron.
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