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Abstract

Two different positive integers a and b are said to form an amicable pair
if s(a) = b and s(b) = a, where s(n) denotes the sum of proper divisors of
n. In 1981, Pomerance proved that the count of amicable numbers up to
x is less than z/exp ((log z)Y/ 3) for x large. It follows immediately that
the sum P of the reciprocals of numbers belonging to an amicable pair
is a constant. In 2011, Bayless & Klyve showed that P < 656,000,000.
In this paper, we improve this upper bound by proving that P < 4084,
based on recent work by Pomerance that shows a stricter bound for the
count of amicable numbers plus some other ideas that are new to this
thesis.
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1 Introduction

Let o denote the sum-of-divisors function, and let s(n) = o(n)—n denote the sum-of-proper-
divisors function. Two different positive integers n and n’ are said to form an amicable pair
if and only if s(n) = n’ and s(n’) = n. We say n is amicable if it belongs to an amicable
pair.

The smallest pair of amicable numbers, 220 and 284, was first known to Pythagoras in
the 5% century BC, and was ascribed with many mystical properties. In the 9*" century,
Thabit ibn Qurra found a formula for amicable pairs, which states that if p = 3-2" — 1,
q=3-2""1_1,r=9.22""1 _1 are primes, then 2"pq, 2"r form an amicable pair. For
example, n = 2 yields the primes p = 11,q = 5,7 = 71, which generates the pair (220, 284).

It was not until 1636 that a second pair of amicable numbers (17296, 18416), which
corresponds to n = 4, was found by Fermat. Later, Descartes gave a third pair of amicable
numbers (9363584, 9437056), which corresponds to n = 7.

In the 18" century, Euler generalized Thabit’s rule: if p = (2"~™ +1)2" — 1, ¢ =
(2rm 4 1) .27t — 1, = (27 4+ 1)2 . 22771 — 1 are primes, then 2"pq, 2"r form an
amicable pair. He also compiled a list of 64 amicable pairs, of which two were later shown
to be not amicable. Interestingly, Euler completely overlooked the second smallest amicable
pair (1184,1210), which was discovered by Paganini, a 16-year-old Italian, in 1866.

We now know exhaustively all amicable pairs with the smallest member up to 10 and
nearly 12 million other pairs [6]. However, the infinitude of the set of amicable numbers
has yet to be proved.

Let A denote the set of amicable numbers, and let A(z) = AN[1,z]|. In 1954, Kanold
initiated the quest to explore the asymptotic density of A, showing that #.4(z) < 0.204x
for x sufficiently large [4]. In 1955, Erdds was the first to prove that the set of amicable
numbers has zero asymptotic density, showing that #.A(z) = o(x) [2]. From 1973 to 1981,
Rieger, Erdés, and Pomerance improved upon this result, proving that #.A(zx) is less than
z/(loglogloglog )2, O (x/logloglog ), / exp ((loglog log 3:)1/2), and z/ exp ((log x)1/3)
for x sufficiently large [10][3][7][8]. Most recently in 2014, Pomerance showed that #.A(z) <
z/ exp((log z)'/?) as x — oo [9].

It follows immediately from the last two results that the reciprocal sum of the amicable
numbers is finite. In 2011, Bayless & Klyve showed a numerical bound for the reciprocal
sum of amicable numbers, which they denote by P:

0.0119841556 < P < 656,000,000.

In this paper, we improve Bayless & Klyve’s result in [1] by showing a smaller upper bound
for the reciprocal sum of amicable numbers.

Theorem 1.1. We have ;
P= — < 4084.
>
neA
We will introduce some standard notations and describe the framework in part 2, prove
some useful lemmas in part 3, and give detailed proof and numerical estimates in part 4.



2 Framework Description

Let n € A be an amicable number and n’ = s(n) denote the corresponding friend. For some
K >log 10", we can write

1 1 1 1
P=> o= 2 .+ ) R D -
neA neA neA neA
min{n,n’} <104 10 <min{n,n’}<exp(K) min{n,n’}>exp(K)

From the exhaustive list of amicable pairs with the smaller member less than 104, we
can compute

Po= > L 0.011984156739048 ...
neA "
min{n,n’}<10™
The list of amicable numbers is obtained from [6], and the reciprocal sum is computed in
MatLab with standard machine precision. This result differs from the lower bound shown
in [1] by approximately 10~Y.

An amicable pair (n,n’) can fall into one of the following cases: (n,n’) are both odd,
(n,n’) are both even, or (n,n’) are of different parity.

If n and n’ are of different parity, then o(n) = o(n’) = n+n’ is odd. Since o(p?) =
1+p+p?+---+p*is odd if and only if p = 2 or 2|a, the odd member is a square, and the
even member is either a square or twice one. No odd-even amicable pair has been found, so
the reciprocal sum of such amicable numbers, if they exist at all, is small and bounded by

3 1 ~14
e<y ) S <lixiot

a>1014

From this point forward, we consider only amicable pairs whose members are either
both odd or both even.

2.1 Small amicable numbers

For amicable pairs (n,n) such that 104 < min{n,n’} < exp(K), we will grossly overesti-
mate their contributions to P since the asymptotic behavior outlined by the proof has yet
to kick in. In particular, we will consider even amicable pairs and the odd ones separately.
If n and n’ are both even, then
n’ 1 1
Wiy
dln
d>1
and similarly n/n’ > 1/2, so 101 < n,n/ < 2exp(K).
If n and n’ are odd, then min{n,n'} is an odd abundant number. Recall that an integer
is abundant if the sum of its proper divisors is greater than the number itself.



‘We have

P(K) = > =Y o > ;

14 ned ncA neaéh
10**<min{n,n’}<exp(K n even n o
{ Jsexpli0 10M<n<2exp(K) 10 <min{n,n’}<exp(K)
1 1 1
< 3 E — | +2 E -1,
n
10 /2<n<exp(K) n odd abundant
N 101 <n<exp(K)

where

1 exp(K) dt
- < / — = K —log(10'1/2),
n 1 t

14
101 /2<n<exp(K) 04/2

and

—_

>
n odd abundant

1014 <n<exp(K)

is smaller. Let’s find out how small it is.
Let h(n) = o(n)/n, then h is a multiplicative function. Let f; be the multiplicative
function defined as follow

For x > 3, we have

n<x n<z dn
n odd n odd
so that
h(n) 1 1 £:(d) 1
DELCANE SRS YAV SEATID SR A S LI S
n<z n<x dln d<z 1<m<z/d d<z 1<m<z
n odd n odd m odd d odd m odd
Here,
[z/2] [z/2]
1 1 1 1 1+log(z/2) logz + 2.307
— <1 1+ = - <1
) DL e e DIl e N
1<m<zx k=1 k=1
m odd
and p p )
Z:fj()S fj():H AL 100 B —
d d P p?
d<z d odd p odd
d odd

is finite, as we shall see in Lemma 3.7.



Since h(n) > 2 for all n abundant, we have

1 1 h(n)!  m;(logx + 2.307
S Lo Ly MO mllogs 280
n - n o 27+1
n<x n<x
n odd abundant n odd

After investigating j € [1,40], we pick j = 18, which yields 7; < 6231.87, so that

1
> — < 0.01189log z + 0.02743.
n

n<x
n odd abundant

Thus, we have
P(K) <0.52378 K — 15.71668.

2.2 Large amicable numbers

For the remaining pairs, i.e., (n,n’) such that min{n,n'} > exp(K), we will consider them
in small intervals and build an ordered list of properties.

Let Ay = {n € A: e~ < n < ek}, and let w(n) denote the number of distinct primes
dividing n.

Property (1): For n € Ag, w(n) < |4logk].

[4log k|
Let up = ] ppil, where p; is the i*" prime. We will show that for n € Aj such that n
i=2 '

and n’ have property (1), n/ur < n' < npuy.

Let Ly = exp(\/E /5). Recall that a positive integer s is squarefull if and only if for every
prime p dividing s, p? also divides s. Also recall that a positive integer is squarefree if and
only if it is not divisible by any perfect square. Let P(-) denote the largest-prime-divisor
function.

Property (2): For n € Ay, the largest squarefull divisor of n is at most Ly /4.

Property (3): For n € Ay, the largest squarefree divisor d of n with P(d) < Ly
satisfies d < /3.

Property (4): For n € Ay, P(ged(n,s(n))) < Li/2.

Let n = pm, n’ = p'm’ where p and p’ are the largest prime factors of n and n’. Note
that properties (2), (3), and (4) imply that p # p’,p{m, and p' { m/.

Property (5): For n € Ag, mm' > z—z
Property (6): For n € Ay, p < /1L,

Write m = mgm; where my is the largest divisor of m such that my is either a squarefull
number or twice one, then my is odd, squarefree, and coprime to mg. Let ¢ = P(my), and
write ¢ + 1 = goq1 where qq is the largest divisor of ¢ 4+ 1 such that qq is either a squarefull
number or twice one.



Property (7): For n € A, qo is at most 16Ly.
Property (8): For n € A, P(o(m1)) > L.
For each property (i), let

. 1
PO — -
> .
ncA
min{n,n'}>exp(K)
n,n’ pass (1)—(i-1)
n or n/ fails (i)

Then,
i > 1 1 > @)
POy Y () m X
k=K—+1 neAy k=K+1
n,n’ pass (1)—(i-1)
n fails (i)

Finally, we are left with n € Ay, where both n and n’ have properties (1)-(8). We proceed
to estimate

1 > 1 1 i
D Y D AR

ncA k=K+1 neAy k=K+1
min{n,n'}>exp(K) P(n)>P(n')
n,n/ pass (1)—(8) n,n/ passes (1)—(8)

so that

S|

2.

neA
min{n,n'}>exp(K)

8
< P43 PO,
i=1

To optimize the sum of the expression above and P(K), we choose K = 5935.

In this paper, we will repeatedly use €, ¢, and ¢ to denote different constants. In all
cases, the explicit formula for these constants are clear from the context and are used in
computation. The naming of constants follows the convention that ¢ — 0 and ¢+ — 1 as
k — oo. The letter p, g, and r are reserved for prime variables. We use ¢ and ¢ to denote
the Riemann zeta function and the Euler phi function, respectively. We also use 7(z;d, a)
to denote the number of primes p congruent to a modulo d with p < z.



3 Lemmas

Lemma 3.1. For all k,d,v € Z",z > 0,

1 . 13
Z §m1n{1+,}.
v z 2

z<v<ez

Proof. If z <1, then
If 1 <z <2, then

If z > 2, then

Lemma 3.2. For all x > 286, we have

1 1
H ::E — < logl + B+
(z) = 0808 210g2x
p<w
and 1
Hi(z) = —— <loglogz + B + + D,
1(z) Zp_l_ glog Tlog%a

p<w

where B =0.261497... and D =} 1/p(p —1) = 0.773157....

Proof. The inequality (3.1) is from [11], and (3.2) follows immediately.

Lemma 3.3. : For all z > 286,

Proof. From equations (3.17) and (3.18) of [11], we have

1 1 1 1
S=Y" - N Z<log(l+logz)+B+——— —loglogz — B+

z<p<lez p<lez p<z
1 1 1 1

—log (1+ + + R
g< logz> 2(14+1ogz)?  2log?z ~ logz  log?z

1
2log? 2




Lemma 3.4. : For allw € Z*,x > 0 such that H(z) < w + 1, we have

Z 1 _ H(z)” w41
wl w4+ 1—H(z)
P(d)<z

d squarefree

Proof. By the multinomial theorem, we have

w(d)>w Jj=w p<z
P(d)<z
d squarefree
H(x)v H(x) H(z)?
1
w! < +w—i—l * (w+1)(w+2) +

Lemma 3.5. For alld € Z*,d,xz > 3,

1 _ 2(loglogz —loglog(2 — 1/d) + 1/ log(x/d))
> p =

p=—1(mod d) QO(d)

d<p<zx

Proof. From the Brun-Titchmarsh theorem [5], we have

2x
TS Sy os(a/d)

Using partial summation, we have

1 2 2 z dt
2 S s T o /Zdl Hlog(/d)

x — >

d<p<zx
+ loglog(z/d) — loglog(2 — 1/d)> .

IN

2
(

1
) <log(x/d) + loglog(t/d)

¥
2

( 1
p(d) \log(z/d)




Lemma 3.6. Forxz > 1,

So(@):= > 1<((3/2)Va,

s<x
s squarefull
1 3
Si(z) = Z -< —
5 s N
s squarefull
Forx>2
loglogs _ 3loglogx + 3log?2 loglog x + log 2 1
= < 2C(3/2 .
Sil(2) Z s = N +20(3/2) + 2x log x

s>z
s squarefull

Proof. Since every squarefull number can be written as a product of a square and a cube,
1/2
Y=Y Y 123 (5) =vE Y gmsctave
a2b3§x ngl/s ag(x/b3)l/2 b<:1:1/3 b<a:1/3

We can verify S (z) < 3/y/z for < 14000 using S1(1) = ¢((2)¢(3)/¢(6). For « > 14000,

we have

1

a2b3>x
1 1
S p X o wt 2 Zag
b<zl/3 a>(z/b3)1/2 b>a:1/3
13 3\ 1
<y <+<) e Y
3 3
b<al/3 A v b>gl/3 b
1 1 1
< $2/3 1/2 Z b3/2 +¢(2) ( 2$2/3>
b<zl/3
€(3/2)  1+¢((2)/2  ¢(2)
- 1/'1/2 + I2/3 + T
<3
-_— ﬁ'

By partial summation and our inequality for Sy, we also have

log1
Si(z)=lim Y B8P

Z—00 S
r<s<z
s squarefull
- log1 # log1
- lim <(So(Z) Soizr)) oglog = _/ (Solt) — So(x))d < ogtogt»
Z—00 p

log logt 1
= dt
/ ol < = logt>

8



loglogt 2 1
— dt
t3/2 t3/2logt * t3/2 loga:>
oglogt 2 °O>
Vit Vitlogz|,

loglog x 1 )

Now, we can improve this estimate:

loglog s loglog s
sin= Y ey
r<s<a? s>a2
s squarefull s squarefull

1
< loglog z* g - +2¢(3/2)
s>x s
s squarefull

loglog x + log 2 1
+
T 2z log x

< 3loglogx + 3log2
< NG

log log x + log 2 1
T 2xlogx )

#2003/ (

Lemma 3.7. Let f be the multiplicative function defined as in 2.1. For all j € ZT,
. (2
= H <1_|_f](p) +fy(229 ) +>
p p
p odd
is a finite number.

Proof. First, we have

Therefore, for each fixed j € ZT

1+



so that

1
logm; = O Zﬁ =0(1).
p odd

O

In order to estimate an upper bound for 7;, we choose large integers A, B, and compute

) A a i+l
. Y f 1
I A0 ) < I (e S ) o)

p<B p<B

I1 <1+fj](3p)+...> §p1>_£<1+(1+i)j—1+<p€1>jp(pl_1)>

p>B j /
. (/BOO ((1+};)J -1 <$f1>] x(ml_ 1>> dx) .

Table 3.1 shows upper bounds of 7; for j € [1,40], computed with A = 500 and B = 106.
We pick j = 18 to get the smallest coefficient in section 2.1.

and

Table 3.1: Estimates of upper bound of =;

J T /20 || j T m;/2
1 1.23 | 0.616851 | 21 52890.17 | 0.025220
2 1.58 | 0.394426 | 22 110675.79 | 0.026387
3 2.10 | 0.262036 || 23 234319.96 | 0.027933
4 2.90 | 0.181057 || 24 501650.18 | 0.029901
5 4.16 | 0.130076 || 25 1085437.39 | 0.032349
6 6.21 | 0.097029 || 26 2372559.18 | 0.035354
7 9.60 | 0.074986 || 27 5236626.72 | 0.039016
8 15.33 | 0.059886 || 28 11666433.49 | 0.043461
9 25.24 | 0.049293 | 29 26225299.18 | 0.048848
10 42.72 | 0.041714 | 30 59464173.31 | 0.055380
11 74.16 | 0.036209 | 31 135959987.61 | 0.063311
12 | 13179 | 0.032176 | 32 313376228.98 | 0.072964
13| 239.35 | 0.029217 | 33 727960204.98 | 0.084746
14 | 44349 | 0.027069 | 34 | 1703849881.31 | 0.099177
15 | 837.30 | 0.025552 | 35 | 4017349516.24 | 0.116920
16 | 1608.70 | 0.024547 | 36 | 9539842817.16 | 0.138823
17 | 3141.94 | 0.023971 || 37 | 22811315060.41 | 0.165974
18 | 6231.87 | 0.023773 || 38 | 54914363890.79 | 0.199777
19 | 12541.54 | 0.023921 || 39 | 133067328413.01 | 0.242048
20 | 25588.42 | 0.024403 | 40 | 324514342521.39 | 0.295144

10



4 Main argument

4.1 For n € A, w(n) < |4logk]

Let v = [4log k]; as in Lemma 3.4, we have

J J
Ny | =1 1 1 Ha(eF)%(u+ 1)
2ol sl < -
- | a - | — — u! — k
ey AL L G oI\ 1 u! (u+1—Hq(er))
w(n)>u

By equations (3.41) and (3.42) in [11], we have that for n,n’ > exp(K),

/ /
£<U(n):0'(n) < n <(6’Y+6)]0g10gn’
n n n p(n)

and similarly, n/n’ < (7 + €) loglogn/, where ¢ = 1.78107 ... and € < 0.01. We have
n
7 < (€7 + €)loglogn’ < (e + €) (loglog(n) + loglog((e” + €) loglogn))
which implies

!/

1 - (e” + ¢€)loglogn N (e7 + €)loglog((e” + €) loglogn)) - 2loglogn - 2log k

)

n n n n n

for n > exp(K).
Therefore, we have

P(l) S Z 321),
k=K+1

where
Hi(eF)(u+1)
ul (u+1—Hy(ek))

s < > (1+2logk)-
k=K+1
We can compute
106
3 st < 0.788795.
k=K+1

For k > 105, H,(e*) < logk + 1.034656 by Lemma 3.2, and

u+1 1 1
= < < 1.358597.
u+1—"Hi(ek) 1 _ H;iel’“) 1— logf;gégi‘llﬁw

By Stirling’s inequality,




Therefore,

o o0 u
1+ 2logk [ e(logh + 1.034656
EW = S s®<igssser S S8 (e(og ha )>

k=106-+1 hetoog1 | V2mu w
X 14+ 2logk [e(logk + 1.034656) 18k
< 1358507 Y LfZloah felloaht )
0P 41 v8mlogk 4logk

e(log k+1.034656) <1.

because u > 4logk and © Tlog k

For all k > 100, (1ot tLOMO0) _ ¢ 4 exLOBIOH < (730464 = h , so we have

o0

1358597
Z (1 + 2log k)h*loek

\/8mlog 106 10641

= 0.072910 Z (14 2log k)k*leh
k=106+1

1+ 2logt
< 0.072910 /106 T41.256301

EM <

dt
< 0.300429.

Thus, we have
PM) < 0.788795 + 0.300429 = 1.089224.

Amicable pair multiplier

For n € Ay, k > K satisfying property (1), we will show that
n /
- S n S n,LLk,
Mk

where

o Pi—l

Proof. If n,n’ are even, we have

l\D\H

7_2 <

dln
d>1

Similarly, n/n’ > 1/2. The inequality follows immediately since py > 2.
If n and n’ are odd, the inequality on the right is straightforward:

|4log k|+1

R R DL B | v il | (e e

-1
dln p|n = P

12



If ' > n, then clearly n’ > n/uy. If n’ <n, then n’ € Ay where k' < k, and it follows that

( /) ( /) [4log k'] +1 |4logk|+1

n sin on p Di i

n' = o n’ Hp—l_ H pi — 1 H pi — 1 H
pln’ =1 =2

O

4.2 For n € A;, the largest squarefull divisor of n is at most
Ly /4

Write n = sv where s is the largest squarefull divisor of n. Assume that s > L /4; then by
Lemma 3.1 and Lemma 3.6,

> <1+71,>§(1+Mk) > %:(14-!%) > é > i§3(1+uk)281(Lk/4).

n

€A cA L./4 k-1 ok
oL/ oL l4 s Sgua%fuu sSUS
Therefore,
oo
PO < 3O 3(L+ pr)S1(Lk/4)
- 2
k=K+1

By Lemma 3.6, we can compute

% 3(1 4+ ) Sy (Ly/4)

> 5 < 35.876404.

k=K+1

For k > 109,

o [o@)

(2) . < - e
E ' Z 2 <9 Z e\/E/lo
k=106+1 k=106+41
> 14+ 2logt
< 9/ 1208 < 1.939049 x 10797

t:106 6\/7?/10

Thus, we have
P® <3509.

4.3 For n € A, the largest squarefree divisor d of n with
P(d) < Ly has d < /3

For n € Ay, write n = dv where d is the largest squarefree divisor such that P(d) < L.
Assume that d > €¥/3, we have

u
O D S R 7Y
n d v T2 u! u+1—H(Lg)
neAy d>ek/3 b=l _ ek
d>ek/3 P(d)<Ly d d

d squarefree

13



_ [loger/3] _
where u = [ ogLr | = 3log L . Therefore,

2 3(1+ u)H (L) (u+ 1)
P® <
- k:ZK:H 2ul(u+1—H(Lg))
We can compute

10° u
> S e HILR) (1) g 690498 x 107154,

2ul(u+ 1 — H(Ly))

k=K+1

For k > 105, H(Ly) < log <\F> + B+ & <logk, and u = {?Ao];LJ > 310];[% > Vk, so

u+1 _ 1 < 1 Y
uw+1—H(Lg) 1_7";(?{)_1_\1/0%%_;61
We can estimate
E®) .— i 3(L + pu)H(Li)"( u+1 i (1+ 2log (elogk)ﬁ
2ul(u+1—H(L NG

k=106+1

[e%¢) \[

log

< 3/ (1+ 2logt) <e o8 > dt < 1.904584 x 1071421,
108 \/Zf

Thus, we have
PGB <37 x 10714,

4.4 For n e Ay, P(ged(n,s(n))) < Li/2

Let » = P(gcd(n, s(n))), and suppose r > Li/2. Because r|o(n), there exists ¢*||n, such
that r|o(¢®). Then Li/2 < r < o(q%) < 2¢%, so ¢* > Ly /4. It follows from property (2)
that a = 1, implying that ¢ = —1(mod 7). Because r is a prime larger than Ly /2, ¢ > r.
We can write n = rqu, so that

1 1 1 1 3 1 1
DR DD DI DR 2 > o >, 7
neAy 7>Ly/2 r<q<ek F ot >Li/ r<q<e®
r>Ly /2 g=—1( mod r) ¢=—1( mod r)

by Lemma 3.1. From lemma 3.5, we have

1 _ 2(logk —loglog(2 — 1/7) 4+ 1/log(ek /7)) _ 2(logk + c)
Z P o(r) = r—1

I

<

r<g<ek
g=—1( mod r)

where ¢ = 2/k — loglog(2 — 2/Ly) because Ly /2 < r < \/qr < \/n < €¥/2.

14



‘We have

1 1 3(logk + ¢)
= < 3(logk < '
D, ,S8leghte) D, o < Tpue
neAg r>Li/2
T>Lk/2
Therefore,
o0
6(1 + o) (log k + ¢)
PW < :
<> L2
k=K+1
We can compute
106
6(1 log k
3 L+ pe)oghk +¢) _ o omooer
Ly —2
k=K+1

For k > 10%, 2/k —loglog(2 — 2/Ly) < 1, so that

— Ji=106 eVit/5 — 2

dt < 3.54463 x 10780,

Thus, we have
P® < 0.051.

4.5 For n e Ay, mm' > Z—i

In [9], it is shown that each pair m,m’ yields at most one amicable pair n,n’. Assume that
I €F

mm < I
If m, m’ are both even, then

k k _ _

m,m’ even
m<m/’
If m,m' are both odd, because pm, p'm’ is an amicable pair, exactly one of pm, p'm’ is
abundant, call it pm. Then, (p + 1)o(m) > 2prn, so h(m) > 2p/(p+ 1) > 2 — ¢, for some
small € = 1% because p is big. In particular, p > e(F=D/[4ogk] 1y properties (1), (2), (3).
We have

. Ly L m Ly 2(2—¢)J
mm’gz— mSZ—k
m,m’ odd 1 odd
h(1i)>2—e

Therefore, we have

neAg mm/<ek /Ly, ! < €& mm! < €~
mm’<i Lk L
=Ly m,m’ odd m,m’ even



Since we are picking up all pairs of m, m’ such that m, m’ < e*/L;, without any constraint
as to in which intervals n and n’ fall, this part does not need a multiplier. In fact, we not
only pick up both n and n’ in the argument, but also may have counted each pair multiple
times, thus

P(5) < - € 7Tj/2(k —log Ly + 2307) k—logLr+1—1log?2
= 2 Ly 2— ) 1 :

k=K+1

Choosing j = 18, we can compute

f ¢ (ﬂj(k—long+2.307) k—log Ly +1—log2

Ly, 2(2 — €) 1 ) = 0.806677 ...

k=K+1

For k > 10°%, we can ignore the parity of m, m’ and estimate

o

k —log(Ly) + 1 — log 2 © 441

E®<e og(Ly) +1—log2 e/ TH 2 < 3.818819 x 10777
k=106+1 Lk t=106+41 e\/Z/S

Thus,
PB®) < 0.807.

4.6 For nc A, p < eM/iL,
Suppose that n € Ay, and p > €3*/4L;,, then m < e¥/*/L;. By property (5), m’ > e3¥/4.
Since n’ < pge®, it follows that p’ < pgpe®/4.
We can write n' = pp ... pjs" where s’ is the largest squarefull divisor and {p}} are in
descending order. Since n’ satisfies property (2), we have
n ek—l 4 ek

Py = >

> ek/2,

. >
pe Ly Ly
Therefore, we can pick i to be the largest such that p/ ...p} | < e¥/2.
Let D = p)...p;. Write n’ = DM, so that ged(D, M) =1 and M < e*yuy,/D. Further-
more, we have
"2 < D = piph...p_1)p} < .

Recall from [9] that such m satisfy the following congruence
o(m)DM = mo(m) (mod o(D)).

The number of choices for M < e*j;, /D which satisfy this congruence is at most

- e* <14 e ko (m) ged(D, o (D))
Do (D)/ged(o(m)D,o(D)) — D2 ’
Every prime dividing D exceeds Ly /2, because
/ k/2—1 4 ,
pg...p;: i " >€ -—>ek/37

Py pi_y8 we Ly
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and n’ has property (3), so it follows that p} > Ly > Lj/2.

Since ged(D, o(D))|(n,n’), property (4) implies that ged(D,o(D)) = 1. Also, o(m) <
mpy < ek/4uk/Lk. Given the choice of m, D, the number of choices for M is at most:
eOk/4y2

1 :
LD

Therefore, we have

5k/4, 2
Y o< % <1+6LkD’§k>

nEA ek/2<D<edk/ 4y,
p>e3k/AL,
5k/4,,2
< 3k/4 My 1
< e up + 5
Ly D
D>ek/2y,,

5k/4,,2 1 © 1
< o3k/4 € Mg (L / ~dt
= et Ly, ek * ohy2 12

5k/4,,2 1 1
< ey + Sk (k * >

Ly, ek = ek/2
k/4,2  3k/4,2
§63k/4 k+€ Mk+ M
H Ly Lr

Thus, the reciprocal sums of such numbers are at most

(6) 2 2
1 _a Ik H Pk
<k _<e + + ,
ngk n — ek—1 — <ek/4 Lk€3k/4 Lkek/4
p>e3k/4Lk

so that

©) - ok 1 i
P® < 1 .
- ekz;rl( + i) <ek/4 " Lye3k/4 " Lkek/4>

Note that the denominator contains e¥/4, which is significantly larger than the numerator.
In particular, we have

0 3 00 3
P®) < 3¢ Z w < 36/ Mdt < 2.5x%x 107238,
/A K /4

k=K+1

4.7 For n e A, qo < 16L;

Recall that for n = pm € Ay, we can write m = mgm; where mg is the largest divisor of m
such that my is either a squarefull number or twice one. Similarly, we can write ¢+1 = qoq1,
where qq is the largest divisor of ¢ + 1 such that qg is either a squarefull number or twice
one. Assume that gy > 16Lj. Because q < p, it follows that ¢ < e*/2

Z*<Z > ! > %SLZ > E

neA q0>16Lg g=—1(mod qo) ~ eF~1/q<v<eF /q qo>16Ly g=—1(mod qo)
qo>16Ly g<ek/? g<eh/?

, S0 we have

17



where ¢ = 14 1/eF/271,
If go > €¥/4, then ¢ > €F/* — 1, so that

5]

/ 0 /
Z 1 </ Z v Z 1 < M’
B q 1 qo 7 q0
g=—1(mod qo) qol(g+1) i=1
g<ek/? q<ek/?

where // = 1 4 1/(e¥/* — 1). Therefore, we have

1 1
E § - </(1+k/4) E —.
qo>e*/* g=—1(mod qo) 1 qo>ek/4 0
q<ek/2

Because qoq1 is even, the definition of ¢¢ implies that qg is either an even squarefull
number or twice an odd squarefull number, i.e., 2qq is squarefull. We have

> 1y > %:251(2&/4).

qo0
qo>eh/4 i>2ek/4
2qo squarefull 1 squarefull

If 16L;, < qo < /4, then by Lemma 3.5, we have

k/2 1
1 _ 1 N 2 <loglog(e / ) — loglog(2 — 1/qo) + m)
g q-—1 ©(q0)

>

q=—1(mod qo)
g<ek/?

1 2logk +c
< +
g —1 ©(qo)

where ¢ = 8/k — 2loglog(2 — 1/16Ly). Therefore,

1 1 1
Z E 63 E p— + (2logk + ¢) Z ()
16 Ly <go<eh/4 g=—1(mod go) qo>16L;, 1 q0>16Lj, 0
g<ek/? 2qo squarefull 2qo squarefull
By Lemma 3.6, we have
1
> <Yy — < 27851(32Ly),
g —1 )
qo>16Lk q0>16Lk
2qo squarefull 2qo squarefull

where (" =14 1/(16Lj — 1), and, using equation (3.41) in [11],

1 1 5
< — [ e7"loglog qo + )
Z ¢(qo) Z 9 ( " 2loglog g

16L,<qo<ek/2 qo>16Ly
2qo squarefull

18



log log qo 5 1
< Y il
= ¢ Z + 2loglog 16 Ly Z

qo>16L;, o q>16L;, 1O
2qo squarefull 2qo squarefull
loglog 5 1
<2 Y —— + >oo-
i>32L, ! loglog 16.Ly, i>32L,
1 squarefull 4 squarefull
581(32Ly,)
< 2678, (32L,) + 22Tk
< 275, (32Ly) + loglog 16 Ly,

where ¢ = 1.78107....
Thus, we have

) <1 + ;) < (14 e [Ml + k/4)S1(2e*1) + 281 (32Ly)

+(2logk + ¢) (2675*(32Lk) 4 551820y )] .

loglog 16 Ly,
Using Lemma 3.6, we can compute

10°
S 5D =642.0724....
k=K+1

For k > 10%, we have ¢ < 1, ¢,¢/,/ < 2, so that

EM<2 Y (1+210gk)<12(1+k/4)+ 5 +(210gk:+1)<4logk+ 15 >)

k=106+1 et/ eVk/10 eVk/10  eVE/5
o0 12(1 + t/4) 3 4logt 15
§2/106(1+210gt)< o/ +e\/i/10+(210gt+1)<eﬁ/10+eﬁ/5 dt

< 6.85011 x 10732,

Thus, we have
P < 642.073.

4.8 For n e Ai, P(o(my)) > Ly

Assume P(o(mq)) < L, then P(¢+ 1) = P(o(q)) < P(o(m1)) < L.
We have w(my) < |4logk]| — 1 by property (1), and

n 261’6/471

_ > —
pmy L

by property (6) and since my < 2s < Ly/2 by property (2), so that

26k/471 1/(l4logk|—1)
qz ( 5 > = Qo, say.
Ly
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q € [Qi, Qit+1) for separate values of i. We have ¢+1 = qoq1

Let Q; = QOL};, and consider
as in the last section, and
1 1 1 1 1 1
ZgSLiZ%Z%Z;Z@Z;
neAyg qo<16Ly mOSLk/Q a> Q; 2ek/4—1 p>Q;
P(o(m1))<Ly ~16Lp, ma2> Qiiill z<p<ez
9€[Qi,Qi41) P@)<Le  pim,)<Qis
where 1; =1+ 1/Q;, and z = ¥~ /gmgms. Since qq is always even,
1 1 1 1 2¢(2)¢(3
Z?o - <2+4+”'> 11 <1+p(p—1)> - %ng :
q0 p>2
If n,n’ are both even, then myg is even, and
Z 1 2¢(2)¢B3)
= Mo 3¢(6)
If n,n’ are odd, then mg is odd, and
S () - 2
omo p(p—1) 3¢(6)
Thus,
1 1 1 1 1 1
s Y (Gra)s T Gt X Gew)
neAy neAy neAy
P(o(m1))<Lg P(o(m1))<Lg P(o(m1))<Lg
q€[Qi,Qi+1) q€[Qi,Qi+1) q€(Qi,Qi+1)
n,n’ even n,n’ odd
20(2)¢(3)\? 1 1 1
< (44 ) <<()C()> D Y D
3¢(6) 5 @ La M2 S0P
qlzlGLZk mz2> QQC L2 z%pgéz
P@)<e pny)<Qus

since the multiplier for even pair is 3 and for odd pair is 1 + ug.
)—‘ = u;, say, so as in Lemma 3.4, we have

log(Qi/16L
Here, () > | P@2052)
1 1 —1/2)w i+ 1
Z —< Z — < (H(Lk) /2) . Ui + , (4'1)
0 Q1 P I q1 Uz' U1+1/2—H(Lk)
q1>16£k (ql)i k
P(q)<Ly wla)z
since ¢; runs over odd squarefree numbers.
.. k/4—14log2—log Q11 —2log L
Similarly, w(mg) > [ [4=1+log log?,ggi?lH = k—‘ = w;, say, so
. _ w; .
S Lg 3 LS (H(Qz+1)" 1/2)% | 111211 —I—f}i 42
m2>2ek/4—1 m2 P(m2)<Qit1 e We: w; +1/2 = H(Qi+1)
“Qit1L3 w(ma)>w;
P(m2)<Qit1
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We also have

Z 1 < 1 n 1
> P “logQi  log® Qi
z<p<ez

Note that estimates (4.1) and (4.2) are valid only if w; +1/2 > H(Ly) and w; + 1/2 >
H(Qit+1). For small values of i, u; will be too small to use (4.1) and for large values of 4,
w; will be too small to use (4.2). Let [a,b] be the interval of indices i where the estimates
(4.1) and (4.2) are valid. For ¢ < Q,, we have

a= 3 (:L+7,1L/>§(1+Mk)bo > L Z%

ma
neAg >28k/4—1 z<v<ez
P(o(m1))<Lg meZ QaLi z2>Q0
Q<Qa P(m2)<Qa
H —1/2)Wa-1 We—1 + 1
BN X T U
Wq—1- Wq—1 + 1/2 - H(Qa)

where (g = 1+ 1/Qo. For ¢ > Qy, we have

= X (hrw)srmn X4 >

neAg > Qp z<v<ez
P(o(m1))<Ly 6Ly, 2>Qp
a>Qy P(q1)<Ly
(H(Ly) — 1/2)% up + 1
< 2. -
< (L )t up! ub+1/2—H(Lk)’
where 1, = 1+ 1/Qp. Thus, we have
) 1 1 b—1
8
sy = Z <n+n,>§a+5+zgi.
neAg i=a
P(o(m1))<Lg
We can compute
106
S st =306.2117.
k=K+1
For k > 105, we use a = b = 0, so that
log k 5 log k
’H(Lk)—1/2<%—1 g5+ B+ o —1/2< %8 % _1.847941,

and

B Fog(Qo/WLk)] log Qo — log 16 — V'k /5
ug = >

log Ly, \/%/5
k/4—1+log2—2vk/5 _
> sk log 16— VE/5 0.219%"/3,
Vk/5
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which implies

= 0.219-k1/3
E®< Y v 1+2logk <6(10g k/2— 1.847941))
2

k=106+1 m-0.219 - ]{1/3 0.219 - k1/3

_ /°° 14 2logt e(logt/2 — 1.847941) @291 »
106 V2 -0.219 - t1/3 0.219 - ¢1/3
< 11.2041.

Thus, we have
P® < 317.4158.
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4.9 Remaining amicable numbers

We are left with amicables n such that both n and n’ have properties (1)—(8). We want to

calculate -
" 1 1
D SR ES SRR M

neA k=K+ neAy
min{n,n'}>K n,n/ pass (1)-(8)
n,n’ pass (1)-(8) P(n)>P(n')

By property 8, there exists a prime r|o(m;) with r > Li. Thus, there is a prime g|m with
q = —1(mod 7). But o(n) = o(s(n)), so there is a prime power ¢"*||s(n) with r|o(¢’*). Then
q*>r/2 > Li/2 > Ly /4, so by property 2, a = 1 and ¢ = —1(mod r). Since ¢’ > Ly /2,
by part 4 we have ¢’ { n, so ¢’ # q. Also, ¢'|s(n) implies that

s(n) = ps(m) + o(m) = 0(mod ¢').

Since ¢’ 1 n, it implies that ¢’ f o(m), so p is in a residue class a = a(m, ¢')(mod ¢'). And
since P(n) > P(n), p > ¢.
We want to calculate the following:

1 1 1
)OS D DIED DD DEN-~2D DI DR
neAy r>Lg g=—1(mod r) m=0(mod q) q¢'=—1(mod r) p=a(mod ¢’)
n,n’ pass (1)-(8) q<eb m<eP q' <eF q' <p<er /m
P(n)>P(n’)
Since ¢ = —1(mod r), we have ¢ > r > Lj. Let ¢ = %, then 1/¢(r) < ¢/r and

1/¢(q ) =< L/q

(¢ + a) and (2q + a) are of different
parity, there is at most one ch01ce of p. ertlng m = qj, then e*~1/pg < j < ek/pq, SO
>-1/5 < 3/2. Therefore,

J

1 3 1 1
2 nc3 4 ¢
neAy r>Lg g=—1(mod r) ~ ¢'=—1(mod r)
n,n’ pass (1)-(8) g<ek q'<6k
P(n)>P(n')
s ekt
4>

Ifq<e thenj<e,,sothat

2. = > > D >

neAy r>Lj g=—1(mod r) q’=—1(mod ) ;< eF~! p=a(mod ¢')
n,n’ pass (1)-(8) q<eb q <ek = ad p<eF/jq
P(n)>P(n')
, ek 1
¢ <E—

<> X ZZ

r>Lg g=—1(mod r) q’=—1(mod T) i
g<ek q <er

q qj 10g e’“/q qaj)
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1
< 2.eF - —
» oy Ly oly
r>Lg g=—1(mod r) ~ ¢’=—1(mod 7‘) j<Z/
g<ek g <ek

Jjlog Z/J

k . —
where z = 2. Since q¢ < mq < e 1, 2 >e. We have

z/e
> L] +/Z/e =~ loglog
jgz/ejlog(z/j) ~ logz 1 tlog(z/t) logz t )

1
= ——+loglogz <1+ logk,
log z
SO
DRSS TD DD DRI DI
" q.,_
€A r>L g=—1( mod r) © ¢'=—1(mod )
n,n’ pass (1)-(8) g<eF q <ek
P(n)>P(n’)
<
Thus,
PO SR NS B S S D D
n
neAy r>Ly q——l(mod r) © ¢'=—1(mod )
n,n’ pass (1)-(8) g<ek q'<ek
P(n)>P(n')

By Lemma 3.5, we have

)

Z 1 - 2(logk + ¢) < 2t(log k + ¢)
g=—1(mod r) 7 SD(T) - "
g<eF

where ¢ = m —loglog(2 — 1/Ly) because Ly, < r < p < e3*/4L,.. Therefore,

q

r>L; q=—1( mod r) © ¢'=—1(mod ) r>Lg
g<er q'<er
Thus,
S < 43(1 + pg) (2ee(1 +log k) + 3/2) (log k + ¢)?
ED Li :

We can compute

10°

S sy <17.1315.

k=K+1

For k > 10°%, ¢ < 1, and choose a large factor, say 30, to offset the constants, we have

00 3
() Z (1+2logk)(1 +logk)
BT <30 eVk/5
k=106+41
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00 3
§30/ (1+2logt)(1+ logt)
106 e\/i/5

< 3.89548 x 10777,

Thus,
P™) < 17.1316.

Putting everything together, we have the result stated in Theorem 1.1:

8
P=P,+P(K)+PY+> PO 4c <4084,
i=1

This upper bound can potentially be decreased further by (1) extending the parity argument
currently used for small amicable numbers to address large amicable numbers, and (2) break
down part 4.8 even further by computing small cases of gy and my.
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