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Abstract

Two different positive integers a and b are said to form an amicable pair
if s(a) = b and s(b) = a, where s(n) denotes the sum of proper divisors of
n. In 1981, Pomerance proved that the count of amicable numbers up to
x is less than x/ exp

(
(log x)1/3

)
for x large. It follows immediately that

the sum P of the reciprocals of numbers belonging to an amicable pair
is a constant. In 2011, Bayless & Klyve showed that P < 656,000,000.
In this paper, we improve this upper bound by proving that P < 4084,
based on recent work by Pomerance that shows a stricter bound for the
count of amicable numbers plus some other ideas that are new to this
thesis.
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1 Introduction

Let σ denote the sum-of-divisors function, and let s(n) = σ(n)−n denote the sum-of-proper-
divisors function. Two different positive integers n and n′ are said to form an amicable pair
if and only if s(n) = n′ and s(n′) = n. We say n is amicable if it belongs to an amicable
pair.

The smallest pair of amicable numbers, 220 and 284, was first known to Pythagoras in
the 5th century BC, and was ascribed with many mystical properties. In the 9th century,
Thâbit ibn Qurra found a formula for amicable pairs, which states that if p = 3 · 2n − 1,
q = 3 · 2n−1 − 1, r = 9 · 22n−1 − 1 are primes, then 2npq, 2nr form an amicable pair. For
example, n = 2 yields the primes p = 11, q = 5, r = 71, which generates the pair (220, 284).

It was not until 1636 that a second pair of amicable numbers (17296, 18416), which
corresponds to n = 4, was found by Fermat. Later, Descartes gave a third pair of amicable
numbers (9363584, 9437056), which corresponds to n = 7.

In the 18th century, Euler generalized Thâbit’s rule: if p = (2n−m + 1)2n − 1, q =
(2n−m + 1) · 2n−1 − 1, r = (2n−m + 1)2 · 22n−1 − 1 are primes, then 2npq, 2nr form an
amicable pair. He also compiled a list of 64 amicable pairs, of which two were later shown
to be not amicable. Interestingly, Euler completely overlooked the second smallest amicable
pair (1184, 1210), which was discovered by Paganini, a 16-year-old Italian, in 1866.

We now know exhaustively all amicable pairs with the smallest member up to 1014 and
nearly 12 million other pairs [6]. However, the infinitude of the set of amicable numbers
has yet to be proved.

Let A denote the set of amicable numbers, and let A(x) = A ∩ [1, x]. In 1954, Kanold
initiated the quest to explore the asymptotic density of A, showing that #A(x) < 0.204x
for x sufficiently large [4]. In 1955, Erdős was the first to prove that the set of amicable
numbers has zero asymptotic density, showing that #A(x) = o(x) [2]. From 1973 to 1981,
Rieger, Erdős, and Pomerance improved upon this result, proving that #A(x) is less than
x/(log log log log x)1/2, O (x/ log log log x), x/ exp

(
(log log log x)1/2

)
, and x/ exp

(
(log x)1/3

)
for x sufficiently large [10][3][7][8]. Most recently in 2014, Pomerance showed that #A(x) ≤
x/ exp((log x)1/2) as x→∞ [9].

It follows immediately from the last two results that the reciprocal sum of the amicable
numbers is finite. In 2011, Bayless & Klyve showed a numerical bound for the reciprocal
sum of amicable numbers, which they denote by P :

0.0119841556 ≤ P < 656,000,000.

In this paper, we improve Bayless & Klyve’s result in [1] by showing a smaller upper bound
for the reciprocal sum of amicable numbers.

Theorem 1.1. We have

P =
∑
n∈A

1

n
< 4084.

We will introduce some standard notations and describe the framework in part 2, prove
some useful lemmas in part 3, and give detailed proof and numerical estimates in part 4.
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2 Framework Description

Let n ∈ A be an amicable number and n′ = s(n) denote the corresponding friend. For some
K > log 1014, we can write

P =
∑
n∈A

1

n
=

∑
n∈A

min{n,n′}≤1014

1

n
+

∑
n∈A

1014<min{n,n′}≤exp(K)

1

n
+

∑
n∈A

min{n,n′}>exp(K)

1

n
.

From the exhaustive list of amicable pairs with the smaller member less than 1014, we
can compute

Ps =
∑
n∈A

min{n,n′}≤1014

1

n
= 0.011984156739048 . . .

The list of amicable numbers is obtained from [6], and the reciprocal sum is computed in
MatLab with standard machine precision. This result differs from the lower bound shown
in [1] by approximately 10−9.

An amicable pair (n, n′) can fall into one of the following cases: (n, n′) are both odd,
(n, n′) are both even, or (n, n′) are of different parity.

If n and n′ are of different parity, then σ(n) = σ(n′) = n + n′ is odd. Since σ(pa) =
1 + p+ p2 + · · ·+ pa is odd if and only if p = 2 or 2|a, the odd member is a square, and the
even member is either a square or twice one. No odd-even amicable pair has been found, so
the reciprocal sum of such amicable numbers, if they exist at all, is small and bounded by

ε <
3

2

∑
a>1014

1

a2
< 1.5× 10−14.

From this point forward, we consider only amicable pairs whose members are either
both odd or both even.

2.1 Small amicable numbers

For amicable pairs (n, n′) such that 1014 < min{n, n′} ≤ exp(K), we will grossly overesti-
mate their contributions to P since the asymptotic behavior outlined by the proof has yet
to kick in. In particular, we will consider even amicable pairs and the odd ones separately.

If n and n′ are both even, then

n′

n
=
∑
d|n
d>1

1

d
>

1

2
,

and similarly n/n′ > 1/2, so 1014 < n, n′ ≤ 2 exp(K).
If n and n′ are odd, then min{n, n′} is an odd abundant number. Recall that an integer

is abundant if the sum of its proper divisors is greater than the number itself.
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We have

P (K) =
∑
n∈A

1014<min{n,n′}≤exp(K)

1

n
=

∑
n∈A
n even

1014<n≤2 exp(K)

1

n
+

∑
n∈A
n odd

1014<min{n,n′}≤exp(K)

1

n

≤ 1

2

 ∑
1014/2<n≤exp(K)

1

n

+ 2

 ∑
n odd abundant
1014<n≤exp(K)

1

n

 ,

where ∑
1014/2<n≤exp(K)

1

n
<

∫ exp(K)

1014/2

dt

t
= K − log(1014/2),

and ∑
n odd abundant
1014<n≤exp(K)

1

n

is smaller. Let’s find out how small it is.
Let h(n) = σ(n)/n, then h is a multiplicative function. Let fj be the multiplicative

function defined as follow {
f(1) = 1
fj(p

a) = h(pa)j − h(pa−1)j
.

For x ≥ 3, we have ∑
n≤x
n odd

h(n)j =
∑
n≤x
n odd

∑
d|n

fj(d),

so that∑
n≤x
n odd

h(n)j

n
=
∑
n≤x
n odd

1

n

∑
d|n

fj(d) =
∑
d≤x
d odd

fj(d)
∑

1≤m≤x/d
m odd

1

md
≤
∑
d≤x
d odd

fj(d)

d

∑
1≤m≤x
m odd

1

m
.

Here,

∑
1≤m≤x
m odd

1

m
≤ 1 +

bx/2c∑
k=1

1

2k + 1
< 1 +

1

2

bx/2c∑
k=1

1

k
< 1 +

1 + log(x/2)

2
<

log x+ 2.307

2
,

and ∑
d≤x
d odd

fj(d)

d
≤
∑
d odd

fj(d)

d
=
∏
p odd

(
1 +

fj(p)

p
+
fj(p

2)

p2
+ . . .

)
= πj , say,

is finite, as we shall see in Lemma 3.7.
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Since h(n) > 2 for all n abundant, we have∑
n≤x

n odd abundant

1

n
≤ 1

2j

∑
n≤x
n odd

h(n)j

n
≤ πj(log x+ 2.307)

2j+1
.

After investigating j ∈ [1, 40], we pick j = 18, which yields πj < 6231.87, so that∑
n≤x

n odd abundant

1

n
≤ 0.01189 log x+ 0.02743.

Thus, we have
P (K) ≤ 0.52378K − 15.71668.

2.2 Large amicable numbers

For the remaining pairs, i.e., (n, n′) such that min{n, n′} > exp(K), we will consider them
in small intervals and build an ordered list of properties.

Let Ak = {n ∈ A : ek−1 < n < ek}, and let ω(n) denote the number of distinct primes
dividing n.

Property (1): For n ∈ Ak, ω(n) ≤ b4 log kc.

Let µk =
d4 log ke∏
i=2

pi
pi−1 , where pi is the ith prime. We will show that for n ∈ Ak such that n

and n′ have property (1), n/µk ≤ n′ ≤ nµk.
Let Lk = exp(

√
k/5). Recall that a positive integer s is squarefull if and only if for every

prime p dividing s, p2 also divides s. Also recall that a positive integer is squarefree if and
only if it is not divisible by any perfect square. Let P (·) denote the largest-prime-divisor
function.

Property (2): For n ∈ Ak, the largest squarefull divisor of n is at most Lk/4.

Property (3): For n ∈ Ak, the largest squarefree divisor d of n with P (d) ≤ Lk
satisfies d ≤ ek/3.

Property (4): For n ∈ Ak, P (gcd(n, s(n))) ≤ Lk/2.

Let n = pm, n′ = p′m′ where p and p′ are the largest prime factors of n and n′. Note
that properties (2), (3), and (4) imply that p 6= p′, p - m, and p′ - m′.

Property (5): For n ∈ Ak, mm′ ≥ ek

Lk
.

Property (6): For n ∈ Ak, p ≤ e3k/4Lk.

Write m = m0m1 where m0 is the largest divisor of m such that m0 is either a squarefull
number or twice one, then m1 is odd, squarefree, and coprime to m0. Let q = P (m1), and
write q + 1 = q0q1 where q0 is the largest divisor of q + 1 such that q0 is either a squarefull
number or twice one.
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Property (7): For n ∈ Ak, q0 is at most 16Lk.

Property (8): For n ∈ Ak, P (σ(m1)) ≥ Lk.

For each property (i), let

P (i) =
∑
n∈A

min{n,n′}>exp(K)
n,n′ pass (1)−(i-1)
n or n′ fails (i)

1

n
.

Then,

P (i) ≤
∞∑

k=K+1

∑
n∈Ak

n,n′ pass (1)−(i-1)
n fails (i)

(
1

n
+

1

n′

)
=

∞∑
k=K+1

s
(i)
k , say.

Finally, we are left with n ∈ Ak where both n and n′ have properties (1)-(8). We proceed
to estimate

P (∗) =
∑
n∈A

min{n,n′}>exp(K)
n,n′ pass (1)−(8)

1

n
=

∞∑
k=K+1

∑
n∈Ak

P (n)>P (n′)
n,n′ passes (1)−(8)

(
1

n
+

1

n′

)
=

∞∑
k=K+1

s
(∗)
k , say,

so that ∑
n∈A

min{n,n′}>exp(K)

1

n
≤ P (∗) +

8∑
i=1

P (i).

To optimize the sum of the expression above and P (K), we choose K = 5935.
In this paper, we will repeatedly use ε, ι, and c to denote different constants. In all

cases, the explicit formula for these constants are clear from the context and are used in
computation. The naming of constants follows the convention that ε → 0 and ι → 1 as
k →∞. The letter p, q, and r are reserved for prime variables. We use ζ and ϕ to denote
the Riemann zeta function and the Euler phi function, respectively. We also use π(x; d, a)
to denote the number of primes p congruent to a modulo d with p ≤ x.
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3 Lemmas

Lemma 3.1. For all k, d, v ∈ Z+, z > 0,∑
z≤v≤ez

1

v
≤ min

{
1 +

1

z
,
3

2

}
.

Proof. If z ≤ 1, then ∑
z≤v≤ez

1

v
≤
∑

1≤v≤e

1

v
=

3

2
.

If 1 < z ≤ 2, then ∑
z≤v≤ez

1

v
≤

∑
1<v≤2e

1

v
= 1.283̄ <

3

2
.

If z > 2, then ∑
z<v<ez

1

v
≤ 1

z
+

∫ ez

z

1

v
dv = 1 +

1

z
.

Lemma 3.2. For all x > 286, we have

H(x) :=
∑
p≤x

1

p
≤ log log x+B +

1

2 log2 x
(3.1)

and

H1(x) :=
∑
p≤x

1

p− 1
≤ log log x+B +

1

2 log2 x
+D, (3.2)

where B = 0.261497 . . . and D =
∑

p 1/p(p− 1) = 0.773157 . . . .

Proof. The inequality (3.1) is from [11], and (3.2) follows immediately.

Lemma 3.3. : For all z > 286, ∑
z<p≤ez

1

p
≤ 1

log z
+

1

log2 z
.

Proof. From equations (3.17) and (3.18) of [11], we have∑
z<p≤ez

1

p
=
∑
p≤ez

1

p
−
∑
p≤z

1

p
≤ log(1 + log z) +B +

1

2(1 + log z)2
− log log z −B +

1

2 log2 z

= log

(
1 +

1

log z

)
+

1

2(1 + log z)2
+

1

2 log2 z
≤ 1

log z
+

1

log2 z
.
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Lemma 3.4. : For all w ∈ Z+, x ≥ 0 such that H(x) < w + 1, we have∑
ω(d)≥w
P (d)≤x

d squarefree

1

d
≤ H(x)w

w!
· w + 1

w + 1−H(x)
.

Proof. By the multinomial theorem, we have

∑
ω(d)≥w
P (d)≤x

d squarefree

1

d
≤
∞∑
j=w

1

j!

∑
p≤x

1/p

j

=
H(x)w

w!

(
1 +
H(x)

w + 1
+

H(x)2

(w + 1)(w + 2)
+ . . .

)
≤ H(x)w

w!

(
1 +
H(x)

w + 1
+
H(x)2

(w + 1)2
+ . . .

)
=
H(x)w

w!
· w + 1

w + 1−H(x)
.

Lemma 3.5. For all d ∈ Z+, d, x ≥ 3,∑
p≡−1(mod d)

d<p≤x

1

p
≤ 2(log log x− log log(2− 1/d) + 1/ log(x/d))

ϕ(d)
.

Proof. From the Brun-Titchmarsh theorem [5], we have

π(x; d,−1) ≤ 2x

ϕ(d) log(x/d)
.

Using partial summation, we have∑
p≡−1(mod d)

d<p≤x

1

p
≤ 2

ϕ(d) log(x/d)
+

2

ϕ(d)

∫ x

2d−1

dt

t log(t/d)

≤ 2

ϕ(d)

(
1

log(x/d)
+ log log(t/d)

∣∣∣∣x
2d−1

)
=

2

ϕ(d)

(
1

log(x/d)
+ log log(x/d)− log log(2− 1/d)

)
.
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Lemma 3.6. For x ≥ 1,

S0(x) :=
∑
s≤x

s squarefull

1 ≤ ζ(3/2)
√
x,

S1(x) :=
∑
s≥x

s squarefull

1

s
≤ 3√

x
.

For x ≥ 2,

S∗(x) :=
∑
s≥x

s squarefull

log log s

s
≤ 3 log log x+ 3 log 2√

x
+ 2ζ(3/2)

(
log log x+ log 2

x
+

1

2x log x

)
.

Proof. Since every squarefull number can be written as a product of a square and a cube,

S0(x) ≤
∑

a2b3≤x

1 =
∑
b≤x1/3

∑
a≤(x/b3)1/2

1 ≤
∑
b≤x1/3

( x
b3

)1/2
=
√
x
∑
b≤x1/3

1

b3/2
≤ ζ(3/2)

√
x.

We can verify S1(x) ≤ 3/
√
x for x ≤ 14000 using S1(1) = ζ(2)ζ(3)/ζ(6). For x > 14000,

we have

S1(x) ≤
∑

a2b3≥x

1

a2b3

≤
∑
b≤x1/3

1

b3

∑
a≥(x/b3)1/2

1

a2
+
∑
b≥x1/3

1

b3

∑
a

1

a2

≤
∑
b≤x1/3

1

b3

(
b3

x
+

(
b3

x

)1/2
)

+ ζ(2)
∑
b≥x1/3

1

b3

≤ 1

x2/3
+

1

x1/2

∑
b≤x1/3

1

b3/2
+ ζ(2)

(
1

x
+

1

2x2/3

)

≤ ζ(3/2)

x1/2
+

1 + ζ(2)/2

x2/3
+
ζ(2)

x

≤ 3√
x
.

By partial summation and our inequality for S0, we also have

S∗(x) = lim
z→∞

∑
x≤s≤z

s squarefull

log log s

s

= lim
z→∞

(
(S0(z)− S0(x)) log log z

z
−
∫ z

x
(S0(t)− S0(x))d

(
log log t

t

))
=

∫ ∞
x
S0(t)

(
log log t

t2
− 1

t2 log t

)
dt

8



≤ ζ(3/2)

∫ ∞
x

(
log log t

t3/2
− 1

t3/2 log t

)
dt

= ζ(3/2)

∫ ∞
x

(
log log t

t3/2
− 2

t3/2 log t
+

1

t3/2 log t

)
dt

≤ ζ(3/2)

∫ ∞
x

(
log log t

t3/2
− 2

t3/2 log t
+

1

t3/2 log x

)
dt

= ζ(3/2)

(
−2 log log t√

t
− 2√

t log x

∣∣∣∣∞
x

)
= 2ζ(3/2)

(
log log x√

x
+

1√
x log x

)
.

Now, we can improve this estimate:

S∗(x) =
∑

x≤s<x2
s squarefull

log log s

s
+

∑
s≥x2

s squarefull

log log s

s

≤ log log x2
∑
s≥x

s squarefull

1

s
+ 2ζ(3/2)

(
log log x+ log 2

x
+

1

2x log x

)

≤ 3 log log x+ 3 log 2√
x

+ 2ζ(3/2)

(
log log x+ log 2

x
+

1

2x log x

)
.

Lemma 3.7. Let f be the multiplicative function defined as in 2.1. For all j ∈ Z+,

πj =
∏
p odd

(
1 +

fj(p)

p
+
fj(p

2)

p2
+ . . .

)

is a finite number.

Proof. First, we have

fj(p)

p
=
h(p)j − 1

p
=

(
1 + 1

p

)j
− 1

p
= O

(
1

p2

)
.

Because 0 < fj(p
a) < h(pa)j , for all a ≥ 2,

fj(p
a)

pa
≤ h(pa)j

pa
≤ σ(pa)j

pa+ja
≤
(

p

p− 1

)j 1

pa
.

Therefore, for each fixed j ∈ Z+

1 +
fj(p)

p
+
fj(p

2)

p2
+ · · · = 1 +O

(
1

p2

)
,

9



so that

log πj = O

∑
p odd

1

p2

 = O(1).

In order to estimate an upper bound for πj , we choose large integers A,B, and compute

∏
p≤B

(
1 +

fj(p)

p
+
fj(p

2)

p2
+ . . .

)
≤
∏
p≤B

(
1 +

A∑
a=1

fj(p
a)

pa
+

(
p

p− 1

)j+1 1

pA+1

)
,

and

∏
p>B

(
1 +

fj(p)

p
+ . . .

)
≤
∏
p>B

(
1 +

(1 + 1
p)j − 1

p
+

(
p

p− 1

)j 1

p(p− 1)

)

≤ exp

(∫ ∞
B

(
(1 + 1

x)j − 1

x
+

(
x

x− 1

)j 1

x(x− 1)

)
dx

)
.

Table 3.1 shows upper bounds of πj for j ∈ [1, 40], computed with A = 500 and B = 106.
We pick j = 18 to get the smallest coefficient in section 2.1.

Table 3.1: Estimates of upper bound of πj

j πj πj/2
j j πj πj/2

j

1 1.23 0.616851 21 52890.17 0.025220
2 1.58 0.394426 22 110675.79 0.026387
3 2.10 0.262036 23 234319.96 0.027933
4 2.90 0.181057 24 501650.18 0.029901
5 4.16 0.130076 25 1085437.39 0.032349
6 6.21 0.097029 26 2372559.18 0.035354
7 9.60 0.074986 27 5236626.72 0.039016
8 15.33 0.059886 28 11666433.49 0.043461
9 25.24 0.049293 29 26225299.18 0.048848
10 42.72 0.041714 30 59464173.31 0.055380
11 74.16 0.036209 31 135959987.61 0.063311
12 131.79 0.032176 32 313376228.98 0.072964
13 239.35 0.029217 33 727960204.98 0.084746
14 443.49 0.027069 34 1703849881.31 0.099177
15 837.30 0.025552 35 4017349516.24 0.116920
16 1608.70 0.024547 36 9539842817.16 0.138823
17 3141.94 0.023971 37 22811315060.41 0.165974
18 6231.87 0.023773 38 54914363890.79 0.199777
19 12541.54 0.023921 39 133067328413.01 0.242048
20 25588.42 0.024403 40 324514342521.39 0.295144
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4 Main argument

4.1 For n ∈ Ak, ω(n) ≤ b4 log kc

Let u = d4 log ke; as in Lemma 3.4, we have

∑
n∈Ak
ω(n)≥u

1

n
≤
∞∑
j=u

1

j!

∑
q≤ek

∞∑
a=1

1

qa

j

≤
∞∑
j=u

1

j!

∑
q≤ek

1

q − 1

j

≤ H1(e
k)u(u+ 1)

u! (u+ 1−H1(ek))
.

By equations (3.41) and (3.42) in [11], we have that for n, n′ > exp(K),

n′

n
<
σ(n′)

n
=
σ(n)

n
≤ n

ϕ(n)
< (eγ + ε) log log n,

and similarly, n/n′ < (eγ + ε) log log n′, where eγ = 1.78107 . . . and ε ≤ 0.01. We have

n

n′
< (eγ + ε) log log n′ < (eγ + ε) (log log(n) + log log((eγ + ε) log log n))

which implies

1

n′
<

(eγ + ε) log log n

n
+

(eγ + ε) log log((eγ + ε) log log n))

n
<

2 log log n

n
<

2 log k

n
,

for n > exp(K).
Therefore, we have

P (1) ≤
∞∑

k=K+1

s
(1)
k ,

where

s
(1)
k ≤

∞∑
k=K+1

(1 + 2 log k) · H1(e
k)u(u+ 1)

u! (u+ 1−H1(ek))
.

We can compute
106∑

k=K+1

s
(1)
k ≤ 0.788795.

For k > 106, H1(e
k) ≤ log k + 1.034656 by Lemma 3.2, and

u+ 1

u+ 1−H1(ek)
=

1

1− H1(ek)
u+1

≤ 1

1− log k+1.034656
4 log k+1

≤ 1.358597.

By Stirling’s inequality,
1

u!
≤ 1√

2πu

( e
u

)u
.

11



Therefore,

E(1) :=
∞∑

k=106+1

s
(1)
k ≤ 1.358597

∞∑
k=106+1

1 + 2 log k√
2πu

(
e(log k + 1.034656)

u

)u
≤ 1.358597

∞∑
k=106+1

1 + 2 log k√
8π log k

(
e(log k + 1.034656)

4 log k

)4 log k

because u ≥ 4 log k and e(log k+1.034656)
4 log k ≤ 1.

For all k > 106, e(log k+1.034656)
4 log k = e

4 + e×1.034656
4 log k ≤ 0.730464 = h , so we have

E(1) ≤ 1.358597√
8π log 106

∞∑
k=106+1

(1 + 2 log k)h4 log k

= 0.072910
∞∑

k=106+1

(1 + 2 log k)k4 log h

≤ 0.072910

∫ ∞
106

1 + 2 log t

t1.256301
dt

≤ 0.300429.

Thus, we have
P (1) ≤ 0.788795 + 0.300429 = 1.089224.

Amicable pair multiplier

For n ∈ Ak, k > K satisfying property (1), we will show that

n

µk
≤ n′ ≤ nµk,

where

µk =

d4 log ke∏
i=2

pi
pi − 1

.

Proof. If n, n′ are even, we have
n′

n
=
∑
d|n
d>1

1

d
>

1

2
.

Similarly, n/n′ > 1/2. The inequality follows immediately since µk > 2.
If n and n′ are odd, the inequality on the right is straightforward:

n′

n
=
s(n)

n
=
σ(n)

n
=
∑
d|n

1

d
<
∏
p|n

p

p− 1
≤
b4 log kc+1∏

i=2

pi
pi − 1

= µk.

12



If n′ > n, then clearly n′ > n/µk. If n′ ≤ n, then n′ ∈ Ak′ where k′ ≤ k, and it follows that

n

n′
≤ s(n′)

n′
=
σ(n′)

n′
=
∏
p|n′

p

p− 1
≤
b4 log k′c+1∏

i=1

pi
pi − 1

<

b4 log kc+1∏
i=2

pi
pi − 1

= µk.

4.2 For n ∈ Ak, the largest squarefull divisor of n is at most
Lk/4

Write n = sv where s is the largest squarefull divisor of n. Assume that s > Lk/4; then by
Lemma 3.1 and Lemma 3.6,∑
n∈Ak
s>Lk/4

(
1

n
+

1

n′

)
≤ (1+µk)

∑
n∈Ak
s>Lk/4

1

n
= (1+µk)

∑
s>Lk/4

s squarefull

1

s

∑
ek−1

s
<v< ek

s

1

v
≤ 3(1 + µk)S1(Lk/4)

2
.

Therefore,

P (2) ≤
∞∑

k=K+1

3(1 + µk)S1(Lk/4)

2
.

By Lemma 3.6, we can compute

106∑
k=K+1

3(1 + µk)S1(Lk/4)

2
≤ 35.876404.

For k > 106,

E(2) :=

∞∑
k=106+1

3(1 + µk)S1(Lk/4)

2
≤ 9

∞∑
k=106+1

1 + 2 log k

e
√
k/10

≤ 9

∫ ∞
t=106

1 + 2 log t

e
√
t/10

dt ≤ 1.939049× 10−37.

Thus, we have
P (2) ≤ 35.9.

4.3 For n ∈ Ak, the largest squarefree divisor d of n with

P (d) ≤ Lk has d ≤ ek/3

For n ∈ Ak, write n = dv where d is the largest squarefree divisor such that P (d) ≤ Lk.
Assume that d > ek/3, we have∑

n∈Ak

d>ek/3

1

n
≤

∑
d>ek/3

P (d)<Lk
d squarefree

1

d

∑
ek−1

d
<v< ek

d

1

v
≤ 3

2
· H(Lk)

u

u!
· u+ 1

u+ 1−H(Lk)
,

13



where u =
⌈
log ek/3

logLk

⌉
=
⌈

k
3 logLk

⌉
. Therefore,

P (3) ≤
∞∑

k=K+1

3(1 + µk)H(Lk)
u(u+ 1)

2u!(u+ 1−H(Lk))
.

We can compute

106∑
k=K+1

3(1 + µk)H(Lk)
u(u+ 1)

2u!(u+ 1−H(Lk))
= 3.622428× 10−154.

For k > 106, H(Lk) ≤ log
(√

k
5

)
+B + 5

2k < log k, and u =
⌈

k
3 logLk

⌉
> k

3 logLk
>
√
k, so

u+ 1

u+ 1−H(Lk)
=

1

1− H(Lk)
u+1

≤ 1

1− log k√
k+1

< 2.

We can estimate

E(3) :=
∞∑

k=106+1

3(1 + µk)H(Lk)
u(u+ 1)

2u!(u+ 1−H(Lk))
≤ 3

∞∑
k=106+1

(1 + 2 log k)

(
e log k√

k

)√k

≤ 3

∫ ∞
106

(1 + 2 log t)

(
e log t√

t

)√t
dt ≤ 1.904584× 10−1421.

Thus, we have
P (3) ≤ 3.7× 10−154.

4.4 For n ∈ Ak, P (gcd(n, s(n))) ≤ Lk/2

Let r = P (gcd(n, s(n))), and suppose r > Lk/2. Because r|σ(n), there exists qa||n, such
that r|σ(qa). Then Lk/2 < r ≤ σ(qa) < 2qa, so qa > Lk/4. It follows from property (2)
that a = 1, implying that q ≡ −1(mod r). Because r is a prime larger than Lk/2, q > r.
We can write n = rqv, so that∑

n∈Ak
r>Lk/2

1

n
≤

∑
r>Lk/2

1

r

∑
r<q≤ek

q≡−1( mod r)

1

q

∑
ek−1

qr
<v< ek

qr

1

v
≤ 3

2

∑
r>Lk/2

1

r

∑
r<q≤ek

q≡−1( mod r)

1

q
,

by Lemma 3.1. From lemma 3.5, we have

∑
r<q≤ek

q≡−1( mod r)

1

q
≤ 2(log k − log log(2− 1/r) + 1/ log(ek/r))

ϕ(r)
≤ 2(log k + c)

r − 1
,

where c = 2/k − log log(2− 2/Lk) because Lk/2 < r <
√
qr ≤

√
n < ek/2.
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We have ∑
n∈Ak
r>Lk/2

1

n
≤ 3(log k + c)

∑
r>Lk/2

1

r(r − 1)
≤ 3(log k + c)

Lk/2− 1
.

Therefore,

P (4) ≤
∞∑

k=K+1

6(1 + µk)(log k + c)

Lk − 2
.

We can compute
106∑

k=K+1

6(1 + µk)(log k + c)

Lk − 2
= 0.050951 . . . .

For k > 106, 2/k − log log(2− 2/Lk) < 1, so that

E(4) ≤ 6

∫ ∞
t=106

(1 + 2 log t)(log t+ 1)

e
√
t/5 − 2

dt ≤ 3.54463× 10−80.

Thus, we have
P (4) ≤ 0.051.

4.5 For n ∈ Ak, mm′ > ek

Lk

In [9], it is shown that each pair m,m′ yields at most one amicable pair n, n′. Assume that

mm′ ≤ ek

Lk
.

If m,m′ are both even, then∑
mm′≤ ek

Lk
m,m′ even
m<m′

1 ≤ ek

2Lk

∑
m≤ ek

Lk
m even

1

m
≤ ek

4Lk

∑
i≤ ek

2Lk

1

i
≤ ek

Lk
· k − logLk + 1− log 2

4
.

If m,m′ are both odd, because pm, p′m′ is an amicable pair, exactly one of pm, p′m′ is
abundant, call it p̂m̂. Then, (p̂ + 1)σ(m̂) > 2p̂m̂, so h(m̂) > 2p̂/(p̂ + 1) > 2 − ε, for some

small ε = 2
p̂+1 because p̂ is big. In particular, p̂ > e(k̂−1)/b4 log k̂c, by properties (1), (2), (3).

We have ∑
mm′≤ ek

Lk
m,m′ odd

1 =
ek

Lk

∑
m̂≤ ek

Lk
m̂ odd

h(m̂)≥2−ε

1

m̂
≤ ek

Lk
· πj(k − logLk + 2.307)

2(2− ε)j
.

Therefore, we have

∑
n∈Ak

mm′≤ ek

Lk

1

n
≤ 1

ek−1

∑
mm′≤ek/Lk

1 ≤ 1

ek−1


∑

mm′≤ ek

Lk
m,m′ odd

1 +
∑

mm′≤ ek

Lk
m,m′ even

1

 .
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Since we are picking up all pairs ofm,m′ such thatm,m′ ≤ ek/Lk without any constraint
as to in which intervals n and n′ fall, this part does not need a multiplier. In fact, we not
only pick up both n and n′ in the argument, but also may have counted each pair multiple
times, thus

P (5) ≤
∞∑

k=K+1

e

Lk

(
πj/2(k − logLk + 2.307)

(2− ε)j
+
k − logLk + 1− log 2

4

)
.

Choosing j = 18, we can compute

106∑
k=K+1

e

Lk

(
πj(k − logLk + 2.307)

2(2− ε)j
+
k − logLk + 1− log 2

4

)
= 0.806677 . . . .

For k > 106, we can ignore the parity of m,m′ and estimate

E(5) ≤ e
∞∑

k=106+1

k − log(Lk) + 1− log 2

Lk
< e

∫ ∞
t=106+1

t+ 1

e
√
t/5
dt ≤ 3.818819× 10−77.

Thus,
P (5) ≤ 0.807.

4.6 For n ∈ Ak, p ≤ e3k/4Lk

Suppose that n ∈ Ak and p > e3k/4Lk, then m < ek/4/Lk. By property (5), m′ > e3k/4.
Since n′ < µke

k, it follows that p′ < µke
k/4.

We can write n′ = p′1p
′
2 . . . p

′
js
′ where s′ is the largest squarefull divisor and {p′i} are in

descending order. Since n′ satisfies property (2), we have

p′1p
′
2 . . . p

′
j =

n′

s′
>
ek−1

µk
· 4

Lk′
>

ek

µkLk
> ek/2.

Therefore, we can pick i to be the largest such that p′1 . . . p
′
i−1 < ek/2.

Let D = p′1 . . . p
′
i. Write n′ = DM , so that gcd(D,M) = 1 and M < ekµk/D. Further-

more, we have
ek/2 < D = (p′1p

′
2 . . . p

′
i−1)p

′
i < e3k/4µk.

Recall from [9] that such m satisfy the following congruence

σ(m)DM ≡ mσ(m) (mod σ(D)).

The number of choices for M < ekµk/D which satisfy this congruence is at most

1 +
ekµk

Dσ(D)/ gcd(σ(m)D,σ(D))
≤ 1 +

ekµkσ(m) gcd(D,σ(D))

D2
.

Every prime dividing D exceeds Lk/2, because

p′i . . . p
′
j =

n′

p′1 . . . p
′
i−1s

′ >
ek/2−1

µk
· 4

Lk′
> ek

′/3,
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and n′ has property (3), so it follows that p′i > Lk′ > Lk/2.
Since gcd(D,σ(D))|(n, n′), property (4) implies that gcd(D,σ(D)) = 1. Also, σ(m) ≤

mµk < ek/4µk/Lk. Given the choice of m,D, the number of choices for M is at most:

1 +
e5k/4µ2k
LkD2

.

Therefore, we have ∑
n∈Ak

p>e3k/4Lk

1 ≤
∑

ek/2<D≤e3k/4µk

(
1 +

e5k/4µ2k
LkD2

)

≤ e3k/4µk +
e5k/4µ2k
Lk

∑
D>ek/2µk

1

D2

≤ e3k/4µk +
e5k/4µ2k
Lk

(
1

ek
+

∫ ∞
ek/2

1

t2
dt

)
≤ e3k/4µk +

e5k/4µ2k
Lk

(
1

ek
+

1

ek/2

)
≤ e3k/4µk +

ek/4µ2k
Lk

+
e3k/4µ2k
Lk

.

Thus, the reciprocal sums of such numbers are at most∑
n∈Ak

p>e3k/4Lk

1

n
≤

a
(6)
k

ek−1
≤ e

(
µk
ek/4

+
µ2k

Lke3k/4
+

µ2k
Lkek/4

)
,

so that

P (6) ≤ e
∞∑

k=K+1

(1 + µk)

(
µk
ek/4

+
µ2k

Lke3k/4
+

µ2k
Lkek/4

)
.

Note that the denominator contains ek/4, which is significantly larger than the numerator.
In particular, we have

P (6) ≤ 3e

∞∑
k=K+1

(1 + 2 log k)3

ek/4
≤ 3e

∫ ∞
K

(1 + 2 log t)3

et/4
dt ≤ 2.5× 10−538.

4.7 For n ∈ Ak, q0 ≤ 16Lk

Recall that for n = pm ∈ Ak, we can write m = m0m1 where m0 is the largest divisor of m
such that m0 is either a squarefull number or twice one. Similarly, we can write q+1 = q0q1,
where q0 is the largest divisor of q + 1 such that q0 is either a squarefull number or twice
one. Assume that q0 > 16Lk. Because q < p, it follows that q < ek/2, so we have∑

n∈A
q0>16Lk

1

n
≤

∑
q0>16Lk

∑
q≡−1(mod q0)

q<ek/2

1

q

∑
ek−1/q≤v≤ek/q

1

v
≤ ι

∑
q0>16Lk

∑
q≡−1(mod q0)

q<ek/2

1

q

17



where ι = 1 + 1/ek/2−1.
If q0 > ek/4, then q > ek/4 − 1, so that

∑
q≡−1(mod q0)

q<ek/2

1

q
≤ ι′

∑
q0|(q+1)

q<ek/2

1

q + 1
=
ι′

q0

⌊
ek/2

q0

⌋
∑
i=1

1

i
≤ ι′(1 + k/4)

q0
,

where ι′ = 1 + 1/(ek/4 − 1). Therefore, we have∑
q0>ek/4

∑
q≡−1(mod q0)

q<ek/2

1

q
≤ ι′(1 + k/4)

∑
q0>ek/4

1

q0
.

Because q0q1 is even, the definition of q0 implies that q0 is either an even squarefull
number or twice an odd squarefull number, i.e., 2q0 is squarefull. We have∑

q0>ek/4

2q0 squarefull

1

q0
= 2

∑
i>2ek/4

i squarefull

1

i
= 2S1(2ek/4).

If 16Lk < q0 ≤ ek/4, then by Lemma 3.5, we have

∑
q≡−1(mod q0)

q<ek/2

1

q
≤ 1

q0 − 1
+

2
(

log log(ek/2)− log log(2− 1/q0) + 1
log(ek/2/q0)

)
ϕ(q0)

≤ 1

q0 − 1
+

2 log k + c

ϕ(q0)
,

where c = 8/k − 2 log log(2− 1/16Lk). Therefore,

∑
16Lk<q0<ek/4

∑
q≡−1(mod q0)

q<ek/2

1

q
≤

 ∑
q0>16Lk

2q0 squarefull

1

q0 − 1

+ (2 log k + c)

 ∑
q0>16Lk

2q0 squarefull

1

ϕ(q0)

 .

By Lemma 3.6, we have∑
q0>16Lk

2q0 squarefull

1

q0 − 1
≤ ι′′

∑
q0>16Lk

2q0 squarefull

1

q0
≤ 2ι′′S1(32Lk),

where ι′′ = 1 + 1/(16Lk − 1), and, using equation (3.41) in [11],∑
16Lk<q0<e

k/2

1

ϕ(q0)
≤

∑
q0>16Lk

2q0 squarefull

1

q0

(
eγ log log q0 +

5

2 log log q0

)
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≤ eγ
∑

q0>16Lk
2q0 squarefull

log log q0
q0

+
5

2 log log 16Lk

∑
q0>16Lk

2q0 squarefull

1

q0

≤ 2eγ
∑

i>32Lk
i squarefull

log log i

i
+

5

log log 16Lk

∑
i>32Lk

i squarefull

1

i

≤ 2eγS∗(32Lk) +
5S1(32Lk)

log log 16Lk
,

where eγ = 1.78107 . . . .
Thus, we have∑

n∈Ak
q0>16Lk

(
1

n
+

1

n′

)
≤ (1 + µk)ι

[
2ι′(1 + k/4)S1(2ek/4) + 2ι′′S1(32Lk)

+(2 log k + c)

(
2eγS∗(32Lk) +

5S1(32Lk)

log log 16Lk

)]
.

Using Lemma 3.6, we can compute

106∑
k=K+1

s
(7)
k = 642.0724 . . . .

For k > 106, we have c < 1, ι, ι′, ι′′ < 2, so that

E(7) ≤ 2
∞∑

k=106+1

(1 + 2 log k)

(
12(1 + k/4)

ek/8
+

3

e
√
k/10

+ (2 log k + 1)

(
4 log k

e
√
k/10

+
15

e
√
k/5

))

≤ 2

∫ ∞
106

(1 + 2 log t)

(
12(1 + t/4)

et/8
+

3

e
√
t/10

+ (2 log t+ 1)

(
4 log t

e
√
t/10

+
15

e
√
t/5

))
dt

≤ 6.85011× 10−35.

Thus, we have
P (7) ≤ 642.073.

4.8 For n ∈ Ak, P (σ(m1)) ≥ Lk

Assume P (σ(m1)) < Lk, then P (q + 1) = P (σ(q)) ≤ P (σ(m1)) < Lk.
We have ω(m1) ≤ b4 log kc − 1 by property (1), and

m1 =
n

pm0
≥ 2ek/4−1

L2
k

,

by property (6) and since m0 ≤ 2s ≤ Lk/2 by property (2), so that

q ≥

(
2ek/4−1

L2
k

)1/(b4 log kc−1)

= Q0, say.
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Let Qi = Q0L
i
k, and consider q ∈ [Qi, Qi+1) for separate values of i. We have q+1 = q0q1

as in the last section, and∑
n∈Ak

P (σ(m1))<Lk

q∈[Qi,Qi+1)

1

n
≤ ιi

∑
q0≤16Lk

1

q0

∑
m0≤Lk/2

1

m0

∑
q1≥

Qi
16Lk

P (q1)≤Lk

1

q1

∑
m2≥ 2ek/4−1

Qi+1L
2
k

P (m2)<Qi+1

1

m2

∑
p>Qi
z≤p≤ez

1

p
,

where ιi = 1 + 1/Qi, and z = ek−1/qm0m2. Since q0 is always even,∑
q0

1

q0
=

(
1

2
+

1

4
+ . . .

)∏
p>2

(
1 +

1

p(p− 1)

)
=

2ζ(2)ζ(3)

3ζ(6)
.

If n, n′ are both even, then m0 is even, and∑
m0

1

m0
=

2ζ(2)ζ(3)

3ζ(6)
.

If n, n′ are odd, then m0 is odd, and∑
m0

1

m0
=
∏
p>2

(
1 +

1

p(p− 1)

)
=

2ζ(2)ζ(3)

3ζ(6)
.

Thus,

gi :=
∑
n∈Ak

P (σ(m1))<Lk

q∈[Qi,Qi+1)

(
1

n
+

1

n′

)
≤

∑
n∈Ak

P (σ(m1))<Lk

q∈[Qi,Qi+1)
n,n′ even

(
1

n
+

1

n′

)
+

∑
n∈Ak

P (σ(m1))<Lk

q∈[Qi,Qi+1)
n,n′ odd

(
1

n
+

1

n′

)

≤ (4 + µk)ιi

(
2ζ(2)ζ(3)

3ζ(6)

)2 ∑
q1≥

Qi
16Lk

P (q1)≤Lk

1

q1

∑
m2≥ 2ek/4−1

Qi+1L
2
k

P (m2)<Qi+1

1

m2

∑
p>Qi
z≤p≤ez

1

p
,

since the multiplier for even pair is 3 and for odd pair is 1 + µk.

Here, ω(q1) ≥
⌈
log(Qi/16Lk)

logLk

⌉
= ui, say, so as in Lemma 3.4, we have

∑
q1>

Qi
16Lk

P (q1)≤Lk

1

q1
≤

∑
P (q1)<Lk

ω(q1)≥ui

1

q1
≤ (H(Lk)− 1/2)ui

ui!
· ui + 1

ui + 1/2−H(Lk)
, (4.1)

since q1 runs over odd squarefree numbers.

Similarly, ω(m2) ≥
⌈
k/4−1+log 2−logQi+1−2 logLk

logQi+1

⌉
= wi, say, so

∑
m2≥ 2ek/4−1

Qi+1L
2
k

P (m2)<Qi+1

1

m2
≤

∑
P (m2)<Qi+1

ω(m2)≥wi

1

m2
≤ (H(Qi+1)− 1/2)wi

wi!
· wi + 1

wi + 1/2−H(Qi+1)
. (4.2)
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We also have ∑
p>Qi
z≤p≤ez

1

p
≤ 1

logQi
+

1

log2Qi
.

Note that estimates (4.1) and (4.2) are valid only if ui + 1/2 > H(Lk) and wi + 1/2 >
H(Qi+1). For small values of i, ui will be too small to use (4.1) and for large values of i,
wi will be too small to use (4.2). Let [a, b] be the interval of indices i where the estimates
(4.1) and (4.2) are valid. For q < Qa, we have

α =
∑
n∈Ak

P (σ(m1))<Lk
q<Qa

(
1

n
+

1

n′

)
≤ (1 + µk)ι0

∑
m2≥ 2ek/4−1

QaL2
k

P (m2)<Qa

1

m2

∑
z≤v≤ez
z>Q0

1

v

≤ (1 + µk)ι
2
0 ·

(H(Qa)− 1/2)wa−1

wa−1!
· wa−1 + 1

wa−1 + 1/2−H(Qa)
,

where ι0 = 1 + 1/Q0. For q > Qb, we have

β =
∑
n∈Ak

P (σ(m1))<Lk
q≥Qb

(
1

n
+

1

n′

)
≤ (1 + µk)ιb

∑
q1>

Qb
16Lk

P (q1)≤Lk

1

q1

∑
z≤v≤ez
z>Qb

1

v

≤ (1 + µk)ι
2
b ·

(H(Lk)− 1/2)ub

ub!
· ub + 1

ub + 1/2−H(Lk)
,

where ιb = 1 + 1/Qb. Thus, we have

s
(8)
k =

∑
n∈Ak

P (σ(m1))<Lk

(
1

n
+

1

n′

)
≤ α+ β +

b−1∑
i=a

gi.

We can compute
106∑

k=K+1

s
(8)
k = 306.2117.

For k > 106, we use a = b = 0, so that

H(Lk)− 1/2 <
log k

2
− log 5 +B +

5

2k
− 1/2 <

log k

2
− 1.847941,

and

u0 =

⌈
log(Q0/16Lk)

logLk

⌉
>

logQ0 − log 16−
√
k/5√

k/5

≥
k/4−1+log 2−2

√
k/5

4 log k−1 − log 16−
√
k/5

√
k/5

> 0.219k1/3,
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which implies

E(8) ≤
∞∑

k=106+1

1 + 2 log k√
2π · 0.219 · k1/3

(
e(log k/2− 1.847941)

0.219 · k1/3

)0.219·k1/3

≤
∫ ∞
106

1 + 2 log t√
2π · 0.219 · t1/3

(
e(log t/2− 1.847941)

0.219 · t1/3

)0.219·t1/3

dt

≤ 11.2041.

Thus, we have
P (8) ≤ 317.4158.

22



4.9 Remaining amicable numbers

We are left with amicables n such that both n and n′ have properties (1)–(8). We want to
calculate

P (∗) =
∑
n∈A

min{n,n′}>K
n,n′ pass (1)-(8)

1

n
≤

∞∑
k=K+1

(1 + µk)
∑
n∈Ak

n,n′ pass (1)-(8)
P (n)>P (n′)

1

n
.

By property 8, there exists a prime r|σ(m1) with r > Lk. Thus, there is a prime q|m with
q ≡ −1(mod r). But σ(n) = σ(s(n)), so there is a prime power q′a||s(n) with r|σ(q′a). Then
q′a > r/2 > Lk/2 > Lk′/4, so by property 2, a = 1 and q′ ≡ −1(mod r). Since q′ > Lk/2,
by part 4 we have q′ - n, so q′ 6= q. Also, q′|s(n) implies that

s(n) = ps(m) + σ(m) ≡ 0(mod q′).

Since q′ - n, it implies that q′ - σ(m), so p is in a residue class a = a(m, q′)(mod q′). And
since P (n) > P (n′), p > q′.

We want to calculate the following:∑
n∈Ak

n,n′ pass (1)-(8)
P (n)>P (n′)

1

n
≤
∑
r>Lk

∑
q≡−1(mod r)

q<ek

∑
m≡0(mod q)

m<ek

1

m

∑
q′≡−1(mod r)

q′<ek

∑
p≡a(mod q′)
q′<p≤ek/m

1

p
.

Since q′ ≡ −1(mod r), we have q′ > r ≥ Lk. Let ι = Lk
Lk−1 , then 1/ϕ(r) ≤ ι/r and

1/ϕ(q′) ≤ ι/q′.
If q′ > ek−1

m , then p ∈ {q′ + a, 2q′ + a}, and since (q′ + a) and (2q′ + a) are of different
parity, there is at most one choice of p. Writing m = qj, then ek−1/pq ≤ j ≤ ek/pq, so∑
j

1/j ≤ 3/2. Therefore,

∑
n∈Ak

n,n′ pass (1)-(8)
P (n)>P (n′)

q′> ek−1

m

1

n
≤ 3

2

∑
r>Lk

∑
q≡−1(mod r)

q<ek

1

q

∑
q′≡−1(mod r)

q′<ek

1

q′
.

If q′ ≤ ek−1

m , then j ≤ ek−1

qq′ , so that∑
n∈Ak

n,n′ pass (1)-(8)
P (n)>P (n′)

q′≤ ek−1

m

1 ≤
∑
r>Lk

∑
q≡−1(mod r)

q<ek

∑
q′≡−1(mod r)

q′<ek

∑
j≤ ek−1

qq′

∑
p≡a(mod q′)
p≤ek/jq

1

≤
∑
r>Lk

∑
q≡−1(mod r)

q<ek

∑
q′≡−1(mod r)

q′<ek

∑
j≤ ek−1

qq′

2ιek

q′qj log(ek/q′qj)
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≤ 2ιek
∑
r>Lk

∑
q≡−1(mod r)

q<ek

1

q

∑
q′≡−1(mod r)

q′<ek

1

q′

∑
j≤z/e

1

j log(z/j)
,

where z = ek

qq′ . Since qq′ ≤ mq′ ≤ ek−1, z ≥ e. We have

∑
j≤z/e

1

j log(z/j)
≤ 1

log z
+

∫ z/e

1

dt

t log(z/t)
=

1

log z
− log log

z

t

∣∣∣∣∣
z/e

1

=
1

log z
+ log log z < 1 + log k,

so ∑
n∈Ak

n,n′ pass (1)-(8)
P (n)>P (n′)

q′≤ ek−1

m

1

n
= 2ιe(1 + log k)

∑
r>Lk

∑
q≡−1(mod r)

q<ek

1

q

∑
q′≡−1(mod r)

q′<ek

1

q′
.

Thus, ∑
n∈Ak

n,n′ pass (1)-(8)
P (n)>P (n′)

1

n
≤
(

2ιe(1 + log k) +
3

2

) ∑
r>Lk

∑
q≡−1(mod r)

q<ek

1

q

∑
q′≡−1(mod r)

q′<ek

1

q′
.

By Lemma 3.5, we have ∑
q≡−1(mod r)

q≤ek

1

q
≤ 2(log k + c)

ϕ(r)
≤ 2ι(log k + c)

r
,

where c = 1
k/4−logLk

− log log(2− 1/Lk) because Lk ≤ r < p ≤ e3k/4Lk. Therefore,

∑
r>Lk

∑
q≡−1(mod r)

q<ek

1

q

∑
q′≡−1(mod r)

q′<ek

1

q′
≤ 4ι2(log k + c)2

∑
r≥Lk

1

r2
≤ 4ι2(log k + c)2

Lk − 1
.

Thus,

s
(∗)
k ≤

4ι3(1 + µk) (2ιe(1 + log k) + 3/2) (log k + c)2

Lk
.

We can compute
106∑

k=K+1

s
(∗)
k ≤ 17.1315.

For k > 106, c < 1, and choose a large factor, say 30, to offset the constants, we have

E(∗) ≤ 30

∞∑
k=106+1

(1 + 2 log k)(1 + log k)3

e
√
k/5
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≤ 30

∫ ∞
106

(1 + 2 log t)(1 + log t)3

e
√
t/5

≤ 3.89548× 10−77.

Thus,
P (∗) ≤ 17.1316.

Putting everything together, we have the result stated in Theorem 1.1:

P = Ps + P (K) + P (∗) +
8∑

i=1

P (i) + ε < 4084.

This upper bound can potentially be decreased further by (1) extending the parity argument
currently used for small amicable numbers to address large amicable numbers, and (2) break
down part 4.8 even further by computing small cases of q0 and m0.
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