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Abstract. We apply category-theoretic techniques alongside the Gelfand-Naimark
theorem to show the existence of an adjunction and category equivalences in the
field of functional analysis. After introducing the category of Banach spaces and
the category of topological spaces, we present two functors between these categories
and an adjunction between the functors. From this adjunction, we can produce
the Gelfand transform; because the transform is idempotent, we show that there is
an equivalence of categories between two subcategories of our original categories,
and we argue that one of the subcategories can be identified by the category of
compact Hausdorff spaces. After explaining the notion of a C∗-algebra, we discuss
how the Gelfand-Naimark theorem identifies the category of C∗-algebras with the
second of the subcategories.

1. Introduction

To the reader without a sturdy mathematical background, even a very loose expla-
nation of the Gelfand-Naimark theorem is almost meaningless: conveying the power
of this theorem in layman’s terms is a real challenge. If the vague description of
the theorem is difficult enough to comprehend, the precise technical statement and
proof of the Gelfand-Naimark theorem are harder still; in order to prove the theo-
rem, one must draw from as far afield as the Stone-Weierstrass theorem and spectral
theory. And after wading through the arguments, one comes to the realization that
the proof does not reveal much about the deep mathematical structures at work in
the theorem. This thesis aims to provide precisely that understanding. By using a
wholly different branch of mathematics — namely, category theory — we arrive at
a more intuitive conceptualization of the theorem and its mathematical importance.

In 1943, Israel Gelfand and Mark Naimark published the Gelfand-Naimark theo-
rem; although their work would eventually serve as a central result in the study of
C∗-algebras, their original paper (see Gelfand and Naimark [2]) does not even intro-
duce the formal notion of a C∗-algebra. Their theorem asserts that certain varieties
of C∗-algebras can be considered almost a relabelling of the object obtained once one
subjects the C∗-algebra to the Gelfand transform.

In this paper, we show how to employ the power of category theory to reorganize
the proof of the theorem and derive novel results in this context. In particular, we
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consider structures and transformations invoked in the proof of the Gelfand-Naimark
theorem as examples of elementary concepts in category theory. Once we revisit the
Gelfand-Naimark theorem within the context of category theory, then, we can analyze
surprising relationships that fall out from the theory quite intuitively. Only small
bits of the proof of the theorem can be omitted entirely — the Gelfand-Naimark
theorem is a deep statement and requires a deep proof. Reframing the theorem as
a statement in a category-theoretic context, however, does permit us to understand
exactly where these difficult results are necessary, and we can produce results that
serve as important examples in category theory. Moreover, category theory gives us
the ability to expand exactly the impact or utility of the Gelfand-Naimark theorem;
instead of viewing it as an abstruse result specific to C∗-algebras and functional
analysis, we can see the theorem as providing the base for a deep relationship between
the category of C∗-algebras and the category of compact Hausdorff spaces.

In chapter 2, we illustrate how, with very little mathematical architecture, one can
simply define two categories — the category of Banach algebras and the category
of topological spaces. Chapter 3 presents two functors connecting these categories.
In chapter 4, we illustrate that there is an adjunction of these functors, and in
chapter 5, we argue that the classical Gelfand transform arises naturally from this
adjunction. Chapter 6 introduces the concept of an equivalence of categories to argue
that two subcategories of our original categories are equivalent, and that the category
of compact Hausdorff spaces is equivalent to one of the subcategories. Chapter 7
discusses C∗-algebras, and we also present the argument that the category of C∗-
algebras is equivalent to the second subcategory. Crucially, this proof will invoke the
Gelfand-Naimark theorem. We prove the theorem itself in chapter 8.

2. Two Categories

2.1. Categories. Throughout this paper, we use only the precise notions from cat-
egory theory that we need for our purposes. For a fuller treatment, see Maclane [4].
First we recall the following definition.

Definition 2.1. A category C requires the following:

(1) A class of objects denoted ObjC .
(2) For every pair of objects X, Y in ObjC , there exists a set of morphisms

HomC(X, Y ), where each element f ∈ HomC(X, Y ) defines a morphism or
“arrow” f : X → Y .

(3) For every three objects X, Y, Z in ObjC , there is a binary operation

◦ : HomC(Y, Z)×HomC(X, Y )→ HomC(X,Z)

which satisfies:
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Associativity: . For each morphism f, g, h where f : W → X, g : X → Y ,
h : Y → Z, (h ◦ g) ◦ f = h ◦ (g ◦ f).

Identity: For each object X there exists IX ∈ HomC(X,X) such that
for each f ∈ HomC(X, Y ), f ◦ IX = f and for each f ∈ Hom(Y,X),
IX ◦ f = f .

Observe that ObjC is not necessarily a set; for example, it is well-known that the
collection of all groups is not a set.

Remark. In this paper, we consider categories whose morphisms are functions, so
associativity is immediate, as compositions of functions are associative. Moreover,
the categories we consider have obvious identity maps that are functions from el-
ements to themselves. In our early examples, we need to check that composition
of morphisms yields a morphism in the appropriate category — that is, that the
composition operation is closed for the functions we consider, and that the identity
maps are actually morphisms.

2.2. The Category Ban. Now, we build up to the definition of a Banach algebra.
Recall the following elementary definitions.

Definition 2.2. A norm ‖·‖ on a complex vector space X is a function ‖·‖ : X → R
which satisfies the following properties:

(1) ‖x‖ ≥ 0 for all x ∈ X.
(2) ‖x‖ = 0 ⇐⇒ x = 0.
(3) ‖λx‖ = |λ|‖x‖ for λ ∈ C and x ∈ X.
(4) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for all x, y ∈ X (Triangle Inequality).

Definition 2.3. A metric space X is complete if every Cauchy sequence in X
converges to a point in X.

Remark. If a normed space X is imbued with a norm ‖ · ‖, define a distance d
between points x, y ∈ X as d(x, y) = ‖x − y‖. Observe that d(x, y) ≥ 0. Also
note that d(x, y) = 0 ⇐⇒ ‖x − y‖ = 0 ⇐⇒ x = y, and that for any z ∈ X,
d(x, z) = ‖x + (−y + y) − z)‖ ≤ ‖x − y‖ + ‖y − z‖ = d(x, y) + d(y, z), so we have
the metric version of the triangle inequality. As a result, every normed vector space
gives a metric space.

Definition 2.4. A complete, normed vector space is called a Banach space.

Definition 2.5. An associative algebra is a vector space A equipped with the
bilinear associative product · : A× A→ A where · satisfies:

(1) x · (y · z) = (x · y) · z, for all x, y, z ∈ A.
(2) x · (y + z) = x · y + x · z, for all x, y, z ∈ A.
(3) (x+ y) · z = x · z + y · z, for all x, y, z ∈ A.
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(4) λ(x · y) = (λx) · y = x · (λy) for x, y ∈ A and λ ∈ C, if C is the underlying
field for A.

Note that there exist non-associative algebras which do not satisfy (1). We only
consider associative algebras in this paper. To abbreviate the discussion, when we
describe an “algebra,” we mean associative algebras.

Definition 2.6. A norm is submultiplicative on an algebraA if for all a, b ∈ A, ‖ab‖ ≤ ‖a‖‖b‖.

Naturally, that gives us:

Definition 2.7. A Banach algebra is an algebra that has a complete submulti-
plicative norm.

Finally, we need to refine our understanding of linear operators on a vector space.

Definition 2.8. Consider a linear operator f : W → V , where W and V are two
Banach spaces. f is a bounded linear operator if there exists M > 0 such that
‖f(x)‖V ≤M‖x‖W for all x ∈ X.

Remark. We define ‖f‖ = inf{M ∈ R : ‖f(x)‖V ≤ M‖x‖W for all x ∈ X}. It is a
fact in functional analysis that that this norm, the operator norm, is indeed a norm.

Proposition 2.1. The objects that are unital abelian Banach algebras whose under-
lying field is C, alongside the morphisms that are bounded unital algebra homomor-
phisms between the unital abelian Banach algebras, form a category denoted Ban.

Consider arbitrary unital abelian Banach algebras A,B, and C and bounded unital
algebra homomorphisms f, g, h where f : A→ B, g : B → C, and h : C → D. First
we claim that composition of bounded unital algebra homomorphisms yields a unital
algebra homomorphism; that is, g ◦ f ∈ HomBan(A,C). For a, b ∈ A, we have
f(a · b) = f(a) · f(b), so g(f(a · b)) = g(f(a) · f(b)) = g(f(a)) · g(f(b)); as a result,
(g ◦ f)(a · b) = (g ◦ f)(a) · (g ◦ f)(b), and similarly for addition, so g ◦ f is an algebra
homomorphism. Denote 1G as the unit in arbitrary unital Banach algebra G. Then,
f(1A) = 1B, since f is a unital algebra homomorphism. By the same argument,
g(1B) = 1C . So g(f(1A)) = (g ◦ f)(1A) = 1C . So we have that g ◦ f is a unital
algebra homomorphism from A to C which therefore lies in HomBan(A,C).

Now, we need to show g ◦ f is bounded as a linear operator. Because f and g are
bounded,

‖g(b)‖C ≤M · ‖b‖B, for all b ∈ B,
and

‖f(a)‖B ≤ N · ‖a‖A, for all a ∈ A.
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In that case,

‖(g ◦ f)(a)‖C ≤M‖f(a)‖B ≤M ·N · ‖a‖A,
so g ◦ f is bounded.

Second, we claim homomorphisms are associative, i.e., (h ◦ g) ◦ f = h ◦ (g ◦ f).
This is immediate because homomorphisms are functions, and because composition
of functions is associative.

Third we claim that we can induce an identity homomorphism on any Banach alge-
bra as follows. For an arbitrary unital abelian Banach algebra A, construct IA(a) = a
for all a ∈ A. Note that IA ∈ HomBan(A,A). For example, IA(a·b) = a·b = IA(a)·IA(b)
for a, b ∈ A; and IA(1A) = 1A. Now if we take unital abelian Banach algebra B,
f : A→ B, and g : B → A, we have f ◦ IA = f and IA ◦ g = g. Therefore Ban is a
category.

2.3. The Category T op. Familiarity with a few topological facts is required to read
this paper. We jog the reader’s memory of the most important properties invoked
here. Let us note the definition of a topological space:

Definition 2.9. A topological space is a double 〈X, τ〉 whereX is a set and τ ⊂ P (X),
where P (X) is the power set of X, such that:

(1) ∅ ∈ τ and X ∈ τ .
(2) The (finite or infinite) union of elements of τ is also contained in τ .
(3) The finite intersection of elements of τ is also contained in τ .

The elements of τ are declared to be open sets in X.

Definition 2.10. Let f : D → D′, where D and D′ are both metric spaces imbued
with metrics d and d′, be a function. f is continuous at z0 if the following condition
holds: For every ε > 0, there exists δ > 0, such that for all z ∈ P ,

d(z, z0) < δ =⇒ d′(f(z), f(z0)) < ε.

In some cases, we wish to consider continuous functions without considering met-
rics or norms. Then the following definition is equivalent.

Definition 2.11. Let f : A → A′, where A and A′ are both topological spaces, be
a function. If for every open set B′ ⊂ A′, the inverse image f−1(B′) yields an open
set in A, then f is continuous.

Proposition 2.2. Let A,B,C be topological spaces, and let f : A → B, g : B → C
be continuous maps. Then g ◦ f : A→ C is continuous.

Proof. Consider any open set D ⊂ C. g−1(D) is open, because g is continuous.
(f−1 ◦ g−1)(D) is also open, because f is continuous. So for any open set in C the
inverse image (g ◦ f)−1 = (f−1 ◦ g−1)(D) is also open. Hence g ◦ f is continuous. �
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Proposition 2.3. The objects that are topological spaces, alongside the morphisms
that are continuous functions from topological spaces to topological spaces, form a
category denoted T op.

Proof. Consider topological spaces W,X, Y, Z and continuous functions f : X → Y ,
g : Y → Z, and h : Z → W . First, from the above proposition, we know that
g ◦ f : X → Z is a continuous map which lies in HomT op(X,Z). The composition of
continuous functions yields a continuous morphism, and we immediately have that
(h ◦ g) ◦ f = h ◦ (g ◦ f). Finally, every topological space is imbued with an identity
arrow. For any topological space X and for any x ∈ X, we can construct the
function IX ∈ HomT op(X,X), IX(x) = x. Observe that I(x) is continuous, because
the inverse image of any open set will be mapped to itself, which is open. Consider
Y , another topological space. Now for any arrows f : X → Y and g : Y → X,
f ◦ IX = f and IX ◦ g = g. �

3. Two Functors

3.1. Functors. Categories can be linked by functors in the following way.

Definition 3.1. A covariant functor F between categories C and D assigns an ob-
ject F (X) in D to every object X in ObjC . Moreover, for every X, Y in ObjC , and ev-
ery morphism f ∈ HomC(X, Y ), F assigns a morphism F (f) ∈ HomD(F (X), F (Y ))
such that:

Identity-preserving: For each X in ObjC , F (IX) = IF (X).
Composition-preserving: F (g ◦ f) = F (g) ◦ F (f) for f : X → Y and
g : Y → Z.

Definition 3.2. A contravariant functor F between categories C andD assigns an
object F (X) to every object X in ObjC . Moreover, for every X, Y in ObjC , and every
morphism f ∈ HomC(X, Y ), F assigns a morphism F (f) ∈ HomD(F (Y ), F (X))
(reverses arrows) such that:

Identity-preserving: For each X in ObjC , F (IX) = IF (X).
Composition-reversing: F (g◦f) = F (f)◦F (g) for f : X → Y and g : Y → Z.

3.2. The Functor M .

3.2.1. M(A) as a map of objects.

Definition 3.3. For A, a unital abelian Banach algebra, define the topological space
M(A) as the set HomBan(A,C) with the topology that it inherits as a subspace of
A∗, the dual space of A.

This definition requires some comment. We introduce the weak-* topology as
follows.
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Definition 3.4. Let W be a Banach space, let W ∗ be its dual space, and let f ∈ W ∗.
The weak-* topology on W ∗ is the weakest topology such that the evaluation map

evw : W ∗ → C
evw(f) = f(w)

is continuous for every w ∈ W .

Remark. Fix w ∈ W . Then, evw : f 7→ f(w) is continuous if for every open U ∈ C,
the inverse image ev−1w (U) is open in W ∗. Therefore, this definition is equivalent to
declaring the following topological basis:

V W
d,U = {ϕ ∈ W ∗ : ϕ(d) ∈ U}.

We take as given that this basis can be used to generate a topology.
Observe that M(A) is a subset of A∗, the dual space of A. Therefore M(A) is a

topological space under the subspace topology induced by the weak-∗ topology on
A∗.

3.2.2. M as a map of morphisms. Now, we consider a map of morphisms M . For
any unital algebra homomorphism f : A→ B, and for ϕ ∈M(B), construct

M(f) : M(B)→M(A)

M(f)(ϕ) = ϕ ◦ f
Note that M is indeed well-defined, as f : A → B, f ∈ HomBan(A,B) while

ϕ : B → C, ϕ ∈ HomBan(B,C). So the composition ϕ ◦ f ∈ HomBan(A,C), since
Ban is a category. As a result, we have shown that ϕ ◦ f ∈M(A).

Proposition 3.1. For any algebra homomorphism f between unital abelian Banach
algebras A and B, the map M(f) : M(B)→M(A) is continuous.

Proof. Any element in M(B) is a multiplicative linear functional ϕ : B → C. Con-
sider any continuous map f : A→ B, two Banach∗ algebras.

Now, we claim that for any A∗, B∗ — the duals of these Banach∗ algebras — the
map

f̃ : B∗ → A∗

ϕ 7→ ϕ ◦ f
is continuous through the weak-∗ topology. Consider an open set V in A∗. We aim
to show the inverse image

f̃−1(V ) = {ϕ ∈ B∗ : ϕ ◦ f ∈ V }
yields an open set. Recall the following topological fact:
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Fact. Let X and Y be topological spaces, and let f : X → Y be a map. If f−1(D)
is open in X for all D in a topological basis of Y , then f is a continuous map. (See
Munkres [5], section 2.7.)

Now, because we employ a weak-∗ topology on A∗, it suffices to prove that f̃−1(V )
is open for V = V A

a,U = {ψ ∈ A∗ : ψ(a) ∈ U} for some a ∈ A,U ⊂ C. So if

f̃(ϕ) = ϕ ◦ f ∈ V , then (ϕ ◦ f)(a) ∈ U . Hence we have:

f̃−1(V A
a,U) = {ϕ ∈ B∗ : (ϕ ◦ f)(a) ∈ U}

= {ϕ ∈ B∗ : ϕ(f(a)) ∈ U}
= V B

f(a),U .

Since we likewise employ the weak-∗ topology on B∗, we find that f̃(V A
a,U) yields

V B
f(a),U , which was declared an open set in B∗ under this topology. Hence for any

open set in A∗, the inverse image of f̃ yields an open set in B∗. Hence f̃ is continuous.
Now, M(A) ⊂ A∗,M(B) ⊂ B∗. So since the continuity of f̃ holds for general

duals, it certainly holds once we restrict the domain to M(B), and hence M(f) is
continuous. �

3.2.3. Proving M is a functor. We assembled the architecture in the previous sec-
tions in order to show the following:

Theorem 3.2. M is a functor from Ban to T op.

Proof. M(A) is a topological space under the weak-∗ topology from A∗, the dual
space of M(A). Therefore any M(A) is in ObjT op for any unital abelian Banach
space A. Moreover, from Proposition 3.1, we know that M(f) is in HomT op for any
function f .

Now we verify that M(IA) = IM(A). For ϕ ∈M(A),

M(IA)(ϕ) = ϕ ◦ IA = ϕ.

So M(IA)(ϕ) = IM(A).
Second we verify that

M(g ◦ f) : M(C)→M(A)

M(g ◦ f) = M(f) ◦M(g).
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For ψ ∈M(C),

[M(f) ◦M(g)](ψ) = M(f)
(
(M(g)(ψ))

)
= M(f)((ψ ◦ g))

= ψ ◦ g ◦ f
= ψ ◦ (g ◦ f)

= M(g ◦ f)(ψ)

�

Therefore, we produce the following:

A B

C

..................................................................................................................................................................................................................... ............
f

................................................................................................................................................................................................................
.....
.......
.....

g

....................................................................................................................................................................................................................................................................................................................... ........
....

g ◦ f

M(A) (B)

M(C)

..........
..........
...........
...........
............
............
.............
..............

..............
................

.................
...................

......................
...........................

........................................
.......................................................................................................................................................................................................................................................................................................................................................................... ............

M
......................................................................................................................................................................................................

M(f)

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

M(g)

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.................................

M(f) ◦M(g)

3.3. The Functor Cb.

3.3.1. Cb as a map of objects. Let X be any topological space. Then let Cb(X) be
the set of bounded, continuous functions on X, i.e., the set of continuous functions
f : X → C such that there exists M > 0 with |f(x)| < M for all x ∈ X.

Theorem 3.3. Let X be a topological space. Then Cb(X) is a unital abelian Banach
algebra.

Proof. First, addition and multiplication of functions are certainly commutative and
associative operations, and there exists additive inverses for all continuous functions
(namely, taking the additive inverse of the function in C); the map 0(x) = 0 for all
X serves as the additive identity, while the map 1(x) = 1 ∈ C serves as the multi-
plicative identity. The distributive property holds with multiplication and addition
of functions, and scalars in C can be multiplied to functions in any order. Finally,
we argue that Cb(X) is closed under + and ·. Take f, g such that |f(x)| < M and
|g(x)| < N for all x ∈ X. Then |(f + g)(x)| < M +N and |(f · g)(x)| < M ·N , and
both M +N and M ·N are finite integers, so we have that Cb(X) is a unital abelian
algebra.
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Now, we need to show that Cb(X) is normed. Equip Cb(X) with the supremum
norm:

‖f‖∞ = sup{|f(x)| : x ∈ X}.
‖f‖∞ is well defined for all f because |f(x)| < M for all x ∈ X. Moreover,
‖f‖∞ is a norm on C(X). The only nontrivial condition to check is the triangle
inequality, as the supremum is linear in scalars and the norm on R is a norm. Consider
f, g ∈ Cb(X). Then

‖f + g‖∞ = sup{|(f + g)(x)| : x ∈ X} = sup{|f(x) + g(x)| : x ∈ X}
≤ sup{|f(x)|+ |g(x)| : x ∈ X}
= sup{|f(x)| : x ∈ X}+ sup{|g(x)| : x ∈ X}
= ‖f‖∞ + ‖g‖∞.

Moreover, this norm is submultiplicative by the exact same argument, replacing +
with ·.

We claim that Cb(X) is complete. First, take a Cauchy sequence

(fn)n∈N ⊂ Cb(X),

and recall that C is complete. Fix x ∈ X to obtain (fn(x))n∈N . Because

‖fn − fm‖∞ ≥ |fn(x)− fm(x)|,

it follows that if (fn)n∈N is Cauchy, then (fn(x))n→∞ is certainly Cauchy. As a result,
the limit

lim
n→∞

fn(x) = f(x)

exists, and we obtain a function f : X → C.
It remains to be shown that f ∈ Cb(X) and that fn converges to f ∈ Cb(X). In

order to do so, we will need to argue that for any ε, there exists an N such that for
n > N , ‖fn − f‖∞ < ε. Fix ε > 0. Then because (fn)n∈N is Cauchy, there exists
N > 0 such that for m,n > N ,

‖fn − fm‖∞ <
ε

2
,

Choose x. Now, because f(x) = limn→∞ fn(x), choose m > N such that

|fm(x)− f(x)| < ε

2
.

Now,

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| < ε.
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But for every x, we can choose an m > N which satisfies the above. Hence the choice
of N does not depend on x. As a result, we know that

‖fn − f‖∞ = sup{|fn(x)− f(x)|, for all x ∈ X} < ε.

First, we claim that f is bounded. By the prior argument, there is certainly some
N > 0 such that for all n > N ,

‖fn − f‖∞ < 1.

Invoking the triangle inequality, we see that ‖f‖∞ ≤ ‖fn‖∞+1 < M1+1 = M2 <∞.
Therefore so long as each fn is bounded, f must also be bounded.

Now we also check that f is continuous. Fix ε > 0 and fix x ∈ X. As we have
shown, there exists N > 0 such that for m,n > N ,

‖fn − f‖∞ <
ε

3
, as well as ‖fn − fm‖∞ <

ε

3
.

As fn is continuous at x, there exists some open U ⊂ X with x ∈ X such that

y ∈ U =⇒ |fn(x)− fn(y)| < ε

3
.

Recall that for any x, y ∈ X,

|f(x)− fn(x)| ≤ ‖fn − f‖∞ and |fm(y)− f(y)| ≤ ‖f − fm‖∞.
As a result, we have that there exists some open U ⊂ X such that for m,n > N ,

y ∈ U =⇒ |f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fm(y)|+ |fm(y)− f(y)| < ε.

So f is continuous in X.
Now, f is bounded and continuous, so f ∈ Cb(X). As there exists an N such that
‖fn − f‖∞ > ε for all n > N , we have therefore shown that limn→∞ fn = f .

As a result, we have that any Cauchy sequence in Cb(X) converges to a limit point
in Cb(X), so Cb(X) is complete for any topological space X. Therefore Cb(X) is
complete, and we have shown that Cb(X) is a unital abelian Banach algebra. �

3.3.2. Cb as a map of morphisms. Now consider all continuous functions f : X → Y
for X, Y which are topological spaces, i.e., f ∈ HomT op(X, Y ). Also take bounded
continuous functions g ∈ Cb(Y ). Then define a map of morphisms.

Cb(f) : Cb(Y )→ Cb(X),

(Cb(f))(g) = g ◦ f.
Observe that Cb is well-defined. If f : X → Y is a continuous function, and

g : Y → Z is a bounded, continuous function, then g ◦ f is also continuous at each
x0 ∈ X, since f ∈ HomT op(X, Y ) and g ∈ HomT op(Y,C). As g is bounded, g(f(x))
is certainly bounded. As a result, Cb(f) accepts elements in Cb(Y ) and returns
elements in Cb(X).
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Proposition 3.4. Let f : X → Y be a continuous map on topological spaces X, Y .
Cb(f) is a bounded unital algebra homomorphism.

Proof. Cb(f) is clearly an algebra homomorphism. Observe,

Cb(f)(z1 + z2) = (z1 + z2) ◦ f = z1 ◦ f + z2 ◦ f = Cb(f)(z1) + Cb(f)(z2).

The same holds true with multiplication. Now, for 1Cb(Y ), the multiplicative unit in
Cb(Y ) which sends x 7→ 1 ∈ C, Cb(f)(1CbY ) = 1CbY ◦ f = 1CbX ∈ Cb(X), so Cb(f)
preserves the unit. As a result, Cb(f) is a unital algebra homomorphism.

Finally, we need to show that Cb(f) is bounded as a map of Banach algebras.
Observe that

sup{|g(f(x))|, for all x ∈ X} ≤ sup{|g(y)|, for all y ∈ Y },

as {f(x), for all x ∈ X} ⊆ {y ∈ Y }.
As a result, we have that

‖g ◦ f‖∞ ≤ ‖g‖∞.
But this means

‖Cb(f)(g)‖∞ ≤ 1 · ‖g‖∞,
so Cb(f) is a bounded linear operator of norm 1. �

3.4. Proving Cb Is a Functor.

Theorem 3.5. Cb is a contravariant functor from T op to Ban.

Proof. For any X that is in ObjT op, Cb(X) is in ObjBan, because it is a Banach
algebra. For any f ∈ HomT op, Cb(f) ∈ HomBan, since it is a bounded unital
algebra homomorphism.

Now, we check that Cb satisfies the properties of functors. First, for any f ∈ Cb(Y ),

Cb(IY )(f) = f ◦ IY = f ∈ Cb(Y ).

So Cb preserves the identity map, because Cb(IY ) = ICb(Y ).
Next we check that Cb(g ◦ f) = Cb(f) ◦ Cb(g). Consider arbitrary g : Y → Z and

f : X → Y . Cb(f) accepts any function z1 ∈ Cb(Y ) and composes them to generate
z1 ◦ f : Cb(Y )→ Cb(X). Cb(g) accepts any function z2 ∈ Cb(Z) and composes them
to generate z2 ◦ g : Cb(Z)→ Cb(Y ). Therefore for any z2 ∈ Cb(Z),

[Cb(f) ◦ Cb(g)](z2) = (Cb(f))(z2 ◦ g) = z2 ◦ g ◦ f

by compositions of functions. This is equivalent to Cb(g ◦ f)(z2) = z2 ◦ (g ◦ f) and
we have therefore shown Cb is a contravariant functor.
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X Y

Z

..................................................................................................................................................................................................................... ............
f

................................................................................................................................................................................................................
.....
.......
.....

g

....................................................................................................................................................................................................................................................................................................................... ........
....

g ◦ f

Cb(X) Cb(Y )

Cb(Z)

..........
..........
...........
...........
............
............
.............
..............

..............
................

.................
...................

......................
...........................

........................................
.......................................................................................................................................................................................................................................................................................................................................................................... ............

Cb
.....................................................................................................................................................................................

Cb(f)

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...............

............

Cb(g)

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.................................

Cb(f) ◦ Cb(g)

�

4. Adjoint Functors

We can begin to harness the real power of category theory once we identify that
M and F are something called an adjunction.

Definition 4.1. Consider categories C,D. Then an adjunction from C to D
is a triple: 〈F,G,Φ〉 where F : C → D and G : D → C are functors, and
Φ : HomC(FX,A) → HomD(X,GA) is a bijection of sets which is natural in the
following sense:

LetX, Y be objects inObjC and A,B be objects inObjD. Then for every morphism
f ∈ HomC(X,GA), g ∈ HomD(FX,A), h ∈ HomC(Y,X), and k ∈ HomD(A,B),
we have:

(1) Φ(G(k) ◦ f) = k ◦ Φ(f).
(2) Φ−1(g ◦ Fh) = Φ−1(g) ◦ h.

That is, we obtain the following diagrams for an adjunction:

X GA

GB

.............................................................................................................................................................................................................................................. ............
f

..............................................................................................................................................................................................................................................
.....
.......
.....

Gk

.................................................................................................................................................................................................................................................................................................................................................................. ........
....

Gk ◦ f

FX A

B


Φ

........................................................................................................................................................................................................................................... ............
Φ(f)

..............................................................................................................................................................................................................................................
.....
.......
.....

k

.................................................................................................................................................................................................................................................................................................................................................................. ........
....

k ◦ Φ(f)
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FX A

FY

........................................................................................................................................................................................................................................... ............
g

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

Fh

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

g ◦ Fh

X GA

Y



Φ−1

.............................................................................................................................................................................................................................................. ............
Φ−1(g)

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

h

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

Φ−1(g) ◦ h

4.1. Returning to the Topology on M(A). Before making progress on adjoints,
we add nuance to our discussion of the topology on M(A).

Definition 4.2. A compact topological space satisfies the property that every open
cover of the topological space has a finite subcover.

Proposition 4.1. Consider a continuous function f with domain X, where X is
compact. f(X), the image of X under f , is compact.

Proof. Suppose f : X → Y , where X is compact. Take
⋃
i∈I Ui, an open cover of

f(X) ∈ Y , where Ui is open for all i ∈ I. Then
⋃
i∈I f

−1(Ui) must be an open
cover of X. We take a finite subcover J ⊂ I, since X is compact. In that case⋃
i∈J f

−1(Ui) covers X, so
⋃
i∈J f(f−1(Ui)) covers f(X). Therefore since J is finite,

we have obtained a finite subcover of f(X) for any arbitrary open cover and f(X)
is compact. �

We will invoke the Bolzano-Weierstrass theorem to show an important corollary.

Fact (Bolzano-Weierstrass). Any compact subset of Rn is closed and bounded. (See
Rosenlicht [6], section III.6.)

Corollary 4.2. Let X be compact. Then C(X) = Cb(X).

Proof. Consider f(X), the image of any function f ∈ C(X). We know that f(X)
is compact. But f : X → C, so f(X) is closed and bounded by the Bolzano-
Weierstrauss theorem. As a result, C(X) ⊂ Cb(X). But Cb(X) ⊂ C(X) because
every bounded continuous function is a continuous function and so lies in C(X). �

Definition 4.3. A Hausdorff space is a topological space in which, for every two
distinct points x and y, there exist open subsets U, V with x ∈ U and y ∈ V such
that U ∩ V = ∅, i.e., U and V are disjoint.

Remark. Observe that any metric space X must be Hausdorff. For any two points
x, y ∈ X, x 6= y, let d(x, y) = r. Then the open ball of radius r

2
about x will not
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contain y, and the open ball of radius r
2

about y will not contain x; these open balls
are open sets. In particular, C is Hausdorff.

Proposition 4.3. M(A) is a Hausdorff space.

Proof. M(A) is Hausdorff from the weak-∗ topology. Consider any ϕ, ψ ∈M(A). We
seek to show that we can construct disjoint open sets about ϕ and ψ respectively.
Consider a ∈ A such that ϕ(a) 6= ψ(a), which exists else the two functions are
identical. As C is a metric space, it is Hausdorff. So we can choose disjoint subsets
U1 and U2 in C with ϕ(a) ∈ U1 and ψ(a) ∈ U2. In our notation,

Va,Uj
= {λ ∈ A∗ : λ(a) ∈ Uj}, with j = 1, 2.

But Va,U1∩Va,U2 = ∅ because if there exists λ ∈ A∗ such that λ(a) ∈ U1 and λ(a) ∈ U2,
then U1 ∩ U2 6= ∅.

We have, therefore, shown that A∗ is Hausdorff. Now, M(A) ⊂ A∗, so M(A) is
also Hasudorff because any subset of a Hausdorff space is Hausdorff. �

We need the following lemma.

Lemma 4.4. Multiplicative linear functionals ϕ on a unital abelian Banach algebra
A to C have norm 1.

Proof. Proceed by contradiction. First suppose there exists some multiplicative lin-
ear functional ϕ on A and some a ∈ A where ‖a‖ < 1, such that ϕ(a) = 1. Consider
the series b =

∑
n≥1 a

n; recall that this series converges whenever
∑

n≥1 ‖an‖ con-
verges, which it will for all a such that ‖a‖ < 1, because in a Banach algebra,
‖an‖ ≤ ‖a‖n. Then, recall that a+ ab = b, by dint of how b is constructed; because
ϕ is a multiplicative linear functional, we must have that

ϕ(b) = ϕ(a) + ϕ(a)ϕ(b) = ϕ(a) · (1 + ϕ(b)).

If ϕ(a) = 1, then ϕ(b) = ϕ(b) + 1 which is impossible. Now, suppose there exists
some ϕ and a such that ‖a‖ ≤ 1 but |ϕ(a)| > 1. Let ϕ(a) = α; ϕ( a

α
) = 1. But

‖ a
α
‖ < 1, and we have shown that this result is impossible. Now, consider 1A ∈ A;

‖1A‖ = 1 and ϕ(1A) = 1 ∈ C so |ϕ(1)| = 1. So we know that there exists a ∈ A with
‖a‖ ≤ 1 such that ϕ(a) = 1. Hence

‖ϕ‖ = sup{|ϕ(a)| for ‖a‖ ≤ 1} = 1.

�

Proposition 4.5. M(A) is a closed in the dual space A∗ under the weak-∗ topology.

Proof. Consider ϕ ∈ A∗ but ϕ /∈ M(A). There are two cases. Either ϕ is not
multiplicative or ϕ is not unital. In either case, we show that we can construct an
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open set B ⊂ A∗ containing ϕ such that B ∩M(A) = ∅, i.e., the complement of
M(A) is open.

First suppose ϕ is not multiplicative. In that case, there exists a, b ∈ C such that
ϕ(a)ϕ(b) 6= ϕ(ab).

Take U1, U2, U3 as open balls in C around points ϕ(a), ϕ(b), ϕ(ab) that are suffi-
ciently small that for all x ∈ U1, y ∈ U2, xy /∈ U3. It is easy to verify that these open
balls exist as long as ϕ(ab) 6= ϕ(a)ϕ(b). Then, consider

B = Va,U1 ∩ Vb,U2 ∩ Vab,U3 , B ⊂ A∗.

Note that ϕ ∈ B by construction and that B is open. Consider any ψ ∈ B. We
show that ψ /∈ M(A). Observe ψ(a) ∈ U1, ψ(b) ∈ U2, so ψ(a)ψ(b) /∈ U3. As
ψ(ab) ∈ U3 by design, then ψ(a)ψ(b) 6= ψ(ab), so ψ is not multiplicative, and there-
fore B ∩M(A) = ∅.

Second, let ϕ be multiplicative but not unital. Then ϕ(1)ϕ(1) = ϕ(1), because ϕ
is multiplicative. If ϕ is not unital, then ϕ(1) = 0. Let U ⊂ C be an open ball of
radius 1

2
about 0. Then let B = V1,U . Clearly ϕ ∈ B. In that case, let ψ ∈ B. But

ψ(1) ∈ B implies that ψ(1) 6= 0 so ψ is not unital. Hence for every non-unital ϕ,
there exists an open set B ⊂ A∗ such that B ∩M(A) = ∅.

Therefore, M(A) is closed. �

Theorem 4.6. M(A) is a compact Hausdorff space under the weak-* topology.

Proof. We invoke the Banach-Alaoglu theorem:

Fact (Banach-Alaoglu). The closed unit ball of the dual space of a normed vector
space is compact in the weak-∗ topology. (See Rudin [7], Theorem 3.15.)

As ‖ϕ‖ ≤ 1 for all ϕ ∈M(A), M(A) is a closed subset of the unit ball in A∗, which
is compact by Banach-Alaoglu. A closed subset of a compact space is compact, so
M(A) is compact. �

Remark. An extension of this argument gives that M(A) is locally compact if A is
not unital.

4.2. M and Cb as Adjoint Functors.

Theorem 4.7. The functors Cb and M are adjoints. Let X be a topology, and let
A be a Banach algebra. Put f ∈ HomBan(A,Cb(X)) and g ∈ HomT op(X,M(A)).
There exists a natural bijection of sets

Φ : HomBan(A,Cb(X))→ HomT op(X,M(A))

where Φ(f) = g and Φ−1(g) = f such that

(f(a))(x) = (g(x))(a)
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for every x ∈ X, a ∈ A, f ∈ HomBan(A,Cb(X)) and g ∈ HomT op(X,MA). In
particular, the naturality of Φ is equivalent to

(1) Φ(Cbk ◦ f) = Φ(f) ◦ k.
(2) Φ−1(Mh ◦ g) = Φ−1(g) ◦ h.

Let f ∈ HomBan(A,CbX), g ∈ HomT op(X,MA), h ∈ HomBan(B,A) and k ∈ HomT op(Y,X).
Recall that from our functors, this meansMh ∈ HomT op(MA,MB) while Cbk ∈ HomBan(CbX,CbY ).
If the theorem holds, we should have the following diagrams:

A CbX

CbY

....................................................................................................................................................................................................................................... ............
f

..............................................................................................................................................................................................................................................
.....
.......
.....

Cbk

............................................................................................................................................................................................................................................................................................................................................................. ........
....

Cbk ◦ f

MA X

Y


Φ

.....................................................................................................................................................................................................................................................

Φ(f)

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........................

Φ(f) ◦ k

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

k

A CbX

B

....................................................................................................................................................................................................................................... ............
Φ−1(g)

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.............
............

Φ−1(g) ◦ h

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

h

MA X

MB



Φ−1

..................................................................................................................................................................................................................................................... g ..............................................................................................................................................................................................................................................................................................................................................................
....
............

Mh ◦ g

..............................................................................................................................................................................................................................................
.....
.......
.....

Mh

In order to prove this theorem, we need to check the following:

(1) g(x) is in M(A) for every x ∈ X.
(2) g ∈ HomT op if f ∈ HomBan.
(3) f(a) ∈ Cb(X) for every a in A.
(4) f ∈ HomBan if g ∈ HomT op.
(5) Φ is a bijection.
(6) Φ is natural.

Proposition 4.8. If f : A→ Cb(X) is a Banach algebra homomorphism in HomBan,
Φ(f)(x) = g(x) : A→ C is a bounded unital multiplicative linear functional for every
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x ∈ X. In other words, if f ∈ HomBan(A,Cb(X)), then Φ(f)(x) ∈ M(A) for every
x ∈ X.

Proof. First, observe that g(x) can be described as the evaluation map at x, composed
with f , as follows:

g(x) : A→ C
(g(x))(a) = (f(a))(x) = (evx ◦ f)(a),

where we take evx to mean

evx : Cb(X)→ C
evx(h) = h(x)

for x ∈ X and h ∈ CbX. Put otherwise,

(Φ(f))(x) = evx ◦ f.
We claim that g(x) : A→ C is a unital multiplicative linear functional. Note that

g(x)(a+ α · b) = (evx ◦ f)(a+ α · b)
= evx(f(a+ α · b))
= evx(f(a) + f(α · b))
= (f(a))(x) + (f(α · b))(x)

= (f(a))(x) + α · (f(b))(x)

= g(x)(a) + α · g(x)(b).

A parallel argument holds for the multiplicativity of g(x). We claim that f(1) = 1CbX ∈ CbX
for all f ∈ HomBan(A,CbX). 1CbX is defined as the bounded continuous map
h : X → C, h(x) = 1 for all x ∈ X. As a result, we see that for all x ∈ X
and f ∈ HomBan(A,CbX),

(g(x))(1A) = evx(f(1A)) = 1CbX(x) = 1 ∈ C.
To show boundedness, we claim that the evaluation map evx : CbX → C is con-

tinuous. Fix x0 and fix ε. Observe that

‖h− f‖∞ = sup{|h(x)− f(x)|, for all x ∈ X} < ε =⇒ |h(x0)− f(x0)| < ε

so for any x0 ∈ X, evx0 : CbX → C is continuous at any h ∈ CbX.
We are already given

f ∈ HomBan(A,Cb(X)),

so f , we know, is bounded under the operator norm and therefore continuous. Hence
g(x) = (evx ◦ f) must be continuous as the composition of two continuous functions.
Therefore, we have, equivalently, that g(x) is bounded as a linear operator A → C.
Hence we have shown that g(x) ∈MA. �



20

Proposition 4.9. If f : A→ Cb(X) is a Banach algebra homomorphism, then

g : X →M(A)

is a continuous function.
Put otherwise, if f ∈ HomBan(A,Cb(X)) then Φ(f) ∈ HomT op(X,M(A)).

Proof. We rely on the open sets definition of continuity. First, consider the sets
U in X which can be described as follows: Uf,a,J = {x ∈ X : (f(a))(x) ∈ J} for
f : A → CbX, a ∈ A, and J , an open set in the usual topology on C. Because
f(a) ∈ Cb(X), f(a) is a continuous map on X, so Uf,a,J = (f(a))−1(J), and hence
Uf,a,J is open in X because J is open in C.

Now consider open sets in MA of the form Va,P = {ϕ ∈ MA : ϕ(a) ∈ P} by the
weak-* topology, with P open in C. Observe that these sets form a topological basis
of MA. But

g−1(Va,P ) = {x ∈ X : g(x) ∈ Va,P}
= {x ∈ X : g(x)(a) ∈ P}
= {x ∈ X : f(a)(x) ∈ P} = Uf,a,P ,

which is open if P is open. Hence the preimage of any open set of the form Va,P is
open in C. So we see that g is continuous, and g ∈ HomT op. �

Proposition 4.10. Let g : X →MA be a continuous map between the two topological
spaces. Then (Φ−1(g))(a) = f(a) : X → C is a bounded, continuous map, i.e.
f(a) ∈ Cb(X).

Proof. Fix a ∈ A and fix g. Define

eva : MA→ C
eva(ϕ) = ϕ(a).

Then

f(a) : X → C
(f(a))(x) = (eva ◦ g)(x).

We claim that eva is a continuous map. Recall that ϕ is a bounded operator of
norm 1. So |ϕ(a)| ≤ ‖a‖A. For any ϕ, |eva(ϕ)| ≤ ‖a‖A · 1, hence for every a ∈ A,
there exists a Ca ∈ R such that |eva(ϕ)| ≤ Ca‖ϕ‖ = Ca, where Ca = ‖a‖A. So
eva : MA → C is bounded under the operator norm and is therefore continuous
at ϕ for all a. Note also that g : X → MA is continuous. We argue, then, that
f(a) = eva ◦ g is a continuous map, because the composition of continuous functions
is continuous.
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Note that we have shown eva : MA→ C is a continuous function. Recall that MA
is compact, and the images of continuous functions on compact topological spaces
are compact. The image of eva : MA → C must be bounded by some K ∈ R,
since compact subsets of C are bounded by Bolzano-Weierstrass. In other words,
|eva(ϕ)| = |ϕ(a)| < K for all ϕ ∈MA. Now, if we restrict our analysis to only the ϕ
such that ϕ = g(x) for some x ∈ X, we observe that (eva(g(x)) < K for all x ∈ X.
As a result, we know that eva◦g is a bounded map, or equivalently, that f(a) = eva◦g
is a bounded map. Therefore f(a) is a bounded, continuous function. �

Proposition 4.11. Let g : X →MA be a continuous map . Then Φ−1(g) = f : A→ Cb(X)
is a unital Banach algebra homomorphism.

Put otherwise, if g ∈ HomT op(X,MA) then Φ−1(g) = f ∈ HomBan(A,Cb(X)).

Proof. We first show that f is a unital algebra homomorphism. Consider k ∈ C,
a, b ∈ A and x ∈ X. Then

f(ka)(x) = (g(x))(ka) = k · (g(x))(a) = k · (f(a))(x).

The other algebraic operations are just as simple.

f(a · b)(x) = (g(x))(a · b) = (g(x))(a) · (g(x))(b) = (f(a))(x) · (f(b))(x),

since g(x) is an algebra homomorphism. The exact same argument works for addi-
tion:

(f(a+ b))(x) = g(x)(a+ b) = g(x)(a) + g(x)(b) = (f(a))(x) + (f(b))(x).

f(1A)(x) = (ev1A ◦g)(x) = ev1A(g(x)) = (g(x))(1A) = 1 ∈ C as long as g(x) ∈MA
for all x ∈ X. As a result, as (f(1A))(x) = 1 ∈ C for every x and f(1A) ∈ CbX, then
f(1A) = 1CbX .

In summary, f : A→ CbX is a unital algebra homomorphism.
Now, f is bounded. Every multiplicative linear functional ϕ in M(A) has ‖ϕ‖ = 1.

As a result, we have that each ‖g(x)‖ = 1, since g(x) ∈M(A). Suppose we consider
‖a‖A ≤ 1. Then,

|g(x)(a)| ≤ ‖g(x)‖‖a‖A ≤ 1,

but we also know that

|(f(a))(x)| = |(g(x))(a)| ≤ 1, for all x ∈ X, for all a ∈ A such that‖a‖A ≤ 1.

Hence, we conclude that ‖f(a)‖∞ ≤ 1 for ‖a‖A ≤ 1. Then ‖f‖ ≤ 1, so f is
bounded with respect to the operator norm. Thus f is a bounded unital algebra
homomorphism; i.e., f ∈ HomBan.

�

Proposition 4.12. Φ is bijective.
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Proof. Let f : A→ CbX and z : A→ CbX. Let ((Φ(f))(x))(a) = ((Φ(z))(x))(a) for
all x ∈ X, a ∈ A. In that case,

(evx ◦ f)(a) = (evx ◦ z)(a), for all x ∈ X, a ∈ A.
⇐⇒ evx(f(a)) = evx(z(a)), for all x ∈ X, a ∈ A.
⇐⇒ (f(a))(x) = (z(a))(x), for all x ∈ X, a ∈ A.
⇐⇒ f(a) = z(a), for all a ∈ A.
⇐⇒ f = z.

So Φ is injective, because Φ(f) = Φ(z) =⇒ f = z. The proof that Φ is surjective is
similar. Let g : X → MA and p : X → MA. Let (Φ−1(g))(a)(x) = (Φ−1(p))(a)(x)
for all x ∈ X and a ∈ A. Then,

(eva ◦ g)(x) = (eva ◦ p)(x), for all x ∈ X, a ∈ A.
⇐⇒ (eva(g(x))) = (eva(p(x))), for all x ∈ X, a ∈ A.
⇐⇒ (g(x))(a) = (p(x))(a), for all x ∈ X, a ∈ A.
⇐⇒ g(x) = p(x), for all x ∈ X.
⇐⇒ g = p.

Therefore Φ−1 is also injective, which means that Φ is bijective. �

Proposition 4.13. Φ is natural.

Proof. First, we show Φ(Cbk◦f) = Φ(f)◦k. Recall that k : Y → X, Cbk : CbX → CbY
and f : A→ CbX. Now, for all a ∈ A and y ∈ Y ,

(Φ(Cbk ◦ f)(y))(a) = ((Cbk ◦ f)(a))(y) = (Cbk(f(a)))(y) = (f(a))(k(y)),

by how Cbk is defined. Note that f(a) ∈ CbX, and k(y) ∈ X, so f(a) can indeed
accept the element k(y). We proceed and observe that

f(a)(k(y)) = ((Φ(f))(k(y)))(a) = (Φ(f))(k(y))(a) = ((Φ(f) ◦ k)(y))(a),

where Φ(f) ◦ k : Y →MA. In particular, because Φ(f) : X →MA, we observe that
Φ(f) ◦ k : Y →MA, as k : Y → X. As a result, for all y ∈ Y, a ∈ A,

Φ(Cbk ◦ f) = Φ(f) ◦ k.
Next, we show Φ−1(Mh ◦ g) = Φ−1(g) ◦ h. Let h : B → A, so Mh : MA → MB,

while g : X →MA. In that case, for all b ∈ B and x ∈ X,

(Φ−1(Mh ◦ g))(b)(x) = ((Mh ◦ g)(x))(b) = (Mh(g(x)))(b) = (g(x))(h(b)).

Then

g(x)(h(b)) = (((Φ−1(g))(h(b)))(x)) = (Φ−1(g))(h(b))(x) = ((Φ−1(g) ◦ h)(b))(x)
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for all b ∈ B and x ∈ X, where Φ−1(g) ◦ h : B → CbX. In particular, because
Φ−1(g) : A→ CbX, and h : B → A, we note that Φ−1(g)◦h accepts elements in B and
returns elements in CbX. Therefore, we have shown that Φ−1(Mh ◦ g) = Φ−1(g) ◦ h.

�

As a result, we have verified each argument necessary to conclude that Theorem
4.7 holds.

5. Results from our Adjoints

5.1. The Gelfand Transform. We have shown that the functors Cb and M are
adjoints. In this section, we discuss the natural transformations that are given by
the functor

CbM : Ban→ Ban.

Note that we do not invoke any specific properties of Cb or M in this chapter, but
merely rely on the properties of the natural bijection Φ.

Put X = MA. Then we have a natural bijection

Φ : HomBan(A,CbMA)→ HomT op(MA,MA).

Let IMA denote the identity map

IMA : MA→MA

IMA(ϕ) = ϕ.

The adjunction Φ gives us a corresponding Banach algebra homormorphism ΓA = Φ−1(IMA).
By definition,

(ΓA(a))(ϕ) = IMA(ϕ)(a) = ϕ(a)

for a ∈ A, ϕ ∈MA. Put simply, ΓA = Φ−1(IMA) is the map

ΓA : A→ Cb(M(A))

ΓA(a) = eva

where eva is the evaluation map

eva : M(A)→ C
eva(ϕ) = ϕ(a).

The Banach algebra homomorphism ΓA is called the Gelfand transform.

Proposition 5.1. The Gelfand transform is natural in the following precise sense.
Suppose A,B are unital abelian Banach algebras. Let p ∈ HomBan(A,B), with
Mp ∈ HomT op(MB,MA) and CbMp ∈ HomBan(CbMA,CbMB). Let ΓA : A→ CbMA
and ΓB : B → CbMB be the Gelfand transforms for A and B respectively. Then
ΓB ◦ p = CbMp ◦ ΓA. In other words, we can draw up the following diagram:
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B

A CbMA

CbMB

................................................................................................................................................................................................................
.....
.......
.....

p

............................................................................................................................................................................................ ............
ΓA : a 7→ eva

........................................................................................................................................................................................... ............
ΓB : b 7→ evb

................................................................................................................................................................................................................
.....
.......
.....

MCbp

Proof. Employ the fact that Φ is natural and that ΓA = Φ−1(IMA). Substitute CbMA
for CbX, ΓA for f and CbMp for Cbk in the original adjoint diagrams to obtain these
diagrams:

A CbMA

CbMB

................................................................................................................................................................................................................................. ............
ΓA

.....................................................................................................................................................................................................................................................
.....
.......
.....

CbMp

........................................................................................................................................................................................................................................................................................................................................................................ ........
....

CbMp ◦ ΓA

MA MA

MB


Φ

....................................................................................................................................................................................................................................................

I
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.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

Mp
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.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
.........

.........
...........................

Mp

B CbMB

A

................................................................................................................................................................................................................................ ............
ΓB

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...............
............

ΓB ◦ p
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.......
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.......

.......

.......
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.......

.......

.......

.......
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.......
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.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

..............

............

p

MB MB

MA


Φ

..................................................................................................................................................................................................................................................

I.....................................................................................................................................................................................................................................................
.....
.......
.....

Mp

........................................................................................................................................................................................................................................................................................................................................................................
....
............

Mp

We can produce these diagrams by applying the natural map Φ. That is, we know
by the naturality of the adjoint that

Φ(CbMp ◦ ΓA) = Φ(ΓA) ◦Mp = IMA ◦Mp = Mp

simply because Φ(ΓA) = IMA by construction.
Similarly, Φ(ΓB ◦ p) = Mp ◦ Φ(ΓB) = Mp ◦ IMB = Mp.
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Now, observe that Φ is a bijection, so it is injective. As Φ(ΓB ◦p) = Φ(CbMp◦ΓA),
we conclude that ΓB ◦ p = CbMp ◦ ΓA. �

5.2. The Stone-Cech Transform. We can obtain the analog of the Gelfand trans-
form by considering the composition of functors

MCb : T op→ T op.

By using Φ, we notice a transform from a topological space to a compact Hausdorff
space in the following way. Put A = CbX. Then there is a natural bijection

Φ : HomBan(CbX,CbX)→ HomT op(X,MCbX).

Let ICbX be the identity map in HomBan(CbX,CbX). From our adjunction, we can
identify a corresponding continuous map ΨX ∈ HomT op(X,MCbX), ΨX = Φ(ICbX)
defined by

ΨX(x)(h) = ICbX(h)(x) = h(x) ∈ C.
Then ΨX is the continuous map which satisfies

ΨX : X →MCbX

ΨX(x) = evx

where

evx : CbX → C
evx(h) = h(x)

We call ΨX the Stone-Cech transform on X.

Proposition 5.2. The Stone-Cech transform is natural in the following precise
sense. Let X and Y be topological spaces. Let f ∈ HomT op(X, Y ), with Cbf ∈ HomBan(CbY,CbX)
and MCbf ∈ HomT op(MCbX,MCbY ). Let ΨX : X →MCbX and ΨY : Y →MCbY
be Stone-Cech transforms on X and Y . Then ΨY ◦ f = MCbf ◦ΨX . In other words,
we obtain the following diagram:

Y

X MCbX

MCbY

................................................................................................................................................................................................................
.....
.......
.....

f

......................................................................................................................................................................................... ............
ΨX : x 7→ evx

........................................................................................................................................................................................... ............
ΨY : y 7→ evy

................................................................................................................................................................................................................
.....
.......
.....

MCbf
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Proof. The argument is symmetric to the proof in the prior section. �

5.3. A Bijection on M(A). For A, a unital abelian Banach algebra, let L(A) rep-
resent the set of the maximal ideals of A. In this section, we need the fact that
L(A) ∼= M(A); that is, there exists a bijection between the set of maximal ideals on
A and the set of bounded unital multiplicative linear functionals on A.

Theorem 5.3. Consider L(A), the set of maximal ideals of a unital abelian Banach
algebra A. Consider M(A) = HomBan(A,C). L(A) ∼= M(A); that is, the map

M(A)→ L(A)

ϕ 7→ ker(ϕ)

is a bijection.

Proof. Elementary facts about ideals can be found in Herstein [3], sections 4.3 and
4.4. Take ϕ ∈ M(A). First we see that a non-trivial ϕ : A→ C must be surjective.
Recall from the First Homomorphism Theorem that if we put K = ker(ϕ), the
surjective map ϕ : A → C determines an isomorphism A/K ∼= C. By another
algebraic fact, since C is a field, it follows that ker(ϕ) is a maximal ideal of A. Thus
the map M(A)→ L(A) is well-defined.

The map M(A) → L(A) is injective. Suppose ker(ϕ) = ker(ψ). We argue that
ϕ = ψ.

Invoking the First Homomorphism Theorem, if we are given K = ker(ϕ) then
ϕ : A → C is the composition of the quotient map A → A/K and the choice of an
isomorphism A/K ∼= C. So ϕ 6= ψ if and only if this second isomorphism differs
for ϕ and ψ. But there can not be more than one isomorphism A/K ∼= C, because
otherwise there would be a nontrivial automorphism of C ∼= C. But since we are
dealing with unital algebra homomorphisms, this automorphism would have to be
linear in C. There is clearly only one automorphism that satisfies C-linearity, as
ψ(1A/K) = ϕ(1A/K) = 1C, which determines every other value for ψ and ϕ. As a
result, ϕ = ψ.

The map M(A)→ L(A) is surjective. We need to use a number of facts from the
theory of Banach algebras.

Fact. A maximal ideal in a Banach algebra is necessarily closed. (See Rudin [7],
Proposition 11.2.)

Fact. Let N be a closed ideal in A. Consider a ∈ A and the equivalence class
[a] = a+N = {a+ x : x ∈ N}. A norm on elements [a] ∈ A/N is defined as follows:

‖[a]‖A/N = inf
x∈N
‖a+ x‖A.
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Then A/N is a Banach algebra under ‖ · ‖A/N . (See Rudin [7], Theorem 1.41.)

Fact. The only simple abelian Banach algebra is C. (See Davidson [1], Theorem
I.2.4.)

Now choose a maximal ideal N in A. N is an element in the set L(A). By the
first and second fact, N is closed and the quotient A/N is a unital abelian Banach
algebra. Since N is maximal, A/N is a field, and therefore simple. Therefore by the
third fact, A/N ∼= C. Thus N is the kernel of the quotient map A → A/N ∼= C,
which is a unital Banach algebra homormorphism and so in M(A). This proves that
our map M(A) → L(A) is surjective: for every N ∈ L(A), there exists ϕ ∈ M(A)
such that N = ker(ϕ). �

5.4. The Stone-Cech Transform ΨX as a bijection.

Theorem 5.4. If X is compact Hausdorff, then the Stone-Cech transform

ΨX : X →MCbX

is a bijection.

Proof. We claim first that

Lemma 5.5. Let X be a compact topological space. Then if I ⊂ C(X) is a proper
ideal, there exists some x ∈ X such that f(x) = 0 for all f ∈ I.

Suppose to the contrary that the lemma is false. Then, for any x ∈ X, we can
choose fx ∈ I such that fx(x) 6= 0. Consider the subsets Ux ⊂ C, Ux = f−1x (C\{0}).
Each Ux consists, then, of the elements in X where the function fx is non-zero. We
claim that {Ux : x ∈ X} is an open cover of X, since for every x ∈ X, x ∈ Ux.

Now, X is compact, so we can take a finite subcover {U1, U2, . . . , Un}, which yields
a corresponding set of functions {f1, f2, f3, . . . , fn}. For each x ∈ X, there exists
i ≤ n such that fi(x) 6= 0, because x is contained in at least one set Ui.

Each fi is in our ideal I. We know, then, that f̄i · fi = |fi|2 is in I, by the nature
of ideals. Since ideals are also closed under addition, there exists a function g in the
ideal where:

g =
n∑
i

|fi|2 = |f1|2 + · · ·+ |fn|2.

Observe that g(x) > 0 for all x ∈ X, as g is the sum of squares and one of the
terms is nonzero for every x. We have, then, that g has a multiplicative inverse
1
g
∈ C(X). Now, 1

g
· g = 1CbX , so the unit is in the ideal I. But this means that

f · 1 ∈ I for all f ∈ C(X). Hence we derive a contradiction: I is not a proper ideal.
The lemma is proven.
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Proceed to consider I, a maximal ideal in C(X). Now, from the lemma, there
exists x ∈ X such that f(x) = 0 for every f ∈ I. In that case, notice that ideals of
the form

Ix = {f ∈ C(X) : f(x) = 0}
are proper ideals in C(X), and that I ⊆ Ix, because f(x) = 0 for all f ∈ I, so I
can only be a restriction of Ix and cannot contain any function that is not in Ix.
But as I is maximal, we must have that I = Ix; hence, each maximal ideal in C(X)
is of the form Ix. We argue that every ideal of the form Ix is maximal. Suppose
there exists an ideal J where Ix ⊂ J . From the lemma, we know that there exists a
point y ∈ X such that f(y) = 0 for all f ∈ J . In order to generate a contradiction,
we suppose that x 6= y. In that case, because X is a compact Hausdorff space and
therefore normal, from the Tietze extension theorem (see Munkres [5], Theorem 3.2),
there exists a continuous f ∈ C(X) such that f(y) = 1 and f(x) = 0, which means
that f ∈ Ix but f /∈ J . In that case, Ix is not contained in J , so we have derived a
contradiction. Then x = y; that is, Ix is a maximal ideal.

We have shown that there is a bijection Λ where

X → L(C(X))

Λ(x) = Ix = {f ∈ C(X) : f(x) = 0}.
By construction, Ix is the kernel of the evaluation map evx : C(X)→ C. But from

the fact above, the kernel map taking M(C(X)) → L(C(X)) is a bijection. Then,
composing bijections, we see that the map

X →MCbX

x 7→ evx

must be a bijection. But this is precisely the Stone-Cech tranform; that is ΨX(x) = evx.
As a result, ΨX(x) = evx must be a bijection. �

Definition 5.1. Let X and Y be topological spaces, and let f : X → Y be a
continuous map. If f has a continuous inverse map, f is called a homeomorphism.

Corollary 5.6. If X is a compact Hausdorff space, then the Stone-Cech transform

ΨX : X →MCbX

is a homeomorphism.

We know that ΨX is a continuous bijection between two topological spaces. Em-
ploy the topological fact

Fact. If X is compact and Y is Hausdorff, a continuous bijection f : X → Y is a
homeomorphism. (See Munkres [5], Theorem 5.6.)
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6. Equivalence of Categories

6.1. Two Subcategories. The functors M and Cb do not define an equivalence of
the categories Ban and T op. In this section, we isolate a subcategory of Ban and a
subcategory of T op which are equivalent. These subcategories happen to consist of
the objects in the image of the Gelfand and Stone-Cech transforms, as well as the
set of morphisms between these objects.

We first consider two new objects.

Definition 6.1. The collection of objects generated by applying the functor compo-
sition MCb to topological spaces, together with continuous functions between topo-
logical spaces of this form, is a category, which we shall denote SC.

Observe that MCbX is a topological space because CbX is a unital abelian Banach
algebra. We can certainly limit the objects in the category T op to objects of the
form MCbX, and to continuous functions between objects of this type.

Definition 6.2. The collection of objects generated by applying the functor compo-
sition CbM to abelian Banach algebra abelian Banach algebra A, together with the
unital Banach algebra homomorphisms between objects of this form, form a category,
which we shall denote GN .

By the exact same argument, GN is a category. For CbMA is a unital abelian
Banach algebra, as Cb is a functor from T op to Ban and MA is a compact Hausdorff
space. By the reasoning above, we can limit a subcategory to those morphisms which
land in the category’s objects without trouble.

6.2. Natural Transformations. We build up to the definition of category equiva-
lence by introducing the notion of a natural transformation.

Definition 6.3. Consider functors F and G and categories C,D, where F : C → D
and G : C → D. A natural transformation from F to G is a collection of
morphisms η which satisfies:

(1) For each object X in ObjC , there exists ηX : F (X) → G(X), where ηX is
called a “component” of η.

(2) The components must commute such that ηY ◦ F (f) = G(f) ◦ ηX , for every
morphism f ∈ HomC(X, Y ).

In particular, we have that the following picture:
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F (Y )

F (X) G(X)

G(Y )

................................................................................................................................................................................................................
.....
.......
.....

F (f)

............................................................................................................................................................................... ............
ηX

................................................................................................................................................................................................................
.....
.......
.....

G(f)

.................................................................................................................................................................................. ............
ηY

Definition 6.4. Let C be a category, and let X, Y be objects. A morphism f
HomC(X, Y ) is an isomorphism if there exists g ∈ HomC(Y,X) such that

g ◦ f = IX and f ◦ g = IY .

Definition 6.5. We say that the natural transformation is a natural isomorphism
if each ηX is an isomorphism.

Definition 6.6. A functor F : C → D yields an equivalence of categories if
there exists a functor G : D → C and natural isomorphisms FG ∼= ID : D → D and
GF ∼= IC : C → C, where I denotes the identity functor.

Note that, by reversing arrows, if F is an equivalence of categories, so is G.

6.3. Idempotency of the Transforms.

Proposition 6.1. The functor MCb : T op → T op is idempotent in the sense that
MCb ∼= MCbMCb are naturally isomorphic functors. Furthermore, CbM : Ban→ Ban
is idempotent in the sense that CbM ∼= CbMCbM are naturally isomorphic functors.

Proof. Observe that MCbX is a compact Hausdorff space for any topological space
X, because CbX is an object in Ban. As a result, ΨMCb

: MCbX → MCbMCbX is
a homeomorphism, as we have shown in the previous section. Then, from Proposition
5.2, we see that ΨMCbX gives the components of a natural isomorphism η : MCb ∼= MCbMCb.

Let A be a unital abelian Banach algebra A, where MA is a compact Hausdorff
space. We invoke the fact that functors map isomorphisms to isomorphisms. Then
ΨMA : MA → MCbMA is a homeomorphism, so Cb(ΨMA) : CbMCbMA → CbMA
is an isomorphism of unital Banach algebras. Then, in that case, εA = Cb(ΨMA)
supplies the components of a natural isomorphism ε : CbMCbM ∼= CbM . That ε is
natural is a result of the naturality of ΨX , as Cb is a contravariant functor. �

Corollary 6.2. The Stone-Cech transform is a homeomorphism for objects in SC.
The Gelfand transform is a unital Banach algebra isomorphism for objects in GN .
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Proof. The first statement is given in Proposition 6.1. To show the second state-
ment, we argue that εA is simply the inverse of ΓCbMA : CbMA → CbMCbMA. Let
B = CbMA and put b ∈ B. Then we know that εA(ΓB(b)) = Cb(ΨMA)(ΓB(b)). We
aim to show εA(ΓB(b)) = b.Observe that ΓB(b) = evb. But Cb(ΨMA)(evb) = evb◦ΨMA,
where evb◦ΨMA : MA→ C. We argue, then, that b = evb◦ΨMA, with b ∈ B = CbMA.
Choose ϕ ∈MA. ΨMA(ϕ) = evϕ : CbMA→ C. Then

(evb ◦ΨMA)(ϕ) = evb(ΨMA(ϕ)) = evb(evϕ) = evϕ(b) = b(ϕ),

which proves that (evb◦ΨMA)(ϕ) = b(ϕ). As a result, we have shown that εA(ΓB(b))(ϕ) = b(ϕ)
for any ϕ ∈MA so εA(ΓB(b)) = b, as desired. �

6.4. Equivalence of SC and GN .

Theorem 6.3. The functors Cb : SC → GN and M : GN → SC are equiva-
lences of categories. More precisely, the Gelfand transform is a natural isomorphism
of functors IGN ∼= CbM and the Stone-Cech transform is a natural isomorphism
ISC →MCb.

Proof. For any object Y in SC, Y = MCbX for some topological space X. As a
result, we know from the work in Proposition 6.1 that the Stone-Cech transform
ΨY : Y → MCbY is a homeomorphism that determines the components of a nat-
ural transformation Ψ : ISC ∼= MCb. For any B in GN , B = CbMA for some
unital abelian Banach algebra A. Therefore we conclude that the Gelfand trans-
form ΓB : CbMB is an isomorphism that determines the components of a natural
transformation Γ : IGN ∼= CbM . �

6.5. The Category SC and the Category of Compact Hausdorff Spaces.

Definition 6.7. The objects which are Hausdorff spaces, together with the mor-
phisms that are continuous functions between compact Hausdorff spaces, form a
category, denoted H.

As before, we limit a category to objects in the category and the morphisms
between these objects. In this case, we take a subcategory of T op.

Theorem 6.4. The composition of functors MCb : H → SC yields an equivalence
of categories.

Proof. Let F : SC → H be the inclusion functor; that is, for Y = MCbX (with
X a topological space) F (Y ) merely picks out the identical Y in H, while F (f)
merely picks out the identical morphism in H. Then for any compact Hausdorff
space, the Stone-Cech transform yields the components of the natural isomorphism
IH ∼= FMCb because for any Y in H, ΨY is a homeomorphism. Furthermore, from
our idempotency argument, we have determined that the Stone-Cech transform is a
natural isomorphism ISC ∼= MCbF . �
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Corollary 6.5. The subcategory GN of Ban is equivalent to the category of compact
Hausdorff spaces.

Note that category equivalence is transitive.

7. C∗-algebras

7.1. The Category Cst. We introduce the following definitions to build up to the
definition of a C∗-algebra.

Definition 7.1. A ∗-algebra is a complex algebra A endowed with an adjoint map

A→ A a 7→ a∗

that satisfies the following properties:

Linear in Sums: (a+ b)∗ = a∗ + b∗

Conjugate Linear: (λa)∗ = λ̄a∗

Involution: (a∗)∗ = a
Reverses Products: (ab)∗ = b∗a∗

for all a, b ∈ A and λ ∈ C.

These axioms are modeled on the properties of the adjoint (the complex conjugate
transpose) of a complex matrix.

Definition 7.2. A Banach∗-algebra is a Banach algebra endowed with an adjoint
that is norm preserving, i.e. ‖a∗‖ = ‖a‖.

Definition 7.3. A Banach∗-algebra A is a C∗-algebra if:

C∗-identity: ‖a‖2 = ‖a∗a‖ for all a ∈ A.

Definition 7.4. A ∗-homomorphism f : A → B between two ∗-algebras is an
algebra homomorphism that preserves the adjoint, i.e. f(a∗) = f(a)∗.

This gives us an obvious new category.

Definition 7.5. Cst, the category of C∗-algebras, consists of unital commutative
C∗-algebras (the objects) together with unital ∗-homomorphisms.

7.2. Cb(X) as a C∗-Algebra. If X is a topological space, then we have already
shown that Cb(X) is a unital abelian Banach algebra. We argue that complex con-
jugation forms an adjoint on Cb(X). That is, for f ∈ Cb(X),

f ∗(x) = f(x)

It is trivial that complex conjugation is conjugate linear, involutive, and norm pre-
serving. The only fact requiring proof is that complex conjugation reverses products.
Let f, g ∈ Cb(X). Then (fg)(x) = f(x)·g(x), if we invoke the basic fact that ab = a·b
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for all a, b ∈ C. Therefore (fg)∗ = f ∗g∗. But as Cb(X) is commutative, we know
that f ∗g∗ = g∗f ∗, and we are done.

Theorem 7.1. If X is a topological space, Cb(X) with complex conjugation as an
adjoint is a C∗-algebra.

Proof. We claim that the adjoint satisfies the C∗-identity. Recall that the norm for
Cb(X) is the supremum norn ‖ · ‖∞. Now,

‖f ∗f‖∞ = sup
x∈X
{|f(x)f(x)|} = sup

x∈X
{|f(x)|2} =

(
sup
x∈X
{|f(x)|}

)2

= ‖f‖2∞

We merely recall that aa = |a|2 for every a ∈ C, and that the supremum of the
squares of a set of nonnegative real numbers equals the square of the supremum.

�

In the next lemma, we complete the argument that we may think of Cb as a functor
T op → Cst. We have shown that Cb(X) is a C∗-algebra if X is in T op; now, we
need to show that Cb(f) is a C∗-algebra homomorphism if f ∈ HomT op.

Lemma 7.2. Let f : X → Y be a continuous map between topological spaces X, Y .
Then Cb(f) : Cb(Y )→ Cb(X) is a ∗-homomorphism.

Proof. By definition, Cb(f)(g) = g ◦ f for g ∈ Cb(Y ). So for every x ∈ X,

(Cb(f)(g∗))(x) = (g∗ ◦ f)(x) = g∗(f(x))) = g(f(x)) = (Cb(f)(g))(x)

As a result, Cb(f)(g∗) = (Cb(f)(g))∗, and so Cb(f) is a ∗-homomorphism. �

In fact, we require the following stronger result.

Lemma 7.3. Let X, Y be compact Hausdorff spaces. Every unital Banach algebra
homomorphism f : C(X)→ C(Y ) is a ∗-homomorphism.

We first argue that the Gelfand transform ΓCX : CX → CMCX is a ∗-isomorphism.
Consider g ∈ CX. Then ΓCX(g) = evg : MCX → C. But any element in MCX
must be of the form evx : CX → C, because

ΨX : X →MCbX

x 7→ evx

is surjective. In that case, evg(evx) = evx(g) = g(x), so ΓCX(g)(evx)
∗ = g(x)∗ = g∗(x)

and then we can see that ΓCX is a ∗-isomorphism.
Take an arbitrary f : C(X) → C(Y ). Now, recall from the naturality of the

Gelfand transform that CM(f) ◦ ΓCX = ΓCY ◦ f . We have previously shown
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that CM(f) preserves the adjoint, as does ΓCX and ΓCY . Then for any z ∈ CX,
(CM(f) ◦ Γ(CX))(z∗) = (CM(f) ◦ Γ(CX))(z)∗, so we can take the adjoint on the
right-hand side as well to obtain that

(ΓCY ◦ f)(z∗) = (ΓCY ◦ f)(z)∗.

In that case,
ΓCY (f(z∗)) = ΓCY (f(z))∗ = ΓCY (f(z)∗)

as Γ preserves the adjoint. In that case, because ΓCY is an isomorphism, we can
conclude that f(z)∗ = f(z∗), and we are done.

7.3. The Category GN and C∗-algebras. We can think of Cst as a subcategory
of Ban. In particular, if we ‘forget’ the adjoint, then an object in Cst is just a unital
abelian Banach algebra, i.e. an object in Ban. Every morphism in Cst is certainly
a morphism in Ban, and so forgetting the adjoint is a functor from Cst to Ban, we
can obtain the ‘forgetful functor’

Z : Cst→ Ban.

It is clear that the functor preserves identity maps and composition, because it merely
removes mathematical structure extraneous to these questions. Now, let us compose
the forgetful functor Z with the Gelfand transform CbM . In that case, we obtain a
functor

CbMZ : Cst→ GN .
The prior section illustrates that there is a functor

Y : GN → Cst.
In particular, every object in GN is a Cst algebra, because every object is of the
form CbMA, and MA is a topological space. We have argued that any morphism
f : CbMA→ CbMB is a ∗-homomorphism as MA and MB are compact Hausdorff.
In that case, the functor Y merely recovers the structure hidden in the background.
It is clear that identity will be preserved and so will composition of maps, because
Y (f) = f for all f ∈ HomGN . Both Z and Y are covariant functors.

Why introduce these functors? They serve as technical details necessary to obtain
this paper’s final result.

Theorem 7.4. The Gelfand transform CbMZ : Cst → GN is an equivalence of
categories.

Proof. We show that CbMZ ◦Y ∼= IGN and Y ◦CbMZ ∼= ICst where I is the identity
functor.

First, CbMZY ∼= IGN . This has already been proven. The composition ZY : GN → Ban
is just the inclusion of GN as a subcategory of Ban (where we first introduce an ad-
joint, and then forget it again). It does no work. Thus CbMZY is the same as
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CbM : GN → GN . We have already shown that CbM ∼= IGN , which follows from
the idempotency of the Gelfand transform CbM . (See Proposition 6.1 and Corollary
6.3.)

Now, we must show that Y CbMZ ∼= ICst. As the Gelfand transform is natural,
and Y and Z are not changing the composition of maps in any meaningful sense, it
is clear that there is a natural transform linking these two functors. What is highly
non-trivial is that the Gelfand-transform

T → Y CbM(ZT )

is an isomorphism in the category Cst.
We employ the Gelfand-Naimark Theorem, which we prove in the next section, to

complete the paper.

Fact (Gelfand-Naimark). Let T be a unital commutative C∗-algebra. Then ΓZT : ZT → CbM(ZT )
is an isometric ∗-isomorphism.

With that fact, we will have that Y CbMZ ∼= ICst. For every T in Cst, Y (ΓZT ) will
give the components of a natural isomorphism. The transform is natural because Γ
is natural. And if the Gelfand-Naimark theorem holds, then each component is an
isomorphism in the category Cst. �

Thanks to the Gelfand-Naimark Theorem, the content of the abstract categories
GN and SC is now made more explicit.

Corollary 7.5. The category Cst of unital commutative C∗-algebras is equivalent to
the category H of compact Hausdorff spaces.

Therefore, the Gelfand-Naimark theorem permits us to identify two very different
categories.

8. The Gelfand-Naimark Theorem

In this final section we suppress the functors Y and Z from our notation. Thus, we
treat M as a functor from Cst → T op, and we call Cb a functor from T op → Cst.
Note that the arguments in the prior chapter permit this switch in notation.

Our objective in this chapter is to prove the Gelfand-Naimark theorem.

Theorem 8.1 (Gelfand-Naimark). Let A be a unital commutative C∗-algebra. The
Gelfand Transform ΓA : A→ CbMA is an isometric ∗-isomorphism.

The theorem packs a lot of information into one sentence. We break the theorem
into the following sections:

(1) ΓA is a ∗-homomorphism.
(2) ΓA is an isometry (and therefore injective).
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(3) ΓA is surjective.

The proofs in this section are taken from Davidson [1], chapters I.2 and I.3.

8.1. Γ Is a ∗-homomorphism. We already know that ΓA : A→ CbMA is a unital
Banach algebra homomorphism from our category theory arguments; ΓA ∈ HomBan(A,CbMA)
by construction, hence it must have the properties of morphisms in the category Ban.
The following proof that ΓA is a ∗-homomorphism as long as A is a C∗-algebra invokes
the C∗-identity.

Lemma 8.2. If A is a unital commutative C∗-algebra then ΓA is a ∗-homomorphism.

Proof. Let A be a C∗algebra. Suppose first a ∈ A is self-adjoint, i.e., a = a∗. Consider
the following elements Ut ∈ A:

Ut = eita =
∑
n≥0

(ita)n

n!
,

where i is the complex unit and t ∈ R. The infinite series is absolutely convergent
in A, because ‖(ita)n‖ ≤ tn‖a‖n, and we know that the series∑

n≥0

(t‖a‖)n

n!

converges in R. The adjoint map a 7→ a∗ is continuous. Therefore the adjoint of Ut
is

U∗t =
∑
n≥0

(ita)n

n!
=
∑
n≥0

(−ita)n

n!
= e−ita.

We see that U∗t ·Ut = eita · e−ita = 1. (The product rule for exponents is valid in this
case, and can be proven directly using the power series.) Now we use the C∗-identity,

‖Ut‖2 = ‖U∗t Ut‖ = ‖1‖.

Note that 1∗ = 1 in any C∗-algebra, as 1∗ = (1 · 1)∗ = 1∗ · 1∗. For the C∗-identity,
then, we have that ‖1‖ = ‖1∗1‖ = ‖1‖2, and so ‖1‖ = 1, and ‖Ut‖2 = ‖1‖. By
Lemma 4.4 we know that a multiplicative linear functional ϕ : A → C has norm
‖ϕ‖ = 1. Thus |ϕ(Ut)| ≤ ‖ϕ‖ · ‖Ut‖ = 1. Now, ϕ is continuous because it is bounded
in the operator norm. Then the following construction gives that

ϕ(Ut) =
∑
n≥0

(itϕ(a))n

n!
= eitϕ(a).

As a result,

|eitϕ(a)| ≤ 1.
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For any complex number z = x+ iy, with x, y ∈ R, we have |ez| = ex. As a result,

|eitϕ(a)| = e−t·Imϕ(a) ≤ 1.

But unless Im(ϕ(a)) = 0 we can always choose t such that e−t·Imϕ(a) > 1. For
example, pick t = −Imϕ(a). Therefore ϕ(a) must be a real number for any self-
adjoint a ∈ A and ϕ ∈ M(A). As a result, the Gelfand transform ΓA(a)(ϕ) = ϕ(a)
is real for every ϕ. Therefore,

a = a∗ =⇒ ΓA(a)∗ = ΓA(a).

Now let a ∈ A be an arbitrary element. Every element a in a Banach∗-algebra is a
linear combination a = b + ic of self-adjoint elements b and c as follows: b = a+a∗

2

and c = a−a∗
2i

. So

ΓA(a∗) = ΓA((b+ ic)∗) = ΓA(b− ic) = ΓA(b)− iΓA(c),

since ΓA is linear. Then

ΓA(b)− iΓA(c) = (ΓA(b) + iΓA(c))∗ = ΓA(b+ ic)∗ = ΓA(a)∗.

�

8.2. Γ Is an Isometry. In order to prove that the Gelfand Transform is an isometry,
we need some facts from the spectral theory of unital Banach algebras.

Definition 8.1. Let A be a unital Banach algebra. Then for a ∈ A, the spectrum
of a is the subset of C

spec(a) = {λ ∈ C : a− λ · IA is not invertible in A}.

The spectral radius of a is

spr(a) = sup{|λ| : λ ∈ spec(a)}.

It can be shown that spec(a) is a non-empty compact set. Thus spr(a) is well-
defined and finite. We need the following result of Beurling, the proof of which can
be found in Davidson [1], Proposition I.2.3.

Fact (Beurling). Let A be a unital Banach algebra. Then for every a ∈ A,

spr(a) = lim
n→∞

‖an‖1/n

For abelian Banach algebras, the spectral radius is closely related to the Gelfand
transform. First, we note the following lemmas.

Lemma 8.3. For f ∈ CbX, spec(f) = range(f).
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Proof. A function g is not invertible in CbX if there exists x0 ∈ X such that
g(x0) = 0. (Note that we consider the inverse in the Banach algebra.) Then
f − λ · I is not invertible for precisely all λ such that f(x) = λ. Then it is clear that
spec(f) = (range)(f). �

Corollary 8.4. For f ∈ CbX, spr(f) = ‖f‖∞.

Lemma 8.5. Let A be a unital abelian Banach algebra. Then for every a ∈ A,
spec(a) = spec(ΓA(a)).

Proof. First, spec(ΓA)(a) ⊆ spec(a). We prove the contrapositive; suppose λ /∈ spec(a).
We will then argue that λ /∈ spec(ΓA(a)). If λ /∈ spec(a), then there exists some b ∈ A
such that b · (a− λ · 1A) = 1A. In that case, for every multiplicative linear functional
ϕ : A → C, ϕ(b · (a − λ · 1A)) = ϕ(b) · ϕ(a − λ · 1A) = 1 in which case it cannot be
true that ϕ(a − λ · 1A) = 0. Therefore ϕ(a) − λϕ(1A) 6= 0 so ϕ(a) 6= λ. Therefore,
for every ϕ, ϕ(a) 6= λ, so λ /∈ range(ΓA(a)), and therefore λ /∈ spec(ΓA(a)).

Now, we argue that spec(a) ⊆ spec(ΓA)(a). Let λ ∈ spec(a). In that case,
a − λ · 1A is not invertible, which means that there does not exist any b such that
(a− λ · 1A) · b = 1A; therefore, we know that the ideal

J = {(a− λ · 1A) · b : b ∈ A}
must not contain 1A and is therefore proper. Suppose J ⊆ K, where K is any
maximal ideal. In that case, there is a corresponding multiplicative linear functional
ϕ with kernel K such that ϕ(a − λ · 1A) = 0, by definition. This gives us that
ϕ(a)−λ = 0, so there exists ϕ ∈MA such that ϕ(a) = λ. As a result, we know that
λ ∈ range(ΓA(a)) = {ϕ(a) : ϕ ∈ MA}. In that case, we know that λ ∈ spec(ΓA(a)).

�

We derive the following corollary, combining the results above.

Corollary 8.6. Let A be a unital abelian Banach algebra. Then for every a ∈ A,
spr(a) = ‖ΓA(a)‖∞, and spec(a) = {ϕ(a) : ϕ ∈MA}.

Now we have enough background to prove our objective.

Theorem 8.7. Let A be a unital commutative C∗-algebra. The Gelfand transform
ΓA : A→ CbM(A) is an isometry, i.e.

‖ΓA(a)‖∞ = ‖a‖ for all a ∈ A.

Proof. We first prove that the theorem holds for a self-adjoint element a ∈ A.
If a = a∗ the C∗-identity gives ‖a‖2 = ‖a∗a‖ = ‖a2‖, and by induction we get
‖a(2n)‖ = ‖a‖2n . Then Beurling’s equality gives

spr(a) = lim
n→∞

‖a(2n)‖
1
2n = lim

n→∞
(‖a‖2n)

1
2n = ‖a‖.
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But since spr(a) = ‖ΓA(a)‖∞ we get ‖ΓA(a)‖∞ = ‖a‖.
Now, we use the self-adjoint case to prove the theorem holds generally. If a ∈ A

is an arbitrary element, then (a∗a)∗ = a∗(a∗)∗ = a∗a, and so we have

‖a∗a‖ = ‖ΓA(a∗a)‖∞.

Since ΓA is a ∗-homomorphism,

‖ΓA(a∗a)‖∞ = ‖ΓA(a)∗ΓA(a)‖∞ = ‖ΓA(a)‖2∞.

Now we can invoke the C∗-identity again to see that ‖a∗a| = ‖a‖2, in which case we
have shown that ‖ΓA(a)‖2∞ = ‖a‖2, and therefore ‖ΓA(a)‖ = ‖a‖ for any a ∈ A so
ΓA is an isometry. �

Corollary 8.8. Let A be a unital commutative C∗-algebra. Then the Gelfand trans-
form ΓA : A→ CbM(A) is an injective map.

Proof. We repeat the well-known result that isometries are injective in our context.
Take ΓA(a) = ΓA(b). Then for every ϕ ∈MA, ϕ(a) = ϕ(b), so we plainly have that

‖ΓA(a)− ΓB(b)‖∞ = 0 = ‖ΓA(a− b)‖∞,

so ‖a− b‖A = 0, and then a = b. �

8.3. Γ Is Surjective. Surjectivity of the Gelfand transform for C∗-algebras follows
from the Stone-Weierstrass theorem.

Lemma 8.9. Let A be a unital commutative C∗-algebra. The Gelfand transform ΓA
is surjective.

Proof. Because ΓA is a ∗-homomorphism, the range ΓA(A) is a unital ∗-subalgebra
of CbMA. Because ΓA is an isometry and A is complete, ΓA(A) is also complete and
hence closed in CbMA.

We now invoke the Stone-Weierstrass theorem.

Fact (Stone-Weierstrauss). Let X be a compact Hausdorff space. Every unital ∗-
subalgebra of C(X) that separates points in X is dense in C(X). (See Rudin [7], p.
121-122.)

The fact that ΓA(A) separates points in MA is trivial. Given ϕ 6= ψ in MA,
there is a ∈ A with ϕ(a) 6= ψ(a). But that means that ΓA(a)(ϕ) 6= ΓA(a)(ψ), so
ΓA(a) separates ϕ and ψ. Thus, by the Stone-Weierstrass Theorem ΓA(A) is dense in

CbMA. Therefore ΓA(A) = CbMA, but ΓA(A) = ΓA(A), as it is closed. Therefore,
ΓA(A) = CbMA, in which case for every â ∈ CbMA, there exists a ∈ A such that
ΓA(a) = â, and the function ΓA is surjective. �



40

References

[1] Davidson, Kenneth R. C∗-Algebras by Example. Providence, Rhode Island: American Mathe-
matical Society, 1996.

[2] Gelfand, Israel, and Mark Naimark. “On the imbedding of normed rings into the ring of operators
in Hilbert space.” Recueil Mathematique 2.12(54) (1943): 197–217.

[3] Herstein, I. N. Abstract Algebra. Hoboken, NJ: John Wiley & Sons, 1990.
[4] Maclane, Saunders. Categories for the Working Mathematician. New York: Springer-Verlag,

1998.
[5] Munkres, James. Topology: A First Course. Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975.
[6] Rosenlicht, Maxwell. Introduction to Analysis. New York: Dover Publications, 1986.
[7] Rudin, Walter. Functional Analysis. New York: McGraw-Hill, 1973.


