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Abstract

This thesis consists of three chapters, each of which tackles a separate

number-theoretic problem and may stand alone as an individual research

paper. Nevertheless, these problems are united by a common thread of

numbers free of large prime factors, so-called smooth numbers. From

the vantage point of smooth numbers, these three problems (and their

methods of proof) build upon one another in a natural progression of

ideas. Chapters 1 and 2 appear as [30,31] in Mathematics of Computation

and the Journal of Number Theory, respectively, joint work with Carl

Pomerance.

In Chapter 1, we investigate the probability that a random odd composite

number passes a random Fermat primality test, improving on earlier es-

timates in moderate ranges. For example, with random numbers to 2200,

our results improve on prior estimates by close to 3 orders of magnitude.

In Chapter 2, we investigate the distribution of smooth numbers. There

is a large literature on the asymptotic distribution of smooth numbers.

But there is very little known about this distribution that is numerically

explicit. We follow the general plan for the saddle point argument of

Hildebrand and Tenenbaum, giving explicit and fairly tight intervals in

which the true count lies. We give two numerical examples of our method,

and with the larger one, our interval is so tight we can exclude the famous

Dickman–de Bruijn asymptotic estimate as too small and the Hildebrand–

Tenenbaum main term as too large.

In Chapter 3, we investigate the reciprocal sum of so-called primitive

nondeficient numbers, or pnds. Erdős showed that the reciprocal sum of

pnds converges, which he used to prove that nondeficient numbers have a

natural density. However no one has investigated the value of this series!

We provide the first known bound by showing the reciprocal sum of pnds

is at most 18.6.
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Chapter 1

Improved error bounds for the
Fermat primality test on random
inputs

1.1 Introduction

Part of the basic landscape in elementary number theory is the Fermat congruence:

If n is a prime and 1 ≤ b ≤ n− 1, then

bn−1 ≡ 1 (mod n). (1.1)

It is attractive in its simplicity and ease of verification: using fast arithmetic sub-

routines, (1.1) may be checked in (log n)2+o(1) bit operations. Further, its converse

(apparently) seldom lies. In practice, if one has a large random number n that sat-

isfies (1.1) for a random choice for b, then almost certainly n is prime. To be sure,

there are infinitely many composites (the Carmichael numbers) that satisfy (1.1) for

all b coprime to n, see [1]. And in [2] it is shown that there are infinitely many

Carmichael numbers n such that (1.1) holds for (1− o(1))n choices for b in [1, n− 1].

(Specifically, for each fixed k there are infinitely many Carmichael numbers n such

that the probability a random b in [1, n − 1] has (b, n) > 1 is less than 1/ logk n.)

However, Carmichael numbers are rare, and if a number n is chosen at random, it is

unlikely to be one.

We say n is a probable prime to the base b if (1.1) holds. A probable prime is

either prime or composite, but the terminology certainly suggests that it is probably

prime! Specifically, let P (x) denote the probability that an integer n is composite

given that

(i) n is chosen at random with 1 < n ≤ x, n odd,
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(ii) b is chosen at random with 1 < b < n− 1, and

(iii) n is a probable prime to the base b.

It is known that if x is sufficiently large, then P (x) is small. Indeed, Erdős and

Pomerance [18, Theorem 2.2] proved that

P (x) ≤ exp(−(1 + o(1)) log x log log log x/ log log x) (1.2)

as x → ∞. In particular, limP (x) = 0. Kim and Pomerance [29] replaced the

asymptotic inequality of (1.2) with the weaker, but explicit, inequality

P (x) ≤ (log x)−197 for x ≥ 10105

and gave numerical bounds on P (x) for 1060 ≤ x < 10105 . In this paper we simplify

the argument in [29] and obtain better upper bounds on P (x) for 1060 ≤ x ≤ 1090,

as seen in Figure 1.1. In particular, at the start of this range, our bound is over 700

times smaller.

Figure 1.1: New bounds on P (x).

Bound on New bound
x P (x) in [29] on P (x)

1060 7.16E−2 1.002E−4
1070 2.87E−3 1.538E−5
1080 8.46E−5 2.503E−6
1090 1.70E−6 4.304E−7
10100 2.77E−8 7.798E−8

The notation aEm means a× 10m.

With these methods, we also obtain new nontrivial bounds for 240 ≤ x < 1060,

values of x smaller than the methods in [29] could handle. These results are included

in Figure 1.2.
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Figure 1.2: Upper bound on P (2k).

k P (2k) ≤ k P (2k) ≤ k P (2k) ≤
40 4.306E−1 140 3.265E−3 240 1.017E−5
50 2.904E−1 150 1.799E−3 250 5.876E−6
60 1.848E−1 160 9.932E−4 260 3.412E−6
70 1.127E−1 170 5.505E−4 270 1.992E−6
80 6.728E−2 180 3.064E−4 280 1.169E−6
90 4.017E−2 190 1.714E−4 290 6.888E−7
100 2.388E−2 200 9.634E−5 300 4.080E−7
110 1.435E−2 210 5.447E−5 310 2.428E−7
120 8.612E−3 220 3.097E−5 320 1.451E−7
130 5.229E−3 230 1.770E−5 330 8.713E−8

We compute the exact values of P (x) for x = 2k with 3 ≤ k ≤ 36. Additionally,

we estimate P (x) for x = 2k with 30 ≤ k ≤ 50, using random sampling. Calibrating

these estimates against the true values for 30 ≤ k ≤ 36 suggest that the estimates are

fairly close to the true values for 37 ≤ k ≤ 50, and almost certainly within an order

of magnitude from the truth.

A number n is called L-smooth if all of its prime factors are bounded above by

L. The method of [29] first computes the contribution to P (x) from numbers that

are not L-smooth (for an appropriate choice for L), and then enters a complicated

argument based on the asymptotic method of [18] for the contribution of the L-

smooth numbers. In addition to small improvements made in the non-L-smooth case,

our principal new idea is to use merely that there are few L-smooth numbers. For

this we use the upper bound method pioneered by Rankin in [41] for this problem,

obtaining numerically explicit upper bounds on sums over L-smooth numbers, c.f.

equation (1.11) and Remark 1.3.4. These upper bounds should prove useful in other

contexts.

One possible way to gain an improvement is to replace the Fermat test with the

strong probable prime test of Selfridge. Also known as the Miller–Rabin test, it is

just as simple to perform and it returns fewer false positives. To describe this test,

let n > 1 be an odd number. First one computes s, t with n − 1 = 2st and t odd.

Next, one chooses a number b, 1 ≤ b ≤ n− 1. The number n passes the test (and is

called a strong probable prime to the base b) if either

bt ≡ 1 (mod n) or b2
it ≡ −1 (mod n) for some i < s. (1.3)
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Every odd prime must pass this test. Moreover, Monier [33] and Rabin [40] have

shown that if n is an odd composite, then the probability that it is a strong probable

prime to a random base b in [1, n− 1] is less than 1
4
.

Let P1(x) denote the same probability as P (x), except that (iii) is replaced by

(iii)′ n is a strong probable prime to the base b.

Based on the Monier-Rabin theorem, one might assume that P1(x) ≤ 1
4
, but as

noted in [6], this reasoning is flawed. However, in [10] and [14], something similar

to P1(x) ≤ 1
4

is shown. Namely, if P ′1(2
k) is the analogous probability for odd k-bit

integers, it is shown in [10], [14] that P ′1(2
k) ≤ 1

4
for all k ≥ 3. We show below how

our estimates can be used to numerically bound P1(x). In particular, the results here

improve on the estimates of [14] up to 2300.

Notation

We have (a, b), [a, b] as the greatest common divisor, least common multiple of the

positive integers a, b, respectively. We use p and q to denote prime numbers, and pi

to denote the ith prime. For n > 1, we let P+(n) denote the largest prime factor of n.

Let ϕ denote Euler’s function, λ the Carmichael universal exponent function, ζ the

Riemann zeta-function, Li(x) =
∫ x
2

dt
log t

, and ϑ(x) =
∑

p≤x log p. In many instances,

we take a sum over certain subsets of odd composite integers, in which cases we use∑′
n to denote

∑
n odd,

composite
.

1.2 Preliminary lemmas

In this section, we prove some preliminary lemmas which are needed for the rest of

the paper, and which may be of interest in their own right.

Lemma 1.2.1. Given real numbers a, b and a nonnegative, decreasing function f on

the interval [a, b], we have that∫ b

dae
f(t) dt ≤

∑
a≤n≤b

f(n) ≤ f(a) +

∫ b

a

f(t) dt.

The proof is clear. Note that since
∑

a<n≤b f(n) ≤
∑

a≤n≤b f(n), we may apply

the upper bound for the sum on the half open interval.
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Lemma 1.2.2. For x ≥ 2, we have that

x

ζ(2)
− log x ≤

∑
n≤x

ϕ(n)

n
≤ x

ζ(2)
+ log x.

Proof. The result holds for 2 ≤ x < 18, so assume x ≥ 18. We have that∑
n≤x

ϕ(n)

n
=
∑
n≤x

∑
d|n

µ(d)

d
=
∑
d≤x

µ(d)

d

∑
n≤x/d

1 =
∑
d≤x

µ(d)

d

⌊x
d

⌋
= x

∑
d≤x

µ(d)

d2
−
∑
d≤x

µ(d)

d

{x
d

}
=

x

ζ(2)
− x

∑
d>x

µ(d)

d2
−
∑
d≤x

µ(d)

d

{x
d

}
,

(1.4)

where { } denotes the frational part. By Lemma 1.2.1,∑
d>x

µ(d)

d2
≤
∑
d>x

1

d2
≤ 1

x2
+

∫ ∞
x

dt

t2
=

1

x2
+

1

x
,

∑
d>x

µ(d)

d2
≥ −

∑
d>x

1

d2
≥ − 1

x2
− 1

x
.

(1.5)

Since
∑

1<d≤18, µ(d)6=−1
1
d

= 367
336

> 1.09, we have

−
∑
d≤x

µ(d)

d

{x
d

}
≤

∑
d≤x

µ(d)=−1

1

d
≤
∑

1<d≤x

1

d
−

∑
1<d≤18
µ(d)6=−1

1

d
< log x− 1.09.

Substituting this and (1.5) back into (1.4) gives∑
n≤x

ϕ(n)

n
≤ x

ζ(2)
+

1

x
+ 1 + log x− 1.09 <

x

ζ(2)
+ log x.

Similarly, direct computation shows that∑
d≤x

µ(d)

d

{x
d

}
≤
∑
d≤x

µ(d)=1

1

d
≤
∑

1<d≤x

1

d
−
∑

1<d≤4
µ(d) 6=1

1

d
< log x− 13

12
.

and thus ∑
n≤x

ϕ(n)

n
≥ x

ζ(2)
− 1

x
− 1− log x+

13

12
>

x

ζ(2)
− log x.

Lemma 1.2.3. For x ≥ 1, we have that

log x

ζ(2)
+ 1− log 2

ζ(2)
<
∑
n≤x

ϕ(n)

n2
≤ log x

ζ(2)
+ 1.

5



Proof. The inequalities are easily verified for x < 40, so assume x ≥ 40. Partial

summation gives∑
n≤x

ϕ(n)

n2
=
∑
n≤39

ϕ(n)

n2
+

1

x

∑
n≤x

ϕ(n)

n
− 1

40

∑
n≤39

ϕ(n)

n
+

∫ x

40

1

t2

∑
n≤t

ϕ(n)

n
dt.

Evaluating the two sums to 39 and using the upper and lower bounds in Lemma 1.2.2

for the sums to x and t, we obtain the stronger result,

log x

ζ(2)
+ 0.58 <

∑
n≤x

ϕ(n)

n2
<

log x

ζ(2)
+ 0.82.

Note that the upper bound in the lemma is tight at x = 1 and the lower bound cannot

be improved as x→ 2−.

Lemma 1.2.4. If 2 ≤ y < x and 0 < c < 1, then∑
y<p≤x

p−c < f(x, y),

where

f(x, y) := (1 + 2.3 · 10−8)

(
Li(x1−c)− Li(y1−c) +

y1−c

log y

)
− ϑ(y)

y−c

log y
.

Proof. We use the inequalities

ϑ(x) < x (0 < x ≤ 1019), |x− ϑ(x)| < εx (x > 1019), (1.6)

where ε = 2.3× 10−8, see [11], [12], improving on recent work in [38] (also see Propo-

sition 2.2.1 in Chapter 2). Let f(t) = 1/(tc log t). By partial summation,∑
y<p≤x

p−c =
∑
y<p≤x

f(p) log p = ϑ(x)f(x)− ϑ(y)f(y)−
∫ x

y

ϑ(t)f ′(t) dt.

Note that (1.6) implies that ϑ(t) < (1 + ε)t for all t > 0. Since f ′(t) < 0 for t ≥ 2, we

have ∑
y<p≤x

p−c < (1 + ε)xf(x)− (1 + ε)

∫ x

y

tf ′(t) dt− ϑ(y)f(y)

= (1 + ε)
(
Li(x1−c)− Li(y1−c) + yf(y)

)
− ϑ(y)f(y),

where we have integrated by parts and used that
∫
f(t) dt = Li(t1−c). This completes

the proof.
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Lemma 1.2.5. We have

(i)
∑
n>y

1

n2
<

5

3y
for y > 0,

(ii)
∑
n≥y

1

n3
≤ 4(ζ(3)− 1)

y2
for y > 1.

Proof. The first claim is stated and proved in (4.7) in [29]. We proceed similarly for

the second claim. When 1 < y ≤ 2, we have∑
n≥y

1

n3
=
∑
n≥2

1

n3
= ζ(3)− 1 =

4(ζ(3)− 1)

4
≤ 4(ζ(3)− 1)

y2
.

When 2 < y ≤ 3, direct computation shows that∑
n≥y

1

n3
=
∑
n≥3

1

n3
= ζ(3)− 1− 1

8
<

4(ζ(3)− 1)

y2
.

When 3 < y ≤ 4, direct computation shows that∑
n≥y

1

n3
=
∑
n≥4

1

n3
= ζ(3)− 1− 1

8
− 1

27
<

4(ζ(3)− 1)

y2
.

When y > 4, by Lemma 1.2.1, direct computation shows that∑
n≥y

1

n3
≤ 1

y3
+

∫ ∞
y

dt

t3
=

1

y3
+

1

2y2
<

4(ζ(3)− 1)

y2
.

1.3 The basic method

Let

F(n) = {b ∈ (Z/nZ)× : bn−1 = 1}

and let F (n) = #F(n). If n > 1 is odd, then ±1 ∈ F(n). Thus, for these n, F (n)− 2

counts the number of integers b, 1 < b < n − 1, with bn−1 ≡ 1 (mod n). Also note

that by Fermat’s little theorem, F (p) = p− 1 for primes p. We thus have for x ≥ 5,

P (x) =

∑′
n≤x(F (n)− 2)∑

1<n≤x, n odd(F (n)− 2)
=

(
1 +

∑
2<p≤x(p− 3)∑′
n≤x(F (n)− 2)

)−1
. (1.7)

Hence to obtain an upper bound for P (x), we shall be interested in obtaining a lower

bound for
∑

2<p≤x(p− 3) and an upper bound for
∑′

n≤x(F (n)− 2). To this end, we

shall prove two theorems.
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Theorem 1.3.1. For x ≥ 2657, we have∑
2<p≤x

(p− 3) >
x2

2 log x− 1
2

.

Theorem 1.3.2. Suppose c, L1, and L are arbitrary real numbers with 0 < c < 1,

1 < L1 < L. Then for any x > L2, we have∑′

n≤x

(F (n)− 2) < xc+1
∏

2<p≤L

(
1− p−c

)−1
+ x2B,

where

B =
1

4L1

+
logL1

ζ(2)

( 1

2(L− 1)
+

1

x1/2

)
+

.5

L− 1
+

.8

x1/2

+
L1

(x1/2 − 1)2
+

(1 + logL1)

2(x1/2 − 1)
+

1

(L− 1)2

( L1

ζ(2)
+ logL1

)
.

Before proving Theorems 1.3.1 and 1.3.2, we state the main result of the section,

which follows from these theorems.

Theorem 1.3.3. Suppose c, L1, and L are arbitrary positive real numbers satisfying

0 < c < 1 and 1 < L1 < L. Then for any x > max{L2, 2657}, we have P (x) ≤
1/(1 + z−1) where

z =

(
B + xc−1

∏
2<p≤L

(
1− p−c

)−1)(
2 log x− 1

2

)
,

and B is defined as in Theorem 1.3.2.

In principle the prime sum is much larger than the composite sum, so the prob-

ability P (x) may be approximately viewed as their quotient. We remark that the

prime sum in Theorem 1.3.1 is asymptotically equal to x2/(2 log x), so the result is

close to best possible. Additionally, in the application of Theorem 1.3.2, L and c are

used as parameters for smoothness and Rankin’s upper bound, respectively.

We now prove Theorem 1.3.1 using (1.6) and the additional inequalities from [11],

[12] that

ϑ(x) > x− 2
√
x (1423 ≤ x ≤ 1019), π(x) < (1 + ε)li(x) (x ≥ 2), (1.8)

where li(x) =
∫ x
0

dt/ log t and ε = 2.3× 10−8.
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Proof of Theorem 1.3.1. Let A = 1500. By partial summation,∑
2<p≤x

(p− 3) = 1− 3π(x) +
∑
p≤x

p

= 1− 3π(x) +
∑

2<p≤A

(p− 3) +
xϑ(x)

log x
− Aϑ(A)

logA
−
∫ x

A

ϑ(t)
log t− 1

log2 t
dt.

(1.9)

By (1.8), we have −3π(x) > −3(1 + ε)li(x). Suppose that A ≤ x ≤ 1019. By (1.6),

(1.8), we have

xϑ(x)

log x
−
∫ x

A

ϑ(t)
log t− 1

log2 t
dt >

x2 − 2x3/2

log x
−
∫ x

A

t

log t
− t

log2 t
dt

= li(x2)− 2x3/2

log x
− li(A2) +

A2

logA
.

Using these estimates in (1.9), we have∑
2<p≤x

(p− 3) > li(x2)− 2x3/2

log x
− 3(1 + ε)li(x) + 5 875.

It is now routine to verify the theorem for 17 000 ≤ x ≤ 1019. Similar calculations

with (1.6), (1.8) establish the theorem for x > 1019. A simple check then verifies the

theorem in the stated range.

Proof of Theorem 1.3.2

The bulk of the work is devoted to the proof of Theorem 1.3.2. The basic method is

to divide the eligible n into five parts, depending on the largest prime factor P+(n)

as well as the quotient ϕ(n)/F (n), indicating how close n is to being a Carmichael

number. We summarize this in the diagram below, which may help guide the reader

through the proof.

odd composite n

L-smooth

(1.11)

not L-smooth

ϕ/F small

(1.12)

ϕ/F large

P+ ≤
√
x

S1, S2

P+ >
√
x

S3

9



For any x > L2 with L > L1 > 1, we have∑′

n≤x

(F (n)− 2) =
∑′

n≤x
P+(n)≤L

(F (n)− 2) +
∑′

n≤x
P+(n)>L

(F (n)− 2)

≤
∑
n≤x

P+(n)≤L
n odd

n+
∑′

n≤x
P+(n)>L

F (n).
(1.10)

For the first term in (1.10), we have for any 0 < c < 1,∑
n≤x

P+(n)≤L
2-n

n ≤ x1+c
∑

P+(n)≤L
2-n

1

nc
= x1+c

∏
2<p≤L

(
1− p−c

)−1
. (1.11)

Remark 1.3.4. By approximating the logarithm of the Euler product in (1.11) (with

2 included) using Lemma 1.2.4 and the method of [29], we can write a closed, numer-

ically explicit upper bound on the distribution of L-smooth numbers: If 1
2
< c < 1

and 37 ≤ L < x, then ∑
n≤x

P+(n)≤L

1 ≤ xcf0 exp(A+ f(L, 36)),

where the notation f(a, b) is defined in Lemma 1.2.4 and

f0 :=
∏
p<37

(
1− p−c

)−1
, A :=

1

2c− 1

(1

2
+

1

3(37c − 1)

)(
361−2c − 1

2
· 371−2c

)
.

There has been a very recent improvement of this Rankin-type upper bound due to

Granville and Soundarajan, see Appendix 2.5, that is suitable for numerical estimates.

It would be interesting to adapt that method to this paper.

Now we bound the second term in (1.10). Since F(n) is a subgroup of (Z/nZ)×,

by Lagrange’s Theorem we have F (n) | ϕ(n), where ϕ is Euler’s function. Then for

each k, it makes sense to define Ck(x) as the set of odd, composite n ≤ x such that

F (n) = ϕ(n)/k. Let C′k(x) be the set of n ∈ Ck(x) for which P+(n) > L, and let

C ′k(x) = #C′k(x). Thus, we have∑′

n≤x
P+(n)>L

F (n) =
∞∑
k=1

∑
n∈C′k(x)

F (n) =
∞∑
k=1

∑
n∈C′k(x)

ϕ(n)

k

=
∑
k≤L1

1

k

∑
n∈C′k(x)

ϕ(n) +
∑
k>L1

1

k

∑
n∈C′k(x)

ϕ(n)

≤ x
∑
k≤L1

C ′k(x)

k
+

1

L1

∑
1<n≤x
n odd

(n− 2) ≤ x
∑
k≤L1

C ′k(x)

k
+

x2

4L1

.

(1.12)
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It will thus be desirable to obtain an upper bound for
∑

k≤L1

C′k(x)

k
. We remark that

in the case k > L1 we do not use P+(n) > L; this observation will be useful in the

next section.

Given a prime p > L, d | p− 1, let

Sp,d(x) = {n : n ≤ x odd, composite, n ≡ p (mod p(p− 1)/d)}.

Let Sp,d(x) = #Sp,d(x). Note that Sp,d ≤ xd
p(p−1) by the Chinese Remainder Theorem.

We prove that ⋃
k≤L1

C′k(x) ⊂
⋃
d≤L1
d|p−1
L<p≤x

Sp,d(x).

Take n in the left set. Then p = P+(n) > L and k = ϕ(n)/F (n) ≤ L1. By Lemma

2.4 in [29], we have n ≡ 1 (mod p−1
(k,p−1)). Letting d = (k, p−1), we have that n ∈ Sp,d

(via the Chinese remainder theorem) and d ≤ k ≤ L1, so n is in the right set.

Additionally, for a given p, d pair, Sp,d counts integers n = mp for which m ≡ 1

(mod p−1
d

). Write m = 1 + u(p−1
d

) for some u. Letting g = (u, d), we have that

m = 1 + (u
g
)(p−1

d/g
), so n ∈ Sp,d/g, meaning that n will be counted multiple times if

g > 1. Thus we require (u, d) = 1. In particular, if d is even, then u is odd. Since

m = 1 + u(p−1
d

) is odd, we have u(p−1
d

) even. That is, if d is even then u is odd and
p−1
d

is even, so 2d | p− 1. On the other hand, if d is odd, we of course have 2d | p− 1.

Thus 2d | p− 1 always, and so∑
k≤L1

C ′k(x)

k
≤
∑
d≤L1

1

d

∑
L<p≤x
2d|p−1

∑
u≤ xd

p(p−1)

(u,d)=1

1

=
∑
d≤L1

1

d

∑
L<p≤x1/2
2d|p−1

∑
u≤ xd

p(p−1)

(u,d)=1

1 +
∑
d≤L1

1

d

∑
x1/2<p≤x
2d|p−1

∑
u≤ xd

p(p−1)

(u,d)=1

1

<
∑
d≤L1

ϕ(d)

d

∑
L<p≤x1/2
2d|p−1

( x

p(p− 1)
+ 1
)

+
∑
d≤L1

∑
x1/2<n≤x
2d|n−1

x

n(n− 1)

< S1 + S2 + S3,

(1.13)

where

S1 = x
∑
d≤L1

ϕ(d)

d

∑
L<n≤x1/2
2d|n−1

1

(n− 1)2
, S2 =

∑
d≤L1

ϕ(d)

d

∑
1<n≤x1/2
2d|n−1

1,

S3 =
∑
d≤L1

∑
x1/2<n≤x
2d|n−1

x

(n− 1)2
.

(1.14)
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It is worth noting that in S1, S2, S3, we have dropped the condition that n be prime.

An alternative bound using the condition of primality may be handled as an applica-

tion of the Brun-Titchmarsh inequality. However, such a method is less effective for

the small values of x considered here.

Consider S1 in (1.14). For a given d ≤ L1, by Lemma 1.2.1 we have that∑
n>L

2d|n−1

1

(n− 1)2
=

∑
2du+1>L

1

4d2u2
≤ 1

(L− 1)2
+

1

4d2

∫ ∞
(L−1)/2d

dt

t2

=
1

(L− 1)2
+

1

2d(L− 1)
.

(1.15)

Thus, by Lemma 1.2.2 and Lemma 1.2.3,

S1 < x
∑
d≤L1

ϕ(d)

d

( 1

(L− 1)2
+

1

2d(L− 1)

)
≤ x

(L− 1)2
( L1

ζ(2)
+ logL1

)
+

x

2(L− 1)

( logL1

ζ(2)
+ 1
)
.

(1.16)

By Lemma 1.2.3, S2 in (1.14) is bounded by

S2 ≤
∑
d≤L1

ϕ(d)

d

x1/2

2d
≤ x1/2

( logL1

2ζ(2)
+ .8

)
. (1.17)

We now consider S3 in (1.14). For a fixed d ≤ L1, we have, as in (1.15),∑
x1/2<n≤x
2d|n−1

1

(n− 1)2
≤ 1

(x1/2 − 1)2
+

1

2d(x1/2 − 1)
.

So,

S3 ≤ x
∑
d≤L1

1

(x1/2 − 1)2
+

1

2d(x1/2 − 1)
≤ xL1

(x1/2 − 1)2
+
x(1 + logL1)

2(x1/2 − 1)
. (1.18)

By (1.16), (1.17), and (1.18), we obtain from (1.13) that∑
k≤L1

C ′k(x)

k
< x

(
B − 1

4L1

)
(1.19)

for B as in Theorem 1.3.2. Thus, using (1.19) in (1.12) gives the following result.

Theorem 1.3.5. Suppose L1 and L are arbitrary real numbers satisfying 1 < L1 < L.

Then for any x > L2, we have ∑′

n≤x
P+(n)>L

(F (n)− 2) < x2B.

where B is as in Theorem 1.3.2.

Thus, (1.10), (1.11), and Theorem 1.3.5 give us Theorem 1.3.2.

12



1.4 A refinement of the basic method

We refine the basic method as done analogously in [29], by considering the two largest

prime factors of n. This refinement provides a modest improvement over Theorem

1.3.3 for x starting around 2140.

Theorem 1.4.1. Suppose c, L1, L, and M are arbitrary real numbers satisfying 0 <

c < 1, 10 < L1 < L, 2L < M < L2. Then for any x > L2, we have∑′

n≤x

(F (n)− 2) < xc+1
(
1 + f(L,M1/2)

) ∏
2<p≤M1/2

(
1− p−c

)−1
+ x2(B + C),

where f is as in Lemma 1.2.4, B is as in Theorem 1.3.2, and

C =
L2

2x
(1 + logL1) +

2(1 + logL1)
2

M logM

+
1

12(M − 2L)
(1 + logL)(4 + logL1)

4
( 5

12
+ (ζ(3)− 1)(1 + logL)

)
.

Proof. For each odd, composite n ≤ x, letting P,Q be the two largest prime factors

of n (i.e. P = P+(n), Q = P+(n/P )), we have three possible cases,

(i) P > L or F (n) < ϕ(n)/L1,

(ii) P ≤ L and PQ ≤M ,

(iii) P ≤ L, PQ > M , and F (n) ≥ ϕ(n)/L1.

It is worth noting that cases (i) and (ii) are not in general mutually exclusive. We

retain Theorem 1.3.5 and the remark following (1.12) to handle case (i). For case (ii),

let 0 < c < 1. When P ≤M1/2, we have∑
n≤x,2-n
P≤M1/2

1 ≤ xc
∑
2-n

P+(n)≤M1/2

n−c.

Similarly, when P > M1/2 we have Q ≤ M
P
< M1/2, so∑

n≤x,2-n
M1/2<P≤L
Q≤M1/2

1 ≤
∑

M1/2<p≤L

∑
n≤x/p

P+(n)≤M1/2

2-n

1 ≤
∑

M1/2<p≤L

∑
P+(n)≤M1/2

2-n

( x
np

)c

= xc
∑

M1/2<p≤L

p−c
∑
2-n

P+(n)≤M1/2

n−c.
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Using Lemma 1.2.4,∑
n≤x,2-n
P≤L
PQ≤M

1 ≤
∑

n≤x,2-n
P≤M1/2

1 +
∑

n≤x,2-n
M1/2<P≤L
Q≤M1/2

1

≤ xc
∑
2-n

P+(n)≤M1/2

n−c + xc
∑

M1/2<p≤L

p−c
∑
2-n

P+(n)≤M1/2

n−c

= xc
(

1 +
∑

M1/2<p≤L

p−c
) ∑

2-n
P+(n)≤M1/2

n−c ≤ xc
(
1 + f(L,M1/2)

) ∑
2-n

P+(n)≤M1/2

n−c

= xc
(
1 + f(L,M1/2)

) ∏
2<p≤M1/2

(
1− p−c

)−1
.

(1.20)

We now have the following result.

Theorem 1.4.2. If 0 < c < 1, 1 < L < x, and L < M < L2, then∑
n≤x,n odd
P≤L
PQ≤M

n ≤ xc+1
(
1 + f(L,M1/2)

) ∏
2<p≤M1/2

(
1− p−c

)−1
,

where f is as in Lemma 1.2.4.

Consider n belonging to case (iii). For each k, let Bk(x) denote the set of such n

with ϕ(n)/F (n) = k and let Bk(x) = #Bk(x). Thus,∑′

n in case (iii)

F (n) ≤ x
∑
k≤L1

Bk(x)

k
. (1.21)

By (2.11) in [18], we have λ(n) | k(n − 1) for all n ∈ Bk(x). Since PQ | n, we

have λ(PQ) | λ(n), so n satisfies the set of congruences

n ≡ 0 (mod PQ), k(n− 1) ≡ 0 (mod λ(PQ)). (1.22)

Suppose first that P = Q. Then λ(PQ) = P (P −1), so that (1.22) implies that P | k.

For such a prime P , the number of n ≤ x with P 2 | n is at most x/P 2 < x/M . Thus,

the contribution for n in this case is at most

x

M

∑
k≤L1

x

k

∑
P |k

P>M1/2

1 <
x2

M

( ∑
k≤L1

1

k

) logL1

logM1/2
<

2x2

M logM
(1 + logL1)

2. (1.23)
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Now consider the case P > Q. The latter congruence in (1.22) is equivalent to

n ≡ 1

(
mod

λ(PQ)

(k, λ(PQ))

)
,

from which we also note (
PQ ,

λ(PQ)

(k, λ(PQ))

)
= 1.

Thus for arbitrary fixed primes p > q, the Chinese remainder theorem gives that

the number of integers n ≤ x satisfying the system n ≡ 0 (mod pq), k(n − 1) ≡ 0

(mod λ(pq)) as in (1.22) is at most

1 +
x(k, λ(pq))

pqλ(pq)
.

Summing over choices for p, q, we have the number of n in this case is at most∑
q<p≤L
pq>M

(
1 +

x(k, λ(pq))

pqλ(pq)

)
≤ 1

2
L2 +

1

2
x
∑
p,q≤L
pq>M
p 6=q

(k, [p− 1, q − 1])

pq[p− 1, q − 1]
. (1.24)

This is (4.4) in [29] where “L2” there is our “L”. Following the argument in [29]

from there, and letting M ′ = M − 2L and with u1, u2, u3, u4, µ, ν, δ positive integer

variables, we have that∑
q,p≤L
pq>M
p6=q

(k, [p− 1, q − 1])

pq[p− 1, q − 1]
≤

∑
u1u2u3u4=k
(u1,u2)=1

∑
µ≤L/u1
ν≤L/u2

∑
u1u2u23µνδ

2>M ′

1

µ2ν2δ3u1u2u23
. (1.25)

which is the initial inequality of (4.6) in [29] and with a typo corrected (the variable

“δ” under the second summation there should be “µ”).

We now diverge from the argument in [29], and split up the sum on the right side

of (1.25) into two cases, δ = 1 and δ ≥ 2. When δ = 1, by Lemma 1.2.5(i) we have∑
u1u2u3u4=k
(u1,u2)=1

∑
µ≤L/u1
ν≤L/u2

∑
µνu1u2u23>M

′

1

µ2ν2u1u2u23
<

5

3M ′

∑
u1u2u3u4=k

∑
ν≤L/u2

1

ν

≤ 5

3M ′ (1 + logL)
∑

u1u2u3u4=k

1,

(1.26)

When δ ≥ 2, let D :=
√
M ′/u1u2u23µν. By Lemma 1.2.5(ii) we have∑

u1u2u3u4=k
(u1,u2)=1

∑
µ≤L/u1
ν≤L/u2

∑
δ≥max{2,D}

1

µ2ν2δ3u1u2u23
≤ 4(ζ(3)− 1)

M ′

∑
u1u2u3u4=k

∑
µ≤L/u1
ν≤L/u2

1

µν

≤ 4(ζ(3)− 1)

M ′ (1 + logL)2
∑

u1u2u3u4=k

1.

(1.27)
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Substituting (1.26) and (1.27) back into (1.25) and then (1.24), we have∑
k≤L1

1

k

∑
q<p≤L
pq>M

(
1 +

x(k, λ(pq))

pqλ(pq)

)
<

1

2
L2(1 + logL1)

+ x(1 + logL)
( 5

6M ′ +
2(ζ(3)− 1)

M ′ (1 + logL)
) ∑
k≤L1

τ(4)(k)

k
,

(1.28)

where τ(i)(k) is the number of ordered factorizations of k into i positive factors. In

[29] (see (4.9)), an easy induction argument shows that∑
k≤y

τ(i)(k)

k
≤ 1

i!
(i+ log y)i

for any natural number i and any y ≥ 1. Using this in (1.28) and then combining

with (1.23) gives

x
∑
k≤L1

Bk(x)

k
≤ x2C,

where C is as in Theorem 1.4.1. Thus, from (1.21) we have the following result.

Theorem 1.4.3. If 10 < L1 < L < M/2 and x > L2 > M , then∑′

n in case (iii)

F (n) ≤ x2C,

where C is as in Theorem 1.4.1.

Combining Theorems 1.3.5, 1.4.2 and 1.4.3 yield Theorem 1.4.1.

Finally, Theorems 1.3.1 and 1.4.1 give the following result.

Theorem 1.4.4. If 0 < c < 1, 10 < L1 < L, 2L < M < L2 < x, and x ≥ 2657, then

P (x) ≤ 1/(1 + z−1) where

z =

(
xc−1

(
1 + f(L,M1/2)

) ∏
2<p≤M1/2

(
1− p−c

)−1
+B + C

)(
2 log x− 1

2

)
,

f is as in Lemma 1.2.4, B is as in Theorem 1.3.2, and C is as in Theorem 1.4.1.
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1.5 The strong probable prime test

The next theorem extends the applicability of Theorems 1.3.3 and 1.4.4 to the prob-

ability, P1(x), that an odd composite n ≤ x passes the strong probable prime test

to a random base. For an odd number n, let S(n) denote the number of integers

1 ≤ b ≤ n− 1 such that n is a strong probable prime to the base b, cf. (1.3). Thus,

P1(x) =

∑′

n≤x

(
S(n)− 2

)
∑′

n≤x

(
S(n)− 2

)
+
∑

2<p≤x
(p− 3)

.

The following theorem together with Theorems 1.3.1, 1.3.2, and 1.4.1 allows for a

numerical estimation of P1(x) for various values of x.

Theorem 1.5.1. For x ≥ 1, we have that∑′

n≤x

(
S(n)− 2

)
≤ 1

2

∑′

n≤x

(
F (n)− 2

)
.

Proof. By (2.1) in [14], we have that S(n) ≤ 21−ω(n)F (n), where ω(n) denotes the

number of distinct prime factors of n. So, if n is odd and divisible by at least 2

different primes, we have S(n) ≤ 1
2
F (n). Further, if n = pa is an odd prime power

then S(pa) = F (pa) = p− 1. Therefore we have∑′

n≤x

(
S(n)− 2

)
≤
∑′

n≤x

(1

2
F (n)− 2

)
+

1

2

∑
2<pa≤x
a≥2

(p− 1)

=
1

2

∑′

n≤x

(
F (n)− 2

)
−
∑′

n≤x

1 +
1

2

∑
2<p≤x1/a

a≥2

(p− 1),

so to prove the theorem it is enough to show that∑′

n≤x

1 ≥ 1

2

∑
2<p≤x1/a

a≥2

(p− 1). (1.29)

Since 3 times an odd integer > 1 is an odd composite number, we have∑′

n≤x

1 ≥
∑

1<m≤x/3
m odd

1 =

⌊
x

6
− 1

2

⌋
>

1

6
x− 3

2
.

Also, since the primes larger than 2 are odd, for a given value of a we have

1

2

∑
2<p≤x1/a

(p− 1) ≤
∑

j≤ 1
2
(x1/a−1)

j ≤ 1

2

(1

2
x1/a − 1

)(1

2
x1/a + 1

)
<

1

8
x2/a.
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Adding these inequalities for a = 2, 3, . . . , blog x/ log 3c, we see that (1.29) will follow

if we show that

1

6
x− 3

2
>

1

8
x+

1

8
x2/3 +

1

8
x1/2(log x/ log 3− 3).

This inequality holds for x ≥ 254. For 9 ≤ x < 254, (1.29) can be verified directly.

Indeed, the prime sum in (1.29) increases only at the 8 powers of odd primes to 254

and it is enough to compute the two sums at those points. For x < 9,∑′

n≤x

(
F (n)− 2

)
=
∑′

n≤x

(
S(n)− 2

)
= 0,

so the theorem holds here as well. This completes the proof.

We remark that the same result holds for the Euler probable prime test (also

known as the Solovay–Strassen test). This involves verifying that the odd number

n satisfies a(n−1)/2 ≡
(
a
n

)
(mod n), where

(
a
n

)
is the Jacobi symbol. Indeed, from

Monier’s formula, see [18, (5.4)], we have that the number of bases a (mod n) for

which the Euler congruence holds is also ≤ 21−ω(n)F (n). Like the strong test (as

discussed in the introduction), an advantage with the Euler probable prime test is

that more liars may be weeded out by repeating the test.

1.6 Numerical results

We apply Theorems 1.3.3 and 1.4.4 to obtain numerical bounds on P (x) for various

values of x. In Figure 1.3, bounds on P (2k) are computed via Theorem 1.3.3 for

40 ≤ k ≤ 130 and Theorem 1.4.4 for 140 ≤ k ≤ 330, at which point the methods of

this paper lose their edge over those in [29]. To select values for parameters L,L1,M, c,

we started with an initial guess based on [29], and then optimized each parameter

in turn (holding the others fixed). The reported values were determined by repeated

this process five times.

Note that the upper bounds in Theorems 1.3.3, 1.4.4 are decreasing functions in x,

so one can use the Figure 1.3 data to compute upper bounds for values of x between

consecutive entries.

We also compute the exact values of P (x) for x = 2k when k ≤ 36. By definition,

P (x) =
Sc(x)

Sc(x) + Sp(x)

for

Sp(x) =
∑

2<p≤x

(p− 3), Sc(x) =
∑′

n≤x

(
F (n)− 2

)
.
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For ease, we have split up the computation into dyadic intervals (2k−1, 2k). Letting

Sp(x/2, x) =
∑

x/2<p≤x

(p− 3), Sc(x/2, x) =
∑′

x/2<n≤x

(
F (n)− 2

)
,

we have that

P (2k) =

∑k
j=3 Sc(2

j−1, 2j)∑k
j=3 Sp(2

j−1, 2j) + Sc(2j−1, 2j)
. (1.30)

Figure 1.3: Upper bound on P (2k).

k L L1 M1/2 c P (2k) ≤
40 307− 135 0.5440 4.306E−1
50 727− 318 0.5831 2.904E−1
60 1.860E+3 831 0.6235 1.848E−1
70 4.000E+3 1.75E+3 0.6491 1.127E−1
80 8.500E+3 3.72E+3 0.6704 6.728E−2
90 1.804E+4 7.55E+3 0.6906 4.017E−2

100 3.505E+4 1.54E+4 0.7052 2.388E−2
110 7.351E+4 3.27E+4 0.7217 1.435E−2
120 1.354E+5 5.95E+4 0.7321 8.612E−3
130 2.507E+5 1.10E+5 0.7423 5.229E−3
140 9.90E+5 1.57E+5 2.379E+5 0.7444 3.265E−3
150 2.20E+6 3.19E+5 3.739E+5 0.7504 1.799E−3
160 4.88E+6 6.21E+5 5.689E+5 0.7554 9.932E−4
170 1.05E+7 1.21E+6 8.669E+5 0.7602 5.505E−4
180 2.21E+7 2.30E+6 1.315E+6 0.7648 3.064E−4
190 4.55E+7 4.55E+6 1.990E+6 0.7692 1.714E−4
200 9.23E+7 8.69E+6 2.990E+6 0.7734 9.634E−5
210 1.84E+8 1.66E+7 4.455E+6 0.7773 5.447E−5
220 3.62E+8 3.16E+7 6.627E+6 0.7811 3.097E−5
230 7.19E+8 5.74E+7 9.644E+6 0.7845 1.770E−5
240 1.38E+9 1.09E+8 1.410E+7 0.7878 1.017E−5
250 2.62E+9 2.01E+8 2.049E+7 0.7911 5.876E−6
260 4.96E+9 3.66E+8 2.946E+7 0.7941 3.412E−6
270 9.29E+9 6.64E+8 4.204E+7 0.7969 1.992E−6
280 1.73E+10 1.19E+9 5.998E+7 0.7996 1.169E−6
290 3.16E+10 2.18E+9 8.558E+7 0.8023 6.888E−7
300 5.83E+10 3.97E+9 1.197E+8 0.8048 4.080E−7
310 1.06E+11 6.87E+9 1.678E+8 0.8072 2.428E−7
320 1.90E+11 1.20E+10 2.346E+8 0.8094 1.451E−7
330 3.38E+11 2.10E+10 3.297E+8 0.8117 8.713E−8
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Note that the probability that an odd composite in the interval (2k−1, 2k) passes the

Fermat test is given by

P (2k−1, 2k) :=
Sc(2

k−1, 2k)

Sp(2,k−1 , 2k) + Sc(2,k−1 , 2k)
.

We have directly computed Sp(2
k−1, 2k) and Sc(2

k−1, 2k) for k ≤ 36, with the latter

computation aided by the formula F (n) =
∏

p|n(p − 1, n − 1). Specifically, Sp is

computed directly from the available list of primes up to 236. To compute Sc we use a

sieve-like procedure. We initialize an array representing the odd numbers from 2k−1

and 2k with all 1’s. For each prime p to 2k/3, we let m run over the odd numbers

between 2k−1/p and 2k/p. For each m, we locate mp in the array, multiplying the

entry there by gcd(m− 1, p− 1). At the end of the run the non-1 entries in our array

correspond to the numbers F (n) for n odd and composite. Note this avoids factoring

integers n in (2k−1, 2k), though a brute force method to the modest level of 236 would

have worked too.

In Figure 1.4, we provide the values of Sp(2
k) and Sc(2

k), as well as P (2k) and

P (2k−1, 2k).
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Figure 1.4: Exact values of data.

k Sp(2
k−1, 2k) Sc(2

k−1, 2k) P (2k−1, 2k) P (2k)
3 6 0 0 0
4 18 2 1.000E−1 7.692E−2
5 104 4 3.704E−2 4.478E−2
6 320 24 6.977E−2 6.276E−2
7 1180 114 8.810E−2 8.126E−2
8 4292 316 6.858E−2 7.210E−2
9 16338 1114 6.384E−2 6.605E−2

10 57416 3056 5.054E−2 5.492E−2
11 208576 10890 4.962E−2 5.109E−2
12 780150 28094 3.476E−2 3.922E−2
13 2837158 74528 2.600E−2 2.936E−2
14 10673384 231514 2.123E−2 2.342E−2
15 39467286 582318 1.454E−2 1.695E−2
16 148222234 1636968 1.092E−2 1.254E−2
17 559288478 4521166 8.019E−3 9.224E−3
18 2106190104 11682336 5.516E−3 6.503E−3
19 7995006772 33290330 4.147E−3 4.770E−3
20 30299256236 88781082 2.922E−3 3.410E−3
21 115430158810 230250774 1.991E−3 2.364E−3
22 440353630422 628735800 1.426E−3 1.672E−3
23 1683364186642 1680806136 9.975E−4 1.174E−3
24 6448755473484 4408788648 6.832E−4 8.115E−4
25 24754014371036 11552686982 4.665E−4 5.565E−4
26 95132822935752 30756273488 3.232E−4 3.840E−4
27 366232744269106 82133627362 2.242E−4 2.657E−4
28 1411967930053822 215629423796 1.527E−4 1.820E−4
29 5450257882815404 565834872742 1.038E−4 1.241E−4
30 21065843780715212 1504267288346 7.140E−5 8.504E−5
31 81507897575948416 3999812059436 4.907E−5 5.837E−5
32 315718919767278610 10350692466866 3.278E−5 3.940E−5
33 1224166825030041460 27472503360964 2.244E−5 2.682E−5
34 4750936696054816476 72288538641772 1.522E−5 1.821E−5
35 18454541611019193346 190806759987694 1.034E−5 1.237E−5
36 71745407298862105164 498526567616818 6.949E−6 8.342E−6

Additionally, we have estimated P (2k) in the range 30 ≤ k ≤ 50 using random

sampling. More precisely, we randomly sample b2k/2c odd composite numbers in the

interval (2k−1, 2k), estimating Sp(2
k−1, 2k) by

Ŝp(2
k−1, 2k) =

∫ 2k

2k−1

t− 3

log t
dt = Li(22k)− Li(22(k−1))− 3

(
Li(2k)− Li(2k−1)

)
,
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in order to smooth out some noise from the experiment. To estimate Sc(2
k−1, 2k), we

add up F (n)− 2 for each odd composite n sampled, and scale this sum by

2k−2 − Li(2k) + Li(2k−1)

2k/2
,

representing the ratio between the number of composites in the interval and the

number of samples taken. We repeat this procedure ten times, and compute the mean,

Ŝmean(2k−1, 2k), and median, Ŝmedian(2k−1, 2k), of the data. Using these statistics, we

estimate P (2k−1, 2k) by

P̂mean(2k−1, 2k) =
Ŝmean(2k−1, 2k)

Ŝp(2k−1, 2k) + Ŝmean(2k−1, 2k)
,

P̂median(2k−1, 2k) =
Ŝmedian(2k−1, 2k)

Ŝp(2k−1, 2k) + Ŝmedian(2k−1, 2k)
.

For 30 ≤ k ≤ 36, P (2k−1, 2k) is known, in which case we compute the relative errors,

P̂mean/P − 1 and P̂median/P − 1, to get a sense of the accuracy of the experiment.

Then we estimate P (2k) by

P̂mean(2k) =
Ŝmean(2k)

Ŝp(2k) + Ŝmean(2k)

where

Ŝmean(2k) =

{
Sc(2

k−1) + Ŝmean(2k−1, 2k) for 30 ≤ k ≤ 36,

Sc(2
36) +

∑k
j=37 Ŝmean(2j−1, 2j) for 37 ≤ k ≤ 50,

and

Ŝp(2
k) =

{
Sp(2

k−1) + Ŝp(2
k−1, 2k) for 30 ≤ k ≤ 36,

Sp(2
36) +

∑k
j=37 Ŝp(2

j−1, 2j) for 37 ≤ k ≤ 50.

Results of the random sampling experiment are summarized in Figures 1.5 and 1.6.

One sees a negative bias in these data with the results of random sampling

undershooting the true figures. The referee has pointed out to us that this may

be due to Jensen’s inequality applied to the convex function x/(a + x), so that

E[X/(a + X)] ≥ E[X]/(a + E[X]). The undershoot may also be due to the fact

that on average F (n) is much larger than it is typically. In fact, it is shown in [18]

that on a set of asymptotic density 1, we have F (n) = no(1), yet the average behav-

ior is > n15/23. The exponent 15/23, after more recent work of Baker and Harman

[4], can be replaced with 0.7039. It follows from an old conjecture of Erdős on the

distribution of Carmichael numbers that on average F (n) behaves like n1−o(1).
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Figure 1.5: Random sampling estimates in range where P (2k) is known.

k P̂mean(2k−1, 2k) rel. err. P̂median(2k−1, 2k) rel. err. P̂mean(2k) rel. err.
30 5.541E−5 −0.224 5.045E−5 −0.293 7.319E−5 −0.139
31 4.800E−5 −0.022 3.616E−5 −0.263 5.758E−5 −0.014
32 2.706E−5 −0.175 1.899E−5 −0.421 3.515E−5 −0.108
33 2.223E−5 −0.009 1.248E−5 −0.444 2.666E−5 −0.006
34 1.387E−5 −0.088 1.013E−5 −0.334 1.721E−5 −0.055
35 7.603E−6 −0.265 6.506E−6 −0.371 1.033E−5 −0.165
36 4.433E−6 −0.362 4.123E−6 −0.407 6.474E−6 −0.224

Figure 1.6: Random sampling estimates in range where P (2k) is unknown.

k P̂mean(2k−1, 2k) P̂median(2k−1, 2k) P̂mean(2k)
37 4.113E−6 3.675E−6 5.200E−6
38 4.807E−6 2.677E−6 4.908E−6
39 3.008E−6 1.463E−6 3.496E−6
40 1.519E−6 1.097E−6 2.026E−6
41 9.078E−7 5.697E−7 1.194E−6
42 7.747E−7 3.772E−7 8.822E−7
43 3.472E−7 2.334E−7 4.842E−7
44 1.968E−7 1.677E−7 2.704E−7
45 1.639E−7 1.687E−7 1.911E−7
46 1.186E−7 1.198E−7 1.372E−7
47 1.051E−7 6.597E−8 1.133E−7
48 4.076E−8 3.947E−8 5.928E−8
49 3.791E−8 3.213E−8 4.337E−8
50 2.361E−8 1.318E−8 2.865E−8
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Chapter 2

Explicit estimates for the
distribution of numbers free of
large prime factors

2.1 Introduction

For a positive integer n > 1, denote by P (n) the largest prime factor of n, and let

P (1) = 1. Let Ψ(x, y) denote the number of n ≤ x with P (n) ≤ y. Such integers

n are known as y-smooth, or y-friable. Asymptotic estimates for Ψ(x, y) are quite

useful in many applications, not least of which is in the analysis of factorization and

discrete logarithm algorithms.

One of the earliest results is due to Dickman [15] in 1930, who gave an asympotic

formula for Ψ(x, y) in the case that x is a fixed power of y. Dickman showed that

Ψ(x, y) ∼ xρ(u) (y →∞, x = yu) (2.1)

for every fixed u ≥ 1, where ρ(u) is the “Dickman–de Bruijn” function, defined to be

the continuous solution of the delay differential equation

uρ′(u) + ρ(u− 1) = 0 (u > 1),

ρ(u) = 1 (0 ≤ u ≤ 1).

There remain the questions of the error in the approximation (2.1), and also the

case when u = log x/ log y is allowed to grow with x and y. In 1951, de Bruijn [9]

proved that

Ψ(x, y) = xρ(u)
(

1 +Oε

( log(1 + u)

log y

))
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holds uniformly for x ≥ 2, exp{(log x)5/8+ε} < y ≤ x, for any fixed ε > 0. After

improvements in the range of this result by Maier and Hensley, Hildebrand [23] showed

that the de Bruijn estimate holds when exp({(log log x)5/3+ε}) ≤ y ≤ x.

In 1986, Hildebrand and Tenenbaum [24] provided a uniform estimate for Ψ(x, y)

for all x ≥ y ≥ 2, yielding an asymptotic formula when y and u tend to infinity. The

starting point for their method is an elementary argument of Rankin [41] from 1938,

commonly known now as Rankin’s “trick”. For complex s, define

ζ(s, y) =
∑
n≥1

P (n)≤y

n−s =
∏
p≤y

(1− p−s)−1

(where p runs over primes) as the partial Euler product of the Riemann zeta function

ζ(s). In the case that s = σ is real and 0 < σ < 1, we have

Ψ(x, y) =
∑
n≤x

P (n)≤y

1 ≤
∑

P (n)≤y

(x/n)σ = xσζ(σ, y). (2.2)

Then σ can be chosen optimally to minimize xσζ(σ, y).

Let

φj(s, y) =
∂j

∂sj
log ζ(s, y).

The function

φ1(s, y) = −
∑
p≤y

log p

ps − 1

is especially useful since the solution α = α(x, y) to φ1(α, y) + log x = 0 gives the

optimal σ in (2.2). We also denote σj(x, y) = |φj(α(x, y), y)|.
In this language, Hildebrand and Tenenbaum [24] proved that the estimate

Ψ(x, y) =
xαζ(α, y)

α
√

2πσ2(x, y)

(
1 +O

(1

u
+

log y

y

))
holds uniformly for x ≥ y ≥ 2. As suggested by this formula, quantities α(x, y) and

σ2(x, y) are of interest, and were given uniform estimates which imply the formulae

α(x, y) ∼ log(1 + y/ log x)

log y

and

σ2(x, y) ∼
(

1 +
log x

y

)
log x log y,
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together which imply

Ψ(x, y) ∼ xαζ(α, y)√
2πu log(y/ log x)

(if y/ log x→∞),

Ψ(x, y) ∼ xαζ(α, y)√
2πy/ log y

(if y/ log x→ 0).

These formulae indicate that Ψ(x, y) undergoes a “phase change” when y is of

order log x, see [8]. This paper concentrates on the range where y is considerably

larger, say y > (log x)4.

The primary aim of this paper is to make the Hildebrand–Tenenbaum method ex-

plicit and so effectively construct an algorithm for obtaining good bounds for Ψ(x, y).

2.1.1 Explicit Results

Beyond the Rankin upper bound Ψ(x, y) ≤ xαζ(α, y), we have the explicit lower

bound

Ψ(x, y) ≥ x1−log log x/ log y =
x

(log x)u

due to Konyagin and Pomerance [29]. Recently Granville and Soundararajan [22]

found an elementary improvement of Rankin’s upper bound, which they have gra-

ciously permitted us to include, see Appendix 2.5. In particular, they show that

Ψ(x, y) ≤ 1.39y1−σxσζ(σ, y)/ log x

for every value of σ ∈ [1/ log y, 1], see Theorem 2.5.1.

In another direction, by relinquishing the goal of a compact formula, several au-

thors have devised algorithms to compute bounds on Ψ(x, y) for given x, y as inputs.

For example, using an accuracy parameter c, Bernstein [7] created an algorithm to

generate bounds B−(x, y) ≤ Ψ(x, y) ≤ B+(x, y) with

B−

Ψ
≥ 1− log x

c log 3/ log 2
and

B+

Ψ
≤ 1 +

2 log x

c log 3/ log 2
,

running in

O
( y

log2 y
+
y log x

log2 y
+ c log x log c

)
time. Parsell and Sorenson [36] refined this algorithm to run in

O
(
c
y2/3

log y
+ c log x log c

)
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time, as well as obtaining faster and tighter bounds assuming the Riemann Hy-

pothesis. The largest example computed by this method was an approximation of

Ψ(2255, 228).

As seen in Figure 2.1, the lower bound presented in this paper does better than the

Konyagin–Pomerance lower bound by 10 orders of magnitude in the smaller example

and 26 orders of magnitude in the larger example. The upper bound presented is

about 2 to 3 orders of magnitude better than the Rankin estimate and about 1.5

orders of magnitude better than the new Granville–Soundararajan estimate.

As a point of reference we also give the main-term estimates xαζ(α, y)/α
√

2πσ2

from [24] and ρ(u)x from [15]. It is interesting that our lower and upper estimates

in the second example create an interval for the true count that is tight enough to

exclude both the Dickman–de Bruijn and Hildebrand–Tenenbaum main terms. The

second-named author has asked if Ψ(x, y) ≥ xρ(u) holds in general for x ≥ 2y ≥ 2,

see [21, (1.25)]. This inequality is known for u bounded and x sufficiently large, see

the discussion in [33, Section 9].

Figure 2.1: Examples.

x 10100 10500

y 1015 1035

KP 1.786 · 1084 1.857 · 10456

R 4.599 · 1096 9.639 · 10484

GS 5.350 · 1095 6.596 · 10483

DD 2.523 · 1094 1.472 · 10482

HT 2.652 · 1094 1.5127 · 10482

Ψ− 2.330 · 1094 1.4989 · 10482

Ψ+ 2.923 · 1094 1.5118 · 10482

Here,

KP is the Konyagin–Pomerance lower bound x/(log x)u,

R is the Rankin upper bound xαζ(α, y),

GS is the Granville–Soundararajan upper bound 1.39y1−αxαζ(α, y)/ log x,

DD is the Dickman–de Bruijn main term ρ(u)x,

HT is the Hildebrand–Tenenbaum main term xαζ(α, y)/(α
√

2πσ2), and

Ψ−,Ψ+ are the lower and upper bounds obtained in this paper.
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Our principal result, which benefits from some notation developed over the course

of the paper, is Theorem 2.3.11. It is via this theorem that we were able to estimate

Ψ(10100, 1015) and Ψ(10500, 1035) as in the table above.

2.2 Plan for the paper

The basic strategy of the saddle-point method relies on Perron’s formula, which im-

plies the identity1

Ψ(x, y) =
1

2πi

∫ σ+i∞

σ−i∞
ζ(s, y)

xs

s
ds,

for any σ > 0. A convenient value of σ to use is the saddle point α = α(x, y) discussed

in the Introduction: For any σ > 0, the integrand is maximized on the vertical line

with real part σ at s = σ, and it is minimized for σ > 0 at α.

We are interested in abridging the integral at a certain height T and then approx-

imating the contribution given by the tail. To this end, we have

Ψ(x, y) =
1

2πi

∫ α+iT

α−iT
ζ(s, y)

xs

s
ds+ Error. (2.3)

There is a change in behavior occurring in ζ(s, y) when t = Im(s) is on the order

1/ log y. In [24] it is shown that∣∣∣ ζ(s, y)

ζ(α, y)

∣∣∣ =
∏
p≤y

∣∣∣1− p−α
1− p−s

∣∣∣ =
∏
p≤y

(
1 +

2(1− cos(t log p))

pα(1− p−α)2

)−1/2
≤ exp

{
−
∑
p≤y

1− cos(t log p)

pα

}
. (2.4)

Thus when t is small (compared to 1/ log y) the oscillatory terms are in resonance,

and when t is large the oscillatory terms should exhibit cancellation. This behavior

suggests we should divide our range of integration into |t| ≤ T0 and T0 < |t| < T ,

where T0 ≈ 1/ log y is a parameter to be optimized.

The contribution for |t| ≤ T0 will constitute a “main term”, and so we will try

to estimate this part very carefully. In this range we forgo (2.4) and attack the

integrand ζ(s, y)xs/s directly. The basic idea is to expand φ(s, y) = log ζ(s, y) as a

Taylor series in t. This approach, when carefully done, gives us fairly close upper and

lower bounds for the integral. In our smaller example, the upper bound is less than

1The right side should be increased by 1
2 in the case that x itself is a y-smooth integer.
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1% higher than the lower bound, and in the larger example, this is better by a factor

of 20. Considerably more noise is encountered beyond T0 and in the Error in (2.3).

For the second range T0 < |t| < T , we focus on obtaining a satisfactory lower

bound on the sum over primes, ∑
p≤y

1− cos(t log p)

pα
.

Our strategy is to sum the first L terms directly, and then obtain an analytic formula

W (y, w) to lower bound the remaining terms starting at some w ≥ L, where essentially

W (y, w) =
y1−α − w1−α

1− α
+ error.

With an explicit version of Perron’s formula, the Error in (2.3) may be handled

by ∣∣Error
∣∣ ≤ xα

∑
P (n)≤y

T | log(x/n)|>T d

1

nα
1

πT | log(x/n)|
+

∑
P (n)≤y

T | log(x/n)|≤T d

(x
n

)α

≤ xαζ(α, y)

πT d
+ eαT

d−1
[
Ψ(xeT

d−1

, y)−Ψ(xe−T
d−1

, y)
]
.

Here d ≈ 1
2

is a parameter of our choosing, which we set to balance the two terms

above. Thus the problem of bounding |Error| is reduced to estimating the number of

y-smooth integers in the “short” interval
(
xe−T

d−1
, xeT

d−1]
.

This latter portion is better handled when T is large, but the earlier portion in

the range [T0, T ] is better handled when T is small. Thus, T is numerically set to

balance these two forces.

In our proofs we take full advantage of some recent calculations involving the

prime-counting function π(x) and the Chebyshev functions

ψ(x) =
∑
pm≤x

log p, ϑ(x) =
∑
p≤x

log p,

with p running over primes and m running over positive integers. As a corollary of

the papers [11], [12] of Büthe we have the following excellent result.

Proposition 2.2.1. For 1427 ≤ x ≤ 1019 we have

.05
√
x ≤ x− ϑ(x) ≤ 1.95

√
x.

We have

|ϑ(x)− x|
x

<


2.3 · 10−8, when x > 1019,

1.2 · 10−8, when x > e45,

1.2 · 10−9, when x > e50,

2.9 · 10−10, when x > e55.
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Proof. The first assertion is one of the main results in Büthe [12]. Let H be a number

such that all zeros of the Riemann zeta-function with imaginary parts in [0, H] lie on

the 1/2-line. Inequality (7.4) in Büthe [11] asserts that if x/ log x ≤ H2/4.922 and

x ≥ 5000, then
|ϑ(x)− x|

x
<

(log x− 2) log x

8π
√
x

.

We can take H = 3 · 1010, see Platt [37]. Thus, we have the result in the range

1019 ≤ x ≤ e45. For x ≥ e45 we have from Büthe [11] that |ψ(x)−x|/x ≤ 1.118 ·10−8.

Further, we have (see [42, (3.39)]) for x > 0,

ψ(x) ≥ ϑ(x) > ψ(x)− 1.02x1/2 − 3x1/3.

(This result can be improved, but it is not important to us.) Thus, for x ≥ e45 we

have |ϑ(x)− x|/x ≤ 1.151 · 10−8, establishing our result in this range. For the latter

two ranges we argue similarly, using |ψ(x) − x| ≤ 1.165 · 10−9 when x ≥ e50 and

|ψ(x)−x| ≤ 2.885 · 10−10 for x ≥ e55, both of these inequalities coming from [11].

We remark that there are improved inequalities at higher values of x, found in

[11] and [19], which one would want to use if estimating Ψ(x, y) for larger values of y

than we have done here.

2.3 The main argument

As in the Introduction, for complex s, define

ζ(s, y) =
∑
n≥1

P (n)≤y

n−s =
∏
p≤y

(1− p−s)−1,

which is the Riemann zeta function restricted to y-smooth numbers, and for j ≥ 0,

let

φj(s, y) =
∂j

∂sj
log ζ(s, y).
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We have the explicit formulae,

φ1(s, y) = −
∑
p≤y

log p

ps − 1
,

φ2(s, y) =
∑
p≤y

ps log2 p

(ps − 1)2
,

φ3(s, y) = −
∑
p≤y

(p2s + ps) log3 p

(ps − 1)3
,

φ4(s, y) =
∑
p≤y

(p3s + 4p2s + ps) log4 p

(ps − 1)4
,

φ5(s, y) = −
∑
p≤y

(p4s + 11p3s + 11p2s + ps) log5 p

(ps − 1)5
.

Note that for y ≥ 2, σ > 0, φ1(σ, y) is strictly increasing from 0, so there is a unique

solution α = α(x, y) > 0 to the equation

log x+ φ1(α, y) = 0.

Since we cannot exactly solve this equation, we shall assume any choice of α that

we use is a reasonable approximation to the exact solution, and we must take into

account an upper bound for the difference between our value and the exact value. We

denote

φj = φj(α, y), σj = |φj| = (−1)jφj, Bj = Bj(t) = σjt
j/j!

so that the Taylor series of φ(s, y) = log ζ(s, y) about s = α is

φ(α + it, y) =
∑
j≥0

σj
j!

(−it)j =
∑
j≥0

(−i)jBj.

Our first result, which is analogous to Lemma 10 in [24], sets the stage for our

estimates.

Lemma 2.3.1. Let 0 < d < 1 and T > 1. We have that∣∣∣Ψ(x, y)− 1

2πi

∫ α+iT

α−iT
ζ(s, y)

xs

s
ds
∣∣∣

≤ xαζ(α, y)

πT d
+ eαT

d−1
[
Ψ(xeT

d−1

, y)−Ψ(xe−T
d−1

, y)
]
.

Proof. We have

1

2πi

∫ α+iT

α−iT
ζ(s, y)

xs

s
ds =

1

2πi

∫ α+iT

α−iT

∑
P (n)≤y

(x
n

)sds
s

=
∑

P (n)≤y

1

2πi

∫ α+iT

α−iT

(x
n

)sds
s
,
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where the interchange of sum and integral is justified since ζ(s, y) is a finite product,

hence uniformly convergent as a sum.

By Perron’s formula (see [25, Theorem G] and its proof), we have∣∣∣ 1

2πi

∫ α+iT

α−iT

(x
n

)sds
s

∣∣∣ ≤ (x/n)α

max
(

1, πT | log(x/n)|
) if n > x,

∣∣∣1− 1

2πi

∫ α+iT

α−iT

(x
n

)sds
s

∣∣∣ ≤ (x/n)α

max
(

1, πT | log(x/n)|
) if n ≤ x.

Together these imply∣∣∣Ψ(x, y)− 1

2πi

∫ α+iT

α−iT
ζ(s, y)

xs

s
ds
∣∣∣ ≤ xα

∑
P (n)≤y

n−α

max
(

1, πT | log(x/n)|
)

≤ xα
∑

P (n)≤y
| log(x/n)|>T d−1

1

nα
1

πT | log(x/n)|
+ xα

∑
P (n)≤y

| log(x/n)|≤T d−1

1

nα

≤ xαζ(α, y)

πT d
+ eαT

d−1
[
Ψ(xeT

d−1

, y)−Ψ(xe−T
d−1

, y)
]
.

This completes the proof.

In using this result we have the problems of performing the integration from

α − iT to α + iT and estimating the number of y-smooth integers in the interval(
xe−T

d−1
, xeT

d−1]
. We turn first to the integral evaluation.

Recall that Bj = Bj(t) = σj(x, y)tj/j! and let B∗1 = B∗1(t) = t log x−B1(t). Note

that B∗1 = 0 if α is chosen perfectly.

Lemma 2.3.2. For s = α + it, we have

Re
{
ζ(s, y)

xs

s

}
=

xαζ(α, y)

α2 + t2
(
α cos(B3 +B∗1 + b5) + t sin(B3 +B∗1 + b5)

)
exp

{
−B2 +B4 + a5

}
,

where a5, b5 are real numbers, depending on the choice of t, with |a5 + ib5| ≤ B5(t).

Proof. We expand φ(α+it, y) = log ζ(α+it, y) in a Taylor series around t = 0. There

exists some real ξ between 0 and t such that

φ(α + it, y) = φ(α, y) + itφ1 −
t2

2
φ2 −

it3

3!
φ3 +

t4

4!
φ4 − i

t5

5!
(α + iξ, y)

= B0 − iB1 −B2 + iB3 +B4 − i
t5

5!
φ5(α + iξ, y).
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Since ζ(s, y) = exp(φ(s, y)), we obtain

ζ(s, y)
xs

s
=
ζ(α, y)xα

α + it
exp

{
it log x− iB1 −B2 + iB3 +B4 + i

t5

5!
φ5(α + iξ, y)

}
=
xαζ(α, y)

α + it
exp

{
−B2 +B4 + i(B∗1 +B3) + i

t5

5!
φ5(α + iξ, y)

}
.

Letting iφ5(α + iξ)t5/5! = a5 + b5i, we have

ζ(s, y)
xs

s
=

xαζ(α, y)

α2+t2
(α−it)

(
cos(B∗1 +B3 + b5) + i sin(B∗1 +B3 + b5)

)
exp

{
−B2 +B4 + a5

}
,

and taking the real part gives the result.

The main contribution to the integral in Lemma 2.3.1 turns out to come from the

interval [−T0, T0], where T0 is fairly small. We have

1

2πi

∫ α+iT0

α−iT0
ζ(s, y)

xs

s
ds =

1

2π

∫ T0

−T0
ζ(α + it, y)

xα+it

α + it
dt.

Note that the integrand, written as a Taylor series around s = α, has real coefficients,

so the real part is an even function of t and the imaginary part is an odd function.

Thus, the integral is real, and its value is double the value of the integral on [0, T0].

Consider the cosine, sine combination in Lemma 2.3.2:

f(t, v) := α cos(B3(t) + v) + t sin(B3(t) + v),

and let

v0(t) = |B∗1(t)|+B5(t).

We have, for each value of t, the constraint that |v| ≤ v0(t). The partial derivative of

f(t, v) with respect to v is zero when arctan(t/α)−B3(t) ≡ 0 (mod π). Let

u(t) = arctan(t/α)−B3(t).

If u(t) 6∈ [−v0(t), v0(t)], then f(t, v) is monotone in v on that interval; otherwise it has

a min or max at u(t). Let T3, T2, T1, T0 be defined, respectively, as the least positive

solutions of the equations

u(t) = v0(t), u(t) = −v0(t), u(t) + π = v0(t), u(t) + π = −v0(t).

Then 0 < T3 < T2 < T1 < T0. We have the following properties for f(t, v):
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1. For t in the interval [0, T3] we have f(t, v) increasing for v ∈ [−v0(t), v0(t)], so

that

f(t,−v0(t)) ≤ f(t, v) ≤ f(t, v0(t)).

2. For t in the interval [T3, T2], we have f(t, v) increasing for −v0(t) ≤ v ≤ u(t)

and then decreasing for u(t) ≤ v ≤ v0(t). Thus,

min{f(t,−v0(t)), f(t, v0(t))} ≤ f(t, v) ≤ f(t, u(t)).

3. For t ∈ [T2, T1], f(t, v) is decreasing for v ∈ [−v0(t), v0(t)], so that

f(t, v0(t)) ≤ f(t, v) ≤ f(t,−v0(t)).

4. For t ∈ [T1, T0], we have f(t, v) decreasing for v ∈ [−v0(t), u(t) +π] and increas-

ing for v ∈ [u(t) + π, v0(t)]; that is,

f(t, u(t) + π) ≤ f(t, v) ≤ max{f(t,−v0(t)), f(t, v0(t))}.

Note too that f(t, v) has a sign change from positive to negative in the interval [T2, T1].

Let Z−, Z+ be, respectively, the least positive roots of f(t, v(t)) = 0, f(t,−v(t)) = 0.

Let I+0 be an upper bound for the function appearing in Lemma 2.3.2 on [0, T0]

using |a5|, |b5| ≤ B5 and the above facts about f(t, v), and let I−0 be the corresponding

lower bound. We choose a5 = B5 in I+0 when the cos, sin combination is positive, and

a5 = −B5 when it is negative. For I−0 , we choose a5 in the reverse way.

Let

J+
0 =

∫ T0

0

I+0 (t) dt, J−0 =

∫ T0

0

I−0 (t) dt. (2.5)

We thus have the following result, which is our analogue of Lemma 11 in [24].

Lemma 2.3.3. We have

xαζ(α, y)

π
J−0 ≤

1

2πi

∫ α+iT0

α−iT0
ζ(s, y)

xs

s
ds ≤ xαζ(α, y)

π
J+
0 .

In order to estimate the integral in Lemma 2.3.1 when |t| > T0 we must know

something about prime sums to y.

Lemma 2.3.4. We have∣∣∣ ∫ α+iT

α+iT0

ζ(s, y)
xs

s
ds
∣∣∣ ≤ xαζ(α, y)J1,
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where

J1 :=

∫ T

T0

exp
(
−W (y, 1, t)

) dt√
α2 + t2

and

W (v, w, t) :=
∑
w<p≤v

1− cos(t log p)

pα
. (2.6)

Proof. For 0 ≤ v ≤ 1 < t, equation (3.14) in [24] states that

(1 + 4vt/(t− 1)2)−1 ≤ exp{−4v/t}.

Applied to (3.17) in [24] with v = (1− cos(t log p))/2, we have that∣∣∣ ζ(s, y)

ζ(α, y)

∣∣∣ =
∏
p≤y

∣∣∣1− p−α
1− p−s

∣∣∣ =
∏
p≤y

(
1 +

2(1− cos(t log p))

pα(1− p−α)2

)−1/2
≤ exp

{
−
∑
p≤y

1− cos(t log p)

pα

}
.

(2.7)

This completes the proof.

Our goal now is to find a way to estimate W (v, w, t). The following result is

analogous to Lemma 6 in [24].

Lemma 2.3.5. Let s be a complex number, let 1 < w < v, and define

Fs(v, w) :=
∑
w<p≤v

log p

ps
− v1−s − w1−s

1− s
.

(i) If v ≤ 1019 we have

|Fs(v, w)| ≤ 2(v1/2−α + w1/2−α) + 2|s|w
1/2−α − v1/2−α

α− 1/2
.

(ii) If 1019 ≤ w ≤ v we have

|Fs(v, w)| ≤ εw

(
vβ + wβ + |s|v

β − wβ

β

)
,

where β = 1− α and

εw =


2.3 · 10−8, w ∈ (1019, e45],

1.2 · 10−8, w ∈ (e50, e55],

1.2 · 10−9, w ∈ (e50, e55],

2.9 · 10−10, w > e55.
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Proof. (i) By partial summation,∑
w<p≤v

log p

ps
=
ϑ(v)

vs
− ϑ(w)

ws
+

∫ v

w

s
ϑ(t)

ts+1
dt

=
v1−s − w1−s

1− s
− E(v)

vs
+
E(w)

ws
−
∫ v

w

s
E(t)

ts+1
dt,

so by the first part of Proposition 2.2.1,

|Fs(v, w)| ≤ |E(v)|
vα

+
|E(w)|
wα

+ |s|
∫ v

w

E(t)

t1+α
dt

≤ 2v1/2−α + 2w1/2−α + 2|s|v
1/2−α − w1/2−α

1/2− α
.

(ii) Similarly, by the second part of Proposition 2.2.1,

|Fs(v, w)| ≤ |E(v)|
vα

+
|E(w)|
wα

+ |s|
∫ v

w

E(t)

t1+α
dt ≤ εw

(
v1−α + w1−α + |s|

∫ v

w

dt

tα

)
= εw

(
v1−α + w1−α + |s|v

1−α − w1−α

1− α

)
.

The following result plays the role of Corollary 6.1 in [24].

Lemma 2.3.6. For t ∈ R, z > 1, and β = 1− α, let

δz := t log z − arctan(t/β).

(i) For 1427 ≤ w < v ≤ 1019 we have that W (v, w, t) ≥ W0(v, w, t), where

W0(v, w, t) log v =
vβ − wβ

β
− vβ cos δv − wβ cos δw√

β2 + t2

− 4(v1/2−α + w1/2−α)− 2(α + |s|)w
1/2−α − v1/2−α

α− 1/2
.

(ii) For 1019 ≤ w < v we have that W (v, w, t) ≥ W0(v, w, t), where

W0(v, w, t) log v =
vβ − wβ

β
− vβ cos δv − wβ cos δw√

β2 + t2

− 2εw
(
vβ + wβ

)
− εw(α + |s|)

(vβ − wβ
β

)
.
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Proof. We apply Lemma 2.3.5 with s = 1 − β and s = 1 − β + it, and take the real

part of the difference. Letting the difference of the sums be S, we have that

S : =
∑
w<p≤v

( log p

p1−β
− log p

p1−β+it

)
=
∑
w<p≤v

log p

p1−β
(1− p−it), so

Re(S) =
∑
w<p≤v

log p

p1−β
(1− cos(t log p)),

which is the sum we wish to bound.

For a positive real number z, let Sz := zβ

β
− zβ−it

β−it . We have that

Sz =
zβ

β

(
1− β

β − it
z−it

)
=
zβ

β

(
1− β β + it

β2 + t2
e−it log z

)
=
zβ

β

(
1− β β + it

β2 + t2
[cos(t log z)− i sin(t log z)]

)
,

so by Lemma 2.3.6,

Re(Sz) =
zβ

β

(
1− β

β2 + t2
[β cos(t log z) + t sin(t log z)]

)
=
zβ

β

(
1− β√

β2 + t2

[β cos(t log z)√
β2 + t2

+
t sin(t log z)√

β2 + t2

])
=
zβ

β

(
1− β√

β2 + t2
cos(t log z + arctan(β/t))

)
=
zβ

β

(
1− β cos δz√

β2 + t2

)
.

Thus,

Re(Sv − Sw) =
vβ − wβ

β
− vβ cos δv − wβ cos δw√

β2 + t2
. (2.8)

Recalling the definition of Fs(v, w), we have

Re(S) = Re(Sv − Sw + Fα(v, w)− Fs(v, w))

≥ Re(Sv − Sw)− |Fα(v, w)| − |Fs(v, w)|

which gives the desired result by (2.8) and Lemma 2.3.5.

From Lemma 2.3.4, we see that a goal is to bound W (y, 1, t) from below, and

pieces of this sum are bounded by Lemma 2.3.6. Ideally, if y were sufficiently small

W could be computed directly and the problem settled. In practice W might only be

computed up to some convenient number L, suitable for numerical integration, after

which the analytic bound W0(y, w, t) may be used. Still, there are further refinements

to be made. Just as x/ log x loses out to li(x), W0 on a long interval is smaller than

W0 summed on a partition of the interval into shorter parts. This plan is reflected in

the following lemma.
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Lemma 2.3.7. If v, w satisfy the hypotheses of Lemma 2.3.5, let

W∗(v, w, t) := W0(v/e
blog(y/w)c, w, t) +

blog(v/w)c−1∑
j=0

W0(v/e
j, v/ej+1, t).

Suppose that w,L satisfy 1427, L ≤ w. If y ≤ 1019, then

J1 ≤
∫ T

T0

exp
(
−W∗(y, w, t)−W (L, 1, t)

) dt√
α2 + t2

.

If y > e55 and 1427, L ≤ w ≤ 1019, let

W1 = W∗(1019, w, t), W2 = W∗(e
45, 1019, t), W3 = W∗(e

50, e45, t),

W4 = W∗(e
55, e50, t), W5 = W∗(y, e

55, t).

Then

J1 ≤
∫ T

T0

exp
(
−W1 −W2 −W3 −W4 −W5 −W (L, 1, t)

) dt√
α2 + t2

.

We remark that if 1019 < y ≤ e55, then there is an appropriate inequality for J1

involving fewer Wj’s. If y is much larger than our largest example of y = 1035, one

might wish to use better approximations to ϑ(y) than were used in Proposition 2.2.1.

Proof. If 1427 ≤ w < v and [w, v] satisfy the hypotheses of Lemma 2.3.5, we have

W (v, w, t) = W (v/eblog(v/w)c, w, t) +

blog(v/w)c−1∑
j=0

W (v/ej, v/ej+1, t)

≥ W0(v/e
blog(v/w)c, w, t) +

blog(v/w)c−1∑
j=0

W0(v/e
j, v/ej+1, t).

The result then follows from Lemma 2.3.4.

Remark 2.3.8. We implement Lemma 2.3.7 by choosing L as large as possible so as

not to interfere overly with numerical integration. We have found that L = 106 works

well. The ratio e in the definition of W∗ is convenient, but might be tweaked for

slightly better results. The individual terms in the sum W (L, 1, t) are as in (2.6),

except for the first 30 primes, where instead we forgo using the inequality in (2.7),

using instead the slightly larger expression

1

2
log
(

1 +
2(1− cos(t log p))

pα(1− p−α)2

)
.
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We choose w as a function w(t) in such a way that the bound in Lemma 2.3.6 is

minimized. For simplicity, we ignore the oscillating terms, i.e., we set

∂

∂w

[
− wβ/β − 4w1/2−α + 2(α + |s|)w1/2−α/(1/2− α)

]
= −wβ−1 − 4w−1/2−α/(1/2− α) + 2(α + |s|)w−1/2−α

equal to 0. Multiplying by w1/2+α and solving for w gives

w(α, t) :=
( 4

α− 1/2
+ 2α + 2

√
α2 + t2

)2
.

We let

w(t) := max{L,w(α, t)}.

Our next result, based on [24, Lemma 9], gives a bound on the number of y-smooth

integers in a short interval.

Lemma 2.3.9. Let 0 < d < 1, T > 1 be such that z := (e2T
d−1 − 1)−1 > 1. We have

Ψ(xeT
d−1

, y)−Ψ(xe−T
d−1

, y) ≤ eα
2/2z2−αT d−1

xαζ(α, y)

√
2e

π

J2
z
.

where, with W (y, w, t) as in Lemma 2.3.6,

J2 :=

∫ ∞
0

exp
{
− t2

2z2
−W (y, 1, t)

}
dt.

Proof. Let ξ = xe−T
d−1

, so that

Ψ(xeT
d−1

, y)−Ψ(xe−T
d−1

, y) = Ψ(ξ + ξ/z, y)−Ψ(ξ, y). (2.9)

For ξ < n ≤ ξ + ξ
z
, we have that

1 >
ξ

n
≥
(

1 +
1

z

)−1
,

so 0 > log(ξ/n) ≥ − log(1 + 1/z) ≥ −1
z
, which implies that 0 < [z log(ξ/n)]2 ≤ 1.

Thus,

Ψ(ξ + ξ/z, y)−Ψ(ξ, y) =
∑

P (n)≤y
ξ<n≤ξ+ξ/z

1 ≤
√
e

∑
P (n)≤y

ξ<n≤ξ+ξ/z

exp
{
− 1

2
[z log(ξ/n)]2

}
.

For σ, v ∈ R, we have the formula

e−v
2/2 =

1√
2π
eσ

2/2−σv
∫ +∞

−∞
exp

{
− 1

2
t2 + it(σ − v)

}
dt
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Letting σ = α/z, v = −z log(ξ/n), we obtain

Ψ(ξ + ξ/z, y)−Ψ(ξ, y)

≤
√

e

2π

∑
P (n)≤y

ξ<n≤ξ+ξ/z

eσ
2/2−σv

∫ +∞

−∞
exp

{
− 1

2
t2 + it(σ − v)

}
dt

=eα
2/2z2

√
e

2π

∫ +∞

−∞
exp

{
− 1

2
t2 + itα/z

} ∑
P (n)≤y

ξ<n≤ξ+ξ/z

( ξ
n

)α+itz
dt.

Since α ≤ 1 ≤ z, changing variables t 7→ t/z and taking the modulus gives

Ψ(ξ + ξ/z, y)−Ψ(ξ, y)

≤z−1eα2/2z2
√

e

2π

∫ +∞

−∞
exp

{
− t2

2z2
+ itα/z2

} ∑
P (n)≤y

ξ<n≤ξ+ξ/z

( ξ
n

)α+it
dt

≤ξ
α

z
eα

2/2z2
√

e

2π

∫ +∞

−∞
e−t

2/2z2|ζ(α + it, y)| dt

=
ξα

z
eα

2/2z2

√
2e

π

∫ ∞
0

e−t
2/2z2|ζ(α + it, y)| dt.

This last integral may be estimated by the method of Lemma 2.3.4, giving∫ ∞
0

e−t
2/2z2 |ζ(α + it, y)| dt ≤ ζ(α, y)

∫ ∞
0

exp
(
− t2

2z2
−W (y, 1, t)

)
dt = ζ(α, y)J2.

We have

Ψ(ξ + ξ/z, y)−Ψ(ξ, y) ≤ ξαζ(α, y)eα
2/2z2

√
2e

π

J2
z
,

and the lemma now follows from (2.9) and the definition of ξ.

Remark 2.3.10. For t large, say t > 2z log z, we can ignore the term W (y, 1, t) in

J2, getting a suitably tiny numerical estimate for the tail of this rapidly converging

integral. The part for t small may be integrated numerically with w(t), L as in Remark

2.3.8.

With these lemmas, we now have our principal result.

Theorem 2.3.11. Let d, T, z be as in Lemma 2.3.9, let J±0 be as in (2.5), J1 as in

Lemma 2.3.4, and J2 as in Lemma 2.3.9. We have

Ψ(x, y) ≥ xαζ(α, y)

π

(
J−0 − J1 − T−d − eα

2/2z2
√

2πe
J2
z

)
and

Ψ(x, y) ≤ xαζ(α, y)

π

(
J+
0 + J1 + T−d + eα

2/2z2
√

2πe
J2
z

)
.
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2.4 Computations

In this section we give some guidance on how, for a given pair x, y, the numbers α,

ζ(α, y), and σj for j ≤ 5 may be numerically approximated. Further, we discuss how

these data may be used to numerically approximate Ψ(x, y) via Theorem 2.3.11.

2.4.1 Computing α

Given a number a ∈ (0, 1) and a large number y we may obtain upper and lower

bounds for the sum

σ1(a, y) =
∑
p≤y

log p

pa − 1
.

First, we choose a moderate bound w0 ≤ y where we can compute the sum σ1(a, w0)

relatively easily, such as w0 = 179,424,673, the ten-millionth prime. The sum∑
w0<p≤y

log p

pa
(2.10)

may be approximated easily with Proposition 2.2.1 and partial summation. Let

l−(a, w0, y) be a lower bound for this sum and let l+(a, w0, y) be an upper bound.

Then

l−(a, w0, y) + σ1(a, w0) ≤ σ1(a, y) ≤ wa0
wa0 − 1

l+(a, w0, y) + σ1(a, w0).

We choose α as a number a where log x lies between these two bounds. If a given

trial for a is too small, this is detected by our lower bound for σ1(a, y) lying above

log x, and if a is too large, we see this if our upper bound for σ1(a, y) lies below log x.

It does not take long via linear interpolation to find a reasonable choice for α. While

narrowing in, one might use a less ambitious choice for w0.

The partial summation used to estimate (2.10) and similar sums may be summa-

rized in the following result.

Lemma 2.4.1. Suppose f(t) is positive and f ′(t) is negative on [w0, w1]. Suppose too

that t− 2
√
t < ϑ(t) ≤ t on [w0, w1]. Then∫ w1

w0

(1− 1/
√
t)f(t) dt+ (w0 − ϑ(w0)− 2

√
w0)f(w0)

≤
∑

w0<p≤w1

f(p) log p ≤
∫ w1

w0

f(t) dt+ (w0 − ϑ(w0))f(w0).

Because of Proposition 2.2.1, the condition on ϑ holds if [w0, w1] ⊂ [1427, 1019].

For intervals beyond 1019, it is easy to fashion an analogue of Lemma 2.4.1 using the

other estimates of Proposition 2.2.1.
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2.4.2 Computing σ0 = log ζ(α, y) and the other σj’s

Once a choice for α is computed it is straightforward to compute σ0 and the other

σj’s.

We have

σ0(α, y) =
∑
p≤y

− log(1− p−α).

We may compute this sum up to some moderate w0 as with the α computation. For

the range w0 < p ≤ y we may approximate the summand by p−α and sum this over

(w0, y] using partial summation (Lemma 2.4.1) and Proposition 2.2.1, say a lower

bound is l−0 and an upper bound is l+0 . Then

l−0 + σ0(α,w0) ≤ σ0(α, y) ≤ − log(1− w−α0 )

w−α0

l+0 + σ0(α,w0).

The other σj’s are computed in a similar manner.

2.4.3 Data

We record our calculations of α and the numbers σj for two examples. Note that we

obtain bounds for ζ via σ0 = log ζ.

Figure 2.2: Data.

x 10100 10500

y 1015 1035

α .9111581 .94932677
ζ 352,189± 16 2.09222 · 1010 ± 5 · 105

σ∗1 4.3 · 10−4 5.6 · 10−4

σ2 5,763.47± 0.03 71,689.2± 0.02
σ3 159,066.8± 0.5 4,779,948.5± 0.5
σ4 4,604,079± 8 330,260,722± 21
σ+
5 1.3725 · 108 2.3353 · 1010

Note that σ∗1 is an upper bound for |σ1− log x|, and σ+
5 is an upper bound for σ5.

The functions α(x, y) and σj(x, y) are of interest in their own right. A simple

observation from their definitions allows for more general bounds on α and σj using

the data in Figure 2.2, as described in the following remark.

Remark 2.4.2. For pairs x, y and x′, y′, if x ≥ x′ and y ≤ y′ then α(x, y) ≤ α(x′, y′).

Similarly, if α(x, y) ≥ α(x′, y′) and y ≤ y′ then σj(x, y) ≤ σj(x
′, y′).
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2.4.4 A word on numerical integration

The numerical integration needed to estimate J1, J2 is difficult, especially when we

choose a large value of L, like L = 106. We performed these integrals independently on

both Mathematica and Sage platforms. It helps to segment the range of integration,

but even so, the software can report an error bound in addition to the main estimate.

In such cases we have always added on this error bound and then rounded up, since

we seek upper bounds for these integrals. In a case where one wants to be assured

of a rigorous estimate, there are several options, each carrying some costs. One can

use a Simpson or midpoint quadrature with a mesh say of 0.1 together with a careful

estimation of the higher derivatives needed to estimate the error. An alternative is

to do a Riemann sum with mesh 0.1, where on each interval and for each separate

cosine term appearing, the maximum contribution is calculated. If this is done with

T = 4 · 105 and L = 106, there would be magnitude 1011 of these calculations. The

extreme value of the cosine contribution would either be at an endpoint of an interval

or −1 if the argument straddles a number that is π mod 2π. We have done a mild

form of this method in our estimation of the integrals J±0 , see the discussion leading

up to Lemma 2.3.3.

2.4.5 Example estimates

We list some example values of x, y and the corresponding estimates in the figure

below.
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Figure 2.3: Results.

x 10100 10500

y 1015 1035

T3 .00642708 .00114940
T2 .00644109 .00115038
Z− .0385260 .0124202
Z+ .0403125 .0127461
T1 .0478624 .0155272
T0 .0514483 .0161799
T 4 · 105 109

d 0.57 0.58
J−0 1.78554 · 10−2 4.90043 · 10−3

J+
0 1.80312 · 10−2 4.92738 · 10−3

J1 7.236 · 10−4 1.717 · 10−6

J2 1.758 · 10−2 4.745 · 10−3

Ψ− 2.3302 · 1094 1.4989 · 10482

Ψ+ 2.9227 · 1094 1.5118 · 10482

2.5 Appendix: Rankin revisited

We prove the following theorem.

Theorem 2.5.1 (Granville and Soundararajan). If 3 ≤ y ≤ x and 1/ log y ≤ σ ≤ 1,

then

Ψ(x, y) ≤ 1.39
y1−σ

log x
xσζ(σ, y).

Proof. By the identity log n =
∑

d|n Λ(d), we have

∑
n≤x

P (n)≤y

log n =
∑
m≤x

P (m)≤y

∑
d≤x/m
P (d)≤y

Λ(d) =
∑
m≤x

P (m)≤y

∑
p≤min{y,x/m}

log p
⌊ log(x/m)

log p

⌋

≤
∑
m≤x

P (m)≤y

π
(

min{y, x/m}
)

log(x/m).

Thus,

Ψ(x, y) log x =
∑
n≤x

P (n)≤y

(log n+ log(x/n)) ≤
∑
n≤x

P (n)≤y

(
1 + π(min{y, x/n})

)
log(x/n).
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Using the estimates in [42] we see that the maximum of (1 +π(t))/(t/ log t) occurs at

t = 7, so that

1 + π(t) < 1.39t/ log t

for all t > 1. The above estimate then gives

Ψ(x, y) log x < 1.39
∑

x/y<n≤x
P (n)≤y

x/n+ 1.39
∑
n≤x/y
P (n)≤y

y log(x/n)/ log y.

We now note that if 1/ log y ≤ σ ≤ 1, then

y1−σ(x/n)σ ≥

{
x/n, if x/y < n ≤ x,

y log(x/n)/ log y, if n ≤ x/y.

Indeed, in the first case, since t1−σ is non-decreasing in t, we have (x/n)1−σ ≤
y1−σ. And in the second case, since t−σ log t is decreasing in t for t ≥ y, we have

(x/n)−σ log(x/n) ≤ y−σ log y.

We thus have

Ψ(x, y) log x < 1.39
∑
n≤x

P (n)≤y

y1−σ(x/n)σ < 1.39y1−σxσζ(σ, y).

This completes the proof.
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Chapter 3

The reciprocal sum of primitive
nondeficient numbers

3.1 Introduction

The ancients were enamored by numbers that were equal to the sum of their own

proper divisors, and hailed such numbers as perfect. In modern notation, σ(n) denotes

the sum of divisors of n, so n is perfect if σ(n) = 2n. Then n is called abundant if

σ(n) > 2n, and deficient if σ(n) < 2n. One can show that if n is nondeficient, that

is, either perfect or abundant, then multiples of n are also nondeficient. Thus, we

are led to define a primitive nondeficient number (pnd) to be a nondeficient number

all of whose proper divisors are deficient. Often in the literature the alternate term

primitive abundant number (pan) is used, justified by redefining the term abundant

to signify numbers n with σ(n) ≥ 2n.

With the goal of understanding the distribution of σ(n)/n, much effort has been

put toward studying the set of pnds. For example, Erdős [16] found an elementary

proof that the set of abundant has a natural density which hinges on showing that

the reciprocal sum of pnds converges. The convergence was shown by determining

a sufficiently small upper bound on the counting function for pnds. Denoting the

number of pnds ≤ x by N(x), the paper showed that

N(x) = o

(
x

(log x)2

)
,

which is enough to prove that the sum of reciprocals of the pnds converges. A more

detailed study by Erdős in [17] found that, for sufficiently large x,

x exp(−c1
√

log x log log x) ≤ N(x) ≤ x exp(−c2
√

log x log log x),
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where c1 = 8 and c2 = 1/25. Subsequent improvements to the constants c1, c2 were

made by Ivić [26] and Avidon [3] so that we now know that we may take c1 =
√

2 +ε,

c2 = 1−ε for any fixed ε > 0 which can be made arbitrarily small by taking sufficiently

large x.

Once a series is found to converge, it is natural to wonder what its value may be.

For example, by Brun’s Theorem, it is known that the reciprocal sum of twin primes

converges. This sum, called Brun’s constant, is approximately 1.902160583104, which

is found by extrapolating via the Hardy–Littlewood heuristics. However, the best

proven upper bound is 2.347. (See [13, 28].) Similarly, Pomerance [39] proved that

the reciprocal sum of numbers in amicable pairs converges, and work has also been

done to determine bounds on this value, the Pomerance constant, the current bounds

being 0.0119841556 and 222. (See [5, 34, 35]) In light of such results, it is somewhat

surprising that there do not appear to be any serious attempts to determine the value

of the reciprocal sum of pnds. The purpose of this paper is to initiate such an attempt.

Given such precedent, we define the value of the reciprocal sum of pnds the Erdős

constant. The principal result of this paper is to provide the first known upper bound

for the Erdős constant as 18.6, proved in Theorem 3.3.2.

Notation

Let
∑′

n
=
∑

pnd n. Let logk n denote the k-fold logarithm log log · · · log n. Let ζ(s)

be the Riemann zeta function. Let P (n), ω(n) denote the largest prime factor of n,

and number of distinct prime factors of n, respectively. We say a positive integer n

is y-smooth if P (n) ≤ y. We say n is square-full if p2 | n for all primes p | n.

3.2 Setting up the bound

To bound the reciprocal sum of pnds,∑′

n

1

n
=
∑′

n≤x0

1

n
+
∑′

n>x0

1

n
(3.1)

we may first compute the sum directly up to some convienient x0 ∈ Z. For example,

Mits Kobayashi computed that for x0 = 1010

∑′

n≤1010

1

n
= 0.34816486577357275, (3.2)
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as well as that the number of pnds up to 1010 is 1123430. For the remaining part of the

series, we shall split up by y-smoothness, for y to be determined. Before proceeding,

we first study the related sum

M(x, y) =
∑′

n≤x
P (n)>y

1,

which will prove useful for handling the non-y-smooth contribution.

3.2.1 An upper bound for M(x, y)

We first prove a preliminary lemma for square-full numbers.

Lemma 3.2.1. For λ = ζ(3/2)/ζ(3), we have

B(x, y) :=
∑
n≤x
s(n)≥y

1 ≤ λxy−1/2 + 3xy−2/3.

Proof. Denoting K(y) as the number of square-full integers up to y, by (8) in [20] we

have

−3 3
√
y ≤ K(y)− λ√y ≤ 0, λ =

ζ(3/2)

ζ(3)
. (3.3)

For each square-full number s ∈ [y, x], there are at most x/s such pnds n up to x

with s = s(n). Then by partial summation we have∑
n≤x
s(n)≥y

1 ≤
∑
s>y

s �-full

x

s
= x

(
− K(y)

y
+

∫ ∞
y

K(t)

t2
dt
)
≤ x

(
− λy1/2 − 3y1/3

y
+ λ

∫ ∞
y

dt

t3/2

)

= x
(
− λy−1/2 + 3xy−2/3 + λ

[
− 2t−1/2

]∞
y

)
= λxy−1/2 + 3xy−2/3.

which completes the proof.

Now to bound M(x, y), we roughly follow the developments in [17, 26], and split

up into two cases. Every integer n may be decomposed uniquely into n = qs, where

s = s(n) is square-full, q = q(n) is square-free, and (s, q) = 1.

In the first case, suppose s(n) ≥ ya for some parameter a ∈ (0, 1
3
) to be determined

later. Then by Lemma 3.2.1, we have∑′

n≤x
P (n)>y
s(n)≥ya

1 ≤
∑′

n≤x
s(n)≥ya

1 = B(x, ya) ≤ λxy−a/2 + 3xy−2a/3. (3.4)

In the second case, we have s(n) < ya. We prove a lemma, adapted from [17,26].
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Lemma 3.2.2. Assume x > y > 8. Let {n1, . . . , nm} be the set of pnds ni ≤ x with

P (ni) > y and square-full part s(ni) < ya. Let b = 3a/2 and suppose that b satisfies

b ∈
(
0, 1

2

)
, 2 ≥

(
2− y−b

)(
1 +
√

2y−1/2
)2 log x/ log(y/2)

. (3.5)

Then for each ni there exists a square-free divisor di | q(ni) with di ∈ [yb/3, 1√
2
y1/2].

Moreover, {n1/d1, . . . , nm/dm} is a set of m distinct numbers at most xy−b/3, and

therefore ∑′

n≤x
P (n)>y
s(n)<ya

1 = m ≤ xy−b/3. (3.6)

Proof. To prove existence, we proceed by contradiction. Take any n = ni, and suppose

there is no divisor d | q(n) with d ∈ [yb/3, 1√
2
y1/2]. Since s(n) < ya = y2b/3, this is

equivalent to having no prime divisors p | n in the interval [yb/3, 1√
2
y1/2]. Then we

may decompose n as n = uv where r < yb/3 and p > 1√
2
y1/2 for all primes r | u and

p | v, respectively. We have that

ω(v) =
∑
p|v

1 ≤
∑
p|v

log p

log(y/2)/2
=

2

log(y/2)
log
∏
p|v

p

=
2 log v

log(y/2)
≤ 2 log x

log(y/2)
.

Suppose u ≤ yb, where we recall that b satisfies (3.5). Also recall y < P (n) ≤ n so

u < n is a proper divisor of the pnd n. Thus u is deficient so σ(u) ≤ 2u − 1, and

since the function h(n) = σ(n)/n is multiplicative,

2 ≤ h(n) = h(u)h(v) ≤
(

2− 1

u

)∏
p|v

(
1 +

1

p

)
≤
(

2− y−b
)(

1 +
√

2y−1/2
)ω(v)

<
(

2− y−b
)(

1 +
√

2y−1/2
)2 log x/ log(y/2)

.

This contradicts the assumption (3.5) for b. Hence we deduce u > yb.

Write the square-free part of u as q(u) = q1q2 · · · qt in ascending order of primes.

Since s(n) < ya < 1√
2
y1/2, all the primes of s(n) are less than 1√

2
y1/2. Therefore

s(n) | u and so s(n) = s(u). Additionally, we have u > yb so that

q(u) =
u

s(u)
=

u

s(n)
> yb−a = yb/3.
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Since each qi | u we have each qi < yb/3, so there must exist l ∈ [1, t] such that

q1 · · · ql−1 ≤ yb/3 < q1 · · · ql < y2b/3.

Since b < 1/2 and y > 8, we have y2b/3 < 1√
2
y1/2. Thus d = q1 · · · ql is a divisor of

n in the interval [yb/3, 1√
2
y1/2]. However, this contradicts assumption, and thus each

q(ni) has a divisor di in the interval.

The proof of distinctness is unchanged from [17, 26], but we provide it for com-

pleteness. For all n = ni, since the square-full part s(n) is less than ya < y < P (n)

we have that P (n)2 does not divide n so

2 ≤ h(n) = h(P (n))h
( n

P (n)

)
=
(

1 +
1

P (n)

)
h
( n

P (n)

)
≤ 2 +

2

P (n)
< 2 + 2/y.

Thus for all ni, nj we have

h(ni)

h(nj)
<

2 + 2/y

2
= 1 + 1/y. (3.7)

Suppose ni/di = nj/dj for some i 6= j. Since ni 6= nj we have di 6= dj. Then by

multiplicativity,

h(ni)

h(di)
= h

(ni
di

)
= h

(nj
dj

)
=
h(nj)

h(dj)
.

Since di and dj are square-free, we have that h(di) 6= h(dj) so we may assume h(di) >

h(dj). Thus

1 <
h(di)

h(dj)
=
σ(di)dj
σ(dj)di

so that σ(di)dj ≥ σ(dj)di+1. Since di divides the pnd ni, di is deficient so σ(di) < 2di.

And since di ≤ 1√
2
y1/2 we deduce

h(ni)

h(nj)
=
h(di)

h(dj)
=
σ(di)dj
σ(dj)di

≥ 1 +
1

σ(dj)di

> 1 +
1

2didj
> 1 + 1/y.

contradicting (3.7). Hence each ni/di must be distinct.

Combining (3.4) and Lemma (3.2.2) gives our desired bound on M(x, y).
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Theorem 3.2.3. Assume x > y > 8. Let b = b(x, y) be defined by

y−b = 2− 2
(

1 +
√

2/y
)−2 log x/ log(y/2)

. (3.8)

Then so long as 0 < b < 1
2
, we have the upper bound

M(x, y) =
∑′

n≤x
P (n)>y

1 ≤ (λ+ 1)xy−b/3 + 3xy−4b/9. (3.9)

Proof. The definition of b is constructed to satisfy (3.5). By (3.4) and Lemma 3.2.2

we have

M(x, y) =
∑′

n≤x
P (n)>y
s(n)>ya

1 +
∑′

n≤x
P (n)>y
s(n)≤ya

1

≤ λxy−a/2 + 3xy−2a/3 + xy−b/3.

The result then follows from a = 2b/3.

The utility of Theorem 3.2.3 to us comes as the following Corollary.

Corollary 3.2.3.1. With b as in Theorem 3.2.3, for y > 8 we have that∑′

x1≤n≤x2
P (n)>y

1

n
≤ (1 + log(x2/x1))[(λ+ 1)y−b/3 + 3y−4b/9].

Proof. Since C = (λ + 1)y−b/3 + 3y−4b/9 is constant with respect to x, by partial

summation and Theorem 3.2.3,∑′

x1≤n≤x2
P (n)>y

1

n
=
M(x2, y)

x2
− M(x1, y)

x1
+

∫ x2

x1

M(x, y)
dx

x2

≤ C + C

∫ x2

x1

dx

x
= (1 + log(x2/x1))C.

3.2.2 Bounding the tail

Recall the contribution of pnds less than 1010 was computed directly. On the other

end, we may bound the tail of the reciprocal sum of pnds greater than e1600. In this

range, we bifurcate based on the relative size of ω(n) compared to 4 log2(n). Note

that if ω(n) ≤ 4 log2(n), then there exists a prime power qa | n such that

qa ≥ n1/4 log2(n) = exp
( log n

4 log2 n

)
=: y(n).
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If a = 1, then P (n) is large, and if a ≥ 2 then s(n) is large. Thus it suffices to

consider the following cases:

(i) ω(n) > 4 log2(n),

(ii) P (n) ≥ y(n),

(iii) s(n) ≥ y(n).

In case (i), by Proposition 3.2 in [35],∑
n>e1600

ω(n)>4 log2 n

1

n
≤ 1

24

∑
k≥1600

(k + 5)4

k4 log 4
≤ 1

24

∫ ∞
1599

(t+ 5)4

t4 log 4
dt ≤ 0.00138. (3.10)

In case (ii), let yk = y(ek) = exp
(

k
4 log k

)
and define bk = b(ek+1, yk) from Theorem

3.2.3. A calculation shows that bk ∈
(
0, 1

2

)
for k ≥ 191. Then by Corollary 3.2.3.1∑

n>e1600

P (n)>y(n)

1

n
≤
∑
k≥1600

∑
ek<n≤ek+1

P (n)>yk

1

n
≤ 2

∑
k≥1600

(λ+ 1)y
−bk/3
k + 3y

−4bk/9
k .

We may compute this sum directly up to, say, 104, which contributes at most 0.4471.

We bound the remaining series by the integral,∑
k≥104

(λ+ 1)y
−bk/3
k + 3y

−4bk/9
k ≤ 6

∫ ∞
104

exp
( −bt

12 log t

)
dt.

Note that the definition of b = bk in (3.8) using x = ek+1 and y = yk ensures b ≥ 0.4

for k ≥ 104. Then since b ≥ 0.4 and k ≥ 104, we have .7 log k ≥ log(12/b) + log2 k

which implies

−t0.3 ≥ −t
(12/b) log t

. (3.11)

Hence we have ∑
n>e1600

P (n)>y(n)

1

n
≤ 2(0.4471) + 12

∫ ∞
104

exp(−t0.3) dt

= 2(0.4471) + 12(0.00191572) ≤ .918. (3.12)
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In case (iii), by partial summation and Lemma 3.2.1,

∑
n>e1600

s(n)>y(n)

1

n
≤
∑
k≥1600

∑
ek≤n≤ek+1

s(n)>yk

1

n
≤
∑
k≥1600

(B(ek+1, yk)

ek+1
− B(ek, yk)

ek
+

∫ ek+1

ek
B(t, yk)

dt

t2

)

≤
∑
k≥1600

(λy
−1/2
k + 3y

−2/3
k )

(
1 +

∫ ek+1

ek

dt

t

)
≤ 2

∑
k≥1600

(λy
−1/2
k + 3y

−2/3
k ) ≤ 6

∫ ∞
1599

exp
( −t

8 log t

)
dt

≤ 6

∫ ∞
1599

exp(−3t.3) dt ≤ 1.5 · 10−9 (3.13)

by a bound analogous to (3.11).

3.2.3 Intermediate Range

We are left to deal with the contribution of pnds lying in the intermediate range

1010 ≤ n ≤ e1600. We further split up the range at e300, and first deal with the upper

subrange e300 ≤ n ≤ e1600 in which the bounds for M(x, y) still have potency.

For smooths in the upper range, we appeal to Lemma 2.10 in [35], which we state

below.

Lemma 3.2.4 (Nguyen-Pomerance). Let x > y ≥ 2 and u = log x/ log y. For u ≥ 3

and log(u log u)/ log y ≤ 1/3, we have

∑
n>x

P (n)≤y

1

n
≤ 25e(1+ε)u(u log u)−u

2log(u log u)/ log y − 1

where ε = 2.3× 10−8.

We apply this bound to the interval k ∈ [300, 1600] in segments of length 5, where

in each we find a reasonable value of u = uk, which then determines yk = k/uk. Note

yk here is different from the previous section. Thus by Corollary 3.2.3.1,∑′

e300≤n≤e1600

1

n
≤

∑
300≤k≤1600

5|k

( ∑
n>ek

P (n)≤y

1

n
+

∑′

ek≤n≤ek+5

P (n)>y

1

n

)

≤
∑

300≤k≤1600
5|k

(25e(1+ε)uk(uk log uk)
−uk

2log(uk log uk)/ log yk − 1
+ 6[(λ+ 1)y−bk/3 + 3y−4bk/9]

)
.
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We find computationally that the optimal choice at k = 300 is u = 6.3, and u = 15

at k = 1600, between which a linear fit was used. With such choices of u, we obtain∑′

e300≤n≤e1600

1

n
≤ 1.634184 + 0.809179 ≤ 2.444. (3.14)

3.3 Abundant density estimates

The remaining range 1010 ≤ n ≤ e300 is too small for the pnd methods to be effective,

so we use a different method related to abundant density estimates. We first illustrate

the approach with a simple example from [34, 35] before proceeding to the general

case.

The function h(n) = σ(n)/n is multiplicative, so

h(n)j =
∑
d|n

fj(d)

for fj(n) multiplicative with fj(p
a) = h(pa)j − h(pa−1)j on prime powers, by Möbius

inversion.

3.3.1 Case 2 - n

We have ∑
1010≤n<eK

n odd, abundant

1

n
< 2−j

∑
1010≤n<eK

n odd

h(n)j

n
= 2−j

∑
1010≤n<eK

n odd

∑
d|n

fj(d)

n

= 2−j
∑
d<eK

d odd

fj(d)

d

∑
1010/d≤m<eK

m odd

1

m
.

By Corollary 2.2 in [35] with u = 2,∑
m<eK

n odd

1

m
≤ K + γ + log 2

2
+

2

eK
≤ K/2 + .64

for K ≥ 20. Thus ∑
1010≤n<eK

n odd, abundant

1

n
< 2−j−1(K + 1.28)

∑
d<eK

d odd

fj(d)

d
.
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Now expanding the Euler product, we have∑
d odd

fj(d)

d
=
∏
p>2

∑
a≥0

fj(p
a)

pa
=
∏
p>2

(
1 +

∑
a≥1

h(pa)j − h(pa−1)j

pa

)
=
∏
p>2

(
1− 1

p

)∑
a≥0

h(pa)j

pa
.

We may compute this product for primes up to B directly, where B is some convenient

number, after which∏
p>B

(
1 − 1

p

)∑
a≥0

h(pa)j

pa
≤
∏
p>B

(
1− 1

p

)(
1 +

( p

p− 1

)j∑
a≥1

p−a
)

=
∏
p>B

(
1− 1

p

)(
1 +

1

p− 1

( p

p− 1

)j)

=
∏
p>B

(
1− p−1 + p−1

( p

p− 1

)j)
≤ exp

∑
p>B

(
p
p−1

)j
− 1

p

≤ exp
∑
p>B

2j

p(p− 1)
≤ exp

∑
x>B

j

x(x− 1)

≤ ej/B,

using

σ(pa) = 1 + p+ · · ·+ pa =
pa+1 − 1

p− 1
,

h(pa) =
σ(pa)

pa
=
p− p−a

p− 1
≤ p

p− 1
(for a ≥ 1).

Thus we have∑
d odd

fj(d)

d
=
∏
p>2

(
1− 1

p

)∑
a≥0

h(pa)j

pa

≤ ej/B
∏

2<p≤B

(
1− 1

p

)(
1 +

A∑
a=1

p−a
(p− p−a
p− 1

)j
+

∞∑
a=A+1

p−a
( p

p− 1

)j)

= ej/B
∏

2<p≤B

(
1− 1

p

)(
1 +

A∑
a=1

p−a
(

1 +
1− p−a

p− 1

)j
+

1

pA(p− 1)

( p

p− 1

)j)
.

(3.15)

By computing with A = 500, B = 106 we find that this is optimized at j = 18 to give

the bound ∑′

1010<n<eK

2i‖n

1

n
< 0.0118865K + 0.015.

This is in the proof of Proposition 3.5 from [35].
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3.3.2 Scheme A

Consider the pnds n ∈ [1010, eK ] for which 2i‖n. We shall require 22i+1 < 1010, i.e.

i < 16. Since n′ = 2ip is a pnd for all primes p < 2i+1 and n′ ≤ n, this forces n′ - n
so p - n. Thus letting u =

∏
p≤2i+1 p and n = 2il, we deduce gcd(l, u) = 1.

Writing n = 2il for l with gcd(l, u) = 1, we have∑′

1010<n<eK

2i‖n

1

n
< 2−j

∑′

n<eK

2i‖n

h(n)j

n
≤ 2−j

h(2i)j

2i

∑
l<eK/2i

gcd(l,u)=1

h(l)j

l

= 2−i
(

1− 2−i−1
)j ∑

l<eK/2i

gcd(l,u)=1

∑
d|n

fj(d)

l

≤ 2−i
(

1− 2−i−1
)j ∑

d<eK

gcd(d,u)=1

fj(d)

d

∑
m<eK/2i

gcd(m,u)

1

m
.

By Corollary 2.2 in [35],∑
m<eK/2i

gcd(m,u)=1

1

m
≤ ϕ(u)

u
(K − i log 2 + γ)−

∑
d|u

µ(d) log d

d
+ 2ω(u)+ie−K

= (K − i log 2 + γ)
∏

p≤2i+1

(
1− 1

p

)
−
∑
d|u

µ(d) log d

d
+ 2π(2

i+1)+ie−K .

Then, analogously to (3.15), we have∑
d<eK/2i

gcd(d,u)=1

fj(d)

d
<

ej/B
∏

2i+1<p≤B

(
1− 1

p

)(
1 +

A∑
a=1

p−a
(

1 +
1− p−a

p− 1

)j
+

1

pA(p− 1)

( p

p− 1

)j)
,

with j to be optimized.

In summary, we have∑′

1010<n<eK

2i‖n

1

n
< 2−i

(
1− 2−i−1

)j
F (i)L(K, i), (3.16)
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where

u =
∏

p≤2i+1

p, (3.17)

L(K, i) = (K − i log 2 + γ)
∏

p≤2i+1

(
1− 1

p

)
−
∑
d|u

µ(d) log d

d
+ 2π(2

i+1)+ie−K , (3.18)

F (i) = ej/B
∏

2i+1<p≤B

(
1− 1

p

)(
1 +

A∑
a=1

p−a
(

1 +
1− p−a

p− 1

)j
+

1

pA(p− 1)

( p

p− 1

)j)
.

(3.19)

We use scheme A for i = 4. That is, we have∑′

1010<n<eK

2i‖n

1

n
< b+mK,

where
i j A B b m
4 95 30 500 0.0021484 0.002272899

For i ≥ 5, we use Corollary 2.2 in [35]. That is, for i = 5∑′

n<eK

2i |n

1

n
≤ 2−i

∑
l<eK/2i

gcd(l,u/2)=1

1

l

≤ 2−i(K − i log 2 + γ)
∏

2<p≤2i+1

(
1− 1

p

)
− 2−i

∑
d|u/2

µ(d) log d

d
+ 2π(2

i+1)−1e−K

≤ 0.008224209K.

3.3.3 Scheme B with a prime q

Scheme B is based on the following result of Erdős [17], which we state below.

Proposition 3.3.1 (Erdős). For any i, k ≥ 2, we have that m = 2iq1 · · · qk is a pnd

for any k distinct primes q1, . . . , qk ∈
[
(k − 1)2i+1, k2i+1

]
.

Consider the pnds n ∈ [1010, eK ] for which 2i‖n for some i ≤ 9. By Proposition

3.3.1 with k = 2, we have m = 2iqq′ is a pnd for any distinct primes q, q′ ∈ [2i+1, 2i+2].

Then m - n since m ≤ 23i+4 < 1010 ≤ n are distinct pnds, and so qq′ - n. Thus at

most one prime q from the interval [2i+1, 2i+2] can divide n. Writing n = 2il and

u =
∏

p<2i+2 p, we have gcd(l, u/q) = 1.
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Thus ∑′

1010<n<eK

2i‖n

1

n
< 2−j

∑′

n<eK

2i‖n

h(n)j

n
≤ 2−j

h(2i)j

2i

∑
l<eK/2i

gcd(l,u/q)=1

h(l)j

l

= 2−i
(

1− 2−i−1
)j ∑

l<eK/2i

gcd(l,u/q)=1

∑
d|n

fj(d)

l

≤ 2−i
(

1− 2−i−1
)j ∑

d<eK

gcd(d,u/q)=1

fj(d)

d

∑
m<eK/2i

gcd(m,u/q)

1

m
.

Again, by Corollary 2.2 in [35],∑
m<eK/2i

gcd(m,u)=1

1

m
≤ ϕ(u/q)

u/q
(K − i log 2 + γ)−

∑
d|u/q

µ(d) log d

d
+ 2ω(u/q)+ie−K

= (K − i log 2 + γ)
∏

p≤2i+2

p 6=q

(
1− 1

p

)
−
∑
d|u/q

µ(d) log d

d
+ 2π(2

i+2)−1+ie−K .

Then, analogously to (3.15), we have∑
d<eK/2i

gcd(d,u/q)=1

fj(d)

d
<

ej/B
∏

2i+2<p≤B
or p=q

(
1− 1

p

)(
1 +

A∑
a=1

p−a
(

1 +
1− p−a

p− 1

)j
+

1

pA(p− 1)

( p

p− 1

)j)
,

with j to be optimized.

In summary, have∑′

1010<n<eK

2i‖n

1

n
< 2−i

(
1− 2−i−1

)j ∑
2i+1<q<2i+2

F (i, q)L(K, i, q), (3.20)

where

u =
∏

p<2i+2

p, (3.21)

L(K, i, q) = (K − i log 2 + γ)
∏

p≤2i+2

p6=q

(
1− 1

p

)
−
∑
d|u/q

µ(d) log d

d
+ 2π(2

i+2)−1+ie−K ,

(3.22)

F (i, q) = ej/B
∏

2i+2<p≤B
or p=q

(
1− 1

p

)(
1 +

A∑
a=1

p−a
(

1 +
1− p−a

p− 1

)j
+

1

pA(p− 1)

( p

p− 1

)j)
.

(3.23)
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We apply scheme B for 1 ≤ i ≤ 3. That is, we have∑′

1010<n<eK

2i‖n

1

n
< b+mK,

where
i q j A B b m
1 5 23 30 500 0.0190246 0.0131128
1 7 35 30 500 0.0028889 0.0018895
2 11 40 30 500 0.0061241 0.0044578
2 13 46 30 500 0.0035739 0.0025531
3 17 69 30 500 0.0034296 0.0023470
3 19 80 30 500 0.0022583 0.0015313
3 23 97 30 500 0.0010876 0.0007271
3 29 115 30 500 0.0004906 0.0003232
3 31 119 30 500 0.0004039 0.0002650

Hence we obtain the following result:

∑′

1010<n<eK

1

n
≤ .0496K + 0.056. (3.24)

Thus for K = 300, combining with the previous results, we obtain our desired

final bound.

Theorem 3.3.2. The Erdős constant is bounded between

0.34816486577357275 ≤
∑′

n

1

n
≤ 18.6.

Proof. The lower bound was computed directly, as in (3.2). For the upper bound,

collecting the above results gives∑′

n

1

n
=
∑′

n≤1010

1

n
+

∑′

1010≤n≤e300

1

n
+

∑′

e300≤n≤e1600

1

n
+
∑′

n>e1600

1

n

≤ 0.34816486577357275 + (.0496 · 300 + 0.056) + (0.00138 + .918) + 2.444

≤ 18.6.
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[26] A. Ivić, The distribution of primitive abundant numbers, Studia Sci. Math. Hungar., 20 (1985),
183–187.

[27] S. H. Kim, C. Pomerance, The probability that a random probable prime is composite. Math.
Comp. 53 (1989), 721–741.

[28] D. Klyve, Explicit bounds on twin primes and Brun’s constant, PhD thesis, Dartmouth College
(2007).

[29] S. V. Konyagin and C. Pomerance, On primes recognizable in deterministic polynomial time,
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