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Abstract	

Multiplex	networks	are	versatile	objects	capable	of	representing	many	complex	systems.	

While	offering	increased	flexibility	and	representative	power,	extending	single	layer	

analytical	techniques	to	the	multiplex	setting	presents	many	questions.	We	study	the	

extension	of	modularity	maximization,	a	community	detection	strategy	that	is	well	

understood	for	single	layer	networks,	to	the	multiplex	case.	We	consider	two	alternative	

models	(diagonal	and	non-diagonal)	and	examine	the	behavior	of	each	on	different	families	of	

networks.	We	first	apply	each	model	to	a	series	of	toy	networks	with	well	understood	

characteristics,	and	then	apply	each	to	World	Trade	Web	(WTW)	networks.	Findings	from	the	

toy	case	analysis	indicate	that	both	models	consistently	identify	robust	embedded	global	

communities	and	increasingly	favor	layer	communities	as	the	communities	become	more	

different	across	layers.	The	WTW	analysis	mirrors	these	results,	indicating	that	these	findings	

bear	out	in	the	analysis	of	real	world	systems.	Additionally,	the	WTW	analysis	indicates	that	

the	two	models	emphasize	different	multiplex	network	characteristics,	with	the	diagonal	

model	showing	particular	sensitivity	to	the	alignment	of	heavily	weighted	layer	communities,	

and	the	non-diagonal	model	more	sensitive	to	the	similarity	of	node	copy	neighborhoods	

across	layers.	We	justify	and	concretely	state	each	of	these	conjectures,	thus	helping	to	inform	

the	contexts	in	which	each	model	may	be	most	appropriate	in	future	research.		

	

I.	Background	

	

Networks	are	a	nearly	ubiquitous	object	within	the	field	of	applied	mathematics.	This	is	

primarily	due	to	their	ability	to	capture	the	characteristics	of	highly	complex	systems,	such	

as	social	networks,	the	World	Wide	Web,	or	transportation	infrastructure	(Banerjee	et.	al.,	

2013;	Fagiolo	et.	al.,	2010;	Jenelius	et.	al.,	2006).	Multiplex	networks	are	a	class	of	networks	

composed	of	a	single	set	of	nodes,	k	set	of	edges,	and	k	functions	relating	each	edge	in	a	

given	edge	set	to	a	pair	of	vertices,	i.e.	networks	with	multiple	layers,	each	containing	the	

same	vertex	set	but	different	edges	(Menichetti	et.	al.,	2014).	Multiplex	networks	generalize	

single	layer	networks	and	allow	for	the	representation	of	more	granular	characteristics	of	a	

system.	For	example,	when	examining	social	networks,	multiplex	networks	allow	for	a	

more	nuanced	representation,	with	different	types	of	social	relationship	on	each	layer	
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(represent	family	connections	on	one	layer,	professional	relationships	on	another,	etc.).	In	

this	way,	multiplex	networks	open	countless	new	avenues	for	research.	But,	such	

explorations	require	tools	of	analysis,	many	of	which	can	be	extended	from	those	applied	to	

single	layer	networks.	Modularity	maximization	is	an	example	of	one	such	tool.	

	

Conceptually,	modularity	maximization	is	an	analytical	strategy	that	aims	to	identify	highly	

connected	sub-communities	within	a	network	system.	For	general	background	on	

modularity	maximization,	see	Newman	(2010,	373-382).	To	identify	these	communities,	

the	configuration	model	is	used,	in	which	cluster	connectivity	is	compared	to	the	

connectivity	of	an	Erdös-Rényi	random	network	of	the	same	degree	distribution.	

Specifically,	the	configuration	model	is	constructed	by	cutting	each	edge	in	the	network	in	

half	and	randomly	rewiring	the	resulting	stubs.	For	a	single	layer	network	G	with	a	given	

degree	sequence,	the	resulting	configuration	model	C	will	display	the	following	property:	

	

𝑃[(𝑖, 𝑗) ∈ 𝐸 𝐶 ] =
𝑑. 𝑖 𝑑. 𝑗
2𝑒(𝐺)

	

	

Using	this,	we	build	the	adjacency	matrix	R	for	the	random	configuration	model	as	follows:	

	

𝑅3,4 =
𝑑. 𝑖 𝑑. 𝑗
2𝑒(𝐺)

	

	

The	modularity	matrix	B	is	the	difference	between	this	random	configuration	matrix	and	

the	adjacency	matrix:	

	

𝐵3,4 = 𝐴3,4 − 𝑅3,4 	

	

By	construction,	𝐵3,4 	represents	the	connection	of	node	i	to	node	j	in	comparison	to	what	

might	be	expected	in	a	randomly	generated	network	of	the	same	degree	distribution.		
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Next,	we	define	an	indicator	vector	s	for	a	candidate	partition	with	communities	𝐶8	and	𝐶9	

as	follows:	

	

𝑠 𝑖 = 1	𝑖𝑓	𝑖 ∈ 𝐶8
−1	𝑖𝑓	𝑖 ∈ 𝐶9

	

	

Using	this	vector,	we	can	calculate	the	difference	between	intra-community	connectivity	in	

the	network	of	interest	and	the	corresponding	configuration	model	for	a	given	partition,	

which	is	referred	to	as	the	modularity	Q:	

	

𝑄 =
𝑠?𝐵𝑠
2𝑒(𝐺)

	

	

Maximizing	the	modularity	identifies	the	most	highly	connected	sub-communities	within	

the	network	structure.	Additionally,	this	strategy	has	a	natural	termination,	as	no	further	

subdivision	is	valuable	when	the	change	in	modularity	resulting	from	any	possible	further	

subdivision	is	less	than	or	equal	to	0,	i.e.	DQ£0.	

	

A	relaxed	optimization	of	the	preceding	equation	is	performed	by	redefining	s	to	be	a	unit	

vector	with	entries	in	ℝ	and	calculating	𝑎𝑟𝑔𝑚𝑎𝑥	 F G8𝑠?𝐵𝑠.	Using	Lagrange	multipliers,	the	

vector	s	that	maximizes	Q	is	a	unit	eigenvector	associated	with	𝜆I,	the	largest	nonzero	

eigenvalue	of	B.	For	a	more	detailed	description	of	this	relaxed	optimization	see	Newman	

(2010,	376-377).	This	unit	eigenvector	s	determines	the	partition,	with	all	nodes	of	positive	

sign	placed	in	𝐶8	and	all	those	with	negative	signs	placed	in	𝐶9.	This	process	can	be		

iterated,	creating	more	and	more	sub-communities	until	the	change	in	modularity	resulting	

from	any	possible	further	sub-division	is	negative.	

	

Modularity	maximization	is	quite	straight	forward	conceptually.	However,	extending	the	

strategy	to	the	multiplex	case	raises	many	questions.	For	example,	any	reasonable	

extension	must	scan	both	within	and	between	layers	to	identify	highly	connected	sub-
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communities	that	may	span	multiple	layers.	Consider,	for	example,	a	social	network	

containing	a	group	of	colleagues	that	are	also	closely	knit	socially,	and	thus	highly	

connected	on	two	different	layers.	Any	reasonable	multiplex	modularity	maximization	

model	should	cluster	these	nodes	across	both	layers,	as	the	group	represents	a	tighter	

community	than	any	group	of	people	that	are	either	just	friends	or	just	colleagues.	Thus,	

convention	must	be	established	regarding	how	inter-layer	connections	are	represented	

and	treated	analytically.	

	

One	possible	approach,	which	we	will	refer	to	as	the	“diagonal	model,”	treats	edges	

between	node	copies	as	the	only	inter-layer	connection.	This	representation	calls	for	a	

block	diagonal	modularity	matrix	𝐵3,4
J,K 	in	which	the	diagonal	blocks	contain	layer	

modularity	matrices	equivalent	to	the	single	layer	case	described	above.	The	off-diagonal	

blocks	are	multiples	of	the	identity	matrix,	with	a	weight	parameter	w	that	varies	the	

weight	of	edges	between	node	copies:	

	

𝐵3,4
J,K =

𝐵3,4J 	𝑖𝑓	𝛼 = 𝛽
𝑤	𝑖𝑓	𝛼 ≠ 𝛽	𝑎𝑛𝑑	𝑖 = 𝑗

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

	

Applying	modularity	maximization	yields	a	partition	of	the	multiplex	network	into	highly	

connected	communities	that	may	span	multiple	layers.		

	

While	the	diagonal	model	is	straight	forward,	it	only	allows	node	copies	to	have	an	

unusually	high	inter-layer	connectivity,	as	seen	in	the	off-diagonal	blocks	of	the	modularity	

matrix	being	multiples	of	the	identity.	One	might	expect	this	to	hinder	the	ability	of	

modularity	maximization	to	identify	sub-communities	that	span	layers.	An	alternative	

method,	which	we	will	refer	to	as	the	“non-diagonal	model,”	places	inter-layer	edges	

between	𝑣3J 	and	𝑣3
K 	if	either	𝑣3J 	~	𝑣4J 	or	𝑣3

K 	~	𝑣4
K ,	i.e.	node	i	on	layer	𝛼	is	adjacent	to	node	j	

on	layer	𝛽	if	the	two	nodes	are	adjacent	on	either	layer	(throughout	paper,	𝑣3J 	will	refer	to	

node	i	on	layer	𝛼).	
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In	execution,	these	inter-layer	edges	are	formulated	using	a	mixing	matrix	M.	

	

𝑀3,4
J,K = 𝑚𝑐	𝑖𝑓	𝑖 = 𝑗

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

	

In	the	above	definition,	m	represents	an	amplifying	constant	which	is	equal	to	1	throughout	

all	proceeding	analysis.	The	constant	c	represents	a	distribution	constant	that	conceptually	

represents	the	proportion	of	the	information	at	𝑛3J 	that	is	transferred	to	its	copy	𝑛3
K .	

Throughout	all	proceeding	analysis	c	is	equal	to	1/k,	i.e.	information	spreads	equally	

between	all	layers.	This	is	the	equidistribution	model,	the	simplest	example	of	non-

diagonal	multiplex	models	(DeFord	and	Pauls,	2017).	

	

This	mixing	matrix	is	multiplied	on	the	left	to	the	block	diagonal	adjacency	matrix	𝐴	and	

the	block	diagonal	configuration	matrix	𝑅,	defined	as	follows:	

	

𝐴3,4
J,K = 𝐴3,4	𝑖𝑓	𝛼 = 𝛽

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

𝑅3,4
J,K = 𝑅3,4	𝑖𝑓	𝛼 = 𝛽

0	𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
	

	

The	resulting	mixed	configuration	matrix	is	subtracted	from	the	mixed	adjacency	matrix	to	

obtain	the	modularity	matrix	𝐵:	

	

𝐵 = 𝑀𝐴 −𝑀𝑅	

	

Once	again,	the	iterated	relaxed	optimization	is	then	applied	to	this	modularity	matrix	to	

obtain	the	optimal	partition.	For	further	background,	justification,	and	explanation	of	these	

two	multiplex	formulations,	see	DeFord	(2018,	61-64).	

	

The	preceding	discussion	has	focused	most	explicitly	on	undirected,	unweighted	networks;	

however,	the	conceptual	framework	equally	applies	to	directed	and	weighted	cases.	The	

undirected	case	is	simply	a	subset	of	the	more	general	directed	case	in	which	two	directed	
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edges	exist	between	any	connected	nodes.	Loosening	the	model	to	allow	one-way	

connections	results	in	a	non-symmetric	modularity	matrix	that	must	be	symmetrized	prior	

to	eigenvector	decomposition,	and	node	in-degrees	and	out-degrees	must	be	averaged	

when	calculating	modularity,	but	the	analysis	is	otherwise	analogous.	Conceptually,	there	is	

little	to	indicate	that	this	adaption	to	more	complex	directed	systems	will	result	in	

meaningful	analytical	differences,	though	this	will	be	tested	in	practice	in	the	subsequent	

sections.	

	

For	the	weighted	case,	edges,	and	thus	super-adjacency	matrix	entries,	are	no	longer	binary	

but	instead	convey	information	regarding	edge	“importance”	or	“strength.”	In	the	

configuration	model	process,	edge	e	of	weight	d(e)	is	split	into	2	stubs,	each	of	weight	Y(Z)
9
.	

If	a	stub	of	edge	e	is	rewired	with	a	stub	of	edge	f,	the	resulting	edge	is	assigned	weight	
Y(Z)
9
+ Y(\)

9
.	While	fundamentally	congruent	to	the	unweighted	case,	one	might	expect	the	

introduction	of	weights	to	result	in	greater	variability	in	results,	as	edges	of	unusually	large	

weights	can	have	a	large	impact	on	clustering	by	representing	an	outlier	value	in	the	

modularity	matrix,	a	hypothesis	that	will	be	tested	in	proceeding	sections.	

	

	

II.	Introduction	

	

In	this	paper,	we	examine	the	characteristics	of	diagonal	and	non-diagonal	modularity	

maximization.	We	seek	to	build	out	a	set	of	conjectures	regarding	the	performance	of	each	

model	on	different	types	of	multiplex	networks.		

	

In	Section	3,	we	begin	developing	these	conjectures	by	applying	each	model	to	a	series	of	

toy	networks	with	well	understood	embedded	community	structure.	By examining the 

results of each model when applied to multiplex networks with aligned layer communities, we 

develop the following conjecture: 
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Conjecture 1: When applied to multiplex networks with well-defined, robust global 

communities, both diagonal and non-diagonal modularity maximization identify the 

global communities and partition nodes accordingly.  

	

Next,	each	model	is	applied	to	two-layer	multiplex	networks	in	which	the	layer	

communities	are	offset	to	varying	degrees.	The	results	of	these	tests	provide	the	basis	for	

our	second	conjecture:	

	

Conjecture	2:	As	layer	communities	are	increasingly	offset,	both	diagonal	and	non-

diagonal	modularity	maximization	increasingly	favor	layer	communities	over	

global	structure,	separating	node	copies	that	belong	to	highly	different	

communities	on	each	layer.	

 

Lastly, we find divergent tendencies between the two models when applied to networks with 

highly offset layers. In such cases, the diagonal model continues to emphasize layer 

communities, separating the multitude of node copies that belong to highly different 

communities on each layer. The non-diagonal model, however, creates more nuanced partitions, 

identifying pockets of similarity within node copy communities that are highly different across 

layers and emphasizing global structure to a greater degree than the diagonal model. This is seen 

in each models’ partition classifications at large offset values, with the diagonal model 

continuing to form communities that emphasize layer communities (and separate many node 

copies) while the non-diagonal model forms more nuanced, though “illogical,” partitions that 

group together more of the node copies despite their highly different layer communities. 

 

In	Section	4,	we	apply	each	model	to	World	Trade	Web	(WTW)	data	and	interpret	the	

results	in	the	context	of	Conjectures	1	and	2	by	building	a	set	of	five	hypotheses.	

Specifically,	we	apply	each	model	to	pairs	of	commodity	layers	within	the	WTW.	By	

classifying	each	commodity	pair	as	Supply	Chain,	Similar	Consumables,	or	Seemingly	

Unrelated,	we	are	able	to	interpret	each	model’s	performance	in	the	“aligned”	vs.	“offset”	

framework	developed	in	the	toy	case	analysis.	Our	findings	support	Conjecture	1	and	2,	as	

both	models	favor	global	structure	in	cases	of	similar	layer	community	structure	(eg.	when	
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applied	to	a	Supply	Chain	pair)	and	favor	layer	community	structure	in	cases	of	highly	offset	

layer	community	structure	(eg.	when	applied	to	a	Seemingly	Unrelated	pair).	Additionally,	

the	results	provide	the	basis	for	a	third	and	final	conjecture:	

	

Conjecture	3:	The	diagonal	and	non-diagonal	models	emphasize	different	multiplex	

network	characteristics,	with	the	diagonal	model	more	sensitive	to	the	alignment	

of	heavily	weighted	layer	communities,	and	the	non-diagonal	model	more	sensitive	

to	the	similarity	of	node	copies’	first	and	second	order	neighborhoods	across	

layers.	

	

This	tendency	is	highlighted	through	a	series	of	tests	using	two	alternative	measures	of	

“different-ness,”	to	which	the	two	models	react	divergently.	

	

Lastly,	we	conclude	in	Section	5	by	summarizing	our	findings	and	the	implications	for	

future	analysis	and	research.		

	

III.	Toy	Case	Analysis	

	

To	understand	the	differences	between	the	diagonal	and	non-diagonal	multiplex	models,	

we	first	examine	their	performance	across	a	family	of	networks	with	explicit	planted	

communities.	To	do	this,	we	use	the	Stochastic	Block	Model,	embedding	two	communities	

on	each	layer,	with	intracommunity	connection	probability	of	p	and	intercommunity	

connection	probability	of	q	(with	𝑝 ≥ 𝑞).	For	other	examples	of	this	type	of	generative	

model,	see	Stanley	et.	al.	(2016)	and	Bazzi	et.	al.	(2016).	In	the	first	series	of	tests,	these	

communities	are	aligned	across	k	layers,	ensuring	robust	global	communities.	Next,	the	

communities	are	offset	across	two	layers,	such	that	portions	of	each	community	overlap	

across	layers,	while	other	portions	are	misaligned,	leading	to	ambiguous	global	community	

structure.	

	

During	these	tests,	the	majority	of	parameters,	as	defined	in	Section	1,	are	set	at	default	

values,	listed	below:	
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𝑁𝑜𝑑𝑒	𝑠𝑒𝑡	𝑠𝑖𝑧𝑒	 𝑛 = 	100	

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦	𝑜𝑓	𝑖𝑛𝑡𝑟𝑎𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛	 𝑝 = 	0.5	

𝐿𝑎𝑦𝑒𝑟	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑠𝑖𝑧𝑒 = 	50	

𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙	𝑚𝑒𝑡ℎ𝑜𝑑	𝑛𝑜𝑑𝑒	𝑐𝑜𝑝𝑦	𝑒𝑑𝑔𝑒	𝑤𝑒𝑖𝑔ℎ𝑡	(𝑤) = 	1	

𝑁𝑜𝑛 − 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙	𝑚𝑒𝑡ℎ𝑜𝑑	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	(𝑐) = 	1/𝑘	

𝑁𝑜𝑛 − 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙	𝑚𝑒𝑡ℎ𝑜𝑑	𝑎𝑚𝑝𝑙𝑖𝑓𝑦𝑖𝑛𝑔	𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡	(𝑚) = 	1	

	

Within	the	aligned	test,	we	vary	the	number	of	layers	(k)	and	the	intercommunity	edge	

probability	(q).	In	the	offset	test,	we	set	k	equal	to	2	and	vary	the	offset	parameter	(ℓ)	as	

well	as	q.	The	offset	parameter	determines	the	robustness	of	the	network’s	global	

communities.	The	aligned	tests	imply	ℓ = 0,	i.e.	layer	planted	communities	perfectly	

overlap.	As	ℓ	increases,	the	Layer	2	embedded	communities	are	rotated	in	relation	to	the	

Layer	1	embedded	communities,	forming	an	increasingly	large	ambiguous	region	of	nodes	

that	are	embedded	in	different	communities	on	each	layer,	as	the	overlapping	region	

shrinks.	This	allows	for	the	examination	of	model	performance	in	situations	of	increasing	

global	community	ambiguity.			

	

To	evaluate	the	efficacy	of	the	partition	in	each	test,	we	examine	the	resulting	Mistake	Ratio	

(r),	defined	as	follows:	

	

	

𝑟 =
𝑛𝑜𝑑𝑒𝑠	𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑛𝑙𝑦	𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑒𝑑

𝑡𝑜𝑡𝑎𝑙	𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒	𝑚𝑖𝑠𝑡𝑎𝑘𝑒𝑠
	

	

In	the	above	definition,	nodes	are	considered	to	be	mistakenly	partitioned	if	they	are	not	

grouped	within	their	planted	community.	In	the	aligned	case,	every	node	is	within	a	robust	

global	community,	so	the	total	possible	mistakes	is	equal	to	Im
9
.	In	the	offset	case,	only	

nodes	within	overlapping	community	regions	belong	to	a	robust	global	community,	so	the	

total	possible	mistakes	is	equal	to	100 − 2ℓ.	While	this	metric	does	not	provide	color	on	

how	the	models	handle	the	ambiguous	misaligned	nodes	in	the	offset	tests,	it	assesses	each	
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models’	ability	to	identify	robust	global	communities,	and	thus	allows	us	to	test	Conjecture	

1.	

	

3.1	Aligned	Layer	Community	Tests	

The	aligned	case	is	a	fundamental	test	of	the	ability	of	both	modularity	maximization	

models	to	identify	obvious	and	robust	global	communities.	For	any	number	of	layers,	and	

given	a	q	value	that	is	substantially	less	than	p,	any	reasonable	approach	to	modularity	

maximization	must	correctly	identify	the	two	global	communities.	To	explicitly	test	this,	we	

limit	the	number	of	communities	to	two	for	each	model	across	all	aligned	trials.			

	

We	first	perform	the	aligned	test	in	the	case	of	an	unweighted,	undirected	multiplex	

network,	with	the	following	parameters:	

	

𝑞 = {0,0.05, … ,0.5}	

𝑘 = {2,3,4,5,6}	
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Figure	3.1:	Unweighted-undirected	aligned	test	Mistake	Ratio	results	(averaged	over	100	

trials)	
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The	results	of	this	test,	shown	in	Figure	3.1,	indicate	the	promise	of	both	models.	For	all	

𝑞 ≤ 0.2,	both	the	diagonal	and	non-diagonal	analysis	perfectly	identify	the	global	

communities.	As	q	approaches	p,	both	models	perform	increasingly	poorly,	with	the	non-

diagonal	model	somewhat	outperforming	the	diagonal	model	for	cases	in	which	q	is	only	

slightly	less	than	p	(eg.	q=0.4	and	q=0.45).	

	

We	next	perform	a	more	generalized	version	of	the	aligned	test	by	making	the	networks	

directed	and	weighted.	The	weights	are	assigned	randomly	from	the	following	distribution	

D:		

𝐷 = {101 − 𝑖}
3

4G8

8uu

3G8

	

	

In	other	words,	D	contains	the	value	100	repeated	once,	99	repeated	twice,	etc.,	down	to	1	

repeated	100	times.	

	

The	purpose	of	this	weighted	and	directed	aligned	community	test	is	to	ensure	that	each	

model	is	still	able	to	correctly	identify	robust	global	communities	in	a	more	complex	

system,	and	to	ensure	Conjecture	1	holds	in	these	more	generalized	cases.	We	leave	all	

other	parameters	unchanged,	and	apply	both	models	to	networks	with	varying	q	and	k	

values,	in	search	of	two	communities.	
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Figure	3.2:	Weighted-directed	aligned	test	Mistake	Ratio	results	(averaged	over	100	trials)	
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As	seen	in	Figure	3.2,	both	models	once	again	appear	to	pass	this	baseline	test.	For	all	𝑞 ≤

0.3,	both	models	generate	essentially	zero	mistakes,	correctly	identifying	the	global	

communities.	As	previously,	performance	deteriorates	as	q	approaches	p.	In	this	test,	the	

non-diagonal	model	once	again	appears	to	somewhat	outperform	the	diagonal	model	

across	the	board,	making	slightly	fewer	mistakes	at	all	levels	of	𝑞 ≥ 0.2.	

	

Taken	together,	the	results	of	these	aligned	layer	community	tests	provide	initial	support	

for	Conjecture	1,	as	each	model	is	correctly	able	to	identify	robust	(aligned)	and	well-

defined	(q	meaningfully	less	than	p)	global	communities.	As	these	communities	become	

less	well-defined,	both	models	perform	increasingly	poorly.	The	fact	that	the	non-diagonal	

model	slightly	outperforms	the	diagonal	model	is	likely	related	to	the	handling	of	inter-

layer	connections.	As	the	diagonal	model	only	allows	for	inter-layer	connections	between	

node	copies,	inter-layer	communities	are	muted.	However,	the	non-diagonal	model’s	more	

nuanced	handling	of	inter-layer	edges	emphasizes	global	structure	over	that	of	each	

individual	layer.	As	a	result,	the	non-diagonal	model	is	better	able	to	identify	poorly	

defined	communities	that	are	robust	across	layers,	as	the	inter-layer	connections	serve	to	

amplify	the	weak	layer	community	structure.	

	

3.2	Offset	Layer	Community	Tests	

The	case	of	embedded	communities	that	are	offset	across	two	layers	provides	a	good	test	of	

each	model’s	ability	to	identify	global	communities	in	increasingly	ambiguous	situations.	

Throughout	these	tests,	we	vary	the	offset	value	(ℓ),	embedding	the	first	layer	with	

communities	containing	nodes	{1,…,50}	and	{51,…,100},	and	embedding	communities	

{ℓ+1,…,ℓ+50}	and	{1,…,ℓ}U{ℓ+51,…,100}	on	the	second	layer.	We	test	values	of	ℓ	varying	

from	1	(maximal	overlap)	to	25	(minimal	overlap).	As	in	the	aligned	layers	trials,	we	first	

apply	both	models	to	the	case	of	an	unweighted,	undirected	network,	with	q={0,0.05,…,0.5},	

and	search	for	two	communities.	
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Figure	3.3:	Unweighted-undirected	offset	test	Mistake	Ratio	results	(averaged	over	100	trials)	
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Examining	these	results,	shown	in	Figure	3.3,	it	is	important	to	note	that	mistakes	are	only	

identified	within	the	overlapping	regions.	For	example,	if	ℓ	=5	only	the	90	nodes	whose	

embedded	communities	overlap	across	the	two	layers	are	examined	for	mistakes.	We	will	

attempt	to	address	this	gap	in	our	understanding	by	systematically	examining	ambiguous	

region	partitions	in	Section	3.4	below.	However,	the	Mistake	Ratio	still	provides	insight	and	

sheds	meaningful	light	on	the	validity	of	Conjecture	1.	

	

These	results	reaffirm	that	both	models	perform	quite	strongly	for	values	of	q	that	are	

meaningfully	less	than	p.	As	q	approaches	p,	performance	deteriorates	for	both	models,	

with	the	non-diagonal	model	slightly	outperforming	the	diagonal.	It	is	interesting	to	note	

that	in	both	cases,	the	amount	of	offset	has	little	impact	on	model	performance.	This	is	

likely	due	to	the	fact	that	the	Mistake	Ratio	only	assesses	overlapping	nodes.	This	highlights	

the	importance	of	a	more	granular	examination	of	how	each	model	treats	ambiguous	

nodes,	which	is	performed	in	the	Section	3.4	below.	

	

Before	proceeding,	we	again	generalize	the	offset	community	detection	test	by	expanding	

to	the	weighted	and	directed	case.	As	previously,	the	weights	are	assigned	from	the	

distribution	D.	In	all	other	respects,	this	test	is	identical	to	the	unweighted-undirected	

offset	test	as	described	above.	
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Figure	3.4:	Weighted-directed	offset	test	Mistake	Ratios	(averaged	over	100	trials)	
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The	results	of	this	generalized	offset	communities	test,	as	shown	in	Figure	3.4	above,	are	

generally	similar	to	the	results	of	the	initial	offset	test.	Both	models	again	perform	strongly	

for	values	of	q	that	are	meaningfully	less	than	p.	However,	both	models,	and	the	diagonal	

model	in	particular,	perform	more	poorly	at	the	largest	offset	values.	We	examine	these	

large	offset	value	results	on	a	case-by-case	basis	and	find	that	both	models	exhibit	a	

tendency	to	group	large	clusters	of	nodes	from	one	layer	together,	spanning	across	

overlapping	and	ambiguous	regions.	One	potential	explanation	for	this	phenomenon	is	the	

existence	of	one	or	more	heavily	weighted	edges	connecting	to	ambiguous	nodes.	The	

results	here	indicate	that	layer	communities	containing	heavily	weighted	edges	can	

dominate	the	global	community	partition	produced	by	each	model.		

	

We	will	further	explore	the	effects	of	heavily	weighted	edges	and	layer	communities	in	

WTW	analysis	Sections	4.4	and	4.5.	That	aside,	for	now	we	can	conclude	that	the	

performance	of	each	model	deteriorates	rapidly	at	the	extremes	of	community	ambiguity,	

with	toy	cases	indicating	that	the	diagonal	model	performs	particularly	poorly	in	such	

cases.	

	

3.3	Summary	of	Two-Community	Tests	

The	results	of	the	two-community	aligned	and	offset	tests	provide	strong	evidence	for	

Conjecture	1	and	initial	evidence	for	Conjecture	2.	In	each	test,	both	models	consistently	

identify	well-defined	and	robust	global	communities.	As	p	approaches	q	and	as	the	offset	

value	increases,	both	models	perform	increasingly	poorly.	Additionally,	the	weighted	and	

directed	offset	test	provides	initial	evidence	of	a	“strong	layer	community”	phenomenon,	in	

which	layer	communities	containing	heavily	weighted	edges	can	significantly	shape	global	

partitioning,	especially	in	the	diagonal	model.	The	fact	that	the	non-diagonal	model	is	less	

sensitive	to	“strong	layer	communities”	is	likely	related	to	its	treatment	of	inter-layer	

connections,	and	the	resulting	emphasis	on	global	structure	over	that	of	each	individual	

layer.	We	expect	this	to	mitigate	the	effect	of	individual	outlier	edges,	instead	emphasizing	

the	broader	global	communities.	
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3.4	Extended	Offset	Test	

The	next	step	in	our	toy	case	examination	is	to	repeat	the	offset	case	searching	for	more	

than	two	communities.	The	purpose	of	this	test	is	to	examine	how	each	model	handles	the	

ambiguous	nodes	when	the	modularity	maximization	algorithm	is	allowed	to	run	to	

completion	(i.e.	create	further	subdivisions	until	DQ£0).	In	order	to	examine	the	results	of	

this	test	in	a	systematic	way,	we	define	a	list	of	18	logical	partitions	of	the	overlapping	and	

non-overlapping	regions.	We	define	these	partitions	as	“logical”	because	they	encompass	

every	possible	partition	of	the	four	offset	ambiguous	regions	that	in	some	way	groups	

together	overlapping	nodes.	We	consider	this	list	to	be	exhaustive,	and	as	such	treat	all	

other	partitions	as	illogical.	

	

All	parameters	are	set	at	the	same	values	as	in	the	previous	offset	test,	i.e.	two	layer	

networks	with	q={0,0.05,…,0.5}	and	ℓ={1,2,…,25}.	The	partition	created	for	each	value	of	q	

and	ℓ	is	compared	to	all	18	classes	of	partitions,	and	recorded	under	the	class	to	which	it	

belongs.	This	classification	is	done	by	splitting	the	nodes	into	the	following	partition	and	

examining	each	set	separately:	

	

Ambiguous	1:	{	𝑣38 ∶ 𝑖	𝜖	 1, ℓ 	}	

Overlapping	1:	{	𝑣38 ∶ 𝑖	𝜖	 ℓ + 1, 50 	}	

Ambiguous	2:	{	𝑣38 ∶ 𝑖	𝜖	 51, 50 + ℓ 	}	

Overlapping	2:	{	𝑣38 ∶ 𝑖	𝜖	 51 + ℓ, 100 	}	

Ambiguous	3:	{	𝑣39 ∶ 𝑖	𝜖	 1, ℓ 	}	

Overlapping	3:	{	𝑣39 ∶ 𝑖	𝜖	 ℓ + 1, 50 	}	

Ambiguous	4:	{	𝑣39 ∶ 𝑖	𝜖	 51, 50 + ℓ 	}	

Overlapping	4:	{	𝑣39 ∶ 𝑖	𝜖	 51 + ℓ, 100 	}	

	

Next,	each	region	is	assigned	a	community	tag	corresponding	to	the	most	frequent	

community	of	the	nodes	within	the	region,	and	the	region	tags	are	compared	to	those	of	

each	of	the	18	partition	classes.	A	full	definition	of	each	partition	classification	and	region	

visualization	can	be	found	in	Appendix	Section	6.1.	If	a	partition	does	not	match	any	of	the	
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18	classes,	it	is	classified	as	“Illogical”	and	recorded	as	such.	Additionally,	we	slightly	tweak	

the	definition	of	the	Mistake	Ratio	(r’)	for	these	tests:	

	

𝑟′ =
𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑛𝑜𝑑𝑒𝑠	𝑤ℎ𝑜𝑠𝑒	𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑦	𝑑𝑖𝑓𝑓𝑒𝑟𝑠	𝑓𝑟𝑜𝑚	𝑟𝑒𝑔𝑖𝑜𝑛	𝑡𝑎𝑔

𝑡𝑜𝑡𝑎𝑙	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔	𝑛𝑜𝑑𝑒𝑠
	

	

	

This	definition	differs	from	the	previous	definition	of	r	in	that	regions	are	considered	on	a	

layer	by	layer	basis,	with	nodes	counted	as	mistakes	only	if	they	are	separated	from	the	

majority	of	nodes	in	their	layer	specific	region.		

	

In	order	to	systematically	examine	the	results	of	this	extended	version	of	the	offset	test,	we	

record	the	quantities	of	each	class	of	partition	across	all	trials,	and	the	illogical	count	

broken	out	by	q	value.	Once	again,	these	tests	are	first	performed	for	the	undirected-

unweighted	case,	and	then	for	the	generalized	weighted	and	directed	case.	These	results	

are	presented	in	Figures	3.5	and	3.6	below.	
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Partition	Type	 Diagonal	Count	 Non-diagonal	Count	

Type	1	 146	 117	

Type	2	 0	 5	

Type	7	 0	 1	

Type	8	 1	 0	

Type	10	 0	 2	

Type	11	 0	 2	

Type	13	 0	 1	

Type	14	 0	 1	

Illogical	 128	 146	

	
Q	Value	 Diagonal	Illogical	Count	 Non-diagonal	Illogical	Count	

0	 0	 5	

0.05	 1	 5	

0.1	 0	 7	

0.15	 2	 9	

0.2	 2	 8	

0.25	 2	 7	

0.3	 22	 15	

0.35	 24	 19	

0.4	 25	 25	

0.45	 25	 23	

0.5	 25	 23	

Figure	3.5:	Unweighted	and	undirected	results	for	diagonal	(left	column)	and	non-diagonal	

(right	column)	models	
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Partition	Type	 Diagonal	Count	 Non-diagonal	Count	

Type	1	 145	 106	

Type	2	 0	 1	

Type	5	 4	 0	

Type	6	 1	 0	

Type	7	 0	 1	

Type	10	 0	 2	

Type	12	 0	 2	

Illogical	 125	 163	

	
Q	Value	 Diagonal	Illogical	Count	 Non-diagonal	Illogical	Count	

0	 1	 8	

0.05	 1	 6	

0.1	 0	 7	

0.15	 1	 7	

0.2	 1	 10	

0.25	 4	 11	

0.3	 20	 19	

0.35	 24	 24	

0.4	 24	 24	

0.45	 24	 24	

0.5	 25	 23	

Figure	3.6:	Weighted	and	directed	results	for	diagonal	(left	column)	and	non-diagonal	(right	

column)	models	
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3.5	Summary	of	Extended	Offset	Test	Results	

The	results	of	these	tests	provide	additional	support	for	Conjectures	1	and	2.	Both	models	

again	perform	strongly	for	q	values	meaningfully	less	than	p,	with	performance	

deteriorating	significantly	as	q	approaches	p.	One	interesting	result	here	is	that	the	

diagonal	model	shows	significantly	less	sensitivity	to	the	offset	value	under	this	modified	

definition	of	r’.	This	indicates	that	previously	occurring	mistakes	at	large	offset	values	were	

cases	of	node	copies	being	separated	across	layers,	not	nodes	being	separated	from	their	

embedded	layer	community.	This	represents	initial	evidence	of	the	tendency	of	the	

diagonal	model	to	favor	layer	communities	in	cases	of	large	offset	values.		

	

Examining	the	partition	classifications	provides	further	support	for	this	preference	for	

layer	communities.	Both	models,	and	particularly	the	diagonal	model,	favor	the	Type	1	

logical	partition	(over	100	Type	1	partitions	in	each	test),	which	entails	partitioning	each	

layer	separately	into	its	embedded	communities	and	then	lining	up	these	layer	

communities	such	that	the	overlapping	communities	are	grouped	together	(see	Appendix	

6.1	for	visualization).	The	sum	of	all	other	logical	partitions,	which	represent	all	logical	

global	community	subdivisions,	is	at	most	12	throughout	all	of	the	tests.	This	indicates	that	

both	models,	and	especially	the	diagonal	model,	favor	partitioning	the	nodes	by	layer	

communities	over	partitions	that	emphasize	global	structure.	

	

Lastly,	breaking	out	the	illogical	partitions	by	q	value	provides	additional	evidence	that	the	

diagonal	model	favors	layer	communities	when	applied	to	networks	with	large	offset	

values.	In	both	the	unweighted-undirected	and	the	weighted-directed	case,	the	diagonal	

model	creates	very	few	illogical	partitions	at	low	q	values.	The	non-diagonal	model,	on	the	

other	hand,	shows	sensitivity	to	the	offset	value,	creating	a	handful	of	illogical	partitions	at	

low	q	values	(which	occur	at	high	offset	values).	This	indicates	that	for	well-defined	

embedded	networks,	as	the	ambiguous	region	grows	larger,	the	diagonal	model	continues	

to	emphasize	layer	communities,	separating	many	node	copies	in	the	ambiguous	region.	

The	non-diagonal	model,	on	the	other	hand,	begins	to	generate	illogical	partitions,	most	

likely	due	to	handling	the	ambiguous	regions	in	a	more	nuanced	way.		
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These	results	indicate	that	the	two	models	have	differing	sensitivities	to	various	network	

characteristics.	The	diagonal	model	has	a	tendency	to	favor	layer	communities	regardless	

of	the	degree	of	offset,	always	separating	node	copies	that	are	in	different	layer	

communities,	regardless	of	the	quantity	of	these	ambiguous	nodes.	On	the	other	hand,	the	

non-diagonal	model	tends	to	separate	“ambiguous”	node	copies	only	if	they	are	

significantly	outnumbered	by	the	“overlapping”	nodes,	and	creates	more	nuanced	(though	

”illogical”)	partitions	as	the	ambiguous	region	grows.	These	divergent	sensitivities	

illustrate	an	important	difference	between	the	two	models,	and	is	another	important	

takeaway	from	this	set	of	toy	case	tests.	

	

IV.	World	Trade	Web	Analysis	

	

Having	examined	the	performance	of	the	diagonal	and	non-diagonal	multiplex	modularity	

maximization	models	across	well	understood	toy	cases,	we	now	turn	to	a	real-world	

system,	specifically	the	World	Trade	Web	(WTW).	The	primary	motivation	for	this	

application	is	to	understand	how	each	model	performs	on	“real”	systems,	and	to	examine	

the	results	in	the	context	of	the	toy	case	findings.	Additionally,	this	analysis	will	highlight	

new	avenues	for	macroeconomic	research	by	applying	novel	analytical	approaches	to	an	

important	macroeconomic	system,	specifically	the	global	trade	system.	

	

4.1	Data	

The	WTW	is	a	complex	system	that	has	been	frequently	studied	within	the	field	of	

economics.	Early	analysis	by	Serrano	and	Boguñá	(2003),	Garlaschelli	and	Loffredo	(2005),	

and	Fagiolo	et.	al.	(2008)	studied	the	structural	properties	of	the	single	layer	WTW	

network.	Serrano	et.	al.	(2006)	examined	separate	layers	of	the	WTW	network	using	a	

disjoint-layers	model.	Recently,	authors	have	begun	examining	the	disaggregated	WTW	as	

a	network	on	multiple	layers,	including	Barigozzi	et.	al.’s	(2011)	dynamic	analysis	of	

individual	WTW	layers,	and	the	initial	multiplex	WTW	analysis	of	Lee	and	Goh	(2016).	

	

Continued	academic	interest	in	the	WTW	is	due	to	it	being	a	natural	application	for	

network	analysis,	as	trade	can	easily	be	conceptualized	as	a	network,	with	countries	
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represented	as	nodes,	and	quantity	of	trade	(in	dollars)	between	countries	represented	as	

weighted	edges.	The	application	of	modularity	maximization	to	such	a	trade	network	

allows	for	the	identification	of	sub-communities	of	highly	connected	countries,	

representing	trade	blocs	within	the	global	system.	The	multiplex	modularity	maximization	

models	developed	in	this	paper	allow	for	a	more	nuanced	analysis	of	the	WTW	system.	

Specifically,	examining	the	WTW	as	a	multiplex	network,	with	trade	disaggregated	into	

commodity	components	on	separate	layers,	allows	for	the	identification	of	commodity-

specific	trading	blocs,	providing	more	nuanced	insight	into	global	trade	patterns.		

The	identification	of	highly-connected,	commodity-specific	trading	blocs	within	the	system	

of	global	trade	can	provide	valuable	macroeconomic	and	political	insight.	A	high	degree	of	

multilateral	trade,	as	identified	by	the	clustering	of	modularity	maximization,	indicates	

economic	interdependence.	This	economic	interdependence	can	be	an	important	input	for	

macroeconomic	and	foreign	policy	at	the	state	level.	In	this	sense,	our	WTW	analysis	serves	

to	both	further	the	development	of	multiplex	analytical	models,	and	provide	novel	insights	

and	avenues	for	future	research	in	the	fields	of	macroeconomics	and	foreign	policy.	

	

4.2	SITC-2	Pairwise	Analysis	

Throughout	this	section,	we	analyze	WTW	data	from	2000	(Feenstra	et.	al.,	2005).	In	our	

application,	we	use	the	SITC-2	classifications,	which	disaggregate	total	trade	flows	into	66	

commodity	layers,	according	to	the	United	Nations’	Standard	International	Trade	

Classification	(SITC)	two-digit	code,	as	defined	in	Appendix	Section	6.2.	It	should	be	noted	

that,	as	a	result	of	disaggregation,	many	of	the	SITC-2	commodity	layers	are	quite	sparse,	

with	trade	between	only	a	handful	of	nodes.	Additionally,	one	would	intuitively	expect	edge	

weights	to	exhibit	right	skew,	with	a	small	handful	of	heavily	weighted	edges	between	the	

largest	interconnected	economies.	Lastly,	there	are	likely	certain	highly	connected	trading	

blocs	that	are	present	on	the	vast	majority	of	layers,	such	as	the	E.U.	

	

We	first	apply	both	modularity	maximization	models	to	every	possible	pair	of	commodity	

layers.	This	examination	runs	parallel	to	the	offset	toy	case	from	the	previous	section.	In	

the	toy	case,	embedded	communities	were	offset	by	a	varying	degree	across	2	layers,	with	a	

high	probability	of	intracommunity	edges	and	a	lower	(but	varying)	probability	of	
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intercommunity	edges.	The	results	of	this	analysis	were	largely	supportive	of	Conjectures	1	

and	2.	These	findings	can	be	translated	to	the	WTW	context,	with	highly	similar	commodity	

layers	considered	as	“layers	with	a	low	degree	of	offset	(highly	overlapping)”	and	

dissimilar	commodity	layers	as	“highly	offset.”	We	will	use	this	interpretation	to	develop	a	

series	of	hypotheses	regarding	the	performance	of	each	model	in	the	SITC-2	pairwise	

analysis,	but	first	we	must	define	two	new	metrics:	

	

𝑂𝑓𝑓𝑠𝑒𝑡	𝑅𝑎𝑡𝑖𝑜	 𝑂𝑅 =
𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑	𝑛𝑜𝑑𝑒𝑠

𝑛
	

𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ	𝑅𝑎𝑡𝑖𝑜	 𝑀𝑅 =
𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑	𝑛𝑜𝑑𝑒	𝑐𝑜𝑝𝑖𝑒𝑠

𝑛
	

	

In	the	above	definition,	mismatched	nodes	are	defined	based	on	separate,	single-layer	

modularity	maximization	of	each	of	the	two	layers	of	interest.	Each	single-layer	community	

formed	on	Layer	1	is	matched	with	a	corresponding	Layer	2	community	to	which	the	

majority	of	its	nodes	belong,	and	mismatched	nodes	are	counted	as	those	whose	community	

on	Layer	2	is	different	than	the	community	matched	with	its	Layer	1	community.	This	can	

be	interpreted	as	the	conceptual	parallel	of	ℓ,	and	one	would	expect	that	if	OR	were	

calculated	for	the	toy	cases,	it	would	be	that	𝑂𝑅 ≈ ℓ
{u
.	As	seen	in	Figure	4.1	below,	in	which	

the	OR	value	is	calculated	for	each	ℓ𝜖[1,25]	on	two	layer	networks	as	defined	in	the	Offset	

toy	case	Section	3.2,	this	does	hold	to	be	true.	Thus,	Offset	Ratio	represents	a	meaningful	

equivalent	of	ℓ	from	the	toy	cases	and	can	be	interpreted	as	such.	
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Figure	4.1:	Offset	Ratio	calculated	for	each	value	of	ℓ	from	toy	case	analysis,	evaluated	at	

q=0.2	(all	other	values	set	as	in	Section	3.2)	

	

In	the	definition	of	MR,	separated	node	copies	is	simply	defined	as	the	number	of	node	

copies	that	are	separated	(i.e.	placed	in	different	communities)	under	a	given	multiplex	

modularity	maximization	model.	

	

Interpreting	Conjectures	1	and	2	and	the	toy	case	findings	in	the	context	of	this	SITC-2	

pairwise	test	and	these	newly	defined	metrics,	we	hypothesize:	

	

Hypothesis	1:	When	applied	to	layer	pairs	with	low	Offset	Ratios,	both	modularity	

maximization	models	will	identify	the	robust	global	communities,	and	as	a	result	

separate	few	node	copies	and	produce	a	low	Mismatch	Ratio.	This	directly	follows	

from	Conjecture	1.	
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Hypothesis	2:	When	applied	to	layer	pairs	with	larger	Offset	Ratios,	both	modularity	

maximization	models	will	increasingly	favor	layer	communities,	splitting	node	

copies	that	are	offset	across	layers,	resulting	in	a	higher	Mismatch	Ratio.	This	

directly	follows	from	Conjecture	2.	

	

Hypothesis	3:	When	applied	to	layer	pairs	with	exceptionally	high	Offset	Ratios,	

performance	of	the	two	models	will	diverge,	with	the	diagonal	model	strongly	

favoring	layer	communities	and	the	non-diagonal	model	producing	more	nuanced,	

though	at	times	illogical,	partitions.	As	this	occurred	for	ℓ > 20	in	the	toy	cases,	we	

expect	it	to	occur	for	𝑂𝑅 > 9u
{u
= 0.4	in	these	trials.	

	

In	the	following	trials,	we	will	test	these	hypotheses,	which	together	imply	a	positive	

relationship	between	Offset	Ratio	and	Mismatch	Ratio	and	divergent	model	performance	at	

extreme	Offset	Ratios.	To	this	end,	we	present	the	results	of	all	possible	pairings	of	WTW	

SITC-2	commodity	layers	below	in	Figure	4.2.	
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Figure	4.2:	Diagonal	(top)	and	non-diagonal	(bottom)	models’	MR	as	a	function	of	underlying	

layers’	OR		

Diagonal:	𝑀𝑅 = 0.11 + 0.52𝑂𝑅	with	𝑅9 = 0.45	

Non-Diagonal:	𝑀𝑅 = 0.20 + 0.10𝑂𝑅	with	𝑅9 = 0.02	
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The	results	from	the	diagonal	model	support	Hypotheses	1	and	2.	There	is	a	clear	and	

strong	linear	relationship	between	OR	and	MR,	with	an	𝑅9	value	of	0.45,	indicating	that	the	

diagonal	modularity	maximization	increasingly	favors	layer	communities	as	the	degree	of	

offset	increases.	This	closely	mirrors	the	findings	from	the	offset	tests.	However,	the	results	

do	not	support	Hypothesis	3,	as	the	relationship	breaks	down	at	higher	offset	values,	

indicating	an	anomaly	not	explained	by	a	continued	emphasis	on	layer	communities.	

	

Upon	close	examination	of	this	region	of	the	findings,	we	hypothesize	that	this	is	due	to	

pairings	involving	layers	with	sparse	edges.	Pairings	involving	a	sparse	layer	as	“Layer	2”	

result	in	very	high	Offset	Ratios,	as	the	sparse	layer	is	split	into	many	communities	by	single	

layer	modularity	maximization,	the	majority	of	which	contain	a	single,	isolated	node.	As	a	

result,	the	Layer	1	communities	do	not	coherently	match	with	these	many	sparse	layer	

communities,	resulting	in	a	large	OR	value.	However,	such	pairings	tend	to	result	in	very	

low	Mismatch	Ratios	as	the	communities	on	the	non-sparse	layer	tend	to	dominate,	forcing	

node	copies	together	as	the	sparse	layer	communities	are	ignored.	We	will	test	this	

hypothesis,	concretely	stated	below,	in	the	following	section.	

	

Hypothesis	4:	Pairings	involving	sparse	layers	can	result	in	high	Offset	Ratios	and	

low	Mismatch	Ratios,	distorting	the	relationship	between	the	two	metrics.	

	

The	results	from	the	non-diagonal	model	do	not	support	our	hypotheses.	There	is	no	

discernable	relationship	between	Offset	Ratio	and	Mismatch	Ratio,	with	an	𝑅9	value	of	0.02,	

contradicting	Hypotheses	1	and	2.	Furthermore,	this	phenomenon	is	not	limited	to	high	

offset	values,	thus	contradicting	Hypothesis	3.	Interpreting	these	results	in	light	of	the	

performance	of	the	diagonal	model,	we	hypothesize	that	this	is	a	result	of	the	way	that	the	

non-diagonal	model	handles	interlayer	connections.	Specifically,	the	non-diagonal	model	

captures	more	nuanced	global	communities,	and	decrease	the	emphasis	on	node	copy	

connections.	Perhaps	this	greater	analytical	complexity	explains	the	decreased	strength	of	

the	relationship	between	OR	and	MR,	as	the	MR	is	increasingly	a	product	of	more	subtle	

network	characteristics,	and	less	a	product	of	node	copy	offset.	To	put	this	plainly,	perhaps	
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OR	does	not	fully	capture	the	“different-ness”	of	the	layer	pairs,	and	thus	does	not	strongly	

explain	MR.	This	hypothesis	is	stated	below,	and	explored	further	in	Section	4.5.	

	

Hypothesis	5:	The	non-diagonal	model’s	treatment	of	interlayer	connections	

renders	the	Offset	Ratio	as	insufficient	in	capturing	the	differences	between	layer	

pairs,	and	mutes	the	relationship	between	OR	and	MR.	

	

4.3	SITC-1	Pairwise	Analysis	

In	order	to	explore	(and	limit)	the	effects	of	sparse	layers,	we	next	perform	pairwise	

analysis	on	SITC-1	WTW	data.	This	represents	a	somewhat	more	aggregated	version	of	the	

trade	data,	with	total	flows	separated	into	10	(instead	of	66)	commodity	layers.	See	

Appendix	Section	6.2	for	further	description	of	the	SITC-1	classifications.	By	examining	

broader	commodity	classes,	we	ameliorate	some	of	the	effects	of	sparse	layers.	

Additionally,	reducing	the	total	possible	pairings	allows	us	to	better	understand	

commodity	pair	relationships,	and	predict	the	degree	of	similarity	that	we	would	expect	

within	a	given	pairing.	

	

To	contextualize	the	analysis	in	this	way,	we	classify	all	pairings	of	SITC-1	layers	into	the	

following	buckets:		

	

Supply	Chain:	Commodity	pairs	that	are	inputs	to	a	common	final	product,	with	

trade	expected	to	be	in	part	determined	by	this	shared	supply	chain.	
	

	Similar	Consumables:	Commodity	pairs	that	are	expected	to	have	end-markets	

with	highly	overlapping	demographics,	and	thus	similar	trade	patterns.		
	

	Seemingly	Unrelated:	Commodity	pairs	that	do	not	fall	under	either	of	the	previous	

two	classifications.	
	

Sparse:	Commodity	pairs	involving	“Other	Commodities”	(layer	9),	as	this	is	by	far	

the	sparsest	layer,	with	only	8.7%	of	all	possible	edges	taking	a	non-zero	value.	
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Semi-Sparse:	Commodity	pairs	involving	“Beverages	and	tobacco”	(layer	1)	or	

“Animal	and	vegetable	oils”	(layer	4),	as	these	are	the	second	and	third	sparsest	

layers,	with	26.8%	and	35.9%	non-zero	edges	respectively.	

	

We	perform	two	versions	of	the	following	SITC-1	analysis,	one	with	Semi-Sparse	pairings	

classified	as	they	would	be	(within	the	first	three	buckets),	and	one	including	the	separate	

Semi-Sparse	classification.	A	legend	documenting	the	classification	of	each	layer	pairing	can	

be	found	in	Appendix	section	6.3.	The	results	of	both	versions	of	this	aggregated	analysis,	

broken	out	by	pairing	type,	are	shown	below.	

	
Figure	4.3:	Version	1	of	the	SITC-1	pairwise	analysis.	Diagonal	results	shown	with	circles,	non-

diagonal	shown	with	+’s.	Supply	Chain	pairs	in	green,	Similar	Consumables	in	red,	Seemingly	

Unrelated	in	Black,	and	Sparse	in	Blue	
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Figure	4.4:	Version	2	of	the	SITC-1	pairwise	analysis.	Diagonal	results	shown	with	circles,	non-

diagonal	shown	with	+’s.	Supply	Chain	pairs	in	green,	Similar	Consumables	in	red,	Seemingly	

Unrelated	in	Black,	Semi-Sparse	in	magenta,	and	Sparse	in	Blue	

	

	

The	results	of	this	SITC-1	analysis	closely	support	Hypothesis	4.	This	can	be	seen	in	Figure	

4.3,	in	which	the	Sparse	pairings	are	seen	to	have	the	largest	Offset	Ratios,	and	the	most	

varied	Mismatch	Ratio	outcomes.	Figure	4.4	further	supports	this	hypothesis,	as	the	Semi-

Sparse	pairings	are	primarily	located	between	all	other	non-sparse	pairs	and	the	Sparse	

pairs	in	regard	to	OR.	Taken	together,	these	findings	illustrate	the	confounding	effects	of	

sparse	layers,	which	we	will	eliminate	in	the	next	section	by	excluding	all	such	layers.	

	

4.4	Non-Sparse	SITC-1	Analysis	

We	next	seek	to	isolate	non-sparse	pairs	and	focus	on	the	relationship	between	Offset	Ratio	

and	Mismatch	Ratio	for	each	model	when	analyzing	these	pairings.	In	order	to	do	this,	we	
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formulate	a	third	version	of	the	SITC-1	pairing	classifications,	excluding	all	Sparse	and	

Semi-Sparse	pairings.	We	perform	a	linear	regression	of	MR	results	on	corresponding	OR	

values	for	this	third	version,	and	plot	the	linear	fit	with	results	broken	out	by	model	and	

pair	type	below:	

	

	
Figure	4.5:	Version	3	of	the	SITC-1	pairwise	analysis.	Diagonal	results	shown	with	circles,	non-

diagonal	shown	with	+’s.	Supply	Chain	pairs	in	green,	Similar	Consumables	in	red,	and	

Seemingly	Unrelated	in	Black	

Diagonal:	𝑀𝑅 = 0.01 + 0.98𝑂𝑅	with	𝑅9 = 0.79	

Non-Diagonal:	𝑀𝑅 = 0.13 + 0.16𝑂𝑅	with	𝑅9 = 0.01	

	

Examining	the	results,	shown	in	Figure	4.5,	we	find	strong	support	for	Hypotheses	1,	2,	and	

4.	Comparing	diagonal	performance	in	this	test	versus	the	SITC-2	analysis	illustrates	the	

confounding	effects	of	sparse	layers.	Previously,	the	diagonal	model	yielded	an	𝑅9	value	of	

0.45.	However,	with	sparse	pairs	excluded,	the	𝑅9	value	increases	to	0.79.	Thus,	we	
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conclude	that	when	operating	on	non-sparse	pairs,	there	is	a	strong	relationship	(with	a	

slope	that	is	approximately	equal	to	1)	between	the	layer	pairs’	Offset	Ratio	and	the	

Mismatch	Ratio	produced	by	the	diagonal	model.	

	

Another	interesting	result	in	Figure	4.5	is	that	the	Seemingly	Unrelated	pairs	tend	to	have	

unusually	high	MR	values,	both	in	absolute	terms	and	compared	to	the	corresponding	OR	

value.	The	finding	that	these	pairs	have	large	MR	values	in	absolute	terms	is	not	surprising	

as	these	pairs	were	identified	as	those	least	likely	to	have	common	trade	patterns,	i.e.	we	

expect	less	similarity	across	layers	and	less	robust	global	communities.	Thus,	by	

Hypothesis	2,	we	would	expect	both	modularity	maximization	models	to	favor	layer	

communities,	separate	many	nodes,	and	generate	large	MR	values.	

	

However,	it	is	surprising	to	note	that	when	applied	to	Seemingly	Unrelated	pairs,	the	non-

diagonal	model	in	particular	yields	MR	values	that	are	significantly	higher	than	what	would	

be	predicted	given	the	OR	value.	This	can	be	seen	in	the	fact	that	four	of	the	six	non-

diagonal	Seemingly	Unrelated	results	lie	above	the	trend	line,	and	three	of	these	four	

represent	the	three	highest	MR	values	produced	by	the	non-diagonal	model,	and	have	very	

large	positive	residuals	in	the	linear	fit.	Interpreting	this	in	the	context	of	Hypothesis	3,	we	

next	return	to	the	question	of	whether	Offset	Ratio	is	perhaps	insufficient	in	capturing	the	

full	extent	of	dissimilarity	across	layers	that	shapes	modularity	maximization	performance,	

especially	by	the	non-diagonal	model	that	has	been	shown	to	create	highly	nuanced	global	

partitions.	We	address	this	question	in	the	next	section	by	building	a	new	metric	for	

“different-ness.”	

	

4.5	Ego	Differences	Analysis	

Our	Offset	Ratio	metric	clearly	captures	some	of	the	differences	in	layer	structure	within	

pairings,	but	it	is	not	fully	satisfactory.	Specifically,	OR	does	not	seem	to	fully	explain	why	

the	non-diagonal	model	produces	particularly	large	Mismatch	Ratios	when	applied	to	

Seemingly	Unrelated	pairings.	We	hypothesize	that	this	may	stem	from	our	definition	of	OR.	

Specifically,	our	OR	algorithm	matches	each	Layer	1	community	with	the	Layer	2	

community	to	which	the	majority	of	its	nodes	belong.	This	allows	for	trading	blocks	of	large	
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countries	that	trade	heavily	across	almost	all	commodities	(such	as	the	United	States	and	

Mexico,	or	European	Union	countries)	to	drown	out	more	nuanced	differences	in	trading	

patterns	of	smaller	countries.	In	an	attempt	to	better	capture	these	differences,	we	next	

turn	to	ego	networks.	For	background,	see	Newman	(2010,	44-46).	

	

Each	node	v	in	a	single	layer	network	N	has	a	corresponding	ego	network	G,	which	is	

defined	as	follows:	

	

𝑉 𝐺 = 𝑣 ∪ 𝑁 𝑣 ; 				𝐸 𝐺 = 𝑢, 𝑣 : 𝑢, 𝑣 𝜖𝐸 𝑁 ∪ {(𝑢, 𝑤): 𝑢, 𝑤𝜖𝑁 𝑣 𝑎𝑛𝑑	(𝑢, 𝑤)𝜖𝐸 𝑁 }	

	

In	other	words,	the	ego	network	corresponding	to	node	v	contains	all	of	v’s	neighbors,	the	

corresponding	edges,	and	any	edges	between	neighbors.	Comparing	the	ego	networks	of	

node	copies	across	two	layers	allows	for	another	measure	of	“different-ness.”	

	

Specifically,	we	define	a	metric	called	Ego	Difference	(ED).	Note	in	the	following	definitions	

that	𝐺8	refers	to	node	v’s	ego	network	on	Layer	1	and	𝐺9	refers	to	its	ego	network	on	Layer	

2:	

	

𝑣�𝑠	𝑟𝑎𝑡𝑖𝑜	𝑜𝑓	𝑠ℎ𝑎𝑟𝑒𝑑	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 𝑅𝑁(𝑣) =
(𝑉 𝐺8 ∖ {𝑣}) ∩ (𝑉 𝐺9 ∖ {𝑣})

max	( (𝑉 𝐺8 ∖ {𝑣}) , (𝑉 𝐺9 ∖ {𝑣}) )
	

𝑣�𝑠	𝑟𝑎𝑡𝑖𝑜	𝑜𝑓	𝑠ℎ𝑎𝑟𝑒𝑑	2𝑛𝑑	𝑜𝑟𝑑𝑒𝑟	𝑒𝑑𝑔𝑒𝑠 = 𝑅𝐸(𝑛) = 	
(𝐸(𝐺8 − 𝑣) ∩ 𝐸(𝐺9 − 𝑣)

max	( 𝐸(𝐺8 − 𝑣) , 𝐸(𝐺9 − 𝑣) )
	

𝐸𝐷 = 1 − 0.5
𝑅𝑁 𝑣 + 𝑅𝐸 𝑣��� �

𝑛
	

	

Defined	as	above,	our	Ego	Differences	metric	ranges	from	0	(the	two	layers	are	identical,	

every	node	has	the	exact	same	ego	network	on	each	layer)	to	1	(the	two	layers	do	not	share	

a	single	edge	in	common,	every	node	has	distinct	ego	networks	on	the	two	layers	with	no	

shared	neighbors).	It	is	important	to	note	here	that	ED	completely	ignores	edge	weights.	

The	metric	captures	shared	edges	across	layer	pairings,	but	does	so	in	a	binary	way.	This	



	 38	

aspect	of	the	formulation	is	an	intentional	attempt	to	downplay	the	confounding	effects	of	

tight	knit	trading	blocks	of	large	countries,	as	was	discussed	in	the	previous	section.	

	

With	the	preceding	definitions	in	mind,	Figure	4.6	below	shows	a	graph	of	MR	vs.	ED	for	

both	models,	broken	out	by	pairing	classification	version	3:	

	

	
Figure	4.6:	Diagonal	(circles)	and	non-diagonal	(+’s)	models’	MR	as	a	function	of	underlying	

layers’	ED	for	non-sparse	layer	pairs			

Diagonal:	𝑀𝑅 = 0.17 + 0.13𝐸𝐷	with	𝑅9 = 0.08	

Non-Diagonal:	𝑀𝑅 = 0.09 + 0.21𝐸𝐷	with	𝑅9 = 0.18	

	

The	above	results	are	very	interesting,	especially	when	compared	to	Figure	4.5.	The	first	

thing	to	note	is	that	the	Ego	Differences	metrics	does	a	very	good	job	of	capturing	the	
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differences	between	layer	classifications,	with	Seemingly	Unrelated	pairs	(black)	resulting	

in	significantly	higher	ED	values	than	either	Similar	Consumables	(red)	or	Supply	Chain	

(green)	pairs.	This	confirms	our	hypothesis	that	Offset	Ratio	was	not	fully	capturing	

“different-ness”	within	layer	pairs,	most	likely	due	to	the	over-powering	effects	of	robust	

cross-commodity	trading	blocs	such	as	the	EU.	In	this	sense,	the	ED	metrics	is	helpful	in	

teasing	out	differences	between	layer	pairs.	

	

A	second	noteworthy	result	is	that	the	diagonal	model	produces	a	stronger	relationship	

between	OR	and	MR	(slope=	0.98	and		𝑅9 = 0.79)	than	between	ED	and	MR	(slope=	0.13	

and		𝑅9 = 0.08),	whereas	the	non-diagonal	model	produces	a	stronger	relationship	

between	ED	and	MR	(slope=	0.21	and		𝑅9 = 0.18)	than	between	OR	and	MR	(slope=	0.16	

and		𝑅9 = 0.01).		

	

This	offers	strong	support	for	Hypothesis	5	and	provides	the	basis	for	Conjecture	3,	as	

stated	in	the	Introduction.	The	diagonal	and	non-diagonal	models’	divergent	sensitivity	to	

varying	types	of	cross-layer	“different-ness”	represents	an	important	analytical	distinction.	

The	global	partition	produced	by	the	diagonal	model	is	primarily	a	function	of	the	

network’s	Offset	Ratio,	or	put	more	simply,	a	function	of	the	degree	to	which	the	layer	

communities	broadly	line	up	when	considering	weighted	edges.	On	the	other	hand,	non-

diagonal	model	partitions	are	primarily	a	function	of	the	network’s	Ego	Differences,	i.e.	first	

and	second	order	similarity	of	node-neighborhoods	with	edges	treated	as	binary.	This	

makes	sense	in	the	context	of	our	previous	findings,	as	we	expect	the	non-diagonal	model’s	

handling	of	interlayer	edges	to	amplify	more	nuanced	second	order	similarities/differences	

between	layers,	while	we	expect	the	diagonal	model	to	be	shaped	by	layer	communities	

containing	highly	weighted	edges.	This	finding,	concretely	captured	in	Conjecture	3,	

provides	important	insight	and	helps	inform	analytical	decisions	made	by	future	multiplex	

modularity	maximization	practitioners.	

	

	

	

	



	 40	

V.	Conclusion	

	

Modularity	maximization	is	a	powerful	tool	for	analyzing	network	structure	and	identifying	

communities	of	highly	connected	nodes.	These	tools	are	especially	valuable	to	those	

examining	highly	complex	networks,	as	the	community	detection	resulting	from	

modularity	maximization	facilitates	network	visualization	and	highlights	important	

structural	characteristics	that	would	otherwise	be	obscured	within	the	complex	system.	

For	this	reason,	the	extension	of	modularity	maximization	models	to	multiplex	networks,	

which	are	significantly	more	complex	and	unintelligible	than	single	layer	networks,	

represents	a	particularly	important	development	within	the	field	of	network	analysis.	By	

examining	the	performance	of	two	multiplex	modularity	maximization	models	across	

different	families	of	networks,	and	building	a	set	of	theoretically	and	empirically	justified	

conjectures,	we	help	to	arm	future	researchers	with	valuable	community	detection	tools	

and	inform	sound	multiplex	network	analysis.	

	

Our	first	main	finding	is	that	both	the	diagonal	and	non-diagonal	multiplex	modularity	

maximization	models	successfully	identify	well-defined	and	robust	global	communities.	We	

state	this	claim	explicitly	as	Conjecture	1,	and	find	strong	justification	across	a	series	of	toy	

case	and	World	Trade	Web	tests.	In	the	toy	case	analysis,	we	apply	both	models	to	a	series	

of	networks	with	embedded	layer	communities	that	are	aligned	across	layers,	and	find	that	

both	models	partition	the	nodes	as	we	expect,	identifying	the	robust	embedded	global	

communities.	Additionally,	when	applied	to	toy	networks	with	embedded	layer	

communities	that	are	offset	across	two	layers,	both	models	tend	to	cluster	the	node	copies	

that	are	within	overlapping	(similar)	communities	on	both	layers.	Lastly,	we	find	that	both	

models	tend	to	separate	few	node	copies	when	applied	to	WTW	networks	with	highly	

similar	layer	community	structure,	indicating	that	both	models	correctly	identify	the	

robust	global	communities	in	these	cases.	Together,	these	findings	provide	strong	support	

for	Conjecture	1	and	indicate	the	baseline	validity	of	both	models.	

	

Secondly,	we	find	that	both	models	tend	to	emphasize	layer	communities	when	applied	to	

networks	with	highly	different,	or	offset,	layers.	We	state	this	claim	as	Conjecture	2	and	
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find	strong	justification	across	all	of	the	tests	we	perform.	We	find	initial	evidence	for	this	

claim	in	the	offset	toy	case	analysis	as	both	models	favor	Type	1	partition	classifications,	

which	represent	partitions	driven	predominantly	by	layer	community	structure,	over	all	

other	“logical”	partitions.	In	particular,	the	extended	offset	test	indicates	that	the	diagonal	

model	especially	emphasizes	layer	communities	in	highly	offset	cases.	We	find	evidence	for	

this	in	the	diagonal	model’s	tendency	to	separate	node	copies	but	rarely	separate	nodes	

within	embedded	layer	communities	(low	r’	but	high	r	values),	and	the	model’s	continued	

preference	for	Type	1	partitions	even	at	extreme	offset	values	for	which	such	a	partition	

separates	many	node	copies.	We	find	strong	support	for	Conjecture	2	in	the	WTW	analysis,	

as	we	find	a	positive	relationship	between	layer	“different-ness”	and	the	degree	to	which	

node	copies	are	separated	across	a	variety	of	tests.	This	indicates	that	when	applied	to	

networks	containing	layers	with	highly	different	community	structure,	both	models	

emphasize	layer	communities	and	as	a	result	separate	many	node	copies.	Together,	these	

tests	provide	strong	justification	for	Conjecture	2.	

	

Lastly,	we	find	that	the	two	models	are	sensitive	to	different	types	of	network	layer	

“different-ness.”	This	finding,	stated	concretely	in	Conjecture	3,	represents	perhaps	the	

most	valuable	insight	of	our	analysis.	As	mentioned	above,	we	find	a	positive	relationship	

between	layer	“different-ness”	and	node	copy	separation	in	the	partitions	produced	by	

both	models	across	all	WTW	tests.	However,	the	two	models	are	sensitive	to	two	different	

conceptualizations	of	“different-ness.”	The	diagonal	model	produces	a	strong	relationship	

between	Offset	Ratio,	which	primarily	captures	the	extent	to	which	heavily	weighted	layer	

communities	are	aligned	across	layers,	and	Mismatch	Ratio,	which	captures	the	extent	to	

which	node	copies	are	separated.	However,	the	non-diagonal	model	shows	essentially	no	

relationship	between	these	two	metrics.	Instead,	the	non-diagonal	model	produces	a	

stronger	relationship	between	ego	differences,	which	measures	the	similarity	of	node	copy	

neighborhoods	across	layers,	and	Mismatch	Ratio	(two	metrics	that	are	mainly	unrelated	

for	the	diagonal	model).	This	finding	is	very	valuable	in	informing	future	research,	allowing	

practitioners	to	choose	the	proper	modularity	maximization	model	based	on	the	type	of	

community	that	they	seek	to	identify.		
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By	building	out	and	justifying	each	of	these	three	conjectures,	we	hope	to	open	new	

avenues	for	research	within	the	field	of	network	analysis.	Most	proximally,	our	World	

Trade	Web	analysis	can	serve	as	a	jumping	off	point	for	further	macroeconomic	research.	

Our	systematic	examination	of	each	models’	performance	when	applied	to	all	possible	layer	

pairs	provides	thorough	evidence	of	the	tendencies	of	each	model	when	applied	to	the	

WTW	system.	Armed	with	this	understanding,	future	researchers	can	better	analyze	the	

global	trade	system	and	identify	commodity-specific	trading	blocs.	Informed	by	Conjecture	

3,	these	researchers	can	fine	tune	their	model	choice	and	specifications	to	emphasize	the	

type	of	layer	similarity	that	they	consider	to	be	most	important.	The	results	of	such	analysis	

would	likely	be	highly	valuable	to	the	makers	of	macroeconomic	and	foreign	policy.	

	

Furthermore,	the	value	of	our	findings	is	not	limited	to	the	WTW	network.	Multiplex	

networks	are	a	natural	representation	for	a	multitude	of	complex	systems.	Research	on	

such	systems	has	been	broadly	hampered	by	the	lack	of	well	understood	and	conceptually	

justified	multiplex	analytical	tools.	Our	three	conjectures	illustrate	the	baseline	validity,	

analytical	tendencies,	and	differing	sensitivities	of	two	valuable	multiplex	modularity	

maximization	models.	As	a	result,	future	researchers	can	apply	these	models	with	a	strong	

understanding	of	their	performance,	and	an	informed	ability	to	tailor	model	choice	and	

specifications	to	their	analytical	goals.	Thus,	we	see	our	findings	as	the	equivalent	of	the	

user’s	manual	for	a	power	tool.	Such	a	power	tool	can	be	incredibly	useful,	but	its	value	

goes	only	as	far	as	the	user’s	understanding	of	how	to	use	it.	By	providing	a	series	of	well	

justified	conjectures	on	model	performance,	we	hope	to	arm	future	researchers	with	the	

understanding	to	reap	the	rewards	of	powerful	multiplex	modularity	maximization	models.	
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VI.	Appendix	

	

6.1	Offset	Toy	Case	Partition	Classifications	

	
Figure	6.1:	Stylized	layer	community	regions	(labeled	in	white	text)	

	

Ambiguous	1:	{	𝑣38 ∶ 𝑖	𝜖	 1, ℓ 	}	

Overlapping	1:	{	𝑣38 ∶ 𝑖	𝜖	 ℓ + 1, 50 	}	

Ambiguous	2:	{	𝑣38 ∶ 𝑖	𝜖	 51, 50 + ℓ 	}	

Overlapping	2:	{	𝑣38 ∶ 𝑖	𝜖	 51 + ℓ, 100 	}	

Layer	1 

Layer	2 

O1 

A1 

O2 

A2 

O3 

A3 

O4 

A4 



	 44	

Ambiguous	3:	{	𝑣39 ∶ 𝑖	𝜖	 1, ℓ 	}	

Overlapping	3:	{	𝑣39 ∶ 𝑖	𝜖	 ℓ + 1, 50 	}	

Ambiguous	4:	{	𝑣39 ∶ 𝑖	𝜖	 51, 50 + ℓ 	}	

Overlapping	4:	{	𝑣39 ∶ 𝑖	𝜖	 51 + ℓ, 100 	}	

	

PARTITION	TYPE	 	 A1	 O1	 A2	 O2	 A3	 O3	 A4	 O4	

TYPE	1	 	 i	 i	 ii	 ii	 ii	 i	 i	 ii	

TYPE	2	 	 i	 ii	 iii	 iv	 i	 ii	 iii	 iv	

TYPE	3	 	 i	 i	 ii	 ii	 i	 i	 ii	 ii	

TYPE	4	 	 i	 ii	 ii	 i	 i	 ii	 ii	 i	

TYPE	5	 	 i	 i	 ii	 ii	 iii	 iv	 iv	 iii	

TYPE	6	 	 i	 ii	 iii	 iv	 v	 ii	 vi	 iv	

TYPE	7	 	 i	 i	 ii	 iii	 ii	 i	 i	 iii	

TYPE	8	 	 i	 ii	 iii	 iii	 iii	 ii	 i	 iii	

TYPE	9	 	 i	 ii	 iii	 iv	 iii	 ii	 i	 iv	

TYPE	10	 	 i	 ii	 iii	 iv	 v	 ii	 iii	 iv	

TYPE	11	 	 i	 ii	 iii	 iv	 i	 ii	 v	 iv	

TYPE	12	 	 i	 ii	 i	 i	 i	 ii	 i	 i	

TYPE	13	 	 i	 i	 i	 ii	 i	 i	 i	 ii	

TYPE	14	 	 i	 i	 i	 ii	 iii	 i	 i	 ii	

TYPE	15	 	 i	 i	 ii	 iii	 i	 i	 i	 iii	

TYPE	16	 	 i	 ii	 i	 i	 i	 ii	 iii	 i	

TYPE	17	 	 i	 ii	 iii	 iii	 iii	 ii	 iii	 iii	

TYPE	18	 	 i	 i	 i	 i	 i	 i	 i	 i	

ILLOGICAL	 	 Any	partition	that	doesn’t	match	any	of	the	above	types	

	

Table	6.1:	Region	groupings	by	partition	type,	region	tags	shown	in	roman	numerals	
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6.2:	SITC	Code	Descriptions	

	
SITC	1	Digit	Codes	

Code	 Commodity	
0	 Food	and	live	animals	
1	 Beverages	and	tobacco	
2	 Crude	materials,inedible,except	fuels	
3	 Mineral	fuels	etc	
4	 Animal	and	vegetable	oils	and	fats	
5	 Chemicals	and	related	products,n.e.s.	
6	 Basic	manufactures	
7	 Machinery,transport	equipment	
8	 Miscellaneous	manufactured	articles	
9	 Goods	not	classified	elsewhere	

 
Table:	6.2:	SITC	1	Digit	code	descriptions	

 
 

SITC	2	Digit	Codes	
Code	 Commodity	
00	 Live	animals	
01	 Meat	and	meat	preparations	
02	 Dairy	products	and	birds'	eggs	
03	 Fish	and	fish	preparations	
04	 Cereals	and	cereal	preparations	
05	 Vegetables	and	fruit	
06	 Sugars,sugar	preparations	and	honey	
07	 Coffee,tea,cocoa,spices	
08	 Feeding	stuff	for	animals	
09	 Miscellaneous	edible	products	and	preparations	
11	 Beverages	
12	 Tobacco	and	tobacco	manufactures	
21	 Hides,skins,furskins,raw	
22	 Oil	seeds,oleaginous	fruits	
23	 Crude	rubber	(incl.synthetic)	
24	 Cork	and	wood	
25	 Pulp	and	waste	paper	
26	 Textile	fibres	and	their	wastes	
27	 Crude	fertilizers	and	crude	minerals	
28	 Metalliferous	ores	and	metal	scrap	
29	 Crude	animal,vegetable	materials	n.e.s.	
32	 Coal,coke	and	briquettes	
33	 Petroleum	and	products	
34	 Gas,natural	and	manufactured	
35	 Electric	current	
41	 Animal	oils	and	fats	
42	 Fixed	vegetable	fats	and	oils	
43	 Processed	animal	or	vegetable	oils,etc.	
51	 Organic	chemicals	
52	 Inorganic	chemicals	
53	 Dyeing,tanning	and	colouring	material	
54	 Medicinal	and	pharmaceutical	products	
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55	 Perfume,cleaning	etc.preparations	
56	 Fertilizers,manufactured	
57	 Plastics	in	primary	forms	
58	 Plastics	in	non-primary	forms	
59	 Chemical	materials	and	products,n.e.s.	
61	 Leather,dressed	fur,etc.	
62	 Rubber	manufactures,n.e.s.	
63	 Wood	and	cork	manufactures	
64	 Paper,paperboard	and	articles	thereof	
65	 Textile	yarn,fabrics,made	up	articles,etc.	
66	 Non-metallic	mineral	manufactures,n.e.s.	
67	 Iron	and	steel	
68	 Non-ferrous	metals	
69	 Manufactures	of	metals,n.e.s.	
71	 Power	generating	machinery	and	equipment	
72	 Machinery	for	specialized	industries	
73	 Metal	working	machinery	
74	 General	industrial	machinery	n.e.s.	
75	 Office	machines	and	adp	machines	
76	 Telecommunications	and	sound	recording	equipm	
77	 Electric	machinery,n.e.s.and	parts	
78	 Road	vehicles	
79	 Other	transport	equipment	
81	 Prefabr.buildings;sanitary,lighting	etc.fixtrs	
82	 Furniture	and	parts	thereof	
83	 Travel	goods,handbags	and	sim.containers	
84	 Articles	of	apparel	and	clothing	accessories	
85	 Footwear	
87	 Instruments	and	apparates	n.e.s.	
88	 Photographic	equipment,optical	goods	etc.	
89	 Miscellaneous	manufactured	articles,n.e.s.	
91	 Postal	packages	not	classified	according	to	kind	
93	 Special	transactions	and	commodities	not	classified	
96	 Coin	(not	gold	coin	or	legal)	
97	 Gold,non-monetary	

	

Table:	6.3:	SITC	2	Digit	code	descriptions	
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6.3	Pairwise	Commodity	Type	Classifications	

	

0-1	 1-2	 2-3	 3-4	 4-5	 5-6	 6-7	 7-8	 8-9	

0-2	 1-3	 2-4	 3-5	 4-6	 5-7	 6-8	 7-9	 	

	0-3	 1-4	 2-5	 3-6	 4-7	 5-8	 6-9	 	 	

0-4	 1-5	 2-6	 3-7	 4-8	 5-9	 	 	 	

0-5	 1-6	 2-7	 3-8	 4-9	 	 	 	 	

0-6	 1-7	 2-8	 3-9	 	 	 	 	 	

0-7	 1-8	 2-9	 	 	 	 	 	 	

0-8	 1-9	 	 	 	 	 	 	 	

0-9	 	 	 	 	 	 	 	 	

Table	6.4:	Pairwise	layer	classifications	version	1,	i-j	refers	to	the	two-layer	test	examining	

SITC-1	layers	i	and	j.	Supply	Chain	pairs	in	green,	Similar	Consumables	in	red,	Seemingly	

Unrelated	in	Gray,	and	Sparse	in	teal	

	

0-1	 1-2	 2-3	 3-4	 4-5	 5-6	 6-7	 7-8	 8-9	

0-2	 1-3	 2-4	 3-5	 4-6	 5-7	 6-8	 7-9	 	

	0-3	 1-4	 2-5	 3-6	 4-7	 5-8	 6-9	 	 	

0-4	 1-5	 2-6	 3-7	 4-8	 5-9	 	 	 	

0-5	 1-6	 2-7	 3-8	 4-9	 	 	 	 	

0-6	 1-7	 2-8	 3-9	 	 	 	 	 	

0-7	 1-8	 2-9	 	 	 	 	 	 	

0-8	 1-9	 	 	 	 	 	 	 	

0-9	 	 	 	 	 	 	 	 	

Table	6.5:	Pairwise	layer	classifications	version	2,	i-j	refers	to	the	two-layer	test	examining	

SITC-1	layers	i	and	j.	Supply	Chain	pairs	in	green,	Similar	Consumables	in	red,	Seemingly	

Unrelated	in	Gray,	Semi-Sparse	in	magenta,	and	Sparse	in	teal	
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