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Abstract

The World Health Organization describes zoonotic diseases as a major
pandemic threat, and modeling the behavior of such diseases is a key
component of their control. Many emerging zoonoses, such as SARS, Ni-
pah, and Hendra, mutated from their wild type while circulating in an
intermediate host population, usually a domestic species, to become more
transmissible among humans, and this transmission route will only be-
come more likely as agriculture and trade intensifies around the world.
Passage through an intermediate host enables many otherwise rare dis-
eases to become better adapted to humans, and so understanding this
process with accurate mathematical models is necessary to prevent epi-
demics of emerging zoonoses, guide policy interventions in public health,
and predict the behavior of an epidemic. In this thesis, we account for a
zoonotic disease mutating in an intermediate host by introducing a new
mathematical model for disease transmission among three species. We
present a model of these disease dynamics, including the equilibria of the
system and the basic reproductive number of the pathogen, finding that in
the presence of biologically realistic interspecies transmission parameters,
a zoonotic disease can establish itself in humans even if it fails to persist
in its reservoir and intermediate host species. This result and model can
be used to predict the behavior of any zoonosis with an intermediate host
and assist efforts to protect public health.
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Chapter 1

Introduction

This thesis presents a mathematical model that simulates the emergence of a zoonosis

that mutates from its wild form to a human-transmissible form in an intermediate

host population. It shows that interspecies transmission parameters determine the

global stability of the system and that zoonotic diseases with intermediate hosts can

persist in humans even if they fail to establish themselves in other species. This result

mathematically confirms a key tenet of the field of global health, that human health

is inextricably tied to that of other species. In this chapter, we introduce the project

and review the current state of mathematical epidemiology.

1.1 Background

Zoonotic diseases, which originate in animals and infect humans, are one of the most

concerning epidemic threats of the 21st century and form 60% of all known infectious

diseases [1]. These pathogens cause a billion cases of illness per year, inflict severe

economic damage, and pose an increasing threat in a more connected world; indeed,

endemic zoonoses are currently the greatest global burden on human health [1]. Public

health threats such as HIV-AIDS, avian influenza, SARS, Ebola, Nipah, Hendra, and
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rabies all trace their origin to nonhuman reservoir species, and it is likely that the

next global pandemic will be a zoonosis [1]. The World Health Organization even

cites “Disease X”, a pathogen currently unknown to cause human disease that might

evolve to become more transmissible among humans, as a priority for research and

development to prevent a pandemic [2], indicating the severity of the threat to public

health and the necessity for further research into zoonoses. Multihost pathogens are

not threats to human health alone: rinderpest, foot-and-mouth disease, and other

livestock diseases cause economic damage even though they do not infect humans

[3], and zoonotic diseases form 50% of recognized livestock diseases [4]. Zoonoses

have comprised a growing area of public health research for the last two decades

[5], although recent research has shifted from concern over spillover from domestic

animals to wild ones to concern over transmission from animals to humans.

The frequency of new pathogens emerging into the human population−rapidly

increasing in incidence or geographic range to become a threat to public health−is

increasing [4], and zoonoses comprise 75% of emerging infectious diseases [6]. Emer-

gence of zoonoses is linked to human behavioral changes and increasing rates of in-

teraction with wildlife, human travel, and global trade [7], as well as accelerating

climate change [8]. These changes are predicted to increase with anthropogenic de-

cisions, such as changing human population density, greater local and international

trade, and intensifying agricultural practices and land use ([1], [4], [9]). The dynamics

of a zoonosis in its reservoir host are frequently cited as an influence on its emergence

in humans [1], but to our knowledge, no attempt has been made to quantify the

entire course of an emerging zoonosis, from its origins in a wild reservoir host to, in

the worst case scenario, a pandemic in humans. Indeed, [10] blames a desire to view

zoonoses in a piecewise manner, as a concatenation of different epidemics rather than
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a connected system, for the lack of quantitative understanding of zoonoses as a new

type of disease. Explicitly understanding the dynamics behind this adaptive trans-

formation is thus critical to public health efforts; however, no previous quantitative

models examine the changes an emerging zoonosis undergoes as it spreads between

different species.

Further adding to the air of mathematical mystique around zoonoses, recent re-

search indicates that their transformation into a threat to humans does not occur

in a single leap. Zoonotic diseases are classified on the basis of their human-to-

human transmissibility [10], a critical distinction between pathogens with pandemic

potential and pathogens that remain relatively rare ([1], [6], [8]). Currently, the clas-

sification of zoonoses uses a three-stage framework presented in [4] and modified in

[10], which streamlines the five-stage framework of [9], dividing zoonoses based on

their transmissibility in humans. Stage 1, pre-emergence, represents zoonoses circu-

lating in an intermediate host but only capable of spillover into a dead-end human

host, with no further transmission. Stage 2, localized emergence, defines diseases that

can maintain stuttering chains in a human population with reinfection from animal

hosts but are incapable of sustaining themselves in humans alone. Stage 3, pandemic

emergence, classifies diseases that are fully adapted to humans and thus capable of

causing outbreaks in our species alone ([4],[10]). In this thesis, we examine the pro-

cess of pathogen evolution through these different stages to find that with a mutation

to a human-transmissible strain in an intermediate host, a pathogen can maintain an

endemic equilibrium in humans even in stage 1, suggesting that the rigid framework

underlying epidemiology’s stratification of zoonotic diseases based on their perceived

threat to humans may be unwarranted.

In contrast to pathogens which evolved to infect humans, such as smallpox, the
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biology of emerging zoonoses is adapted to a different host species, called the reser-

voir host. Zoonotic pathogens thus usually require one or more mutations from their

wild type before becoming human-to-human transmissible [8]. Intermediate hosts−a

non-reservoir animal species in which a zoonotic pathogen circulates−particularly

domestic animals, provide greater opportunity for a pathogen to mutate to a human-

transmissible form, because these species are biologically similar to the pathogen’s

wild reservoir and have greater contact with humans. Some of the most pressing un-

adressed questions in establishing the mathematical theory of zoonoses include better

capturing disease dynamics within nonhuman species in order to characterize changes

in the disease before it infects humans; focusing on the first singleton cases of human

infection to understand how a pathogen actively adapts to humans; and developing a

theory for the role of intermediate hosts in the emergence of the disease [8]. Overall,

there is no unifying mathematical theory or set of principles that can be used to frame

discussions of zoonotic spillovers, despite the frequent use of mathematical biology to

assist with risk assessment and surveillance strategies for other types of diseases [8].

This gap in modeling spillover dynamics limits our understanding of zoonoses, as does

a general lack of mathematical modeling of multihost pathogens and quantification

of the rate of human-to-human transmission ([10], [11]). This thesis fills that gap

by providing a mathematical model for a zoonosis emerging through an intermediate

host.

1.2 The Role of Intermediate Hosts for a Zoonosis

Zoonoses are the product of a pathogen exploiting a new niche, sometimes one ex-

posed by anthropogenic changes or induced by the amplification of its transmission
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[1]. Zoonotic pandemics occur when the pathogen gains the ability to circulate in a

human population, rather than infrequently causing infection in an individual dead-

end host [12]. The major distinction in zoonotic spread within humans is whether

the pathogen can spread beyond its primary individual host to infect other humans:

whether the basic reproduction number R0, the number of secondary cases produced

by an index case in an entirely naive population, is greater than 1. The consensus in

the field is that a pathogen’s threat to public health is defined by its R0 in humans [8].

A pathogen faces two barriers to becoming human-to-human transmissible: jumping

from an animal host to a human, and adapting to its new host through mutation or

reassortment [12]. However, overcoming the human-to-human transmissibility barrier

is considered the greatest obstacle preventing a zoonosis from becoming a pandemic

[12]. While such evolutionary changes can take place over a single individual infection,

this modification is considered to be a result of the role that different animal hosts

play in amplifying or transmitting a zoonosis to humans [1]. In fact, circulation in an

intermediate host population, generally a domestic animal where the pathogen can

mix with diseases caught from both wildlife and humans, provides zoonoses a key op-

portunity to mutate to a more effective pathogen in humans. There are four stages of

a zoonotic disease’s spread in an organism−exposure, cellular entry, replication, and

transmission−any one of which offers the pathogen an opportunity to better adapt to

a new host species [11]. The exposure and transmission stages of the pathogen’s evolu-

tion can also be affected by anthropogenic factors such as the host species’ population

structure (for domestic animals) or resource and habitat availability [11], and so the

dynamics behind the outbreak of a new zoonosis in humans are poorly understood [6].

However, it is widely believed that a species other than the reservoir host−particularly

a domestic animal that is exposed to both wild and human diseases and has more
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frequent contact with humans than its wild counterparts−can serve as an amplifier

or transmission host to humans. Once established in an intermediate population, a

pathogen has the opportunity to mutate to a human-to-human transmissible form

and start an epidemic in humans before detection by public health authorities. It is

therefore extremely important to develop a theory for a human-transmissible disease

arising from a zoonotic pathogen in an intermediate host population; with such a

framework, policymakers can move towards prevention of a human pandemic rather

than amelioration of one [8].

As an example of the role of intermediate hosts, the adaptation of avian influenza,

one of the most well-studied zoonoses, to humans requires a reassortment in domestic

pigs or poultry. Avian influenza’s success in a new host species is governed by its

receptor binding specificity [12]; with circulation in domestic pigs, which express both

human- and avian-influenza type receptors in their trachea, the virus has an opportu-

nity to mutate to a type more dangerous to humans ([13], [14]). Further, as domestic

animals, swine have more contact with humans than wild birds do and can thus spread

a disease more quickly [14]. Domestic poultry can play a similar role for the disease,

since circulation in a domestic poultry population may increase the pathogenicity of

avian influenza among birds [15]. Indeed, through passage in chickens, an avirulent

wild sample of avian influenza mutated to a highly pathenogenic form among chickens

[16], indicating the importance of passage through an intermediate species to chang-

ing the disease. As a result, human movement of livestock, not avian migration, is

the dominant factor in the spread of highly pathogenic avian influenza, even though

wild birds are the reservoir of the disease [17]. The influenzas are perhaps the easiest

example to understand, as reassortment of different hemagglutinin and neuraminidase

subtypes within one infected pig can produce entirely new pathogens [13], but less
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drastic mutations can alter the transmissibility or lethality of any pathogen. The

intensification of the pig industry in Malaysia was identified as the key factor in the

spread of Nipah virus encephalitus, which has bats as a reservoir host, to humans in

the 1990s [7], and pigs were later confirmed as an intermediate host for the disease

[18]. In this case, repeated introductions from bats, the pathogen’s reservoir host,

to pigs−and the disease dynamics that resulted−made Nipah virus able to persist in

its intermediate host and thus infect humans [19]. These results support the general

principle that the domestication of animals is linked to an increased risk of emergence

of zoonotic diseases into the human population [1], and Table 1.1 shows a sampling

of zoonoses for which an intermediate host has been identified.

Disease Reservoir Host Intermediate Host Source

Nipah virus encephalitis bats pigs [1], [7], [8], [5]
Hendra virus disease bats horses [7], [8], [5]

SARS bats civets [8]
Avian influenza wild birds domestic poultry, pigs [15], [16], [20]

Menangle virus disease bats pigs [7], [5]
Middle East Respiratory Syndrome bats camels [21]

Campylobacteriosis wild birds domestic poultry [22]
Japanese encephalitis wild birds pigs [22]

Table 1.1: Zoonotic diseases with intermediate hosts

The importance of an intermediate host species to zoonosis dynamics is a result

of the fact that most pathogens are less infectious to a non-reservoir species, a species

barrier they can overcome by rapid adaptation in a new host [3]. While single-host

pathogens evolve to an optimum level of virulence, multihost pathogens may be much

less or much more virulent in a new species [3] and require adaptation to succeed in

the new population. It has been proven that evolution favors minimizing the case

fatality ratio in a reservoir host, but it is unclear how this dynamic changes in a new

host species [23]. Nevertheless, dynamic emergence, where the non-human ecology of
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a disease changes before its emergence in humans, is cited as a more pressing concern

than static emergence, where the dynamics of the disease do not change until it is

established in humans [8], because it is more difficult to gather data and distribute

health interventions in animal populations than human ones. Zoonoses whose hosts

have sporadic contact with humans, and thus opportunities to adapt themselves to

humans through reassortment with human pathogens or stuttering chains of animal-

human-animal transmission, can adapt to infect humans more effectively before the

epidemic ceases [10]; as a result, most zoonotic diseases arise on farms [1], where

humans and animals work in close contact. On the other hand, the presence of an

intermediate amplifier host can provide an easier way to control a disease−by bring-

ing its basic reproduction number in the entire multispecies system below 1−than

direct interference with its wild reservoir host [11], offering hope for public health

interventions.

Further, there is a dearth of theories for the role of intermediate hosts in pathogen

emergence, despite the vital “bridging” role these species may play between wild

reservoir species and humans [8]. Models which incorporate the multihost ecology

that defines zoonoses are rare, with only six of 442 models surveyed in a recent study

investigating this defining component of zoonotic disease [10]. Thus, it is currently

unclear how to quantify the amplifier or transmission role that intermediate hosts are

thought to play in the emergence of a zoonosis.

1.3 The Role of Mathematical Modeling

A sizeable literature exists on the utility of using ordinary differential equations to

model a pathogen spreading between species [11]. Mathematical models of population

8



dynamics and zoonotic transmission are a crucial tool in understanding the nonlinear

interactions that are a hallmark of zoonotic diseases, a type of subgroup dynamics

which can lead to counterintuitive behaviors [10]. Models can enable experiments that

would be unfeasible with real populations, predict future trends based on current data,

and estimate key epidemic qualities such as the basic reproduction number [10] of a

pathogen in a specific population.

There have been attempts to quantify the effect of pathogen mutations in humans

alone. Models for tuberculosis sometimes include a distinction between latent and

active forms of the disease [24]. [20] recognizes that the ability of avian influenza

to mutate during an epidemic is a crucial determinant of its pandemic potential,

but conceptualizes this mutation as occuring within humans rather than another

species, ignoring the intrinsically zoonotic behavior of the disease. Modeling an SI-

SIR domestic poultry-human system, [20] finds that once mutant avian influenza

occurs in the human population, depopulating the avian one will not stop the spread

of the disease. This paper suggests adding a constant inflow of disease from wild

birds to domestic ones, as well as vital dynamics for the human compartment, but

primarily considers the dynamics of a mutation occurring once the disease has already

spread to humans, and considers only domestic poultry based on that population’s

greater importance than wild birds to the spread of the pathogen among humans

[20]. [25] expands on this analysis by including a compartment for wild birds, as

well as the capacity for isolation of infected humans. [25] also considers a mutation

arising only in the human population, and finds a unique, globally stable endemic

equilibrium when the basic reproduction number for the avian strain is greater than

one. However, this paper also locates the mutation after the pathogen’s spillover to

humans: [12] cites two barriers, jumping to humans and efficient human-to-human

9



transmission, that a pathogen must overcome, and in well-known examples such as

avian influenza, this change occurs in the “mixing vessel” of an intermediate host

species [13]. Further, controlling a human epidemic of a zoonotic disease depends on

controlling the basic reproduction number in both animals and humans [26], a control

not studied in preceding papers.

While both vector-borne diseases and pathogens which mutate in humans provide

a useful comparison for modeling the full range of a zoonotic disease, to our knowl-

edge, no model yet exists that attempts to characterize a zoonosis mutating while

circulating in an intermediate host population [8]. As their prevalence in the litera-

ture shows, mathematical models are a key tool for studying infectious diseases, and

have been used to predict or prove behavior for many types of epidemic. However,

few models focus on trans-species dynamics [10], and there are no mathematical mod-

els for zoonotic pathogens which contain a mechanism to differentiate between the

disease’s behavior in reservoir and intermediate hosts, despite the need for such anal-

ysis [8]. In this thesis, we present a model which incorporates this type of mutation.

Here, intermediate hosts originally become infected with a purely animal disease from

its reservoir hosts, but as the epidemic continues among intermediate hosts, a new

strain develops that can spread among humans. This thesis fills the gap noted in [8]

by introducing a mathematical model that simulates the entire course of a zoonosis

mutating to a human-transmissible form in an intermediate host population. We

investigate whether the presence of pathogen adaptation in intermediate hosts can

amplify an epidemic among humans, with the goal of informing public health efforts

to curb emerging infectious diseases.

The model presented here is based on the basic SIR model first presented by

Kermack and McKendrick ([27], [28], [29]), as well as the introduction to multihost
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SIR models found in [11]. As a baseline and example, we use parameters that most

closely reflect highly pathenogenic avian influenza, recognized as a classical example

of a zoonosis with an intermediate host [5] and for which the most data is available.

Further, although we model a constant force of infection from the wild reservoir host,

the model retains the capacity to implement seasonal variation or a sudden epidemic

in that species as well by changing the equations describing the wild compartment.

However, our model is intended to codify the idea of an intermediate host mathemat-

ically and therefore does not focus on a particular infectious disease. By changing its

parameters, this model can be applied to study any zoonosis that passes through an

intermediate host population, and its results are general to that theory.

1.4 Outline

This thesis investigates two questions: how to model adaptation of a zoonotic pathogen

to a human-transmissible form in an intermediate host population and what effects

these interspecies dynamics have on the epidemic in humans. We find that introduc-

ing a model that completely accounts for the spillover and interpopulation dynamics

exhibited by emerging zoonoses links human populations to animal ones more deeply

than previously thought: with nonzero contact rates between species and a nonzero

mutation rate in an intermediate host, a zoonotic pathogen can establish itself in hu-

mans even if it fails to take hold in animal hosts or achieve an R0 > 1 in the human

compartment, refuting the transmissibility framework found in [4], [9], and [10]. This

thesis introduces a theory of spillover through an intermediate host species that can

be modified to study any zoonosis that exhibits this behavior, and sounds an alarm

for researchers and policymakers by showing that zoonotic epidemics can persist in
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human populations under more conditions than previously thought. Chapter 2, which

introduces the model, provides justification for its organization. Chapter 3 gives a

basic mathematical analysis of its epidemiological qualities and provides a global anal-

ysis of the three-species system. Chapter 4 provides numerical simulations of each

possibility for the system, including a simulation of an avian influenza outbreak and a

comparison of the effect of different parameters of the model on the equilibrium pro-

portion of infected humans. Chapter 5 discusses the results and suggests directions

for future research.
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Chapter 2

The Model

In this chapter, we introduce the intermediate host model, showing how it builds

on previous deterministic models of infectious disease, and discuss comparisons to

other examples in the literature. We discuss the assumptions inherent to the model

framework and give a survey of the methods used in this thesis.

2.1 Presentation

The traditional susceptible, infected, recovered (SIR) model originally developed by

Kermack and McKendrick ([27], [28], [29]), shown below, accurately reproduces the

standard epidemic curves for an infectious disease, and forms the basis for many

different epidemiological models.
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dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI.

Here S, I, and R stand for the proportion of individuals that are susceptible,

infected, and recovered, respectively. This deterministic framework depends on the

transmission rate β and the recovery rate γ, parameters specific to the disease. This,

the simplest version, considers one disease that confers lifelong immunity spreading

within a closed, constant population of one species. There are no equilibria other

than the disease-free state (i.e. I(∞) = 0), as there is no external force of infection

or influx of susceptible individuals. The basic reproductive number R0 for this simple

SIR model is

R0 = β/γ.

To model a disease over a longer time frame, vital dynamics modeling birth (b)

and mortality (m) rates are introduced:

dS/dt = b− βSI −mS,

dI/dt = βSI − γI −mI,

dR/dt = γI −mR.

This framework has a force b constantly introducing new susceptible individuals,
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and the basic reproductive number for this model is

R0 =
bβ

m(m+ γ)
.

The disease-free equilibrium is

(S∗, I∗, R∗) = (
b

m
, 0, 0),

and the endemic equilibrium is

(S∗, I∗, R∗) = (
m+ γ

β
,
m

β
(R0 − 1),

γ

β
(R0 − 1)).

Other well-known modifications to the basic SIR model include adding classes

for exposed or maternally-immune individuals; dropping the assumption of lifelong

immunity so that individuals can become reinfected; or implementing a vaccination

program with a given protection rate. To our knowledge, the main class of SIR mod-

els that include two or more species are those that consider vector-borne illnesses.

However, since a vector-borne disease must infect both its host species (rather than

opportunistically jumping to a new species) and follows set steps in its life cycle in

both (rather than unpredictably mutating in a new host), a vector-borne SIR model

merely adds more compartments for the pathogen to run through. Unlike vector-

borne diseases such as malaria (see [30] and [31]), an emerging zoonosis does not

need to infect another species as part of its life cycle. Instead, it opportunistically

infects animals similar enough to its reservoir host, and−in the pattern of transmis-

sion considered here−mutates to a human-to-human transmissible form if given the

opportunity. Dengue, which spreads between mosquitoes and humans, is another
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example of a vector-borne disease, and its analysis draws useful parallels with the

type of pathogen behavior modeled in this thesis. [32], a review paper of determinis-

tic models of dengue, notes that the disease dynamics among the vector population

are frequently simplified to a mere force of infection for the human one, since the

lifespans of vectors are usually short. In contrast, a zoonosis model must consider

population dynamics as well as disease dynamics in its non-human compartments.

To our knowledge, this pattern of adaptive mutation rather than different stages in

a pathogen life cycle has not yet been captured in a mathematical model. While a

sizeable literature exists on mathematical models of vectorborne diseases, no model

captures the unintentional opportunism of zoonoses or incorporates selective pressure

on viruses [11]. Vector-borne diseases form a more widely studied type of pathogen,

and provide a useful comparison for the type of behavior modeled in this thesis, but

are a different type of dynamics than the opportunistic adaptation of zoonoses.

Attempts have been made to model zoonotic spillovers ([10], [11], [33]), but with-

out incorporating changes in the pathogen’s ecology over the course of an epidemic,

these models are mathematically indistinguishable from those modeling a vector-

borne disease with more hosts or a multispecies model. The key contrast with vec-

torborne diseases, not yet captured in a mathematical model, is that a zoonosis

infects species other than its reservoir opportunistically, and−the most important

distinction−mutates once within a new host. To model this behavior, we create three

compartments, representing the pathogen’s wild reservoir host, an intermediate host

assumed to be a domestic animal, and humans. The wild, domestic and human

populations are each modeled by a SIR system with vital dynamics and linked by

transmission routes. An infected wild host can pass the disease to a susceptible do-

mestic animal at a transmission rate pd, and an infected domestic animal can pass
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the human-transmissible strain of the disease to a human at a rate ph. Finally, the

model incorporates the hallmark of an emerging zoonosis: the pathogen’s ability to

mutate to a human-transmissible strain while circulating in a domestic host. To

model this phenomenon, we introduce a category T (transmissible) for domestic an-

imals in which the zoonosis has mutated−through reassortment, random mutation,

or evolutionary pressure−to a human-transmissible form. This mutation happens at

a rate µ in infected domestic animals, who then transition from the original infected

category to the transmissible category and can infect other susceptible domestic ani-

mals with the new, human-transmissible strain. Figure 2.1 provides a representation

of the connections between populations.

Figure 2.1: Model schematic. Model parameters are summarized in Table 2.2.

We use the traditional βi and γi to represent the transmission and recovery rates
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of the pathogen in species i, and represent births and deaths with bi and mi respec-

tively. As discussed above, pd represents the transmission rate from wild animals to

domestic ones and ph the rate at which the mutated version spreads from domestic

animals to humans. The full system of 10 ordinary differential equations is shown

in Table 2.1, with subscripts indicating the species (wild, domestic, or human) to

which the compartment belongs. Table 2.2 defines each variable and parameter in

the model.

Wild
dSw/dt = bw − βwSwIw −mwSw
dIw/dt = βwSwIw − γwIw −mwIw
dRw/dt = γwIw −mwRw

Domestic

dSd/dt = bd − βdSdId − pdSdIw − βdSdTd −mdSd
dId/dt = βdSdId + pdSdIw − µId − γdId −mdId
dTd/dt = µId + βdSdTd − γdTd −mdTd
dRd/dt = γdId + γdTd −mdRd

Humans
dSh/dt = bh − βhShIh − phShTd −mhSh
dIh/dt = βhShIh + phShTd − γhIh −mhIh
dRh/dt = γhIh −mhRh

Table 2.1: ODE systems of our model with three host compartments (species), com-
posed of wild reservoir hosts, intermediate domestic animal hosts, and human hosts.

Si susceptible individuals of species i
Ii infected individuals of species i
Td intermediate hosts infected with human-transmissible strain
Ri recovered individuals of species i
βi transmission rate among species i
γi recovery rate among species i
bi birth rate among species i
mi natural mortality rate among species i
pd transmission rate from reservoir to intermediate hosts
ph transmission rate from intermediate hosts to humans
µ mutation rate of the pathogen in the intermediate host population

Table 2.2: Parameter definitions.

18



2.2 Model Assumptions

We make several assumptions to clarify the essential dynamics of the system. Firstly,

we equate the domestic animal recovery and transmission rates for both strains of the

pathogen; the human-transmissible strain is different from the wild one only in that

its transmission rate in humans is nonzero. Only domestic animals infected with the T

strain can pass the disease to humans, although both strains circulate in the domestic

population. The model does not account for coinfection in a domestic animal, since

an individual infected with both strains is still capable of starting a human epidemic

and is thus counted in the T category.

We further assume that the population of each compartment is constant over the

course of the simulation, with each species’ vital dynamics set at replacement rates,

and thus calculate the proportion of susceptible, infected, and recovered animals in

each species rather than the raw numbers present in each category. To maintain a

focus on population biology and the potential for the spread of disease from infected

individuals, we do not consider disease-induced mortality.

The parameters pd, ph, and µ, which measure the rate of transmission from wild

to domestic animals, domestic animals to humans, and mutation rates in domestic

animals, are intended to capture the rate of interactions between the different species

and strains, an inherently unpredictable event, but the model is purely deterministic,

rather than stochastic.

We intend this model to provide a general framework that can be modified to fit

any zoonosis with an intermediate host, and provide the analysis in Chapter 3 with

the goal of informing such a theory. However, to provide a baseline for the numerical

simulations in Chapter 4, we use parameters corresponding to highly pathenogenic

avian influenza, perhaps the most well-sourced zoonosis. Table 2.3 provides the base-
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line values and the sources used in our examples.

Parameter Value Source
initial Sw 0.5 [34]
initial Iw 0.5 [34]

pd 0.51 [34] figure 1
βd 0.89 [35] table 1 for wild birds
γd 0.981 [35] table 1
bd 1 assumed
md 1 assumed
ph 0.207 [36]
βh 0.078 [36]
γh 0.091 [36]
bh 0.0118 CDC
mh 0.009 CDC
µ 0.499 [34] figure 3

Table 2.3: Parameter values and sources for the model. Due to a lack of data for
transmission parameters in wild animals, we assume βw, γw, bw, and mw to be equiv-
alent to their counterparts in domestic animals.

Reflecting the lack of data for zoonoses over their entire range of species, the

sources used for these parameters reflect different strains of avian influenza. [37] cal-

culates the transmission rate of H5N1 in Nigeria, while [36] cites information about

H7N9 in China. The values are also attained using different data-gathering practices:

[34] surveyed experts in Australian avian influenza for their assessment of the prob-

ability of domestic poultry becoming infected with low pathogenic avian influenza

from wild birds, as well as that strain mutating to H5 or H7 higly pathenogic avian

influenza (HPAI) on a farm, while [35] collected parameters about HPAI for an SEIR

model. As stated in Table 2.3, we could not find a source for transmission parameters

among wild birds, and thus assume their disease parameters to be equivalent to those

in domestic poultry. The variety and inconsistency of these sources reflects the need

for more data and research into the actual effects of particular zoonoses. Although it
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is crucial to public health interventions based on a mathematical model to know the

accuracy of each parameter, their specific values are relatively unimportant for the

theoretical results presented here and are accordingly not the focus of this work.

2.3 Methods

To obtain the equilibria for the system, we set each of the 10 equations of Table 2.1

to 0 and solve for the population variables. We further analyze the stability of each

equilibrium using the system’s Jacobian about the point and establish the importance

of the model’s basic reproduction number as a threshold condition. The methods we

use to analyze the model’s R0 are based on the next-generation matrix technique

given in [38] and [39]. This method defines R0 in a compartmental model, where it

has been proven to remain a threshold condition for the stability of equilibria [39].

This approach is similar to that used to model the spread of avian influenza in farm

and market populations of domestic poultry [40]; to analyze the effect of different

growth laws in the avian population on the spread of avian influenza [41]; to give a

model of a vector-host system for leishmaniasis [33]; to analyze SEIR models [42]; and

to analyze models with vaccination [43]. Our work thus uses established mathematical

epidemiology techniques to analyze a new model of infectious disease dynamics.

2.4 Conclusion

Our model extends the preexisting SIR framework such that it is well suited to study

spillover effect by zoonosis with intermediate hosts. We use a variety of mathe-

matical techniques such as the next-generation approach to analyze the dynamic

behavior of our model. The parameters used reflect the current availability of data,
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although the global analysis of the system will not change for different parameter

values. The model’s key innovations are linking three species together based on

their proximity to humans and distinguishing between human-transmissible and non-

human-transmissible strains of the pathogen, as no previous models simulate either

intermediate hosts for zoonoses or a mutation to a human-transmissible form to study

the entire range of an emerging infectious zoonosis.
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Chapter 3

Analysis

In this Chapter, we analyze the mathematical qualities of the model, proving that

a unique endemic equilibrium exists by analyzing each species compartment. We

further show that the stability of each equilibrium depends on the system’s R0 and

distinguish between the importance of intraspecies parameters−the transmission (β)

and recovery (γ) rates of a species, as well as its birth and mortality rate (b,m)−and

interspecies parameters governing connections between species −the contact rates pd

and ph, as well as the rate of mutation µ to a human-transmissible form. We show

that, if there is a nonzero number of infected wild animals, only the second type of

parameters can alter the global stability of the system.
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3.1 The Wild Compartment

The equilibrium states (S∗
w, I

∗
w, R

∗
w) in the wild compartment satisfy the following

equations:

bw − βwS∗
wI

∗
w −mwS

∗
w = 0, (3.1)

βwS
∗
wI

∗
w − γwI∗w −mwI

∗
w = 0, (3.2)

γwI
∗
w −mwR

∗
w = 0. (3.3)

By summing (3.1), (3.2), and (3.3), we obtain the total abundance of wild animals in

equilibrium, bw/mw.

Theorem 1. There is one disease-free equilibrium, Ew
f , at

(S∗
w, I

∗
w, R

∗
w) =

(
bw
mw

, 0, 0

)
,

and a unique endemic equilibrium, Ew
e , at

(S∗
w, I

∗
w, R

∗
w) =

(
mw + γw

βw
,
bw −mwS

∗
w

βwS∗
w

,
γwI

∗
w

mw

)

Proof. Factoring equation (3.2) yields

I∗w(βwS
∗
w − γw −mw) = 0,

which holds either if I∗w = 0 (case 1) or if βwS
∗
w − γw −mw = 0 (case 2).

In the first case, we obtain the disease-free equilibrium by substituting I∗w = 0

into equations (3.1) and (3.3), producing equilibrium values of S∗
w = bw

mw
and R∗

w = 0.
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The second case holds if Sw = γw+mw

βw
. Substituting this value into equation (3.1),

we obtain I∗w = bw−mwS∗
w

βwS∗
w

. Solving equation (3.3) for Rw gives R∗
w−

γwI∗w
mw

. Since I∗w > 0,

this case produces an endemic equilibrium.

It is a basic epidemiological result that a simple SIR model with vital dynamics,

such as the system that models the wild compartment here, has Rw
0 = bwβw

mw(γw+mw)
.

We prove the threshold value of Rw
0 in the wild compartment by using its Jacobian,

Jw =


−βwIw −mw −βwSw 0

βwIw βwSw − γw −mw 0

0 γw −mw


Theorem 2. Ew

f is stable if R0 < 1 and Ef
e is stable if R0 > 1.

Proof. In the first case, let Rw
0 < 1. We calculate that

Jw(Ew
f ) =


−mw − bwβw

mw
0

0 bwβw
mw
− γw −mw 0

0 γw −mw


has eigenvalues −mw and bwβw

mw
− γw − mw. Since mw > 0 by assumption and

bwβw
mw

< mw + γw by the restriction on R0, both eigenvalues are negative and so Ew
f is

stable when Rw
0 < 1.

In the second, let Rw
0 > 1. We have that

Jw(Ew
e ) =


− bwβw
γw+mw

−γw −mw 0

bwβw
γw+mw

−mw 0 0

0 γw −mw


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with eigenvalues − bwβw
γw+mw

, 0,−mw. Since all parameters are positive, these eigen-

values are all negative and thus Ew
e is stable.

We have thus shown that one disease-free equilibrium and one endemic equilibrium

exist among wild reservoir hosts, confirming the importance of Iw > 0 as a threshold

condition for the spread of the disease.

3.2 The Domestic Compartment

In a similar manner, we can analyze the domestic compartment distinctly from the

other two species, since interspecies interactions are limited to the force of infection

pdSdIw attributed to the wild compartment. Any equilibrium (S∗
d , I

∗
d , T

∗
d , R

∗
d) in this

compartment must satisfy the system

bd − βdS∗
dI

∗
d − pdS∗

dI
∗
w − βdS∗

dT
∗
d −mdS

∗
d = 0, (3.4)

βdS
∗
dI

∗
d + pdS

∗
dI

∗
w − µI∗d − γdI∗d −mdI

∗
d = 0, (3.5)

µI∗d + βdS
∗
dT

∗
d − γdT ∗

d −mdT
∗
d = 0, (3.6)

γdI
∗
d + γdT

∗
d −mdR

∗
d = 0. (3.7)

Note that by summing equations (3.4)-(3.7), we obtain the abundance of the domestic

compartment at equilibrium, bd/md. Since this compartment is subject to an external

force of infection from the wild compartment, we also note that the existence of a

disease-free equilibrium depends on this external influence.

Lemma 1. A disease-free equilibrium, Ed
f , in the domestic compartment,

(S∗
d , I

∗
d , T

∗
d , R

∗
d) =

(
bd
md

, 0, 0, 0

)
,
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is only possible if Iw = 0 or pd = 0.

Proof. Let Iw > 0 for some value of t and pd 6= 0, and assume that a disease-free

equilibrium exists with I∗d = 0. We note that a disease-free equilibrium requires

a nonzero proportion of susceptible individuals, so S∗
d > 0 as well. Substituting

these values into equation (3.5), we obtain pdS
∗
dI

∗
w = 0, a contradiction with our

assumptions. Therefore I∗d 6= 0. Substituting this value into equation (3.6), we also

obtain T ∗
d 6= 0. However, these condition imply that there are infected individuals of

both types in the domestic animal population, a contradiction with our assumption

that we are analyzing a disease-free equilibrium. By contradiction, any disease-free

equilibrium in the domestic compartment must have either Iw = 0 or pd = 0 in the

complete system.

Note that this result is deeper than one about the equilibrium state of Iw: if

Iw > 0 at any time over the course of the epidemic, even if the disease later vanishes

from the wild population, the pathogen will spread to the domestic species.

Assuming that there is a force of infection from the wild reservoir hosts, we analyze

the possible endemic equilibrium values and show that there is a unique possibility

in this compartment as well.

Theorem 3. There is only one admissible endemic equilibrium Ed
e in the domestic

compartment. At this equilibrium, we have S∗
d < min{bd/(md + pdI

∗
w), (γd +md)/βd}.

Proof. Adding equations (3.4)-(3.6), we obtain

bd −mdS
∗
d − (γd +md)I

∗
d − (γd +md)T

∗
d = 0. (?1)

Further, from equation (3.6), we isolate
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I∗d =
1

µ
(γd +md − βdS∗

d)T
∗
d . (?2)

Substituting ?2 into ?1, we get

T ∗
d =

bd −mdS
∗
d

(γd +md) + 1
µ
(γd +md)(γd +md − βdS∗

d)
. (?3)

Since the quantities I∗d and T ∗
d are both nonnegative, it follows immediately that

the equilibrium value S∗
d must have a natural upper bound:

S∗
d ≤

γd +md

βd
≤ bd
md

. (3.8)

Hence we can confirm the denominator in (?3) is strictly positive.

We also note that from (3.7), we have R∗
d =

γd(I
∗
d+T

∗
d )

md
. We thus calculate the

equilibrium values S∗
d by substituting ?2, ?3 into (3.4) and obtain, after rearranging:

bd − pdS∗
dI

∗
w −mdS

∗
d = βdS

∗
d(I

∗
d + T ∗

d ) = βdS
∗
d(1 +

1

µ
(γd +md − βdS∗

d))T
∗
d

=
βdS

∗
d(1 + 1

µ
(γd +md − βdS∗

d))(bd −mdS
∗
d)

(γd +md) + 1
µ
(γd +md)(γd +md − βdS∗

d)

=
βdS

∗
d(bd −mdS

∗
d)

(γd +md)
. (3.9)

We note that in the last step of the derivations above we cancel out the common

factor 1 + 1
µ
(γd + md − βdS∗

d) > 0, which is guaranteed by the inequality (3.8). It

is easy to observe that there exist at most two possible equilibrium values of S∗
d as

the roots of the quadratic equation (3.9), denoted by Sd
∗
(1) < Sd

∗
(2), a consequence of

our assumption that the transmission and recovery rates of both strains in domestic

animals are equal.
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We now proceed to prove only the smaller root Sd
∗
(1) is admissible for the long-term

disease dynamics should there be nonzero disease burden (i.e., I∗d > 0 and T ∗
d > 0) in

the domestic compartment. In fact, we can view S∗
d as the fixed point(s) satisfying

f(x) = g(x),

where f(x) is a simple linear function, given by

f(x) = bd − (pdI
∗
w +md)x,

and g(x) is a quadratic function, given by

g(x) =
βdx(bd −mdx)

(γd +md)
.

We can show that f(0) = bd > 0 = g(0), f(bd/(md + pdI
∗
w)) = 0 < g(bd/(md +

pdI
∗
w)), and 0 > f(x) > g(x) for sufficiently large x. Furthermore, as both f and g

are smooth continuous functions, according to the intermediate value theorem, there

must exist two fixed points satisfying f(x) = g(x), Sd
∗
(1) ∈ (0, bd/(md + pdI

∗
w)) and

Sd
∗
(2) ∈ (bd/(md + pdI

∗
w),∞) (as also illustrated in Figure 3.1).

We have bd − pdS∗
dI

∗
w − mdS

∗
d = βdS

∗
d(I

∗
d + T ∗

d ) > 0, for nonzero disease burden

I∗d > 0, T ∗
d > 0. Hence we must have S∗

d < bd/(md + pdI
∗
w). So we complete our proof

that only the smaller root Sd
∗
(1) is admissible as the unique endemic equilibrium in

the domestic compartment.
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Figure 3.1: The graphs of f(S∗
d) and g(S∗

d); the x-coordinates of their intersection

points give the proportion of domestic animals infected at the equilibria.

In line with our proof above, it is easy to directly check the discriminant of the

quadratic equation in (3.9) is positive:

∆ = [βdbd + (γd +md)(pdI
∗
w +md)]

2 − 4βdmdbd(γd +md) > 0.

Then we obtain the endemic equilibrium for S∗
d = Sd

∗
(1):

Sd
∗
(1) =

βdmd + (γd +md)(pdI
∗
w +md)−

√
∆

2βdmd

.

We have thus shown that, in the domestic compartment, there is one unique
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endemic equilibrium Ed
e = (S∗

d , I
∗
d , T

∗
d , R

∗
d), where

S∗
d = Sd

∗
(1),

T ∗
d =

bd −mdS
∗
d

(γd +md) + 1
µ
(γd +md)(γd +md − βdS∗

d)
,

I∗d =
1

µ
(γd +md − βdS∗

d)T
∗
d ,

R∗
d =

γd(I
∗
d + T ∗

d )

md

.

Further, as we prove above, this equilibrium must be admissible in the presence

of a nonzero force of infection at any time from the wild host population (pdI
∗
w > 0).

3.3 The Human Compartment

To complete our understanding of the different species involved in the model, we

analyze the system of equilibrium equations in the human compartment as follows,

bh − βhShIh − phShTd −mhSh = 0, (3.10)

βhShIh + phShTd − γhIh −mhIh = 0, (3.11)

γhIh −mhRh = 0. (3.12)

Adding (3.10) - (3.12) gives a total abundance of bh
mh

in the human compartment at

equilibrium. We begin our analysis of this compartment by noting an identical result

from the domestic one: a disease-free equilibrium can exist in the human compartment

only if the force of infection from domestic animals is zero.

Lemma 2. A disease-free equilibrium Eh
f in the human compartment, (S∗

h, I
∗
h, R

∗
h) =

( bh
mh
, 0, 0), is only possible if Td = 0 or ph = 0.
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Proof. In a manner similar to the proof of Lemma 1, let Td > 0 at any time over the

course of the model and ph 6= 0, and assume that a disease-free equilibrium exists with

I∗h = 0. By equation (9), we obtain phS
∗
hT

∗
d = 0, a contradiction with our assumptions

and with the fact that S∗
h 6= 0 at a disease-free equilibrium. By contradiction, any

disease-free equilibrium must have either Td = 0 or ph = 0.

Thus, in the presence of any force of infection phTd from domestic animals, there

must be an endemic equilibrium in the human compartment. We note again that

if Td > 0 at any time over the course of the epidemic, even if that population of

animals vanishes at equilibrium, it is enough to seed the infection into the human

compartment.

Theorem 4. There exists only one admissible endemic equilibrium in the human

compartment Ee
h = (S∗

h, I
∗
h, R

∗
h), where S

∗
h is given by the smaller root of the quadratic

equation:

bh − phS∗
hT

∗
d −mhS

∗
h = βhS

∗
h(bh −mhS

∗
h)/(γh +mh).

Proof. From equation (3.12), we know

R∗
h =

γhI
∗
h

mh

.

By adding equations (3.10) and (3.11), we obtain

bh −mhS
∗
h − (γh +mh)I

∗
h = 0.

Accordingly, I∗h =
bh−mhS

∗
h

γh+mh
. Substituting I∗h into (3.10), we obtain

bh − phS∗
hT

∗
d −mhS

∗
h =

βhS
∗
h(bh −mhS

∗
h)

γh +mh

. (3.13)
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Defining the left-hand side as f(S∗
h) = bh−phS∗

hT
∗
d −mhS

∗
h and the right-hand side as

g(S∗
h) =

βhS
∗
h(bh−mhS

∗
h)

γh+mh
, as in the proof of Theorem 3, any endemic equilibrium in the

human compartment must satisfy the fixed point(s) f(S∗
h) = g(S∗

h) (see Figure 3.2).
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S
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S
h2

Figure 3.2: The graphs of f(S∗
h) and g(S∗

h); the x-coordinates of their intersection

points give the proportion of humans infected at the equilibria.

f is a negatively-sloped line with its root at f1 = bh
phT

∗
d+mh

. g is a concave parabola

with roots at g1 = 0 and g2 = bh
dh

. We thus have g1 < f1 < g2, so there are

two intersection points Sh
∗
(1) < f1 and Sh

∗
(2) > g2 (by using the intermediate value

theorem). However, g2 is the total compartment size in the human compartment;

Sh(2) is thus biologically impossible.

Solving the quadratic equation (3.13) directly and taking its smaller root, we
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obtain the only viable endemic equilibrium:

Sh
∗
(1) =

βhbh + (mh + γh)(phT
∗
d +md)−

√
[βhbh + (mh + γh)(phT ∗

d +md)]2 − 4βhmhbh(γh +mh)

2βhmh

We have thus shown that in the presence of a force of infection from domestic

animals, there is an admissible endemic equilibrium in the human compartment at

Ee
h = (S∗

h, I
∗
h, R

∗
h), where

S∗
h = Sh

∗
(1),

I∗h =
bh −mhS

∗
h

γh +mh

.

R∗
h =

γhI
∗
h

mh

.

3.4 System Stability and R0

As shown in the previous sections, the endemic equilibria in each compartment are

unique; under the assumption that there is a nonzero force of infection between species

compartments and in the presence of circulating disease in the wild reservoir, we use

the results of Theorems 1, 3, and 4 to obtain an endemic equilibrium at

Ee = (S∗
w, I

∗
w, R

∗
w, S

∗
d , I

∗
d , T

∗
d , R

∗
d, S

∗
h, I

∗
h, R

∗
h).

The formula of these expressions can be found in detail above.

More precisely, the existence of such stable endemic disease equilibiria requires an

exact condition, that is, the basic reproductive number of the entire system R0 > 1.
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Otherwise, there can exist a stable disease-free equilibria. In what follows, we will

resort to the so-called next-generation approach as detailed in [38] and [39] to calculate

R0 for the system.

The system’s R0 is the spectral radius of FV −1, where F describes the rate of

appearance of new infections in each compartment of host individuals,

F =



βwSw 0 0 0

pdSd βdSd 0 0

0 0 βdSd 0

0 0 phSh βhSh


and V describes the rate of transfer of individuals out of each compartment,

V =



γw +mw 0 0 0

0 µ+ γd +md 0 0

0 −µ γd +md 0

0 0 0 γh +mh


.

We thus get

FV −1 =



βwSw

mw(γw+mw)
0 0 0

pdSd

γw+mw

βdSd

µ+γd+md
0 0

0 µβdSd

(γd+md)(µ+γd+md)
βdSd

γd+md
0

0 µphSh

(γd+md)(µ+γd+md)
phSh

γd+md

βhSh

γh+mh


.

R0 is then the maximum of the eigenvalues of this matrix,

R0 = max{ βwSw
γw +mw

,
βdSd

µ+ γd +md

,
βdSd

γd +md

,
βhSh

γh +mh

}.
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At the disease-free equilibrium, we have Sw = bw/mw, Sd = bd/md, Sh = bh/mh.

Therefore, the R0 value in a population entirely composed of susceptible individuals

is

R0 = max

{
βwbw

mh(γw +mw)
,

βdbd
md(µ+ γd +md)

,
βdbd

md(γd +md)
,

βhbh
mh(γh +mh)

}
. (3.14)

We further establish that R0 > 1 retains its traditional role as the threshold for

determining the spread of an epidemic using an analysis of the system’s Jacobian

matrix at the disease-free equilibria. Since we are interested only in the total number

of infected individuals, we consider the time evolution of disease burden across all

three compartments in the form (Iw, Id, Td, Ih):

dIw/dt = βwSwIw − γwIw −mwIw,

dId/dt = βdSdId + pdSdIw − µId − γdId −mdId

dTd/dt = µId + βdSdTd − γdTd −mdTd

dIh/dt = βhShIh + phShTd − γhIh −mhIh.

The Jacobian matrix of this system above at the disease-free equilibrium Ef =

(0, 0, 0, 0) is

J(Ef ) =



βwSw − (γw +mw) 0 0 0

pdSd βdSd − (µ+ γd +md) 0 0

0 µ βdSd − (γd +md) 0

0 0 phSh βhSh − (γh +mh)


.

We first establish results on the stability of the disease-free equilibrium Ef .

Theorem 5. Ef is asymptotically stable if R0 < 1 and unstable if R0 > 1.
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Proof. At Ef = (0, 0, 0, 0), we have Sw = bw/mw, Sd = bd/md, Sh = bh/mh. Thus,

J(Ef ) =



βwbw/mw − (γw +mw) 0 0 0

pdSd βdbd/md − (µ+ γd +md) 0 0

0 µ βdbd/md − (γd +md) 0

0 0 phSh βhbh/mh − (γh +mh)


.

If R0 < 1, then the diagonal entries of J(Ef ), which are actually the eigenvalues

of the Jacobian matrix J(Ef ), are strictly negative. Thus Ef is asymptotically stable

if R0 < 1. If R0 > 1, then at least one of the eigenvalues of the Jacobian matrix

J(Ef ) (its diagonal entries) is strictly positive. Therefore Ef is unstable if Ro > 1.

We then turn to the endemic equilibrium and establish similar results.

Theorem 6. Ee is asymptotically stable if R0 > 1 and unstable if R0 < 1.

Proof. According to our analysis of endemic equilibria above, we have

S∗
w =

γw +mw

βw
,

S∗
d <

γd +md

βd
,

S∗
h <

γh +mh

βh
.

Substituting into the Jacobian matrix J(Ee) the values for S∗
w, S

∗
d , S

∗
h, the diagonal

entries of J(Ee) are either zero or negative. Therefore Ee is asymptotically stable if

R0 > 1. Similarly we can prove Ee is unstable if R0 < 1.
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Thus R0 retains its role as the threshold condition for an epidemic.

3.5 Threshold Parameters

The results above replicate the standard epidemiological finding that R0 is a threshold

condition for the system, but the interspecies connections in this model allow us to

establish a more detailed result. By Theorem 2 and Lemmas 1 and 2, the stability

of the equilibria depends on pd, ph and µ, the same parameters which control Sw, Sd,

and Sh in the calculation of R0. Indeed, only these parameters determine the results

of the epidemic.

Theorem 7. In the presence of a nonzero number of infected wild animals, Ef is

stable if and only if pd, µ, ph > 0.

Proof. (⇒) If the disease-free equilibrium is stable, Lemmas 1 and 2 show that

pd, Iw, ph, Td > 0. Considering equation (6), the only way to obtain Td > 0 is to

have µ > 0 as well.

(⇐) If pd, ph, µ > 0, a nonzero proportion Iw creates a positive force of infection

in equation (5), and since µ > 0 there is a positive force of infection in equation (6)

as well. With T ∗
d > 0 and ph > 0, there is a positive force of infection in equation

(9), and so I∗h > 0, creating an endemic equilibrium in the human compartment. If

all of these conditions hold, regardless of the values of βi or γi in any species, there

is a nonzero, constant force of infection for each species and so the system is forced

into an endemic equilibrium.

38



3.6 Conclusion

This model has a disease-free equilibrium and an endemic equilibrium, whose sta-

bility depends on pd, ph and µ. Isolating these parameters provides suggestions for

possible interventions. The results of Theorem 7, in particular, show that while many

parameters of the model can be changed by human intervention−βd could be lowered

by increasing biosecurity on farms for domestic animals, for example, while much of

public health and medicine offers strategies for changing βh and γh−the only effective

route for eliminating the possibility of a zoonotic epidemic in humans is to elimi-

nate contact between species or the possibility of pathogen mutation, an impossible

requirement in any real system.
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Chapter 4

Numerical Simulations

To clarify the results of the theoretical analysis presented in Chapter 3, we present

simulations of different cases of the model drawn from available data (summarized in

Table 2.3). To elucidate the effects of the interspecies transmission parameters−pd,

ph, and µ−we simulate cases where the pathogen fails to establish itself in wildlife, in

domestic animals, and in both populations, showing that the human population will

still suffer an endemic disease even if animal populations remain relatively unaffected

by a brief epidemic. We further isolate the effect of each parameter on I∗d , T
∗
d , and I∗h

by varying each in isolation, finding that only controlling the interspecies parameters

can completely prevent an epidemic in humans.

4.1 Examples

We first simulate a zoonosis that establishes endemic equilibria in each host species,

using the baseline parameters with 5βw = 5βd to ensure the spread of the pathogen.
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Figure 4.1: A simulation showing endemic equilibria in each species. Parameter values

are as shown in Table 2.3, with βw and βd multiplied by 5 to ensure spread in each

compartment.

The outbreak shown in figure 4.1 infects a maximum of 46.33% of the human

population and stabilizes at 19.04% of the population infected, reaching equilibria in

all three species by 150 units of time.

Next, to elucidate the effect of the mutation, we simulate an outbreak that fails

to establish itself in the wild population (in this case, this species does not function

as a reservoir host).
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Figure 4.2: A simulation showing a disease-free equilibrium in the wild reservoir host

species that spills over to endemic equilibria in the domestic intermediate host and

humans. Parameters are as shown in Table 2.3, except with βd multiplied by 5 to

ensure an epidemic in the domestic compartment.

Figure 4.2 shows that even if the disease fails to persist in its wild reservoir host,

it can still become endemic in the human population. A maximum of 49.75% of the

human population was infected, with 19.62% infected at equilibrium by time 150.

This case illustrates that even if the epidemic fails to take hold among wild animals,

it can still spread to domestic animals and thus humans, illustrating the importance

of pd as a threshold parameter.

For our final example, we simulate avian influenza mutating from a low-pathogenic

to a highly-pathogenic strain in an intermediate host. One of the best-known examples

of a zoonosis with an intermediate host, avian influenza can spread from wild birds to
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domestic poultry to humans, and this pathogen has widely available data. Seeding the

model with the parameters shown in Table 2.3 (and assuming that βw = βd, γw = γd),

we obtain the result shown in figure 4.3.
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Figure 4.3: A simulation of low-pathogenic avian influenza mutating to high-

pathenogenic avian influenza. Parameters are as shown in Table 2.3.

This example−which uses the most data publicly available−shows that even if

a pathogen’s R0 is less than one in both wild and intermediate hosts, it can still

establish itself in the human population. Here, both strains of avian influenza fade

in the animal populations while establishing an endemic equilibrium in the human

population, with a maximum of 10.94% and an equilibrium of 7.65% of the population

infected over a time span an order of magnitude larger than that necessary in the

previous examples (t = 2000, not shown in the figure). This result indicates that the

unexpected behavior described in Chapter 3 and modeled above does appear in real
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epidemics.

The results here are summarized in Table 4.1. The equilibrium proportion of

infected humans is highest in row 2 because there are more domestic animals infected

with the transmissible strain when the force of infection with the wildtype strain

vanishes over time.

Situation Max Ih Equilibrium Ih Time to Equilibrium
Endemic in all species 46.33% 19.04% 102

Disease-free in wildlife 49.75% 19.62% 102

Avian influenza 10.94% 7.65% 103

Table 4.1: A comparison of the maximal and equilibrium values for the percentage of
infected humans for each representative strain.

These simulations illustrate that with nonzero transmission parameters, an ini-

tial infection in wild animals will spread to an endemic equilibrium in humans and

domestic animals even if the pathogen fails to establish itself in its reservoir host (a

biologically improbable situation), a worrying situation for public health officials.

4.2 Effects of Interspecies Transmission Parame-

ters

In this section, we evaluate the effect of varying the interspecies transmission param-

eters pd, µ, and ph on the equilibrium values I∗d , T ∗
d , and I∗h after 3000 units of time, in

addition to βd and βh for comparison. To produce the graphs shown below, we vary

the parameter in question from 0.01 to 5 (since values of 0, as shown in Chapter 3,

inevitably lead to a disease-free equilibrium in the human compartment), with a step

size of 0.1, holding the other values constant at the endemic equilibrium parameters

detailed in section 4.1. Each simulation is run for 3000 timesteps, to ensure that
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an equilibrium solution is reached. In the domestic compartment, varying the trans-

mission parameters pd and µ can change the relative prevalence of the wildtype and

human-transmissible strains, as shown in Figures 4.4 and 4.5. (We do not examine

the effect varying ph has on the domestic compartment because that parameter does

not appear in the equations governing its behavior.)
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Figure 4.4: Graphing the proportion of domestic animals infected with the wildtype

strain and the human-transmissible strain against pd, the contact rate (spillover rate)

between wild animals and domestic ones.
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Figure 4.5: Graphing the proportion of domestic animals infected with the wildtype

strain and the human-transmissible strain against µ, the rate of mutation from the

wildtype strain to the human-transmissible strain.
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Figure 4.6: Graphing the proportion of infected humans against pd.

46



Similarly, we vary pd, µ, and ph to examine the effect of these parameters on the

proportion of infected humans, finding that while increasing the mutation and inter-

mediate host-human contact rate increases this proportion, increasing pd lowers it (see

Figures 4.6, 4.7, and 4.8), as a larger contact rate between wild and domestic animals

leads to a larger proportion of animals infected with the non-human-transmissible

strain and thus unable to pass the disease to humans. Further, for comparison, we

vary βh from 0 to 5 using the same step length of 0.01. As shown in Figure 4.9, while

increasing βh can effect the proportion of infected humans, even decreasing βh to 0

still leads to an endemic equilibrium, with I∗h > 0.
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Figure 4.7: Graphing the proportion of infected humans against µ, the rate of muta-

tion from the wildtype strain to the human-transmissible strain.

47



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p
h

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

p
ro

p
o
rt

io
n

 i
n
fe

c
te

d
infected humans

Figure 4.8: Graphing the proportion of infected humans against ph, the contact rate

(spillover rate) between domestic animals and humans.
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Figure 4.9: Graphing the proportion of infected humans against βh, the transmission

rate among humans. Here, setting βh to 0 still gives rise to an endemic equilibrium

of infected humans.
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Figure 4.10: Graphing the proportion of infected humans and domestic animals

against βd, the transmission rate among domestic animals. Here, setting βd to 0

still gives rise to an endemic equilibrium of infected humans.

The importance of the interspecies transmission parameters is reflected in Figures

4.9 and 4.10, which show that even when the transmission rates of the pathogen in

humans or domestic animals is set to 0, the disease can reach an endemic equilibrium

in humans. The effect of setting each parameter to in an otherwise endemic equilib-

rium, where the epidemic is expected to remain endemic in all three species as in 4.1

is summarized in 4.2.

These comparisons suggest that a lower number of animals infected with the trans-

missible strain has the potential to lower the proportion of infected humans, while

even if the intraspecies parameters βd or βh are set to 0 the epidemic can spread to

infect the human population. These results show that the interspecies transmission

parameters are primary targets for intervention to lower the proportion of infected

humans in this model.
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Parameter Maximum % of Infected Humans Equilibrium % of Infected Humans

– 46.33 19.04
pd 0 0
µ 0 0
ph 0 0
βw 49.77 19.62
βd 18.81 11.16
βh 36.13 18.06

Table 4.2: Comparing the effect of setting each transmission parameter to 0 in the
endemic equilibrium of Figure 4.1.

4.3 Summary

To test the result from Chapter 3 that changing µ, ph, and pd matters more to the

eventual number of infected humans than changing βi or γi, the traditional param-

eters targeted in public health interventions, we varied the parameters pd, µ, ph, βd,

and βh while holding the other values constant at an endemic equilibrium condition.

The results of these numerical simulations show that varying pd and µ can change

the relative prevalence of domestic animals infected with the wildtype and human-

transmissible strains, which in turn can change the proportion of infected humans.

Further, only by setting one or more interspecies transmission parameters µ, pd, ph to

0 can the model avoid an endemic equilibrium in humans. In particular, the pathogen

can persist in humans even if βh = 0.

While varying traditional epidemic parameters such as βi and γi can change the

relative numbers of individuals in each compartment, Chapter 3 shows that only pd,

ph, and µ control the global behavior of a zoonotic epidemic, a result shown in detail

by the simulations in this chapter. These results show that a zoonotic pathogen can

establish itself in the human population as long as it is seeded with an initial infection

in the wild compartment and pd, ph and µ are nonzero, even if the human-transmissible

strain is incapable of being transmitted among humans.
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Chapter 5

Discussion

In this Chapter, we discuss the implications of this model and suggest directions for

future research. The model goes a step further than [25], [36], and other attempts

to quantify the interspecies spread of disease by accounting for the entire course of

a zoonosis and the mutations that allow an animal pathogen to spread to humans.

Further, the split between the effects of different parameters proved in Chapter 3

and exemplified in Chapter 4 offers suggestions both for interventions to mitigate the

effects of an emerging zoonosis and future research based on this model.

5.1 Implications

The results of our mathematical analysis in Chapter 3 suggest that we can categorize

the parameters of the model into two types. The first type is intracompartment

parameters: the transmission and recovery rates βi and γi for each species, which

describe interactions in a single species. The second is intercompartment parameters,

which govern interactions between members of two species. pd and ph, which indicate

the spillover rate to domestic animals and humans, obviously fall into this category; µ
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quantifies the rate of a mutation arising in domestic animals that makes the pathogen

transmissible among humans, and so also qualifies. From Theorems 2 and 7, we see

that it is only these second parameters, and the initial proportion of infected wild

animals, that have the potential to alter the global dynamics of the three-species

system to a disease-free equilibrium. The examples in Chapter 4 crystallize the result

that parameters of the second type are threshold values for the global progression of an

epidemic: changing values in the first category only changes the relative proportions

of each type of individual present at an equilibrium, not the stability of the equilibria,

while changing the values of parameters in the second category can change the global

behavior of the pathogen.

This complete simulation of an emerging zoonosis shows that even in cases where

the disease dies out in the wild compartment and would fail without an external

force of infection in the domestic one, it can establish an endemic equilibrium in

humans. Further, this result holds even if βh = 0, reflecting a pathogen in Stage 1 of

[4], [9], and [10]’s categorization for zoonoses that would not be deemed a pandemic

threat under that framework. These simulations suggest that the threat posed by

zoonoses is more detailed and probable than previously assumed: only by setting at

least one of the transmission parameters to 0 can public health officials prevent an

infection in wildlife from establishing a presence in humans, and it is extraordinarily

unlikely that transmission routes between species or the mutation rate of pathogens

can be entirely suppressed. While deterministic models such as the one presented

here offer more certainly than stochastic models, which simulate interactions between

individuals with random variables and offer more ways for an epidemic to attain

a disease-free equilibrium, this result indicates that even the slightest possibility of

contact between species or selection for a pathogen more suited to humans raises
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pd, ph, or µ above 0 and thus can lead to an endemic infection in humans. While this

endemic equilibrium or rates of transmission may be negligible in real populations,

our results that the threat of an emerging zoonosis cannot be completely erased even

with extraordinarily effective public health and medical interventions, confirming the

focus on prioritizing zoonoses as mathematically sound and offering a warning for

public health officials.

5.2 Future Research

The lack of large, publicly available data sets, especially regarding the prevalence

of zoonotic infections in wild and domestic animals and the values for pd, ph, and

µ, limits our ability to refine any model [11], and, as seen in Chapter 4, limits the

accuracy of our theory. While some research attempts to approximate this data by

assessing expert opinions as an explicit response to the lack of publicly available,

unbiased data surrounding the spread of zoonoses [34], this type of research cannot

replace population-level data. Gathering such data is thus critical to future modeling

efforts in domestic and wild animal populations ([8], [10])−in particular, there is little

data available for any infectious diseases in wild animals and interspecies contact

rates−and should form a key component of future efforts.

This research introduces a model capable of replicating all stages of the emergence

of a zoonosis with an intermediate host. To keep this work at a preliminary level

and to maximize its use in more specialized contexts, we have not considered further

modifications to the SIR prototype model such as loss of immunity (SIRS) or exposure

time (SEIR), or possible variation patterns in the number of infected reservoir hosts,

such as seasonal migration. Given adequate data, future research could add any
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of these modifications, as well as others not mentioned here, and can thus adapt

this model to any specific emerging zoonosis. In particular, approximately 25% of

zoonotic pathogens are capable of some human-to-human transmission, but cannot

persist without further introduction from an animal host [6]. These pathogens mutate

over the course of many jumps back and forth from animal to human to animal in a

phenomenon known as a stuttering chain, and incorporating this behavior could prove

to change the model’s dynamics significantly [10]. More broadly, future models should

incorporate backwards transmission to wild animals and direct interactions between

humans and wild reservoirs, as well as interactions between different pathogens in

an intermediate host [10]. Even psychological and economic factors in the human

population can change the dynamics of an emerging zoonosis [22], and so adding

modifications indicating social change over the course of an epidemic−whether in

the human population or in the human-controlled domestic animal one−can further

refine a model. The modifications discussed above have the potential to introduce

more exciting dynamics, such as backward bifurcations or strange attractors in the

solution space [44], and this type of behavior would be mathematically intriguing to

find.

Although this model introduces the idea of a mutation in an intermediate host,

there may be more refined ways to model a zoonotic pathogen becoming better at

infecting humans over time. Future models could make ph, βh, or µ a function of time

to better simulate pathogen adaptation; we do not know if this greater detail will sig-

nificantly change the global qualities of the model or if they are accurate reflections

of pathogen behavior. More specifically, future models should investigate the effect

of different transmission rates for the two strains circulating in the intermediate host,

which will change the endemic equilibrium in domestic animals and thus humans.
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Here, we have abstracted the process of mutation to a simple yes/no question regard-

ing human transmissibility, neglecting the distinction between the different possible

ways for a pathogen to mutate and the different possible degrees of change. The

mutation rate of a zoonotic disease can depend on social factors such as culling in the

intermediate host population, vaccination of infected individuals, and biosecurity, as

well as biological ones such as RNA mutation or interstrain competition, and future

research should investigate whether those different processes have noticeable differ-

ences on the number of infected humans or the mathematical structure of the model.

There is also a lack of investigation of disease dynamics in individual hosts, with little

data investigating the effect of different expressions of pathogen genotypes or animal

superspreaders (individuals who infect many more secondary cases than average) on

transmissibility in humans [10]. As this effect is the one abstracted by our parameter

µ, delving deeper into individual-host pathogen dynamics such as cellular entry and

replication [11] has the potential to improve our model. No emerging infected disease

has been predicted before infecting humans [4], although progress is being made on

identifying disease ’hotspots’ [45], and this gap reinforces the importance of studying

the factors that lead to successful spillover and define transmission rates between

species [4].

This model is intended to provide the framework for quantitative, comprehensive

study of zoonoses cited in [8] and other recent literature, and can thus be modified

in many different ways suited to different pathogens.
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5.3 Conclusion

This research suggests future avenues of exploration for both researchers and pol-

icymakers seeking to understand and control the spread of an emerging infectious

zoonosis, and shows that interspecies connections are critical to controlling and un-

derstanding the effect an emerging zoonosis can have on human populations. We

show that for the limited data that exists, pathogens such as avian influenza that

have a high mutation rate and an intermediate host in close contact with humans can

fail to establish themselves in animal populations while still establishing an endemic

equilibrium in humans, and that with nonzero transmission parameters and an initial

population of infected wild animals, a pathogen can fail to achieve traditional markers

of success, such as stage 3 transmissibility, and still maintain an endemic equilibrium

in the human population. This is a concerning result for public health, but offers areas

in which policy rather than medical interventions can be more effective in controlling

disease.
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Chapter 6

Conclusion

With the ability to study the emergence of a zoonosis with an intermediate host ex-

emplified for the first time by the model introduced here, scientists and policymakers

alike have a more refined tool with which to study and confront one of the most

well-recognized threats to global health: the emergence of a new pandemic into the

human population. This model differs from already extant ones in that it charts

the entire course of an emerging pathogen, proving that the course of a zoonosis in

humans depends on its path through the wild reservoir and domestic intermediate

host species. To our knowledge, this is the first model that accounts for the entire

course−from infected wild animals, through mutation in an intermediate host, to an

endemic equilibrium in humans−of the type of zoonotic pathogen cited as Disease

X, the unknown pandemic threat the World Health Organization ranks in the high-

est tier of priorities for research and development, and so provides a significant step

forward in its study.

This thesis fills a significant gap to infectious disease ecology: the introduction of

a model that captures the unique properties of a zoonosis emerging in humans via
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an intermediate domestic host [8]. We establish that it has one unique disease-free

equilibrium and one endemic equilibrium, and that the stability of these points de-

pends on pd, ph, and µ, the contact rates between species and the pathogen’s rate of

mutation. Accurately identifying and describing the dynamics of a pathogen circulat-

ing in wild and domestic animals provides an invaluable opportunity to avoid risk to

humans [4], and can be used to inform the formation of health policies. This model

can thus be used guide public health interventions for emerging zoonotic diseases.

That the interspecies parameters control the system’s R0 and are thus threshold

conditions for this model suggests that the problem of controlling the spread of a

zoonotic epidemic has less to do with intracompartment controls than with intercom-

partment ones: rather than efforts to control the transmission or recovery rates in

one species, it is a more effective intervention to control pd, ph, or µ through bet-

ter biosecurity or population control. This finding provides a blueprint for public

health interventions in zoonoses, as well as a warning for officials hoping to prevent

the spread of wildlife diseases to humans. In a ray of good news for public health

officials, despite their importance as threshold conditions for the spread of a zoonotic

epidemic, the interspecies parameters−pd, ph, and µ−may be more susceptible to pol-

icy changes than the intraspecies parameters βi and γi, at least when the domestic

intermediate host is a livestock or pet species entirely under human control. Even

before a zoonotic epidemic is detected in other species, restructuring agricultural sys-

tems and controlling livestock movements offer public health policymakers avenues

to mitigate the effects of such a pathogen. Since accurate models can assist in appro-

priately allocating surveillance resources [8], these parameters can thus guide health

officials in their response to and prevention of emerging zoonoses, policy changes

which are essential in controlling zoonoses and mitigating their risk of emergence [7].
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For example, by preventing disease circulation on farms, we can prevent pathogens

such as avian influenza from becoming persistent human health risks ([1], [4]). Fo-

cusing on policy changes in domestic animal management−much easier and cheaper

than human behavioral changes [7]−can be guided by this report and prevent other

outbreaks.

Our results primarily offer a warning to public health officials: without drastic in-

terventions to drive interspecies interactions or pathogen mutation rates to 0, which

may be biologically impossible, zoonoses with the capacity to mutate in a human-

adjacent intermediate host will spread to humans even if they are controlled in other

species. More fundamentally to the field of mathematical epidemiology, this result

confirms previously held beliefs−unquantified until now−about the philosophical im-

portance of zoonoses to humanity. It is a pillar of the movement variously called

“global”, “one”, or “planetary health” that humanity’s connections to other species

matter just as much to the progression of disease as does the pathogen’s ability to

infect individuals of the same species, and that human populations cannot insulate

themselves from changes that affect other species. By mathematically linking the

progress of a zoonotic epidemic to parameters governing interactions between species,

this model shows that the framework of an interconnected human and natural world

that implicitly underlies much of the analysis of global health in the last twenty

years agrees with the mathematics of infectious disease, quantifying and confirming

a widespread belief in global health.
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