
USING BAYES ERROR RATE ESTIMATION TO ANALYZE

FEATURE SPACES

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Bachelor of Arts

in

Mathematics

by

Sriram Bapatla

DARTMOUTH COLLEGE

Hanover, New Hampshire

June 2020

Abstract

Whether they be neural networks, auto-encoders, or other architectures, classifiers

are commonly assessed through confusion matrices and associated statistics, or visu-

alizations of feature spaces like t-SNE plots. These metrics method depend on the

test data used to assess the performance of the network, and different sets of test data

will yield different results. We need a more robust method of measuring the inher-

ent error in a classification problem. To address this issue, this investigation studies

and applies a non-parametric estimate of the Bayes Error Rate (BER) specifically to

problems currently of interest to the United States Air Force related to target clas-

sification. The BER is the inherent probability of misclassification given a classifier

and a data set. Its bounds are available in closed form through a specific divergence

measure, but the divergence itself must be estimated. We apply two non-parametric

test statistics that estimate this divergence– the Friedman-Rafsky and cross-match

statistics– to bound the BER in a convolutional neural network. The first part of this

study establishes the need the BER as a performance evaluation tool. The second

part compares the two test statistics. The third part applies the BER estimate to an

AF problem. Given that it is often difficult and expensive to survey real targets and

generate SAR images, 3-D CAD (Computer aided design) models are frequently used

to generate synthetic SAR images for training and testing classifiers. We use BER

estimation to examine if reducing the fidelity of training and testing images affects

the separability of data, and if high-fidelity images are separable when passed through

ii

networks trained on low-fidelity images. The results indicate that low-fidelity images

exhibit high separability, and that networks trained on low-fidelity images perform

well even on high-fidelity test data.

iii

Preface

I’d like to thank all of my advisors in this research endeavor. Dr. Gelb, (the newly)

Dr. Churchill, Mr. Zelnio, Dr. Scarnati, and Dr. Paulson: your input helped me

discover new research questions, discontinue others, above all inspired me to keep

experimenting. And to my friends and family, thank you so much for your support.

iv

Contents

Abstract . iii

Preface . iv

1 Introduction 1

1.1 Purpose . 2

2 Convolutional Neural Networks 4

2.1 Structure . 4

2.1.1 Artificial Neural Networks . 5

2.1.2 Convolutional Neural Networks 6

2.2 Training . 10

2.2.1 Loss Calculation . 10

2.2.2 Backpropagation . 11

2.3 Gradient Descent . 12

2.4 Hyperparameters . 13

2.4.1 Activation Function . 13

2.4.2 Learning Rate and Momentum 14

2.4.3 Other Parameters . 14

3 Bayes Error Rate 16

3.1 Importance of the BER . 17

3.2 Estimating the BER . 18

v

3.3 Non-parametric Estimation of BER 19

3.3.1 The Friendman-Rafsky Statistic 20

3.3.2 Cross-Match Statistic . 22

4 Methods 24

4.1 General Structure of Each Experiment 24

4.1.1 Data . 25

4.1.2 CNN Structure . 26

4.2 Three Experiments . 26

4.2.1 Experiment 1: Establishing Need for BER Estimation 27

4.2.2 Experiment 2: Studying Behavior of BER 27

4.2.3 Experiment 3: Applying BER to AF Problems 28

5 Discussion 32

5.1 Experiment 1 . 32

5.2 Experiment 2 . 33

5.3 Experiment 3 . 38

6 Conclusion 43

References 48

vi

Chapter 1

Introduction

Neural networks currently appear in almost every facet of our daily lives. In the med-

ical field, machine learning (ML) algorithms use neural networks to predict health

conditions and assimilate different health metrics. In finance, ML has produced some

of the most successful market prediction tools. Digit recognition, music recommen-

dations, target recognition— the breadth of applications of neural networks is really

quite hard to overstate. Thus, the question of a neural network’s accuracy, namely it’s

ability to accurately predict the correct class of an input, is of the utmost importance.

The low-resolution view of an ML algorithm consists of three components and

two routines. The three components in its structure consist of a set of inputs, a

function, and a set of outputs. The two routines are the training and testing phases.

Training consists of finding the optimal function for the given data. In the simple

case of linear regression, this function is the set of weights and biases that minimize

the mean squared error cost function. Testing is when the model is validated with

data the network has not yet seen. This is an important step that addresses the issue

of over-fitting. A good model should generalize well on test data.

For example, imagine a network trained to distinguish between the digits 0 and 1.

This is a simple example of a classifier. The testing routine will pass in images of 0’s

and 1’s that were not present in the training data to see how accurate the network is

1

1.1 Purpose Introduction

in its predictions. Once the test images are passed through the network, they reach

the output layer and are then classified. The accuracy of classifier-determined classes

against the true classes is traditionally presented in a confusion matrix, which is a

matrix of true and false positives of the test data. From here, an accuracy metric is

derived by dividing the number of correct classifications by the size of the test data.

This is currently the main methodology for evaluating a network. Another evaluative

tool is the visualization of the feature space. The feature space is the penultimate

layer of the neural network. Although this space is usually high-dimensional, different

tools can project a collection of samples in this space onto 2-D and 3-D spaces. The

issue with both of these evaluation processes, however, is that different sets of test

data will yield different results.

Section 1.1

Purpose

The purpose of this thesis is to explore a different approach to quantifying a classifier’s

performance. Instead of one estimate of accuracy that varies with a given test set,

it describes a method of finding more general bounds for a trained neural network’s

performance. By applying the methodology presented in this thesis, a person using

a neural network and a specific training data set can estimate what the best- and

worst-case accuracy of the classifier will be.

This thesis will discuss the results of three experiments that convey the impor-

tance of the Bayes Error Rate (BER), which will be described in detail in Chapter

3, to improve the robustness of the accuracy measurements. The first experiment es-

tablishes the need for the BER by examining the variance of the traditional accuracy

metric. The second experiment examines how the BER estimate converges. It also

compares two different methods of computing the BER. Finally, the third experiment

applies the BER estimate to the prototypical example of target classification for the

2

1.1 Purpose Introduction

United States Air Force (AF). In this case, generating data for target classification is

expensive, both financially and temporally. To work around the expenses of gathering

real images of targets, researchers are exploring the use of simulated data, whereby

computer algorithms simulate real-world imaging processes. While these methods

drastically reduce financial costs of generating data, they still operate with inefficien-

cies. Digital models of targets like tanks and troop carriers are painstakingly crafted

and edited, and many resources are currently deployed to try to perfect these models

down to the smallest bolt on a door,[24]. The running hypothesis is that these minute

details have important consequences on the synthetic images produced after imaging

algorithms run on the digital models. This thesis reaches a different finding – the

BER estimation demonstrates that low quality digital models might be able produce

classifiable images.

The BER is an instrumental component of the AF application because it allows us

to measure the separability of a feature space. Firstly, it offers a quantitative method

to evaluate data sets that is more reliable than a confusion matrix or a feature space

visualization. Rather than offering an accuracy measurement, it estimates bounds

of irreducible error in the neural network, given a set of test data. Furthermore, it

provides a structural understanding of the feature space without requiring projection

onto a lower-dimensional space. Thus, with respect to the AF application, we can

use the BER to evaluate the performance of data at different fidelities.

The rest of this thesis is structured as follows. Chapter 2 presents a description

of how convolutional neural networks are constructed, trained, and tested. Chapter

3 defines the BER and discusses two methodologies of estimating its upper and lower

bounds from a data sample. Chapter 4 then presents the experimental setup for the

thesis, as well as the justification for three different experiments that we will conduct.

Finally, Chapters 5 and 6 discuss the results of the experiments and look forward to

further applications of the presented research.

3

Chapter 2

Convolutional Neural Networks

This chapter presents a more thorough description of neural networks, specifically

Convolutional Neural Networks (CNNs). Due to their spatial invariance, which will

be discussed later in this chapter, CNNs specifically cater to image classification.

There is an abundance of literature dedicated to the study of these structures, see

e.g. [8, 23, 10]. These papers also describe some of the many applications of CNNs.

We begin by discussing the structure of a neural network and and its training pro-

cedure, which is more commonly referred to as the “learning” component of machine

learning. Throughout this description, one must remember the underlying picture

of an ML algorithm. It is simply the optimization of a nonlinear function, albeit an

immensely complicated one. We conclude with a discussion on how other parameters

may affect CNN training.

Section 2.1

Structure

Before describing the structure of a CNN, it is helpful to introduce the concept of a

fully-connected neural network.

4

2.1 Structure Convolutional Neural Networks

2.1.1. Artificial Neural Networks

The fundamental component of an Artificial Neural Network (ANN) is the neuron.

Each neuron has an associated “activation” when presented an input, which can be

mathematically represented by a scalar.

Neurons are organized in structures called layers. The first layer is the input layer,

which simply consists of a concatenated input. For instance, a grayscale 24×24 pixel

image can be converted to a 576 × 1 vector with each component ranging from 0 to

1. This vector would then represent the input layer.

For an input vector ~x ∈ Rd, the ANN can then be formalized as a function:

~y = F (~x), where F (~x) = fl(fl−1(...f2(f1(~x)))).

Here, each fi represents the vector function

fi(~z) := gi(Wi~z + bi),

where i identifies the layer, with the 0th layer being the concatenated input. The Wi

represents the matrix of learned weights for each layer and the bi represents a layer’s

learned bias. The quantity within the parenthesis is a simple linear transformation.

The gi is where non-linearity comes into play, and it can be chosen to be any function,

but common choices are the sigmoid, rectified linear unit (ReLu), and tanh functions,

given by

sigmoid(z) =
1

1 + e−z
,

relu(z) =


0, z ≤ 0

z, 0 < z,

5

2.1 Structure Convolutional Neural Networks

and

tanh(z) =
ez − e−z

ez + e−z
,

respectively.

The final hidden layer, what we refer to as the feature space, is an n-dimensional

space. Each input is compressed into this space. This is followed by the output layer,

which is an m-dimensional space where m is the number of classes in the problem.

This output layer uses a softmax function to standardize the neuron activations so

that they sum to 1. Because of this step, the network outputs a set of probabilities

that the input belongs to each of the m classes. The softmax function for an m

dimensional input vector ~z with components zk is given by

α(~z) =
ezi∑m
j=1 e

zj
(2.1)

Here zn is the nth component of ~z. Figure 2.1 presents a visual schema of a feed-

forward ANN.

2.1.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are designed to extract features from images.

Computers store images as stacks of two-dimensional matrices where elements corre-

spond to pixel intensity at their spatial locations within the image. This thesis only

focuses on grayscale images. The task of extracting features from an image requires

special precautions due to the fact that certain features might occur at several dis-

tinct regions within a given image. Hence the network requires feature extraction

units that are spatially invariant. An important difference to note here between the

ANN described previously and the CNN is that the latter preserves the input in its

original form, without flattening it to a column vector.

6

2.1 Structure Convolutional Neural Networks

Figure 2.1: A description of a feed-forward neural network, taken from [3]

Before discussing the convolution process, one must define the Hadamard prod-

uct of two matrices. Given two matrices A and B of the same dimension m× n, the

7

2.1 Structure Convolutional Neural Networks

Figure 2.2: One of 36 calculations as the filter passes over and is convolved with the
input image

Hadamard product is the element-wise product of each matrix:

A ◦B = aij ∗ bij =


a11 · b11 · · · a1n · b1n

...
. . .

...

am1 · bm1 · · · amn · bmn


The convolution of an image involves taking a filter, represented by a matrix of

size i× i, and sliding it across the entire image. At each stop, the Hadamard product

is taken between the filter and the subset of the input of the same size as the filter.

Then, the scalar sum of all the entries in the Hadamard product is outputted. The

process repeats until the filter passes over the entire image. This investigation only

considers square images and square filters, although this is not a fixed requirement.

Mathematically stated, for an n× n input image A with only one channel, and a

filter F with size i× i, the output of the convolution operation is defined as

C(j, k) = ~1T(Aj:j+i−1;k:k+i−1 ◦ F)~1, j, k ∈ [1, n− i+ 1], (2.2)

where ~1 is an i-dimensional column vector with only ones as entries. Figure 2.2

provides a simple example for the process of convolving an image with a filter.

Note that this is the simplest rendition of a convolution, and there are two addi-

tional parameters that slightly complicate the process. The first addition is padding,

8

2.1 Structure Convolutional Neural Networks

Figure 2.3: Padding an image can preserve its size after convolution

a process by which the image is surrounded by one layer of zeros. One of the main

reasons architects choose to use padding is to conserve the original shape of the image.

Figure 2.3 shows how this is done. The second addition is stride size. In Equation

2.2, it is assumed that the filter slides across the image one column or row at a time.

This need not be the case. A larger stride size can increase the efficiency of the opti-

mization by decreasing the number of products and sums in the convolution process.

We are now ready to address the question: how do these convolutions fit together?

To answer, we need yet another tool in our arsenal: the max-pool function. Earlier

in this section, it was mentioned that CNNs look for translational invariance. The

max-pool function does exactly this. For an n × n matrix A and a scalar s defining

the size of the filter, the max-pool function outputs a matrix M with entries defined

as

M(j, k) = max(Aj:j+s−1;k:k+s−1), with j, k ∈ [1, n− j + 1]

Essentially all this process does is pass through an image and take out the largest

value in an s× s region of the image.

The process of convolving and pooling might seem haphazard, but they represent

very intuitive processes for compressing an image. Filters look for important features

in the image. Some look for edges, others denoise, and still others perform meaningful

9

2.2 Training Convolutional Neural Networks

Figure 2.4: A sample CNN architecture [17]

operations that are unintelligible to an observer. The purpose of the filter is to

extract and compress important information from an image. The pooling process

ensures invariance because it is insensitive to the position of the highest activation in

a certain block. Important information is preserved regardless of its location in the

space.

A CNN, then, can be constructed by putting together these two tools. A convo-

lutional layer is followed by a pooling layer and this is repeated for a certain number

of iterations. Afterwards, the network outputs a certain matrix that contains com-

pressed information about the input matrix. The matrix is then usually flattened into

a column vector and then passed through a certain number of fully-connected layers,

as discussed in the previous section. Figure 2.4 displays the steps of this process.

Section 2.2

Training

The training of an ANN is a complex optimization procedure. The two main compo-

nents of this procedure are loss calculation and back-propagation.

2.2.1. Loss Calculation

Once a piece of information has propagated through a neural network it reaches its

final layer, which consists of m neurons for an m-class classification problem, each

10

2.2 Training Convolutional Neural Networks

with a particular degree of activation. As mentioned in the previous section, the

activations are traditionally normalized in this layer to sum to one. Therefore, these

activations can be seen as representing the probabilities that the input belongs to

each of the possible classes.

It is at this point where loss is calculated using a particular loss function. A

commonly used loss function is mean squared error (MSE), which is mostly applicable

to normally distributed data. The MSE for N samples of test data, where Ŷi is the

predicted class of sample i and Yi is the sample’s true class is defined as

MSE =
1

N

N∑
i=1

(Ŷi − Yi)2.

However, in most classification applications, researchers implement the cross-entropy

loss function, which is given for an m-class problem by

H(p, q) = −
m∑
i=1

pi(x)log(qi(x)). (2.3)

Here p(x) is the true distribution and q(x) is the predicted distribution.

2.2.2. Backpropagation

Once the cost has been calculated via a loss function, the network must adjust its

vast collection of weights to yield lower cost values in following iterations. The driver

behind this process is gradient descent, an iterative process looking to minimize the

loss function. Once a loss function has been chosen, the cost associated with a output

vector can be calculated and designated C(θ), where θ is the set of weights and biases

in the network. Backpropagation uses partial derivatives to attribute the proportion

of the cost for which each individual weight and bias is responsible. Because the each

neuron in the output layer is chained to all of the previous neurons, the chain rule

can be employed to calculate the partial derivatives ∂C
∂wi

and ∂C
∂bi

, where the index i

11

2.3 Gradient Descent Convolutional Neural Networks

identifies the layer of the neural network.

Section 2.3

Gradient Descent

If backpropagation is the wood for the house, gradient descent is its construction.

Gradient descent is a part of nearly every optimization problem, from least-squares

regression to much more complicated structures like neural networks. For parameters

θ and a cost function C(θ), gradient descent is described as the iterative procedure

for recovering θ as

θi+1 = θi − η∇C(θi) (2.4)

from an initial input θ0. Here η represents the learning rate, which will be discussed

further in Section 2.4.

An important note about gradient descent is that it depends on a convex loss

function. Both the MSE and cross-entropy loss functions are convex, as we want

them to have a global minimum that can be reached by following the gradients along

the surface.

The iterative gradient descent process occurs in the following steps:

1. Data is passed through the network.

2. The cost associated with the data is calculated.

3. Backpropagation calculates the portion of the cost that is ascribable to each

weight and bias in the network.

4. Gradient descent occurs using these partial derivatives.

5. The first four steps are repeated until a convergence criterion is met or a fixed

number of iterations is reached.

12

2.4 Hyperparameters Convolutional Neural Networks

Gradient descent itself is a deep topic for research. There are many different

algorithms that are used for neural networks, but the main ones are stochastic, batch,

and mini-batch gradient descents [19]. Stochastic gradient descent updates weights

after each instance of the data, and in this experimental setup it entails updating

the network after each image is passed through the network. As this yields a noisy

convergence path, it is sometimes better to use the averages of ∂C
∂wi

and ∂C
∂bi

across

many images, or a batch. Once all of the batches of data in a given training set have

been exhausted, meaning every training image has been seen, one epoch passes. This

thesis implements mini-batch gradient descent with a batch size of 64 images over

many epochs.

Section 2.4

Hyperparameters

There are several parameters of the model that the network architect can choose.

2.4.1. Activation Function

As discussed earlier, there are many activation functions that network architects can

use in their neural networks. However the ReLu, or the rectified linear unit function, is

often used for a couple of reasons. Firstly, it better-addresses the vanishing gradient

problem. Due to the fact that the individual weights in the network are updated

countless times, sigmoid or tanH functions often yield weights that go to 0. This is a

byproduct of their output space, which consists only of the interval [−1, 1]. Once a

weight is updated to 0, it no longer functions in the network. The ReLu function, on

the other hand, outputs on the interval [0,+∞], lessening the occurrence of vanishing

gradients. Another benefit of the ReLu function is that it’s more computationally

feasible, especially because the activation function operates on a significantly large

number of items during a learning process.

13

2.4 Hyperparameters Convolutional Neural Networks

2.4.2. Learning Rate and Momentum

As described earlier, there are many ways to modify the gradient descent algorithm,

and this is a field that is rich with research, [25, 12, 15]. Many of these modifications

address issues of either computational feasibility or convergence pattern. To reiterate,

the goal of gradient descent is to find the global minimum of the cost function. Often

times the optimization process will get stuck in a local minimum, and depending on

ones choice of a learning rate, it can be quite tough to escape this minimum. The

learning rate η in (2.4 specifies the magnitude with which the cost function’s gradient

affects a given weight. Too large a parameter can yield a very shaky convergence,

as weights will experience large updates. Too small a learning rate and the function

may not be able to escape a local minimum. In practice, various learning rates are

tried on different networks to optimize convergence.

Momentum is another tool in the arsenal of gradient descent. Instead of only

updating (2.4) based on η∇C(θi), one solves

θi+1 = θi − γη∇C(θi),

where γ is meant to balance perturbations in the convergence process. With methods

like stochastic gradient descent, the convergence is very jumpy. Momentum is used

to reign in changes of direction while pushing the pedal on weight updates that have

consistently been going in one direction.

This thesis implements the Adagrad method of gradient descent[5] Adagrad fur-

ther modifies stochastic gradient descent by changing the learning rate for different

weights.

2.4.3. Other Parameters

There are a plethora of other hyper-parameters that can be optimized for a neural

network. The number of layers in the network, the size of filters in each convolution,

14

2.4 Hyperparameters Convolutional Neural Networks

strides and pooling methods, and data pre-processing are all variables that will affect

the performance of a network. Many of these are chosen ad hoc, based on machine

learning literature or through trial and error. This all extends beyond the scope of this

thesis, which is focused on evaluating classifiers, not optimizing their performance.

15

Chapter 3

Bayes Error Rate

In Chapter 1 we discussed a neural network as a deterministic function that maps

an input to a class. But when quantifying error, it helps to take a Bayesian view of

the classifier. This is because the input data can be seen as an instance of a random

variable with a prior distribution. The neural network then assigns values to the

likelihood a sample was drawn from one of the priors. Finally, the model generates

a posterior distribution, i.e. the probability that the instance belongs to each of the

classes.

More formally, suppose we are given a series of n inputs {~xi, yi}ni=1, where each ~xi

is a realization of some random variable X, with ~xi ∈ Rd and yi ∈ {1, ...,m}, for an m-

class problem. There is a series of probability functions defining the learning process.

Assume we have an initial set of priors, {ci}mi=1, for each class in the m-class problem,

as well as a series of likelihood functions, given as densities conditional on the class

the data could take: pi(~x) = P (X = ~x|Y = i) for i ∈ {1, 2, ...,m}. We combine the

prior and likelihood to obtain the posterior hi(~x) = P (Y = i|X = ~x) ∝ ci · pi(~x).

In most neural networks, data is assigned to a class via a maximum a-posteriori

(MAP) rule. Specifically, the data is assigned to the class with the largest standard-

ized posterior probability. The Bayes error rate is the complement of this posterior,

meaning that it is the probability that a sample is identified as one class, when it

16

3.1 Importance of the BER Bayes Error Rate

Figure 3.1: Two overlapping posterior distributions. The Bayes Error Region is darkly
shaded, and it illustrates the range of x-values where misclassification can occur.

really pertains to a different class. This mathematically described as

em = 1−
∫

max{h1(x), h2(x), ..., hm(x)}dx. (3.1)

The integral in (3.1) is taken over the posterior probability space. Figure 3.1 depicts

a sample posterior for a 2-class problem, with the Bayes error rate being the area of

the shaded region.

Section 3.1

Importance of the BER

The BER is traditionally used to describe the difference between two distributions.

This is an important component of hypothesis testing. In the medical field, it can be

applied to testing a treatment, with the statistical distance between two distributions

17

3.2 Estimating the BER Bayes Error Rate

highlighting the difference between patient and control groups, [18]. In that study,

the distributions are ideally quite distant from the onset. The whole purpose of

a neural network is to maximally separate the posterior distributions of different

classes so that classification is easy. The BER here is instead used to quantify this

degree of separation. The higher the BER, the higher the inherent probability of

misclassification. This is also called irreducible error, because if the true posterior

distributions overlap, even the best classifier can misclassify images. This can be

seen from its definition. The true BER describes the best case performance of

a classifier given a data-set. Thus, in the machine learning sphere, it can serve as

a data quality metric. In a system with known prior an posterior distributions, the

BER answers the question: what is the best-case performance of this classifier given

the chosen data set? This is an extremely valuable metric because it is the core

quantity that a machine learning architect uses to evaluate her model. The issue

with neural networks, however, is that the priors and posterior are not known in

closed form, so the BER must be estimated.

Section 3.2

Estimating the BER

There are currently a variety of methods used to estimate and bound the BER,

but none works perfectly, and there are trade offs one must consider. The bounds

themselves come out of divergence measures called f-divergences, which estimate the

difference between distributions. Given two discrete probability distributions P and

Q defined on a sample space X the f-divergence between the two distributions is given

by:

Df (P,Q) =
∑
x∈X

Q(x)f(
Q(x)

P (x)
)

18

3.3 Non-parametric Estimation of BER Bayes Error Rate

where f is a positive-valued convex function and f(1) = 0, [2]. This metric deter-

mines the difference between two distributions over their shared space. One of these

divergence functions, called the HP-divergence, can be modified to yield a tight bound

on the BER, [22]. [21] defines the HP-divergence for a 2-class classification:

Definition 3.1. Given the prior distributions of the classes 0 and 1 denoted c0 and

c1, as well as the conditional probabilities that a sample ~x was drawn from the priors,

denoted p0(~x) and p1(~x), the HP-divergence between p0(~x) and p1(~x) is :

D(p0(~x), p1(~x)) =
1

4c0c1

[∫
Rd

(c0p0(~x)− c1p1(~x))2

c0p0(~x) + c1p1(~x)
d~x− (c0 − c1)2

]
. (3.2)

The HP-divergence is a function of both the prior distributions of the classes

and the conditional distributions. By calculating the HP-divergence, one can ob-

tain tight BER bounds, but the issue is that the prior and conditional distributions

are unknown. One solution is to assume the prior and conditional distributions are

Gaussian, exponential, or other known distributions. This is a parametric method

of estimating the BER, as one must parametrize these chosen distributions. The issue

with this approach is that it requires making assumptions about unknown distribu-

tions.

Section 3.3

Non-parametric Estimation of BER

Non-parametric methods can avoid some of the bias that occurs if one assumes data

follows a certain distribution, but they are also prone to having issues. Many non-

parametric methods rely on probability density estimation, which can be prone to

errors and does not scale very well computationally. Some alternatives to these

“plug-in” estimators are graph-based estimators. This thesis implements two spe-

19

3.3 Non-parametric Estimation of BER Bayes Error Rate

cific algorithms, proposed in [21, 22], which are described below.

3.3.1. The Friendman-Rafsky Statistic

This methodology uses a certain test-statistic to estimate the bounds for the BER,

which are derived for the generalized HP (GHP)-divergence, first proposed in [22].

The GHP-divergence extends Definition 3.2 beyond its two-distribution input. It

defines the divergence between any finite number of distributions, meaning it is quite

applicable to classifiers that must classify more than two types of inputs. [22] uses

an alternative form of the GHP-divergence called the GHP-integral, which is defined

in the following manner:

Definition 3.2. Given a set of m priors {ck}mk=1 and conditional distributions {pk(~x)}mk=1

based on a sample ~x, first define h(x) =
∑m

i=1 hi(~x), or the marginal posterior dis-

tribution of our random variable X. The GHP-integral between two distributions is

defined as over their common sample space Sij is:

GHP (pi(~x), pj(~x)) = δij =

∫
Sij

pi(~x)pj(~x)

h(x)

This integral form is related to the divergence between the two distributions in the

following manner:

D(pi(~x), pj(~x)) = 1− (ci + cj)GHP (pi(~x), pj(~x))

Equation (3.2) can be used to bound the BER, but the issue is that the conditional

distributions as well as the marginal distribution of our random variable are unknown.

[22] uses the Friedman-Rafsky (FR) test statistic to estimate these bounds through

the following procedure:

1. Consider an m-class classification problem. Begin with n instances of data-

class pairs X = {xi, yi}ni=1. Then split them according to their class: Xk =

20

3.3 Non-parametric Estimation of BER Bayes Error Rate

{xi, yi}ni=1,y=k.

2. Construct a graph G consisting of all possible pairs of points. Assign weights

E to each of the edges in the graph based on the Euclidean distance between

each pair. Construct a minimum spanning tree through the set of points X0 ∪

X2...∪Xm−1. A spanning tree is a tree with the minimal amount of edges that

includes all the vertices of G. A minimum spanning tree is a spanning tree such

that the sum of the weights in its edges is no larger than sum of weight of any

other spanning tree,[20].

3. Determine the value of the FR statistic <(X)ij as such: count the number of

dichotomous edges in the tree between class i and class j, meaning the number

of edges that connect two distinct classes.

Once <(X)ij is calculated for each pairwise connection between classes in a set

of samples X, the BER, indicated for the m-class problem as εm, can be calculated

using the following theorem:

Theorem 3.3. Let n be the size of the sample in consideration and ni be the number

of samples belonging to class i. If ci is the prior probability distribution of class i,

then as ni →∞ and ni
n
→ ci,

<(X)ij
2n

a.s.−−→ δij, (3.3)

where

εm ≤ 2
m−1∑
i=1

m∑
j=i+1

δij,

and

εm ≥ m− 1

m
[1− (1− 2m

m− 1

m−1∑
i=1

m∑
j=i+1

δij)].

As the sample size n increases, the ratio
<(X)ij

2n
in (3.3) converges to the true value

of δij. Thus, Theorem 3.3 can be used to computationally estimate the bounds of the

21

3.3 Non-parametric Estimation of BER Bayes Error Rate

BER based on a set of sample data[22].

In order to produce produce the Euclidean graph of pairwise distances, which is

the first component of the procedure, n(n+1)
2

calculations must be done, where n is

the number of samples. The MST construction implements Kruskal’s algorithm in

O(E log (E)) time, where E is the number of edges in the graph, [9]. Since this graph

has on the order of n2 edges, the run-time of the BER calculation is on the order of

O(n2 log (n)).

One of the issues with this approach is that the variance of the FR-statistic is

dimension dependent. For example, if principal component analysis (PCA) is used

to reduce the dimension of the original data (while preserving its features), then the

statistic, and therefore the BER estimate, would vary to an unknown degree. To

remedy this problem we use what is called the cross-match statistic, [21], to estimate

BER. It is described below.

3.3.2. Cross-Match Statistic

The cross-match statistic, a procedure proposed in [21] avoids the dimension depen-

dent variance problem observed with the FR statistic. It can be explained as follows:

Consider a 2-class problem, where XN = {~xi, yi}Ni=1 is a collection of N data-class

pairs, with ~xi ∈ Rd and yi ∈ {0, 1}. Let m be the number of observations belong-

ing to class 1, and n be the number of observations belonging to class 0. Also let

c0 = P (y = 0) and c1 = P (y = 1). Finally, let p0 and p1 represent the conditional

probability distributions p0 = p(y = 0|~xi) and p1 = p(y = 1|~xi). The cross-match

statistic is then calculated using the following steps:

1. Construct a symmetric Euclidean distance matrix D, where each element in the

matrix Dij = ||xi − xj||.

2. Construct a graph G using the N data vectors as vertices, edges between the

vertices, and the D matrix as weights.

22

3.3 Non-parametric Estimation of BER Bayes Error Rate

3. Find the minimum complete matching for the graph. A complete matching is

a set of edges such that no two edges share a common vertex and every vertex

is touched by the matching. The minimum complete matching is a complete

matching that minimizes the sum of weights between the edges used.

4. Calculate A(X), the number of dichotomous edges in the minimum complete

matching. This is the cross-match statistic

This statistic can then be used to calculate the BER bounds. Researchers established

that the HP-divergence, a measure of the difference between two distributions, can be

used to bound the BER, [22]. Designating the HP-divergence between two densities

p0 and p1as D(p0, p1), we can derive the intermediate quantity:

uc(p0, p1) = 4c0c1D(p0, p1) + (c0 − c1)2

Using A(X), we can then estimate D(p0, p1) using the following theorem, [22]:

Theorem 3.4. If N is the number of samples in consideration, and m and n are the

number samples in each class, then as m,n→∞, m
N
→ c0, and n

N
→ c1:

1− N

mn
A(X)

a.s.−−→ D(p0, p1)

The quantity uc(p0, p1) can then bound the BER, ε, in the following manner:

1

2
− 1

2

√
uc(p0, p1) ≤ ε ≤ 1

2
− 1

2
uc(p0, p1)

Implementing Papadimitriou and Steiglitz’s optimal-weighted matching algorithm,

[14], a minimum-weighted matching of n samples can be found in O(n3) time. A key

disadvantage of using this method is that the BER bounds are only established for

the 2-class problem.

23

Chapter 4

Methods

We now present the experimental setup and describe the data sets that will be used.

We also introduce the three experiments to be conducted.

Section 4.1

General Structure of Each Experiment

There are two structural components to this endeavor. The first is the classification

architecture, the function mapping individual images to a feature space. The second

component is the analysis of the feature space which in this thesis is done in MATLAB

and R[13][16]. The example process can be described by

1. Collate the testing and training data that will be used in the experiment. The

MST estimate, as defined in Section 3.3.1, can be done on any m-class clas-

sification. In this case we perform a 3-class classification. In the case of the

cross-match estimate, as defined in Section 3.3.2 we proceed with a 2-class clas-

sification, since it is limited to m = 2 classes.

2. The first CNN converts the original 64× 64 MSTAR image to a 250× 1 feature

vector. The second CNN converts the 28×28 MNIST image to a 100×1 feature

vector.

24

4.1 General Structure of Each Experiment Methods

3. A set of feature vectors and their respective labels is then collected for BER

analysis.

4. In the case of the FR statistic, MATLAB’s built-in implementation of Kruskal’s

algorithm is used to construct a Euclidean minimum-spanning tree. In the case

of the cross-match statistic, we use an R-based implementation of optimal-

weighted matching, [6]. In both cases, the cross-labels are counted and BER

bounds are calculated.

4.1.1. Data

This thesis uses two publicly available sets of data. The first is the MNIST data

set, which consists of 60,000 training and 10,000 test samples of handwritten digits.

Each sample is then converted to an 28× 28 png image.The repository can be found

at http://yann.lecun.com/exdb/mnist/, [11]. The second data set is the public re-

lease component of the Moving and Stationary Target Acquisition and Recognition

(MSTAR) project, [1]. It consists of training and test samples of SAR images of three

different vehicles, the BTR70, BMP2, and T72 tanks, from several different vantage

points (angles). Each sample is read from an executable and converted into a complex

image, of which only the magnitude is considered. The samples are then cropped to

yield grayscale images each of dimension 64 × 64. The training set consists of 699

BMP2 images, 234 BTR70 images, and 692 T72 images. The test set consists of 582

BMP2 images, 195 BTR70 images, and 577 T72 images. This is not an ideal training

set for a neural network because it is not equally distributed amongst targets. How-

ever, since the performance of data sets in a classifier are only compared relative to

a control, their absolute performance is not extremely significant.

25

4.2 Three Experiments Methods

Figure 4.1: A schema of the CNN used for the MSTAR data. It takes 64 × 64 pixel
inputs and outputs a 250-dimensional feature vector before its final softmax layer.

4.1.2. CNN Structure

This thesis deploys two neural network models, one for each of the data sets used.

Metrics from the data sets are not compared with one another. This is to ensure that

the differences in architectures do not interact with the results. The MNIST network

consists of 3 convolutional layers followed by 4 fully-connected layers.

The MSTAR CNN has an additional convolutional layer and an equal number of

fully-connected layers. Figure 4.1 depicts a schema of the MSTAR network. In both

networks the learning rate for gradient descent in equation 2.4 is set to 0.01, a batch

size of 64 is used, and the cost function is cross-entropy loss, given in Equation 2.3.

The number of epochs over which the network is trained varies from experiment to

experiment; they are chosen in an ad hoc manner based on the convergence of the

loss function to a minimum value.

Section 4.2

Three Experiments

The following three experiments are implemented to better understand and apply

BER estimation.

26

4.2 Three Experiments Methods

4.2.1. Experiment 1: Establishing Need for BER Estimation

Currently, machine learning algorithms are evaluated through test data accuracy.

Once an algorithm is trained, it operates on unseen data and its performance describes

how well the algorithm generalizes beyond a training set. The issue with this approach

is that the accuracy metric will vary depending on the test set. The following sub-

experiment helps illustrate this effect. The hypothesis was that the test data would

display a non-trivial variance across different samples, and that this distribution would

lie within the estimated upper and lower bounds for the BER. The experiment uses

the MNIST data set.

In the experiment, a CNN was first trained on the MNIST data for 5 epochs.

Then, random subsets of the testing data, which included 2500 images with 250

images from each class, were passed through the trained network. For each of these

trials, the accuracy metric was collected. This process was repeated 1000 times on the

same trained network, resulting in a 1000-dimensional vector of test data accuracies.

Finally, the BER estimate of the test data set was estimated using the MST algorithm

over three trials. The maximum upper BER bound and the minimum lower BER

bound were then compared to the range of accuracies collected over 1000 trials.

4.2.2. Experiment 2: Studying Behavior of BER

The second series of experiments seek to understand the behavior of the BER esti-

mators proposed earlier in the thesis. “Behavior” is meant to imply two evaluations:

1. The convergence of the estimate over a training process. More specifically, it

asks the question: how does the estimate converge over epochs of neural network

training?

2. The convergence of the estimate over the hidden layers in the neural network,

leading up to the feature layer.

27

4.2 Three Experiments Methods

This experiment also compares the two different methodologies for estimating the

BER. It has been noted that using the cross-match statistic yields a BER estimate

whose variance does not depend on the dimension of the feature space. This sub-

experiment wishes to examine this theoretical result.

The experiment begins by training a CNN for a binary classification between the

BMP2 and T72 targets in the MSTAR data set. Once the network has been trained,

test data is passed through the network and 1351, 250-dimensional latent vectors and

their respective class labels are outputted for analysis. From here, we use principal

component analysis (PCA) to realign the data along a new 250-dimensional basis.

At this point, we can adjust the independent variable, namely the dimension of the

latent space, by selecting a d-dimensional subset of principal components. At each

increment in dimension, the cross-match and minimum-spanning-tree methodologies

are used to calculate BER estimates for 20 subsamples of the data. This allows us to

calculate the variance of the estimates in each of the dimension increments, of which

are in the range [2, 152].

4.2.3. Experiment 3: Applying BER to AF Problems

Having studied the behavior of the BER in a machine learning setting, we are now

able to apply the BER estimate to a current AF problem. In general, training machine

learning algorithms is one of the easier components of a ML task. The tougher part is

obtaining data. Here, “tough” can mean computational intractability, high monetary

cost, or the use of some other expensive resource. The AF is just one subset of the

organizations that need to optimize the cost of data collection for the purpose of

training algorithms.

This study deals specifically with target-recognition applications of neural net-

works. In this space, machine learning algorithms are trained to identify and discern

different targets, such as buildings and vehicles. In order to collect a data set of

28

4.2 Three Experiments Methods

training images, an aerial vehicle must be sent to take images of the target, usually

through the technique of Synthetic Aperture Radar (SAR). Real-world SAR imaging,

while quite accurate, is a costly procedure. In order to get these images, resources

must be spent to acquire the target, position the target, and to fly an overhead vehicle

for imaging. Besides the resources that must be devoted to this process, there are

limits to the feasibility of this approach. There may always be targets that the AF

cannot acquire.

To address the concerns of training data acquisition, organizations can opt to

instead produce training data through simulation. These methods are varied and

diverse, but the essence is that computers can simulate real world imaging techniques,

obviating the need for resources other than computational power.

Generating simulated data, and specifically SAR data, is still quite expensive,

however. Supercomputer resources must be diverted to process the simulations, and

generating high quality images takes both time and money, as the maintenance of

supercomputers is costly, [7]. One way to improve this process, then, would be to

optimize data generation. A lever we can move is image fidelity, or the quality of

images outputted from the simulator.

There are applications where the data must be as crisp as possible and high

frequency components must be preserved. The question this experiment seeks to

answer is does image fidelity affect the separability of data in a classification

process? We could not test this hypothesis directly as this would entail using and

altering confidential algorithms. Instead, in this experiment we use Gaussian noise

as a proxy to affect the fidelity of images. In the rest of the thesis, high fidelity refers

to the original MSTAR data set and low fidelity refers to data that has been blurred

by a Gaussian filter.

This experiment takes 3 targets, BMP2, BTR70, and T72, from the public release

MSTAR data set. Each sample is then passed through a Gaussian blurring filter

29

4.2 Three Experiments Methods

for the standard deviation values σ ∈ {0, 1, 2, 3, 4}. A Gaussian blurring filter is an

m×m matrix whose entries approximate the two-dimensional Gaussian distribution.

With a mean of zero, the distribution is given by

f(x, y) =
1

2πσ
e−

x2+y2

2σ2

The filter is a discretized and standardized version of the two-dimensional Gaussian

distribution, and it can be instantiated based on two parameters: the value of σ,

or the standard deviation of the Gaussian, and filter’s size, [4]. As the value of σ

increases, the smoothing effect increases. In this experiment, the MSTAR train and

test data are convolved with Gaussian filters having the σ values 1 through 4. Figure

4.2 shows the same image of a BMP2 tank at different values of σ.

The first tested result was the difference in estimated BER across different values

of sigma. This experiment addresses the separability of low-fidelity data and compares

it with its high-fidelity counterpart.

The second tested result looked at the implications of training on low-fidelity

data and testing on high-fidelity data. This experiment addresses the compatibility

of different feature spaces and is the crux of the AF application. If high-fidelity data

exhibits a significant degree of separability in lower-fidelity feature spaces, it suggests

that the AF can optimize its data generation process by reducing the quality threshold

for training images.

30

4.2 Three Experiments Methods

(a) σ = 0 (b) σ = 1

(c) σ =2 (d) σ = 3

(e) σ = 4

Figure 4.2: BMP2 at five different fidelities.

31

Chapter 5

Discussion

Section 5.1

Experiment 1

The results we now present demonstrate that there is a non-trivial variance in the

accuracy of test data samples. Over the course of 1000 trials, the mean test data

accuracy was 96.76%. However, the accuracies ranged from 95.10% to 98.27% – a

3.17% difference. While this may seem small, a range of uncertainty of 3% can be

intolerable in many high importance applications of neural networks, including AF,

banking, and medical areas. Figure 5.1 shows the distribution of accuracies across

the trials. The two vertical lines delimit the maximum upper BER and minimum

lower BER estimates across 3 trials. With a relatively few number of operations,

the BER calculations offer a more comprehensive view of the network’s best-case and

worst-case performance.

32

5.2 Experiment 2 Discussion

Figure 5.1: Test data accuracies across different trials

Section 5.2

Experiment 2

Figure 5.2 shows the results for Exeriment 2. First note that the BER estimate

converges over a learning process. As a reminder, the unit of “time” in this experiment

is represented by an epoch. Over the thirty epochs on which the CNN was trained for

MSTAR images, the BER estimate decreased until convergence, meaning there is a

certain threshold beyond which the BER estimate can be used reliably. The bottom

graph of figure 5.2 depicts the convergence of the estimated upper and lower bounds

for the BER. The three heat maps depict the number of cross-links (when samples of

two different classes are connected in the MST) in the feature space. As the network

is trained, the number of cross-links decreases and the samples are more clustered.

The second component of this experiment was to examine how the BER estimate

changes within the different layers of a CNN. Figure 5.3 depicts the convergence of

upper and lower BER bounds in four different spaces. The top pair of graphs study

the second and third convolutional layers in the network, and we observe that they

33

5.2 Experiment 2 Discussion

Figure 5.2: Convergence of the BER estimate 3-class problem

34

5.2 Experiment 2 Discussion

do not exhibit a pattern of convergence over the range of epochs. The line in the

graph labeled “Mean Cross Distance/Mean Same Distance” charts the average ratio

of distances between points of different classes in the MST and distances between

points of the same class. We would expect a space conducive to separability to

have a high ratio, implying that classes are clustered together within the space, and

these clusters are far from other such clusters. This does not seem to be the case in

the convolutional layers, supporting the claim that they are not optimal spaces for

classification.

On the other hand, the bottom two graphs examine the two fully-connected layers

that precede the output layer. In these graphs, it is clear that the BER estimates

converge to low values. Moreover, the distance ratio is 8 times as large as the convolu-

tional layers, implying that clustering is taking place. This seems to correspond with

the theory behind neural networks. Each layer represents a different space and as the

data feeds forward in the network, the spaces are more conducive to separability of

different classes.

The final component of this experiment was to compare the cross-match and MST

methodologies for estimating BER. The results show that there is a marked difference

in the variance of these two measurements. These are encapsulated in Figures 5.4

and 5.5.

We can interpret these results as follows: First, as the sample size increases, the

variance of the BER estimates decrease for both the MST and cross-match (CM)

methods. This is in accordance with the mathematical theory behind the estimates.

They converge to the true BER bounds almost surely as n approaches infinity. Ac-

cordingly, the variance decreases as well. However, Figure 5.4 shows that the variance

of the CM estimate is consistently larger than the MST estimate.

Figure 5.5 depicts the mean lower and upper BER estimates across different di-

mensions along with error bars depicting the standard deviations of the mean. It

35

5.2 Experiment 2 Discussion

Figure 5.3: The estimated upper and lower bound for the BER, as well as a distance
ratio, calculated in 4 different spaces– namely, different layers of the CNN.

Figure 5.4: Variance of the cross-match- and MST-based BER estimates across data
dimension for various sample sizes.

36

5.2 Experiment 2 Discussion

Figure 5.5: Means and standard deviations of BER estimates across different dimen-
sions.

appears that at least for the MSTAR data set, the MST- methodology has a more

consistent mean than that of the CM method. It also exhibits a lower variance than

the latter across all dimensions in consideration. Finally, the BER bounds them-

selves are wider for the MST-based estimates, meaning this methodology yields more

conservative bounds.

This result is not in line with the theory behind the cross-match statistic, whose

variance should not depend on the dimension of the data. This is possibly because

the data is not drawn from a normal distribution, as is done in [18].

These results seem to suggest that the MST-based bound is a stronger choice for

estimating the BER based on (1) the dimensional consistency of its mean; (2) the

dimensional consistency of its variance; (3) its computational efficiency; and (4) its

ability to bound a non-binary classification problem. Of course, there is the question

of the empirical accuracies of both methodologies, which is impossible to measure

unless the posterior probability distributions are known.

37

5.3 Experiment 3 Discussion

Section 5.3

Experiment 3

The results of this experiment show that separability of data does not vary signifi-

cantly upon the addition of Gaussian noise. This can be seen in Figure 5.6, which

depicts five separate heatmaps representing the structure of the test data in the fea-

ture space. All five image fidelities exhibit a similar structure, implying that their

BER estimates are quite close. It should be stated that this is not an ideal feature

space structure. There is a significant amount of cross-links between the T72 and the

BMP2, implying that the clusters are not very separate in the feature space. However,

this experiment is only concerned with relative performance given the independent

variable, that is the amount of blurring applied to the data set. With this in mind,

it does not appear that the separability of the test data diminishes with the addition

of Gaussian noise.

The fact that a neural network is able to classify extremely blurry images with

high accuracy is quite significant, implying that there might be a learned denoising

procedure within the CNN. From here, we can claim that smooth perturbations to

training images do not hinder classification performance as long as the test data is

convolved with the same blurring kernel as the training data.

But what if the test data exhibits a different amount of noise than the training

data over which a model is formed? The second component of this experiment took

high fidelity images, namely images with no Gaussian kernel applied to them, and

passed them through models trained on blurred data. The question at the root of

this experiment is are the feature spaces of images of different fidelities compatible?

The results show that the spaces are quite compatible. Figure 5.7a depicts the

number of cross-links of non-blurred test data when it is projected into the feature

spaces of lower-fidelity images. Figure 5.7b depicts the separability of non-blurred

38

5.3 Experiment 3 Discussion

Figure 5.6: The structure of test data at different blurring thresholds in learned
feature spaces trained at the same thresholds

test data in its own feature space. Comparing the two figures, there is not a significant

discrepancy in the structure of the cross-links. At higher values of sigma, there is an

increase in the number of cross-links between the T72 and the BMP2 targets, but

this could be a product of the training set, which consists of relatively few images of

the BMP2.

Table 5.1 summarizes the upper and lower BER estimates for the high-fidelity

data in different spaces, including its own. For the images convolved with noise with

σ = 1 or σ = 2, the test data is just as separable, if not more separable, in the

low-fidelity spaces. For higher values of sigma, the separability diminishes slightly,

but not to a severe extent.

To better illustrate the structure of the samples in the feature spaces, we intro-

duce a tSNE plot of the test data. T-distributed Stochastic Neighbor Embed-

ding (tSNE), is a non-linear dimensional reduction algorithm. It aims to project

high-dimensional data in 2 or 3 dimensions such that the distributions of data are

preserved. The tSNE plots in Figure 5.8 illustrate individual samples of high-fidelity

39

5.3 Experiment 3 Discussion

(a)

(b)

Figure 5.7: Top: Cross-links of high-fidelity test data projected into feature spaces
trained on low-fidelity data. Bottom: Cross-links of high-fidelity test data projected
onto its own feature space.

data projected onto feature spaces trained using low-fidelity images. The samples

show strong clustering in all of the feature spaces. However, tSNE cannot be relied

on heavily, as it is prone to showing clusters even if those clusters are not truly present

in the data. However, other information we have gathered, such as the few number

of cross-links and the high distance ratio (as discussed in Experiment 2) support the

clustering we see.

This result has a significant impact on current AF procedures. It’s quite compu-

tationally intensive to generate simulated SAR data, which is an essential component

of training target recognition algorithms. The speed and cost of this image genera-

40

5.3 Experiment 3 Discussion

Figure 5.8: tSNE plots of high-fidelity data when projected on feature spaces of
low-fidelity data.

sigma = 1 sigma = 2 sigma = 3 sigma = 4 sigma = 0

uBER 0.0350 0.0260 0.0440 0.0500 0.0340
lBER 0.0177 0.0131 0.0224 0.0255 .0172

Table 5.1: Upper and lower BER estimates for high-fidelity test data projected into
low-fidelity feature spaces. Bolded column shows BER bounds for non-blurred data
in its own space.

41

5.3 Experiment 3 Discussion

tion can be greatly reduced if the required image fidelity threshold is lowered. This

experiment shows that higher fidelity does not necessarily entail higher classifiability.

42

Chapter 6

Conclusion

This thesis takes a first hand look at applying Bayes error rate estimation to current

problems in machine learning. As the world begins to rely more on machine learning

models for automating procedures, architects must be presented with tools that are

more reliable than accuracy metrics or precision-recall curves. The BER estimate can

improve the holistic picture of how well a specific classifier can perform on a specific

data set. Not only is BER estimation using the FR-statistic more computationally

feasible than conducting many batches of testing, it offers worst-case performance

estimates, which are crucial for quality control procedures.

Furthermore, the process of BER estimation unveils structural components in the

feature space that would previously remain unknown. The number of cross-links

between test data in a minimum-spanning tree unveils areas of overlap in the feature

space. The distance ratio of cross-linked edges to non-cross-linked edges informs us of

clustering patterns. This is all done without having to visualize the high dimensional

space itself.

The final component this thesis provides is how BER estimation can be used to

optimize procedures. It showed that high fidelity spatial data is not necessary to

achieve strong classification performance; low fidelity data achieves similar degrees

of separability in the feature space. But even more significantly, high fidelity and

43

Conclusion Conclusion

low fidelity feature spaces are actually compatible. Therefore, in the specific Air

Force application discussed computational resources might not need to be diverted

to producing the highest quality training data. Of course, further research must be

conducted on this claim. Because the simulation algorithms are not publicly available,

the thesis used Gaussian filters to distort image fidelity. This i.i.d. distortion most

likely does not emulate the spatial distortion we would see if CAD model fidelity was

altered before simulation. Nevertheless, this thesis suggests a degree of Gaussian noise

invariance inherent in the CNN. Further research can examine what other invariances

are present to optimize procedures.

It is important to note that the applications of this research transcend this Air

Force specific use case. BER estimation can be used to evaluate any classifier-data

tuple, unveiling worst- and best-case performance. A plethora of industry applica-

tions of machine learning depend on these measures, especially those in which the

consequences of misclassification are dire.

There is a breadth of future research that can be done on BER estimation. The

MST and optimal weighted matching is done using the l2-norm, but different norms

can be explored to yield different structures, and therefore different BER estimates.

This research established that low fidelity feature spaces contain sufficient information

to classify high fidelity data; future research should explore if the inverse is true. Real

time SAR data often lacks pre-processing and is therefore of a lower fidelity than

training data. A high degree of feature space compatibility in the inverse direction is

promising for real-time target recognition. Finally, with a more industry-focused view,

a BER estimation toolkit could improve existing performance evaluation processes in

fields where machine learning models are used.

44

Bibliography

[1] Mstar overview.

[2] S. Amari, α -divergence is unique, belonging to both f -divergence and bregman

divergence classes, IEEE Transactions on Information Theory 55 (2009), no. 11,

4925–4931.

[3] Andriy Burkov, The hundred-page machine learning book, Andriy Burkov Quebec

City, Can., 2019.

[4] Frank Cabello, Julio León, Yuzo Iano, and Rangel Arthur, Implementation of

a fixed-point 2d gaussian filter for image processing based on fpga, 2015 Signal

Processing: Algorithms, Architectures, Arrangements, and Applications (SPA),

IEEE, 2015, pp. 28–33.

[5] John Duchi, Elad Hazan, and Yoram Singer, Adaptive subgradient methods for

online learning and stochastic optimization, Journal of machine learning research

12 (2011), no. Jul, 2121–2159.

[6] Ruth Heller, Dylan Small, and Paul Rosenbaum, crossmatch: The cross-match

test, 2012, R package version 1.3-1.

[7] C-H Hsu, W-C Feng, and Jeremy S Archuleta, Towards efficient supercomputing:

A quest for the right metric, 19th IEEE International Parallel and Distributed

Processing Symposium, IEEE, 2005, pp. 8–pp.

45

BIBLIOGRAPHY

[8] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton, Imagenet classification

with deep convolutional neural networks, Advances in Neural Information Pro-

cessing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,

eds.), Curran Associates, Inc., 2012, pp. 1097–1105.

[9] Joseph B. Kruskal, On the shortest spanning subtree of a graph and the traveling

salesman problem, Proceedings of the American Mathematical Society 7 (1956),

no. 1, 48–50.

[10] Steve Lawrence, C Lee Giles, Ah Chung Tsoi, and Andrew D Back, Face recog-

nition: A convolutional neural-network approach, IEEE transactions on neural

networks 8 (1997), no. 1, 98–113.

[11] Yann LeCun, Corinna Cortes, and CJ Burges, Mnist handwritten digit database,

ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[12] Llew Mason, Jonathan Baxter, Peter L Bartlett, and Marcus R Frean, Boost-

ing algorithms as gradient descent, Advances in neural information processing

systems, 2000, pp. 512–518.

[13] MATLAB, version 9.5 (r2018b), The MathWorks Inc., Natick, Massachusetts,

2018.

[14] Christos H Papadimitriou and Kenneth Steiglitz, Combinatorial optimization:

algorithms and complexity, Courier Corporation, 1998.

[15] Ning Qian, On the momentum term in gradient descent learning algorithms,

Neural networks 12 (1999), no. 1, 145–151.

[16] R Core Team, R: A language and environment for statistical computing, R Foun-

dation for Statistical Computing, Vienna, Austria, 2013.

46

BIBLIOGRAPHY

[17] Karthik Ramasubramanian and Abhishek Singh, Deep learning using keras and

tensorflow, Machine Learning Using R, Springer, 2019, pp. 667–688.

[18] Paul R. Rosenbaum, An exact distribution-free test comparing two multivariate

distributions based on adjacency, Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 67 (2005), no. 4, 515–530.

[19] Sebastian Ruder, An overview of gradient descent optimization algorithms, arXiv

preprint arXiv:1609.04747 (2016).

[20] Robert Sedgewick, Algorithms, Pearson Education India, 1988.

[21] S. Y. Sekeh, B. Oselio, and A. O. Hero, A dimension-independent discriminant

between distributions, 2018 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2018, pp. 4419–4423.

[22] , Multi-class bayes error estimation with a global minimal spanning tree,

2018 56th Annual Allerton Conference on Communication, Control, and Com-

puting (Allerton), 2018, pp. 676–681.

[23] Patrice Y Simard, David Steinkraus, John C Platt, et al., Best practices for

convolutional neural networks applied to visual document analysis., Icdar, vol. 3,

2003.

[24] Elizabeth R. Sudkamp, John W. Nehrbass, Eric Branch, and Michael Levy, Syn-

thetic data accuracy sensitivity to CAD model accuracy using ATR-based metrics,

Algorithms for Synthetic Aperture Radar Imagery XXVI (Edmund Zelnio and

Frederick D. Garber, eds.), vol. 10987, International Society for Optics and Pho-

tonics, SPIE, 2019, pp. 55 – 62.

47

Bibliography

[25] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola, Parallelized

stochastic gradient descent, Advances in neural information processing systems,

2010, pp. 2595–2603.

48

