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Abstract

There are three triangle groups defined in Euclidean space, corresponding to symmetries of

alternately shaded tessellations of the Euclidean plane by congruent triangles with interior

angles (π/3, π/3, π/3), (π/2, π/4, π/4), and (π/2, π/3, π/6). We call these triangle groups

∆(3, 3, 3),∆(2, 4, 4), and ∆(2, 3, 6) respectively. For any finite index subgroup Γ ≤ ∆(a, b, c),

we can form a surface X(Γ) in C2 determined by the quotient of the plane C/Γ. In this thesis,

we are interested in constructing Belyi maps fromX(Γ) to P1(C), which are holomorphic maps

unramified away from the points 0, 1, and∞. We develop an algorithm that takes as input a

transitive homomorphism π : ∆(a, b, c)→ Sd (determined by a transitive permutation triple

σ of elements in Sd) that induces a finite index subgroup Γ ≤ ∆(a, b, c). The output of our

algorithm is a Belyi map from X(Γ) to P1(C). We prove the correctness of this algorithm,

its applicability to any valid input, and compute examples. The algorithm and its proof

unite concepts from a great variety of subjects, from intuitive geometry to group theory, the

arithmetic of elliptic curves, and Galois theory. In the process of creating the algorithm, we

determine many interesting facts about the structure of the group Γ as well as its relation

to associated surfaces, quotients of the plane, and fields of meromorphic functions.
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Chapter 1

Introduction

Section 1.1

Motivation

This project sits in the intersection of many deep and interesting subjects. The objects

of interest are Belyi maps, maps ϕ : X → P1(C) of compact Riemann surfaces unramified

outside {0, 1,∞}. These maps have provided material for deep inquiry for forty years.

Part of the appeal in Belyi maps is in their tendency to connect abstract complexities with

tangible, surprisingly simple objects. Famously, Belyi maps admit several descriptions: by

dessins d’enfants, simple graphs named (literally) after “children’s drawings”, and by a pure

combinatorial description in terms of permutations. This project continues in that tradition.

Our goal is to compute explicit Belyi maps corresponding to permutation descriptions. The

bulk of the first half of the thesis concerns itself with symmetries of tessellations of the

plane. These are eminently tangible, beautiful, and accessible materials to work with —it

takes no sophisticated mathematical background to view and appreciate the rich and colorful

patterns that arise when shapes sit together in the plane. While many arguments regarding

the symmetries admit visual descriptions, there is always a group theoretic basis operating
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in tandem.

Once we establish the structure of these groups of symmetries, we leave the flat plane,

fold regions up, and begin work with surfaces. This takes us into the theory of elliptic curves

and function fields, using key connectors like the Weierstrass-℘ function to move between

related structures. Rather than computing our Belyi map directly, we trace our way through

three other maps, then fill in the fourth side of the square from what we learn from the other

three. We make use of a close correspondence between, lattices, surfaces, and function fields

defined over those surfaces, translating problems between categories as needed to reach the

final product.

Section 1.2

Main result

The main result of this thesis is an algorithm for producing certain kinds of Belyi maps. A

permutation triple of degree d is a triple (σ0, σ1, σ∞) ∈ S3
d of permutations, in the symmetric

group Sd on d elements, such that σ∞σ1σ0 = 1. A permutation triple is transitive if it

generates a transitive subgroup of Sd. Let σ be a permutation triple of degree d and let a, b, c

be the orders of σ0, σ1, σ∞, respectively. We say that σ is Euclidean if 1/a + 1/b + 1/c = 1,

as then the attached triangle group ∆(a, b, c) is a group of symmetries of the Euclidean

plane. By the theory of covering spaces, σ defines a homomorphism π : ∆(a, b, c)→ Sd and

thereby a subgroup Γ ≤ ∆(a, b, c) of index d. The quotient C/Γ can be given the natural

structure of a Riemann surface X(Γ), and the further quotient to C/∆ defines a Belyi map

ϕ : X(Γ) → X(∆) ' P1(C). By the theorem of Belyi, ϕ and X can be defined over the

field of algebraic numbers Q. We present an explicit, deterministic, and algorithmic way to

compute ϕ from σ.

Theorem 1.2.1. There exists an explicit algorithm that, given as input a transitive, Eu-
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clidean permutation triple σ, produces as output a model for the Belyi map ϕ associated to

σ over Q, up to isomorphism.

By model we mean equations for ϕ : X → P1. If σ is Euclidean, then either X has genus

zero or one, and this gives two cases for the description of the equations.

Example 1.2.2. Given the permutation triple σ := (2, 4, 3), (1, 3, 4), (1, 2, 3), we determine

that X(Γ) is a genus 0 surface, and the corresponding Belyi map ϕ : X(Γ)→ P1(C) is given

by

ϕ(x) =
128x3

x4 + 64x3 + 1152x2 − 110592
.

Let N(x) and D(x) be the numerator and denominator of ϕ respectively. Note that the

preimages under ϕ of 0,∞, and 1 respectively are the roots of of the N,D, and N −D. To

confirm the ramification of ϕ, we note that up to a constant multiple we have the factoriza-

tions

N(x) = x3

D(x) = (x− 8)(x+ 24)3

N(x)−D(x) = (x+ 8)(x− 24)3

where the repeated factors confirm the ramification, and we note the direct correspondence

between the powers of the factors and the cycle structure of σ.

The algorithm in Theorem 1.2.1 is described in Algorithm 3.12.1. We implemented the

algorithm in the computer algebra system Magma [1] to compute examples like the one

above.
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Section 1.3

Overview of structure

This thesis begins with a background chapter describing key components of the main theories

we use: group theory, the geometry of the Euclidean triangle groups, and an overview of some

key facts concerning elliptic curves. These are all extremely rich subjects, and we include

only a sampling of theorems and propositions, many given without proof. We then proceed to

the proof of our main results. This chapter traces through the construction of the necessary

objects in our algorithm, beginning with the structure of Γ. The chapter culminates with

the calculation of our Belyi map ϕ, putting together all the preceding pieces. Once we have

shown in detail how to construct ϕ, we follow with a more streamlined presentation of the

algorithm and a proof of its validity citing the relevant sections through the body of the

thesis.

In chapter 4, we move away from the theory of our result and move into the mechanics of

actual computations and examples. We include a brief discussion of our implementation of

the algorithm in Magma, a computer algebra system that lets us “run the code” and compute

the Belyi maps described by our algorithm. We then present many examples computed from

our code, both of structural elements of Γ and our final Belyi maps. Finally, we conclude

with a short discussion of work remaining and possible directions for further work.
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Chapter 2

Background

Section 2.1

Relevant group theory

2.1.1. The symmetric group on d elements

The main algorithm developed later in this thesis takes as input a triple (σa, σb, σc) of el-

ements in the symmetric group Sd on d elements. Elements in Sd consist of permutations

from {1, 2, ..., d} to {1, 2, ..., d}. We write these permutations in cycle format. For example,

the cycle (6493) in S9 gives the permutation taking 6 to 4, 4 to 9, 9 to 3, and 3 to 6. The

product of two cycles is the permutation obtained by composing the two permutations they

represent. We will frequently make use of the basic fact that any permutation in Sd can

be decomposed into a unique product of disjoint cycles. In this thesis, we will adopt the

convention of composing from left to right and writing the action of elements in Sd on the

elements in {1, 2, ..., d} in exponentiated form to avoid confusion with the usual right to left

functional composition (e.g if σa = (123) and σb = (234) then 1σaσb = (1σa)σb = 2σb = 3).

We say a subgroup G of Sn is transitive if for each i, j ∈ {1, 2, ..., n} there exists some σ ∈ G

such that σ(i) = j.
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2.1.2. Cosets, normal subgroups and semidirect products

Let G be a group and let N be a subgroup. The cosets of N in G, denoted by G/N are the

subsets of G of the form gN where g ∈ G. If g1, g2 ∈ G, we have that g1N = g2N if and only

if g−1
2 g1N = N if and only if g−1

2 g1 ∈ N . The index of N in G, which we denote by [G : N ]

is the number of distinct cosets of N in G.

Recall that we say N is a normal subgroup in G, and write N C G if for every g ∈ G

we have that gNg−1 = N (so conjugating N by any element in G gives back N). The

requirement that gNg−1 = g for any g ∈ G is equivalent to requiring that gng−1 ∈ N for any

n ∈ N and g ∈ G. When N CG, then there is a group structure on the cosets G/N given by

the operation g1N · g2N = g1g2N where g1g2 is calculated as in G. Furthermore, if H is any

subgroup of G, not necessarily normal, and N CG, then N ∩H is a normal subgroup of G.

We will later investigate the group ∆ of symmetries of the plane triangulated by congruent

triangle. A key feature of the structure of ∆ is that we can describe it as a semidirect product

of two subgroups of ∆. In general, we say that a group G is a semidirect product of two

subgroups N and H, and write N o H = G, if N C G, N ∩ H is trivial, and any element

g ∈ G can be given as g = nh for some n ∈ N and h ∈ H (this is one of several equivalent

formulations of the semidirect product, and the one we will use most directly in this thesis).

2.1.3. Transitive permutation representations

In the next subsection, we will describe the Euclidean triangle groups, and in the main body

of the thesis we will deal with finite index subgroups of the triangle groups. It will be useful

to describe our finite index subgroups in terms of a transitive permutation representation, a

more general construction that we will discuss here.

Definition 2.1.1. Let G be a group, and let π : G → Sd be a transitive homomorphism.
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Then we define the preimage of the stabilizer of 1 to be the elements

H := {g ∈ G : 1π(g) = 1}

and we say π is a transitive permutation representation of H.

H admits more structure than just a set of elements, which we will explore below.

Proposition 2.1.2. If π : G→ Sd is a transitive permutation representation of H, then H

is a subgroup of index d in G.

Proof. Suppose h ∈ H. Since if 1π(h) = 1 then 1(π(h))−1
= 1π(h−1) = 1, we know that h ∈ H

implies h−1 ∈ H. Likewise, 1π(1G) = 1(1) = 1, so 1G ∈ H, and if h1, h2 ∈ H then

1π(h1h2) = 1π(h1)π(h2) = 1π(h2) = 1,

so h1h2 ∈ H. Thus, H is a subgroup of G.

Consider the cosets of H in G. For gi, gj ∈ G, let π(gi) = σi and π(gj) = σj. Then

Hgi = Hgj if and only if gig
−1
j ∈ H if and only if 1σiσ

−1
j = 1 if and only if 1σi = 1σj . So,

there is one coset in H\G for each image of 1 under the permutations in π(G). Thus, since

π is transitive, [G : H] = d and

H\G = {Hg1, Hg2, ..., Hgd}

where each gi is such that 1π(gi) = i.

Of course, the symmetric group is defined via permutations on elements, and our use of

the integers to signify those elements is only a matter of convenience. So, there is no special

significance of the element named “1” that we permute, and we could just as easily define

the preimage of the stabilizer of k for any k ∈ {1, 2, ..., d}. If we define it in the entirely
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analogous way (merely replacing “1” with “k” in the preceding definitions and proof), then

it is a straightforward repetition to see that the preimage of the stabilizer of k is also a

subgroup of index d in G. We further flesh out the correspondence in the next proposition.

Proposition 2.1.3. Suppose π : G→ Sd is a transitive homomorphism, and let Hk and H`

be the preimages of the stabilizers of k and ` respectively (with 1 ≤ k, l ≤ d). Then Hk and

H` are conjugate subgroups in G.

Proof. Since π is transitive, there exists some g`k ∈ G such that π(g`k) takes ` to k. Then,

for any h` ∈ H`, let us define τ := π(g`k) and σ := π(h`). Then we have

kτ
−1στ = `στ = `τ = k

and thus g−1
`k h`g`k ∈ Hk, and so g−1

`k H`gk` ⊆ Hk. As we would expect, since π(g−1
`k ) takes k

to `, we can make the symmetric argument and see that g`kHkg
−1
`k ⊆ H`. Combining these

results, we see that g−1
`k H`g`k ⊆ Hk implies that H` ⊆ g`kHkg

−1
`k ⊆ H` and g`kHkg

−1
`k ⊆ H`

implies that Hk ⊆ g−1
`k H`g`k ⊆ Hk, so g`kHkg

−1
`k = H` and g−1

`k H`g
−1
`k = Hk, establishing that

the two subgroups of G are conjugate.

Our next result will be to show that we can characterize the finite index subgroups of G

of a given index d entirely in terms of the transitive homomorphisms from G to Sd, so our

transitive homomorphisms cover all the possible finite index subgroups of G, and we do not

“miss” anything.

Proposition 2.1.4. There is a bijection between subgroups of index d up to conjugacy in G

and transitive homomorphisms π : G→ Sd.

Proof. We have seen that a transitive homomorphism π : G → Sd determines a set of con-

jugate subgroups H1, H2, ..., Hd of index d in G, where Hi is the preimage under π of the

stabilizer of 1. Given those subgroups H1, ..., Hd, take g ∈ G and conjugate each Hi by g
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to form g−1Hig. Note that g−1Hkg = g−1H`g implies that Hk = H`, so conjugation by g

will not take two different subgroups in H1, ..., Hd to the same subgroup, and in general if

kπ(g) = `, then g−1Hkg = H`. So, conjugation by g permutes the conjugate groups H1, ..., Hd,

and so induces a permutation of their indices 1, ..., d. Define π′ : G→ Sd by taking g to the

permutation it induces by conjugating the subgroups H1, ..., Hd (so if g−1Hig = Hj then

π′(g) takes i to j).

We will check that π′ is a transitive homomorphism. First, conjugating by the identity

eG leaves any subgroup unchanged, so π′(eG) = (1) (the identity in Sd). If g1, g2 ∈ G, then

the permutation of subgroups H1, ..., Hd induced by first conjugating by g1 then g2 is the

same as that induced by conjugating by g1g2 (because g−1
2 (g−1

1 Hg1)g2 = (g1g2)−1H(g1g2),

so π′ is indeed a homomorphism. And since the subgroups H1, ..., Hd are all conjugate, as

shown above, π′ is transitive.

For the correspondence between the index d subgroups of G and transitive homomor-

phisms from G → Sd, we will need to show that the subgroups induced by π′ are exactly

H1, ..., Hd. We can see what the stabilizers of the elements 1, ..., d are under π′. Note that

kπ
′(g) = k ⇔ g−1Hkg

=Hk ⇔ g ∈ NG(Hk)

So, the stabilizer under π′ of k is NG(Hk). But from our prior work, this means [G :

NG(HK)] = d (because NG(HK) is the preimage under π′ of the stabilizer of k). We also

know [G : Hk] = d, and the tower law gives

[G : Hk] = [G : NG(Hk)][NG(Hk) : Hk]

so [NG(Hk) : Hk] = 1 and thus NG(Hk) = Hk, so Hk is the preimage under π′ of the

stabilizer of k, and thus our correspondence between transitive homomorphisms from G to

Sd and subgroups of index d up to conjugacy in G is bijecive.
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Section 2.2

Relevant geometry

2.2.1. Triangular tessellations of the Euclidean plane C

We will consider throughout this thesis special cases of tessellations of the plane (loosely

defined as a repeating pattern of shapes that fit together and cover the whole plane). Many

of these patterns are familiar from tile floors, beehives, and any other instances where a

large area needs to be covered by repetitions of one shape. And while there are endless

varieties of possible tessellations of the plane, the possibilities are quite limited if we restrict

to tessellations by regular polygons.

Lemma 2.2.1. The Euclidean plane only admits tessellations by three regular polygons:

triangles, squares, and hexagons.

Proof. Consider a regular n-gon. Each interior angle measures π(n − 2)/n. If the plane

admits a tessellation by n-gons, then there must exist m ∈ Z>0 such that mπ(n−2)/n = 2π,

so m(n − 2)/n = 2 and thus m = 2n/(n − 2). The cases of n = 3, n = 4, and n = 6 give

m = 6,m = 4, and m = 3 respectively. If n = 5, 2n/(n − 2) 6∈ Z. And for any n > 6, we

have 2 < 2n/(n − 2) < 3, so again 2n/(n − 2) 6∈ Z. So, the only tessellations of the plane

by regular polygons consist of six triangles meeting at each vertex, four squares meeting at

each vertex, or three hexagons meeting at each vertex.

The tessellations above provide the structure underlying a special set of tessellations we

will consider in depth through this thesis. Suppose we require a tessellation of the plane

by congruent triangles (though not necessarily regular). We will further require that each

vertex of each triangle meets at a point with vertices of other triangles of equal interior angle,

and that an even number of triangles meet at each vertex (we make this last requirement

10



because we will later want to shade alternating triangles, and could not do so well if an odd

number met at a point).

Lemma 2.2.2. There are exactly three possible sets of angles giving triangles that yield tes-

sellations as described above. These 3 triangles have interior angle sets {π
3
, π

3
, π

3
}, {π

2
, π

4
, π

4
},

and {π
2
, π

3
, π

6
}.

Proof. Suppose a triangle T that admits a proper tessellation of C as described above has

interior angles θ1, θ2, and θ3. Then, we must have that θ1 + θ2 + θ3 = π. Furthermore, since

vertices meet at a point with vertices of equal interior angle, and an even number of triangles

meet at each vertex, we must have integers a, b, and c such that aθ1 = bθ2 = cθ3 = π, thus

θ1 = π/a

θ2 = π/b

θ3 = π/c

and since θ1 + θ2 + θ3 = π, the problem reduces to determining triples {a, b, c} of natural

numbers such that

1

a
+

1

b
+

1

c
= 1

Some bounds are apparent: none of the denominators above can be less than 2, and at

most one can be equal to 2. Since the sum of two of the terms above is at most 1
2

+ 1
3

=

5
6
, none of the denominators above can exceed 6 . Out of the limited cases remaining,

straightforward computations confirm that the only working triples (where order does not

matter) are {3, 3, 3}, {2, 4, 4}, and {2, 3, 6}, thus proving the lemma.

We can impose an additional structure on our tessellations obtained above by shading

alternate triangles, such that no shaded triangle shares an edge with another shaded triangle,
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and likewise no unshaded triangle shares an edge with another unshaded triangle. Portions

of each tessellation are shown below.

Figure 2.1: Tessellations of the plane by three different triangles.

2.2.2. Euclidean triangle groups

Given one such tessellation, we can fix a particular triangle, T ∗, with vertices va, vb, and

vc, with corresponding interior angles π
a
, π
b
, and π

c
with a ≤ b ≤ c. For consistency, we will

assign T ∗ to the blue triangle indicated in the leftmost diagram of each of the three sets of

diagrams below, where the green vertex indicates the origin. For n ∈ {a, b, c} let δn be the

counterclockwise rotation of the tessellation about vn by an angle of 2π
n

.

Lemma 2.2.3. The transformations δa, δb, and δc generate a group ∆ of symmetries of the

tessellation.

Proof. Each of δa, δb, and δc gives a symmetry of the tessellation (i.e. distances are preserved,

each vertex is carried to the location of another vertex, and shaded/unshaded triangles are

carried to shaded/unshaded triangles respectively). δnn corresponds to a rotation about vn

by 2π, an identity transformation, so δn−1
n gives an inverse for δn. Since compositions of

two symmetries will result in a third symmetry, we see that {δa, δb, δc} generates a group

∆(a, b, c) of symmetries of the tessellation.

12



Figure 2.2: Action of δaδbδc on each tessellation, exhibiting δaδbδc = 1. The blue triangle
marks the motion of T∗ under each step in the composition (which returns it to its original
position). va, vb, and vc are marked in blue, red, and green respectively.

Lemma 2.2.4. δa, δb, and δc satisfy the relation δaδbδc = 1.

Proof. Fix some triangle T∗ (in figure 2.2, the blue triangle whose vertices are va, vb, and vc).

Then applying the transformations δc, δb, then δa in that order we see that the composition

takes T∗ back to ts original position. Since T∗ is unmoved and the rest of the plane moves

rigidly around T∗, δaδbδc acts as the identity transformation on the plane. Then the group

∆(a, b, c) is such that δaδbδc = 1∆, where 1∆ denotes the identity element in ∆(a, b, c).

Lemma 2.2.5. The groups ∆(2, 4, 4) and ∆(2, 3, 6) generated by δa, δb, and δc contain all the

symmetries of their corresponding tessellations. ∆(3, 3, 3) contains all the symmetries of its

corresponding tessellation that also give symmetries of the associated hexagonal tessellation.

Proof. In the cases of ∆(2, 3, 6) and ∆(2, 4, 4), consider, respectively, the hexagon (square)
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formed by the 12 (8) triangles adjacent to the origin. The tessellations of the plane by

shaded and unshaded triangles corresponding to ∆(2, 3, 6) and ∆(2, 4, 4) contain tessella-

tions by hexagons (squares) identical to those centered at the origin described above. So,

any symmetry must take the center hexagon (square) to one of the hexagons (squares) in

the hexagonal (square) tessellation. We can compute explicit elements in ∆(2, 3, 6) and

∆(2, 4, 4) (as combinations of δa, δb, δc) that span all the translations taking the origin to

the center of another hexagon (square) in the hexagonal (square) tessellation. For example,

δaδ
2
c in the ∆(3, 3, 3) case takes each hexagon to its neighbor on the top right side. Call

the set of translations in ∆(a, b, c) T (∆(a, b, c)).. Since composing translations gives another

translation, and each translation has an inverse, T (∆) is a subgroup of ∆.

Figure 2.3: Hexagonal and square regions about the origin. Elements in ∆(a, b, c) map
these to identical regions, giving a symmetry of the tessellation of the plane by hexagons or
squares.

Any transformation that takes T ∗ to an equally shaded triangle will be a symmetry of

the tessellation. Since any symmetry will take the origin to the center of a hexagon (square)

in the hexagonal (square) translation, we can obtain all the symmetries by first rotating T ∗

to a properly shaded triangle in the center hexagon (square) and then translating to one

of the other hexagons (squares) in the tessellation. Since any such transformation is of the

form τδnc for some τ ∈ T (∆) and n ∈ N, we see that ∆(2, 3, 6) and ∆(2, 4, 4) contain all the

symmetries of their corresponding triangular tessellations.
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Lemma 2.2.6. The full group of symmetries of the tessellation by equilateral triangles is

isomorphic to a subgroup ∆(2, 3, 6).

Figure 2.4: A subdivision of the equilateral tessellation. Take va, vb, and vc as the blue, red,
and green vertices respectively.

Proof. Consider the tiling we obtain by taking the tessellation by equilateral triangles and

barycentrically subdividing each triangle. The result is the tessellation of the plane by

congruent triangle with interior angles (π/2, π/3, π/6) familiar from our ∆(2, 3, 6) case. If

we choose vertices v∗a, v
∗
b , v
∗
c whose locations relative to the origin are shown in the diagram

above and let δ∗a, δ
∗
b , δ
∗
c be the corresponding rotations about those vertices by 2π/3 (so four

times the interior angle of the triangles that meet at that vertex), we see that δ∗a, δ
∗
b , δ
∗
c each

have order 3 and the product δ∗aδ
∗
b δ
∗
c = 1. So, 〈δ∗a, δ∗b , δ∗c 〉 is a subgroup of ∆(2, 3, 6) isomorphic

to ∆(3, 3, 3). Let τ ∗a , τ
∗
b be the translations in ∆(2, 3, 6) taking v∗c to v∗a, v

∗
b respectively.

Note that these translation symmetries in ∆(2, 3, 6) also give symmetries of the equilateral

translation (bold in the illustration above) corresponding to the vertex translations not

included in ∆(3, 3, 3). So, δ∗a, δ
∗
b , δ
∗
c , τa∗, and τ ∗b generate a subgroup of ∆(2, 3, 6) isomorphic

to the full group of symmetries on the (alternately shaded) equilateral tessellation.

15



Our next results provides a simple, but extremely useful characterization of the structure

of ∆ in terms of two subgroups.

Lemma 2.2.7. T (∆) is normal in ∆, and ∆ = T (∆)o 〈δc〉 ∼= Z2 o Z/cZ.

Proof. If z is a point in C, a translation τ in T (∆) is of the form τ(z) = z + β for some

β ∈ C. If δ is an arbitrary transformation in ∆, then

δ(z) = a1z + b1

and δ−1(z) = a−1
1 (z − b1)

for some a1, b1 ∈ C such that

z 7→ a1z, z 7→ a−1
1 z ∈ 〈δc〉

and z 7→ z + b1, z 7→ z − b1 ∈ T (∆).

Then,

δ−1τδ(z) = δ−1τ(a1z + b1) = δ−1(a1z + b1 + β) = a−1
1 (a1z + β) = z + a−1

1 β,

so δ−1τδ ∈ T (∆). Thus, T (∆) C ∆.

Since T (∆) ∩ 〈δc〉 = 1∆ and any δ ∈ ∆ is of the form τδnc for some τ ∈ T (∆) and n ∈ N,

it follows that ∆ = T (∆)o 〈δc〉. Finally, noting that T (∆) is abelian, we can generate T (∆)

from two translations as illustrated, and δc has order c, it follows that T (∆) ∼= Z2, 〈δc〉 ∼=

Z/cZ, and so ∆ ∼= Z2 o Z/cZ.
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Section 2.3

Relevant theory of elliptic curves

2.3.1. Complex projective space and the Riemann sphere

Taking real and imaginary axes and associating the complex number a+bi with the coordinate

(a, b) gives us a representation of the complex numbers C as a plane. C with the usual

operations of addition and multiplication is a field, but expressions like z1/0 with z1 ∈ C

are undefined in the complex numbers–we observe that |z1/z| tends to infinity as z1 remains

fixed at some nonzero value and |z| tends to 0, but we do not have a to assign to z/0. We

adjoin to C a point at infinity, which which we will call ∞, subject to the rules that, for

z ∈ C z/0 =∞, z +∞ =∞, and z/∞ = 0. The so called extended complex numbers, which

we will denote by Ĉ, can be visualized as a sphere via stereographic projection. If we take a

sphere with the complex plane cutting across its equator, then the ray connecting the north

pole of the sphere to a point z in the plane intersects the sphere in one unique place: the

upper hemisphere for points outside the sphere, and the lower hemisphere for points outside

the sphere. Noting that the point where the corresponding ray intersects the sphere tends

toward the north pole as the magnitude of the point z in the plane increases, we identify the

north pole with the point at infinity. This is the typical construction of the Riemann sphere.

We can formulate this space equivalently as the complex projective line P1(C), consisting of

all lines passing through the origin in C2.

For consistency and simplicity of notation, we will refer to the space constructed above

(C with an added point at infinity) as P1(C), and we will refer to specific points either as

their representation z ∈ C or as∞ for the point at infinity. They most important attributes

of P1(C) for our purposes are that it is a compact Riemann surface (so looks like a plane

locally) and that, defining z/0 = ∞, rational functions, which are meromorphic over C,

extend to holomorphic functions over P1(C) (where poles of the function take the value ∞).
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2.3.2. Elliptic curves over C

In computing the final Belyi maps that are the object of this thesis, we will compute several

intermediate maps moving between P1(C) and various special curves defined over C called

elliptic curves. The theory of elliptic curves is massively rich and varied. And while elliptic

curves are central to this thesis, we will only address a small portion of their many properties

and possibilities.

Definition 2.3.1. Given an equation of the form

E : y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5

with coefficients {a1, a2, a3, a4, a5} in C, we call the curve given by E an elliptic curve over C,

and let E(C) denote the points (x, y) with x, y ∈ C satisfying the equation E together with

the point at infinity. By a change of variables, the equation above simplifies to one of the

form

E : y2 = x3 + Ax+B

with a, b ∈ C.

An elliptic curve E admits a group structure as follows: suppose P1 and P2 are points

on E. If we let L be the line passing through P1 and P2 (or tangent if P1 = P2), then

L intersects E in a third point P3 (possibly ∞). If P3 = (x0, y0), define −P3 := (−x, y0).

Defining P1 + P2 = −P3 gives a group structure on E where P has inverse −P and ∞ acts

as the identity. Silverman gives a rigorous verification of this group structure, as well as

explicit rational equations for P1 + P2 in terms of the coefficients of P1 and P2 [3]. The

relevant structure preserving maps between elliptic curves are called isogenies.

Definition 2.3.2. Given elliptic curves E1 and E2, a morphism φ : E1 → E2 such that

φ(∞) =∞ is called an isogeny from E1 to E2. If there exists an isogeny from E1 to E2, we
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say that E1 and E2 are isogenous.

It is a result in Silverman [3] that if φ : E1 → E2 is an isogeny, then φ respects the group

action in that for all P1, P2 ∈ E1 we have

φ(P1 + P2) = φ(P1) + φ(P2).

2.3.3. Elliptic functions

Definition 2.3.3. Suppose we have complex numbers ω1, ω2 ∈ C such that ω1 6= rω2 for

any r ∈ R. Then, viewing ω1 and ω2 as vectors in the plane we associate with C, ω1 and

ω2 are not colinear, and so form a basis for C over R. Let Λ(ω1, ω2) = 〈ω1, ω2〉 ⊆ C be the

lattice spanned by linear combinations of ω1 and ω2 over Z, i.e.

Λ(ω1, ω2) := {n1ω1 + n2ω2 : n1, n2 ∈ Z}.

We call ω1 and ω2 the periods of the lattice, and when the context is not ambiguous we will

omit them from the notation Λ(ω1, ω2) and instead refer simply to the lattice Λ.

Definition 2.3.4. Given a lattice Λ(ω1, ω2), suppose f is a meromorphic function on C that

is doubly periodic in the sense that for any z ∈ C, f(z) = f(z + ω1) = f(z + ω2). Then we

say that f is an elliptic function relative to the lattice Λ.

If f is an elliptic function as described above, it is easy to see by repeated applications

of its periodicity that in fact f(z + ω) = f(z) for all z ∈ C and ω ∈ Λ. So, to determine the

value of f at any point in C, it suffices to specify the values f takes on on the set

D := {t1ω1 + t2ω2 : 0 ≤ t1, t2 < 1},

a so called fundamental parallelogram for f in C. For a given lattice Λ, the set of meromorphic
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functions that are elliptic relative to Λ forms a field, which we will denote by C(Λ).

In the next section, we will see that we can associate with each lattice Λ ⊆ C an elliptic

curve defined over C. As it will later be useful to determine certain relationships between

those elliptic curves by determining corresponding relationships of their associated lattices,

we will introduce some of the relevant terminology and results now.

Definition 2.3.5. Let Λ1 and Λ2 be two lattices. We say Λ1 and Λ2 are homothetic if there

exists α ∈ C such that αΛ1 = Λ2.

Since Λ = 1 · Λ, αΛ1 = Λ2 implies α−1Λ2 = Λ1, and if α1Λ1 = Λ2 and α2Λ2 = Λ3 then

α2α1Λ1 = Λ3, we see homothety is an equivalence relation on the set of lattices. As a weaker

condition than homothety, consider Λ1,Λ2 ⊆ C and suppose α ∈ C is such that αΛ1 ⊆ Λ2.

Results from Silverman give the following useful characterization of holomorphic maps from

C/Λ1 to C/Λ2.

Proposition 2.3.6. Given lattices Λ1 and Λ2 in C, there is a bijection between elements

α ∈ C such that αΛ1 ⊆ Λ2 and holomorphic maps from C/Λ1 to C/Λ2. Explicitly, α

corresponds to a map φα : C/Λ1 → C/Λ2 where φα(z) = αz(mod Λ2) [3] .

2.3.4. The Weierstrass ℘-function

Given a lattice Λ, we can consider the quotient of the plane C by Λ by identifying any points

in C whose difference is an element of Λ. We can then take the fundamental parallelogram

described above as a fundamental domain for C/Λ and consider the surface obtained by

gluing the identified edges (the pairs differing by ω1 and ω2) in the closure of the fundamental

parallelogram. Since we glue opposite edges, the result is a torus. The key significance of

C/Λ in this thesis will be its relation to a certain elliptic curve over C. The important link

between C/Λ and its associated elliptic curve E(C) comes from the Weierstrass ℘-function.
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Definition 2.3.7. We define the Weierstrass ℘-function relative to Λ by the series

℘(z,Λ) :=
1

z2
+

∑
ω∈Λ,ω 6=0

(
1

(z − ω)2
− 1

ω2

)

and the Eisenstein series of weight 2k by

G2k(Λ) =
∑

ω∈Λ,ω 6=0

ω−2k.

The key facts about these series for our purposes are that they allow us to construct an

elliptic curve E that is complex analytically isomorphic to C/Λ. The relevant proposition

comes directly from Silverman:

Proposition 2.3.8. Given a lattice Λ, let g2 := 60G4(Λ) and g3 := 140G6(Λ). Then the

curve

E : y2 = 4x3 − g2x− g3

is an elliptic curve, and the map

φ : C/Λ→ E(C), z 7→ [℘(z), ℘′(z), 1]

is a complex analytic isomorphism [3].

In practice, we will omit the third coordinate in [℘(z), ℘′(z), 1] and instead associate a

point z ∈ C/Λ with the point (℘(z), ℘′(z)) satisfying

℘′(z)2 = 4(℘(z))3 − g2(℘(z))− g3

Since this proposition lets us “build” an elliptic curve E from a lattice Λ, it makes sense to

refer to an elliptic curve E corresponding to a lattice Λ, meaning the curve obtained in this
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way. This proposition combines usefully with two others from Silverman [3]:

Proposition 2.3.9. The category whose objects are elliptic curves over C and whose maps

are isogenies is equivalent to the category whose objects are lattices Λ ⊆ C up to homothety

and whose maps are of the form φα : Λ1 → Λ2, λ 7→ αλ where αΛ1 ⊆ Λ2 [1].

Proposition 2.3.10. If E1 and E2 are elliptic curves corresponding to the lattices Λ1 and

Λ2, then there is a bijection between the isogenies φ : E1 → E2 and the holomorphic maps

φ : C/Λ1 → C/Λ2 such that φ(0) = 0.

In practice, these propositions allow us some freedom to treat C/Λ and the corresponding

elliptic curve E as equivalent in many regards. Some problems we address have natural

solutions when viewed through the lens of lattices and quotients of the plane, which we can

then translate (via the Weierstrass ℘-function) to solutions of problems concerning elliptic

curves, and vice versa.

2.3.5. Riemann surfaces, Belyi maps, and the purpose of this thesis

Informally, a Riemann Surface is a surface in C2 that looks locally like C, which allows us

to define holomorphic functions on the surface. Important examples of Riemann Surfaces

for our purposes are C, the Riemann sphere, and tori. A Belyi Map on a Riemann surface

X is a holomorphic map ϕ : X → P1(C) that is unramified apart from at 0, 1, and ∞. The

main construction of this thesis is an algorithm that takes as input a transitive permutation

triple (σa, σb, σc) of permutations in Sd corresponding to a homomorphism π : ∆ → Sd and

calculates explicitly a Belyi map ϕ : X(Γ)→ P1(C) of degree d (where the ramification points

then are those with fewer than d-many distinct preimages under ϕ in X(Γ)). In our case,

X(Γ) is either another copy of P1(C) or an elliptic curve (equivalent to a torus). As the

input to our algorithm comes as a transitive Euclidean permutation triple (i.e. specifying a

transitive homomorphism π : ∆→ Sd) we will make use of the following lemma (Taken here

directly from Voight [4]).
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Lemma 2.3.11. There is a bijection between transitive permutation triples up to simulta-

neous conjugacy and isomorphism classes of Belyi maps over C (or Q̄).

So, we take as input a Euclidean permutation triple, which we will allow ourselves to

conjugate by an element of Sd without changing the isomorphism class of the resulting curve,

and we determine the corresponding Belyi map given by the lemma above.The algorithm

operates by identifying the permutation triple with a finite index subgroup Γ of the Euclidean

triangle group ∆. Γ then admits a structure as the semi-direct product of a normal subgroup

T (Γ) (corresponding geometrically to translations in the plane) and a cyclic subgroup R(Γ)

(corresponding to rotations). Likewise, ∆ admits a semi-direct product structure with ∆ =

T (∆) o R(∆). Taking the quotient of C by these groups of transformations on the plane

yields four surfaces, as indicated in the diagram below.

C/T (Γ) C/Γ

C/T (∆) C/∆

C/T (Γ) and C/(T (∆) always give elliptic curves. C/(Γ) is either an elliptic curve or

P1(C), and C/∆ is always P1(C). ϕ : X(C/Γ) → P1(C) is the final Belyi map we wish to

calculate. Direct calculation is inaccessible. Instead, we fill in the maps for the other three

sides of the diagram, then deduce ϕ as the map that makes the diagram commute. Along the

way, we will make use of the close connections between three similar structures: quotients of

the plane C, surfaces over C isomorphic to those quotients, and the function fields described

over those surfaces We begin the thesis with a thorough description of the structure of Γ and

explicit methods for constructing its subgroups, consider the associated surfaces, functions

fields, and relevant maps between them, then conclude by bringing the pieces together in

the final computation of the Belyi map ϕ.
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Chapter 3

Proof of Main Results

Section 3.1

Overview

The main construction in this thesis is an algorithm that takes as input a transitive ho-

momorphism π : ∆ → Sd, defined by a transitive permutation triple σ := (σa, σb, σc). σ

determines a finite index subgroup Γ in ∆. The output of the algorithm is a Belyi map

ϕ from X(Γ) to X(∆) = P1(C), where X(Γ) and X(∆) are surfaces obtained by taking a

quotient of C by Γ and ∆ respectively. We base the main steps in our algorithm off of the

diagram below.

E(Γ) X(Γ)

E(∆) X(∆)

G

ψ ϕ

F

We first obtain a description of Γ as a semi-direct product Γ = T (Γ) o R(Γ) where T (Γ)

consists of translations and R(Γ) is generated by rotation around a particular point which

we can find explicitly.

We obtain four surfaces by taking the quotients of C by the groups T (Γ),Γ, T (∆), and

∆. The quotients by T (Γ) and T (∆) necessarily give elliptic curves E(Γ) and E(∆). C/Γ
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gives either an elliptic curve or a copy of P1(C), so we will call the general surface X(Γ).

C/∆ gives a copy of P1(C) that we call X(∆). To find the Belyi map ϕ, we first find the

other three maps in our diagram then make the necessary choice of ϕ for the diagram to

commute.

ψ is an isogeny of elliptic curves corresponding to the further quotient of C/T (Γ) by

T (∆), which we obtain as the dual isogeny of the isogeny from E(∆) to E(Γ) corresponding

to an inclusion of lattices. We compute this isogeny using Vélu’s formula. The bottom map

F is of one of three forms taking a point (x, y) to a monomial in either x or y: we determine

this by looking at the fixed field of C(E(Γ)) under the finite subgroup of automorphisms

corresponding to the rotations in R(∆). The top map G is determined in the same manner

when R(Γ) is realized as rotation about the origin, and differs by a translation map if R(Γ)

is realized as rotation about some other point.

When we know the maps F,G, and ψ, the remaining step is to fill in ϕ to make the

diagram commute. Inclusions of fields of meromorphic functions on the surfaces in the

diagram above guarantee that, through substitutions based on the equation for E(Γ), we

can write ϕ as a univariate rational function. ϕ then exhibits special factoring properties

that verify its ramification at the points 0, 1, and∞, with factorizations of the numerator of

ϕ, the denominator of ϕ, and the difference of the two corresponding to the cycle structure

of σ. We give a detailed description of this construction below, and in Chapter 4 present a

pseudo-coded formulation of the algorithm, describe an actual implementation in the Magma

computer algebra system, and present some computed examples of data and the final Belyi

maps.
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Section 3.2

Finite index subgroups of the Euclidean triangle

groups

We begin by considering valid inputs for our algorithm. To build our finite index subgroup

Γ in ∆, we begin by identifying the generators δa, δb, and δc with permutations in Sd via a

transitive homomorphism.

Definition 3.2.1. We say a homomorphism π : ∆(a, b, c) → Sn is transitive if π(∆) :=

{π(δ)|δ ∈ ∆} is a transitive subgroup of Sn.

Since ∆(a, b, c) = 〈δa, δb, δc〉, a transitive homomorphism π : ∆(a, b, c)→ Sn is determined

entirely by a permutation triple (σa, σb, σc) where

π(δa) := σa,

π(δb) := σb,

π(δc) := σc.

Example 3.2.2. Let π : ∆(2, 4, 4)→ S5 be given by

π(δa) = σa = (1 4)(2 3)

π(δb) = σb = (2 3 5 4)

π(δc) = σc = (1 4 5 2).

Then powers of σc show that we can take 1 to 4, 5, and 2, then 1σaσ
2
b = 4σ

2
b = 2σb = 3,

so we can take 1 to 3 as well (recalling conventions on permutation composition from 2.1.1).
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Similar calculations show that for any i, j ∈ {1, 2, 3, 4, 5} there exists some σ ∈ 〈σa, σb, σc〉

such that iσ = j, so π is transitive. As a subgroup of S5, π(∆) contains 20 elements, including

a 5 cycle (which immediately shows it is transitive).

Example 3.2.3. Let π : ∆(2, 3, 6) → S6 be given by π(δa) = σa = (14)(25)(36), π(δb) =

σb = (135)(246), and π(δc) = σc = (123456). Then since σc is a cycle with all 6 elements

permuted by S6, there is always a power n such that iσ
n
c = j for i, j ∈ {1, 2, 3, 4, 5, 6}, so π

is transitive.

We note that not every transitive permutation triple in Sd corresponds to a transitive

homomorphism from ∆. For example, if σ consists of three six cycles in S6, σ is a transitive

permutation triple, but because the order of δa ≤ 3 in each of the cases ∆(3, 3, 3),∆(2, 4, 4),

and ∆(2, 3, 6), and thus the order of π(δa) ≤ 3 for any homomorphism π, we see σ cannot

correspond to a homomorphism π : ∆→ Sd. Conversely, not every homomorphism π : ∆→

Sd corresponds to a transitive permutation triple (for example, the trivial homomorphism).

So, we have to take care in restricting our cases.

Definition 3.2.4. Given a transitive homomorphism π : ∆→ Sd, let

Γ := {δ ∈ ∆ : 1π(δ) = 1}.

We call Γ this the preimage of the stabilizer of 1. We call (σa, σb, σc), where π(δa) = σa,

π(δb) = σb, and π(δc) = σc the permutation triple representation of Γ.

Example 3.2.5. Let π : ∆(3, 3, 3) → S3 be given by the permutation triple (σa, σb, σc) =

((123), (123), (123)). Since σa = σb = σc, we have that 1σ = 1 for σ ∈ π(∆(3, 3, 3)) if and

only if we can write σ as the product of 3n many factors of σa, σb, and σc for some n ∈ Z.

So, writing any element in ∆(3, 3, 3) as a finite word in the letters δa, δb, and δc, Γ consists

exactly of the words written with a number of letters divisible by 3.
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Since we do not always have that σa = σb = σc, or even that those elements commute, Γ

can, in general, be more difficult to describe. Many of our efforts in the coming sections will

go toward describing the structure of Γ and identifying useful subgroups of Γ and ∆ (once we

have seen that Γ is indeed a group. From now on, let π : ∆ = ∆(a, b, c)→ Sd be a transitive

permutation representation, and let Γ be the associated preimage of the stabilizer of 1. We

first set up the background necessary to treat Γ algebraically. The next two propositions

come as immediate corollaries of proposition 2.1.2 and proposition 2.1.3 in the background

section on group theory (merely swapping ∆ for the general group G and Γ for the subgroup

H).

Proposition 3.2.6. Γ is a subgroup of index d in ∆.

Proposition 3.2.7. There is a bijection between subgroups of index d in ∆ up to conjugacy

and transitive homomorphisms π : ∆→ Sd.

So, any transitive π given as input determines a conjugacy class of subgroups of index

d in ∆, of which our choice of Γ as defined is one element (the preimage of the stabilizer

of 1). The other conjugate subgroups of Γ are the preimages of the stabilizers of the other

elements in {2, ..., d}.

Remark 3.2.8. Again, we note that there is no particular significance of our choice of Γ as

the preimage of the stabilizer of 1 as opposed to the preimage of the stabilizer of some other

element m: we could redefine all of the following theory and algorithms in terms of m instead

of 1 and obtain equivalent results. In particular, if we denote the preimage of the stabilizer

of m as Γm, then Γ = Γ1 and Γm are isomorphic. Defining our surfaces in terms of one

rather than the other gives a renumbering of regions, but not a meaningful change in the

surfaces obtained. So, while we consider any arbitrary transitive permutation triple σ in the

following discussion, and the algorithm works for any valid input, when we calculate actual

examples we will allow ourselves some freedom to “pre-process” the triples by simultaneous
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conjugation when it simplifies certain aspects of our calculations. And by 2.3.11, we know

the resulting Belyi maps will be isomorphic.

Now that we have a description of all the finite index subgroups Γ in ∆, we will work to

obtain an intuitive and algorithmic description of what Γ looks like in relation to ∆ and to

describe its structure in an accessible manner.

Section 3.3

The translation subgroups T (∆) of ∆ and T (Γ) of Γ

Given an arbitrary element δ ∈ ∆ expressed as a product of some finite number of elements

δa, δb, and δc in some order, we have a test to determine whether δ ∈ T (∆).

Proposition 3.3.1. T (∆) = ker(g ◦ f) where

f : ∆→ (Z/aZ)⊕ (Z/bZ)⊕ (Z/cZ)

δa 7→ (1, 0, 0), δb 7→ (0, 1, 0), δc 7→ (0, 0, 1)

g : (Z/aZ)⊕ (Z/bZ)⊕ (Z/cZ)→ Z/cZ

(x, y, z) 7→ cx/a+ cy/b+ z.

Proof. Suppose

δ = δ1δ2 · · · δn where for all i, δi ∈ {δa, δb, δc}.

Since for each i we have δ = τiδ
j
c where τi ∈ T (∆) (because ∆ ∼= T (∆) o R(∆) and

R(∆) = 〈δc〉), we can rewrite

δ = δ1δ2 · · · δn = τ1δ
j1
c · · · τnδjnc
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for some set {j1, j2, ..., jn} ⊆ Z≥0. Note that if τ ∈ T (∆) and δjc ∈ R(∆), then applying a

transformation of the form τδjc to any point z ∈ C gives τ(δjc(z)) = τ(az) = az + b for some

a, b ∈ C with |a| = 1. We can achieve the same transformation by first adding ba−1 to z (a

translation in T (∆)) then multiplying z + ba−1 by a (applying δjc) to obtain az + b. Thus,

we can write τδjc as δjcτ
′ for some τ ′ ∈ T (∆). Applying this identity repeatedly, we see

δ = τ1δ
j1
c · · · τnδjnc = τ ′1 · · · τ ′nδj1c · · · δjnc = τ ∗δmc

where each τ ′i is some translation in T (∆), τ ∗ ∈ T (∆), and m =
∑n

i=1 ji. Then, δ ∈ T (∆) if

and only if δmc = 1∆ if and only if c|m. If δi = δa, δb, or δc, then ji = c/a, c/b, or c/c = 1

respectively, corresponding to rotations of 2π/a, 2π/b, and 2π/c.

Define a homomorphism

f : ∆(a, b, c)→ (Z/aZ)⊕ (Z/bZ)⊕ (Z/cZ)

by mapping

δa 7→ (1, 0, 0), δb 7→ (0, 1, 0), δc 7→ (0, 0, 1).

Then a homomorphism

g : (Z/aZ)⊕ (Z/bZ)⊕ (Z/cZ)→ Z/cZ

by mapping

(x, y, z) 7→ cx/a+ cy/b+ z.

Let t : ∆(a, b, c) → Z/cZ be the composition g ◦ f . Then, t(δ) = m mod c with m defined

in the previous paragraph, so t(δ) = 0 if and only if c|m if and only if δ ∈ T (∆). Thus,

T (∆) = ker(t).
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The proof above has a simple intuitive description. Each transformation δa, δb, and δc

rotates the plane by twice its corresponding interior angle (and maybe also contributes some

translation). When we string these transformations together one after the other, the rotation

contributed by each accumulates in an abelian way (so the total rotation does not depend

on which order we do the individual transformations in). If the total amount of rotation

adds up to a multiple of 2π, then in effect all the rotations “cancel out” and the resulting

transformation is purely a translation.

Definition 3.3.2. As T (∆) is a normal subgroup of ∆ consisting of all the translation

symmetries, let T (Γ) be the normal subgroup of Γ given by T (Γ) := Γ ∩ T (∆).

Since T (Γ) ≤ T (∆) ∼= Z2, T (Γ) is a sublattice of the lattice of translations in T (∆).

If T (∆) = 〈ω1, ω2〉, we wish to determine τ1, τ2 ∈ Γ such that T (Γ) = 〈τ1, τ2〉. For any

η ∈ T (Γ), we know η ∈ T (∆) = 〈ω1, ω2〉, so η = ωa11 ω
a2
2 for some (a1, a2) ∈ Z2 (noting

that ω1 and ω2 commute in ∆). Let π(ω1) = ς1 and π(ω2) = ς2. To determine T (Γ), then,

it will suffice to determine for which (a1, a2) we have 1(ς
a1
1 ς

a2
2 ) = 1, or equivalently when

1ς
a1
1 = 1(ς−1

2 )a2 .

Write ς1 and ς−1
2 as products of disjoint cycles, and let c1 and c2 be the cycles in ς1 and

ς−1
2 respectively containing 1. For a cycle c, let `(c) be its length. Then

1ς
a1
1 = 1c

a1
1 = 1c

a1+n`(c1)
1

for any n ∈ Z, and likewise

1(ς−1
2 )a2 = 1c

a2
2 = 1c

a2+n`(c2)
2

for any n ∈ Z.

We can then compute 1c
b1
1 and 1c

b2
2 for 1 ≤ n1 ≤ `(c1) and 1 ≤ n2 ≤ `(c2) and determine
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a set of pairs

V = {(b1, b2) ∈ {1, 2, ..., `(c1)} × {1, 2, ..., `(c2}|1c
b1
1 = 1c

b2
2 }.

If we define

V ′ := V ∪ {(`(c1), 0), (0, `(c2)},

then

span(V ′) = {(a1, a2) ∈ Z2|1(ς
a1
1 ς

a2
2 ) = 1}.

Let A be a matrix whose rows are given by the elements in V ′. Reducing A to echelon form

and taking its first two row vectors (n1, n2) and (m1,m2), then setting τ1 = ωn1
1 ωn2

2 and

τ2 = ωm1
1 ωm2

2 we have that T (Γ) = 〈τ1, τ2〉. Further, since we reduce A to echelon form,

m1 = 0. This will simplify a calculation later.

Example 3.3.3. Let π : ∆(3, 3, 3) → S7 be given by the permutation triple ((142)(356),

(134)(276), (253)(467)). Note that in ∆(3, 3, 3) with vertices va, vb, vc marked as above (in

section 2.2), the transformation ω1 := δbδ
2
c gives a translation taking the central hexagonal

region (the six triangles adjacent to the origin) to the hexagonal region directly directly up

and to the right of it (we can check ω1 is a translation because it is in the kernel of the

homomorphism t described above, and an easy visualization shows that it carries the origin

to the center of center of the target hexagon). Likewise, ω2 := σ2
bσc gives a translation taking

the center hexagon to the hexagon directly above it. Then, T (∆) = 〈ω1, ω2〉. As described,

above, let

ς1 = π(ω1) = σbσ
2
c = (134)(276)(253)(467)(253)(467) = (1526374)

ς2 = π(ω2) = σ2
bσc = (134)(276)(134)(276)(253)(467) = (1642753)
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(remembering our convention to compose cycles from left to right). Then ς−1
2 = (1357246)

and our cycles c1 and c2 described above are c1 := (1526374) and c2 := (1357246). To

determine our set V , we want the pairs (a1, a2) with a1, a2 ∈ {1, 2, 3, 4, 5, 6} such that

1c
a1
1 = 1c

a2
2 . From the cycles above, we determine

V = {(1, 2), (2, 4), (3, 6), (4, 1), (5, 3), (6, 5)}

and V ′ = {(1, 2), (2, 4), (3, 6), (4, 1), (5, 3), (6, 5), (7, 0), (0, 7)}

We want to determine a basis for the subspace of Z2 spanned by the vectors in V ′. We form

the matrix A whose columns are the vectors in V’ and reduce the matrix A to a matrix A′

in Echelon form:

A =



1 2

2 4

3 6

4 1

5 3

6 5

7 0

0 7



A′ =



1 2

0 7

0 0

0 0

0 0

0 0

0 0

0 0


Thus, T (Γ) = 〈ω1ω

2
2, ω

7
2〉.

Section 3.4

Quotients of the plane: C/∆, C/Γ, C/T (∆) and C/T (Γ)

If we take a subgroup H of ∆ and identify points in C which can be carried to each other via

an element of H (i.e. z1 ≈ z2 if and only if z1 = h(z2) for some h ∈ H), taking a complete
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set of representatives of the equivalence classes gives a “fundamental domain” contained in

C. In particular, we are concerned with the cases of C/∆,C/Γ, C/T (∆), and C/T (Γ).

For C/∆, a convenient choice of fundamental domain, using the pertinent triangular

tessellation as a guide, is to take any pair of one shaded triangle and one unshaded triangle

that share an edge. This gives a quadrilateral region where all the interior points are distinct

under the identification C/∆. Furthermore, we can divide the four sides of the quadrilateral

into two pairs of consecutive sides (a1, a2) and (b1, b2) such that a1 and a2 are identified

under the quotient by ∆ and and b1 and b2 are identified (see diagram below). C/∆ then

gives a surface of genus 0, P1(C) with three cone points at the vertices.

Figure 3.1: Fundamental regions of C/∆. Like colored edges and vertices are identified.

Since T (Γ) is generated by two non-colinear translations, we can take as its fundamental

domain the parallelogram determined from the two sides τ1 and τ2 sharing a vertex at the

origin. By the translations in T (Γ), all the points within that parallelogram are distinct, and

opposite edges are identified while consecutive edges are distinct, so the fundamental region

(if we imagine “folding it up”) is equivalent to a torus (genus 1). We form a fundamental do-

main for C/T (∆) similarly, but instead taking two generating vectors for T (∆) as the sides of

the parallelogram. As we saw in the background on elliptic curves, C/T (∆) and C/T (Γ) are

complex analytically isomorphic to elliptic curves over C (where we take the corresponding

lattices to be those spanned by the vectors spanning T (∆) and T (Γ) respectively).

We obtain a fundamental domain for C/Γ as follows. Beginning with the tessellated

plane, designate a tile consisting of an adjacent pair of one shaded and one unshaded triangle

adjacent to the origin with the label “1” (this tile is a fundamental domain for C/∆, as
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Figure 3.2: Fundamental regions for C/T (∆). Like colored edges and vertices are identified.

illustrated above). Call this designated tile T ∗. We label another tile T0 in the tessellation

according to the image of 1 under π(δ) where δ ∈ ∆ is the transformation taking T ∗ to T0.

So, if δ(T ∗) = T0, then we give T0 the label 1π(δ). In this way, every tile in the tessellation

receives a label “1” through “d”. We will see that tiles with the same label are equivalent

modulo Γ, and tiles with different labels are distinct.

Lemma 3.4.1. Under the labelling scheme described above, we can take d many tiles with

distinct labels “1” through “d” as a fundamental domain for C/Γ.

Proof. First, note that any two tiles with the same label are equivalent modulo Γ. To see

this, suppose T1 and T2 have the label “n”. Let δ1 take T ∗ to T1 and δ2 take T ∗ to T2 with

π(δ1) = σ1 and π(δ2) = σ2. Then δ2δ
−1
1 takes T1 to T2 and since

1π(δ2δ
−1
1 ) = 1σ1σ

−1
2 = nσ

−1
2 = 1,

we see δ2δ
−1
1 ∈ Γ, so T1 and T2 are equivalent. If instead T1 has label n and T2 label m with

n 6= m then the same formulation gives 1π(δ2δ
−1
1 ) = 1σ1σ

−1
2 = nσ

−1
2 6= 1, so δ2δ

−1
1 taking T1 to

T2 is not in Γ and thus the two tiles are not equivalent modulo Γ.

So, if D is a collection of d many tiles with labels “1” through “d” then D contains no

tiles that are equivalent to each other, but every tile not in D is equivalent to one in D, so
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D gives a fundamental region for C/Γ.

Example 3.4.2. Let π : ∆(3, 3, 3) → S7 be given by the permutation triple ((142)(356),

(134)(276), (253)(467)) (for which we calculated the translation subgroup above). An illus-

tration of the labeling scheme and the fundamental domain for C/T (Γ) are given below.

Figure 3.3: In the first image, equally colored triangles are equivalent modulo Γ. The black
lines in the second image separate fundamental domains for C/T (Γ).

So, we have a way to visualize the region C/Γ in the plane. The next logical question may

be to wonder what the surface made by folding up a fundamental domain for Γ according

to its edge and vertex identifications looks like. In simple cases, we may be able to see this

by inspection, but more complex cases will require some algorithmic help. We begin by

computing the genus of the surface, making use of the Riemann-Hurwitz equation. First, we

define a term we will use in the computation.

Definition 3.4.3. Given a permutation σ0 ∈ Sd, we define the excess of the permutation σ0
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as ∑
c∈C

`(c)− 1

where C is the collection of cycles in a disjoint decomposition of σ0. Given a permutation

triple σ = (σa, σb, σc), we define the excess of the permutation triple σ as the sum of the

excesses of σa, σb, and σc.

Proposition 3.4.4. The genus of C/Γ is given by

g(C/Γ) =
−2d+ r + 2

2

where d = [∆ : Γ] and r is the excess of the permutation triple representation of Γ.

Proof. Let π : C/Γ→ C/∆ be the surjective homomorphism obtained by taking the further

quotient of C/Γ by ∆. As [∆ : Γ] = d, the map π is d-to-one (the fundamental region for

C/Γ consists of d many copies of the tile that gives the fundamental region for C/∆). Let

S1 := C/∆ and S2 := C/Γ. Let V (S), E(S),and F (S) be the number of vertices, edges, and

faces respectively of S, so the Euler characteristic χ(S) is given by

χ(S) = V (S)− E(S) + F (S).

If π were unramified everywhere, we would have χ(S2) = dχ(S1) (every vertex, edge, and

face in S1 has d-many distinct preimages in S2). π is unramified on the edges and faces of

S2, but may be ramified at the vertices, so we introduce a correction term to the relation

between χ(S1) and χ(S2) to account for the “loss” of vertices under π.

Let Ca be the collection of cycles in a decomposition of σa into disjoint cycles. If c∗ is a

cycle in Ca, then the `(c∗) many copies of S1 in S2 corresponding to the entries in c∗ (e.g.

if c∗ = (1 2 3) then the tiles with labels 1, 2, and 3 in the labeling scheme described above)

are equivalent modulo 〈δa〉 in S2. Since δa fixes the vertex va, rather than `(c) many distinct
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preimages of va ∈ S1 in S2 (one for each tile with a label in c), there is only one distinct

vertex, so `(c∗) − 1 are “lost”. The same argument applies for the other cycles in Ca, so

that the excess of σa gives the total number of vertices less than expected in the preimage

of va ∈ S1 in S2 (so va has only d− |Ca| many distinct preimages in S2).

The analogous argument holds for σb and σc as well so that, in sum, rather than 3d many

preimages of va, vb, and vc in S2 there are only |Ca| + |Cb| + |Cc| many. Thus, rather than

V (S2) = dV (S1), we have

V (S2) = dV (S1)− (3d− (|Ca|+ |Cb|+ |Cc|))

= dV (S1)−
∑

i∈{a,b,c}

d− |Ci| = dV (S1)−
∑

i∈{a,b,c}

∑
c∗∈Ci

`(c∗)− 1

= dV (S1)− excess(σ).

Let r = excess(σ). Then

χ(S2) = V (S2)− E(S2) + F (S2) = dχ(S1)− r.

Since χ(S) = 2− 2g(S) (by the Riemann-Hurwitz formula) and g(S1) = 0, we have that

2− 2g(S2) = 2d− r

so it follows that

g(S2) = g(C/Γ) =
−2d+ r + 2

2

We might ask a natural question: what genera does this construction allow? Can we

choose Γ ≤ ∆ such that C/Γ is genus g for any g ∈ Z≥0?. After all, no obvious restrictions
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appear in the formula for g given above. The answer, though, is no. In fact, we only have

two choices for g(C/Γ).

Lemma 3.4.5. For a finite index subgroup Γ of ∆ obtained as described, g(C/Γ) = 0 or

g(C/Γ) = 1.

Proof. The restriction in our formula for g comes from the term r, the excess of the permu-

tation triple. Note that σa, σb, and σc have orders dividing a, b, and c respectively. Thus, no

cycle of length longer than a, b, or c appears in the disjoint decomposition of σa, σb, or σc

respectively. Since at most d elements are included in the cycles of each decomposition, we

see that the excess of σa is at most d
a
(a− 1) (maximum number of cycles in decomposition

times maximum length of cycle minus one), and likewise the excesses of σb and σc are at

most d
b
(b− 1) and d

c
(c− 1) respectively. Thus

r ≤ d

a
(a− 1) +

d

b
(b− 1) +

d

c
(c− 1).

We have three cases for (a, b, c) : (3, 3, 3), (2, 4, 4), and (2, 3, 6). Checking the cases in order,

we see

r(σ) ≤ d
2

3
+ d

2

3
+ d

2

3
= 2d for ∆(3, 3, 3)

r(σ) ≤ d
1

2
+ d

3

4
+ d

3

4
= 2d for ∆(2, 4, 4)

r(σ) ≤ d
1

2
+ d

2

3
+ d

5

6
= 2d for ∆(2, 3, 6)

so in any case we have

g(C/Γ) ≤ −2d+ 2d+ 2

2
= 1

and since g is a non-negative integer, the result follows.

So, we see that our options for the genus of C/Γ are actually quite limited. In particular,

the requirements for σ to make C/Γ have genus 1 are quite strict. We will see later, in
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the section after next, that this occurs in the special case and only in the special case that

Γ = T (Γ) (so any transformation in Γ is a translation).

Example 3.4.6. Let π : ∆(3, 3, 3) → S7 be given by the permutation triple ((142)(356),

(134)(276), (253)(467)). We have that d = 7, and the excess r of σ is (2+2)+(2+2)+(2+2) =

12. Thus

g =
−2(7) + 12 + 2

2
= 0.

The four quotients of the plane we obtain here underlie much of our work in this thesis.

We will later connect these quotients to surfaces and field of meromorphic functions. At this

point, we can build a commutative diagram

C/T (Γ) C/Γ

C/T (∆) C/∆)

q1

q2 q3

q4

In this diagram, q1, q2, q3, and q4 indicate the further quotients of C by Γ, T (∆),∆, and ∆

respectively. As each point in C eventually maps to its unique representation in C/T (∆),

whether following q1 then q3 or q2 then q4, we see the diagram commutes. As we later build

maps on the corresponding curves of these quotients to reflect exactly the maps by further

quotient described here, the commutativity present here will be a key feature of the rest of

our important diagrams.

Section 3.5

The rotation index [Γ : T (Γ)]

Definition 3.5.1. The rotation index of Γ is R(Γ) := [Γ : T (Γ)].

Proposition 3.5.2.

R(Γ) =
c(n1m2)

d
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where T (Γ) = 〈τ1, τ2〉 = 〈ωn1
1 ωn2

2 , ωm1
1 ωm2

2 〉 = 〈ωn1
1 ωn2

2 , ωm2
2 〉, and d = [∆ : Γ].

Proof. Since we have seen that for any δ ∈ ∆ we can write δ = τδnc for some τ ∈ T (∆) and

n ∈ N, and if i 6= j mod c then there is no τ ∈ T (∆) such that δic = τδjc , it follows that

[∆ : T (∆)] = c. Having found τ1, τ2 ∈ T (Γ) such that T (Γ) = 〈τ1, τ2〉, let τ1 = ωn1
1 ωn2

2 and

τ2 = ωm1
1 ωm2

2 . Recall that we in fact have m1 = 0 from our echelon form reduction. To

find [T (∆) : T (Γ)], we can compute the proportion of the area of a fundamental region in

C/T (Γ) to the area of a fundamental region in C/T (∆). If we let A1 be the first area and

A2 the second, then

A1

A2

=

∣∣∣∣∣∣∣
n1 n1

0 m2

∣∣∣∣∣∣∣ = det

n1 n1

0 m2

 = n1m2

(i.e. the determinant of the matrix obtained by writing τ1 and τ2 as column vectors over the

ordered basis ω1, ω2). We then have that

[∆ : T (Γ)] = [∆ : T (∆)][T (∆) : T (Γ)] = c(n1m2 − n2m1)

and

[∆ : T (Γ)] = [∆ : Γ][Γ : T (Γ)] = d[Γ : T (Γ)].

So,

[Γ : T (Γ)] =
c(n1m2)

d

as claimed.

Example 3.5.3. Continuing with our example from above, let π : ∆(3, 3, 3)→ S7 be given

by the permutation triple ((142)(356), (134)(276), (253)(467)). Then c = 3, d = 7, and our

computation of the spanning vectors for T (Γ) gives that [T (∆) : T (Γ)] = n1m2 − n2m1 =

41



1 · 7− 0 · 2 = 7 so

[Γ/T (Γ)] =
3 · 7

7
= 3.

Section 3.6

A generator for Γ/T (Γ)

Suppose π : ∆(a, b, c)→ Sd is a homomorphism corresponding to the transitive permutation

triple σ = (σa, σb, σc) in Sd. We can write each σi as the product of disjoint cycles in Sd, so

say for i ∈ {a, b, c} we have

σi =

ki∏
j=1

ci,j

where ki is the number of cycles in the decomposition of σi, each ci,j is a disjoint cycle, and∑k
j=1 `(ci,j) = d (so we include the 1-cycles in our decomposition so that each element in

{1, 2, ..., d} appears in exactly one cycle ci,j for each i).

Define

Ri := max{ i

`(ci,j)
: j ∈ {1, ..., ki}} and R0 := max{Ra, Rb, Rc}.

That is to say that R0 is the maximum value obtained in dividing a, b, and c by the lengths

of the cycles in their corresponding permutations σa, σb, and σc. Let c∗ in σx be a cycle

and permutation that give R0 = x/`(c∗). Suppose m is a character in c∗. Then for any

k ∈ {n`(c∗) : n ∈ Z}, we have that

mσk
x = m

Since σ is transitive, there is a permutation τ ∈ 〈σ〉 such that 1τ = m. Let σ0 = τσ
`(c∗)
x τ−1.

Note then that 1σ0 = 1 (τ takes 1 to m, σ
`(c∗)
x fixes m, then τ−1 takes m back to 1), thus

1σ
n
0 = 1 for n ∈ Z. And since σ0 = τσ

`(c∗)
x τ−1, we find that

σn0 = (τσ0τ
−1)(τσ0τ

−1)...(τσ0τ
−1) = τ(σ0(τ−1τ)σ0(τ−1τ)...σ0)τ−1 = τσn0 τ

−1.
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So, let δτ ∈ ∆ be such that π(δτ ) = τ . Define δ0 = δτδ
`(c∗)
x δ−1

τ . Then π(δ0) = σ0. Since

1σ0 = 1, we know that 〈δ0〉 ⊆ Γ. Furthermore, if t : ∆→ Z/cZ is the homomorphism defined

above with ker(t) = T (∆), then

t(δn0 ) = t(δτ ) + t(δ`(c∗)x ) + t(δτ−1) mod c = t(δ`(c∗)x ) mod c =
n`(c∗)c
x

mod c

which gives distinct values for n ∈ {1, 2, ..., R0}, thus 〈δ0〉 gives R0 distinct coset represen-

tatives for Γ/T (Γ), so R0 ≤ [Γ : T (Γ)].

Now, we will show that [Γ : T (Γ)] ≤ R0, so indeedR0 = [Γ/T (Γ)] and then Γ/T (Γ) = 〈δ0〉.

We know that Γ/T (Γ) is isomorphic to a subgroup of Z/cZ and thus cyclic. In the broadest

sense, the task would be to show that for any δ ∈ Γ, the number of elements in 〈δ〉 that are

distinct modulo T (Γ) is less than R0. We can simplify the task by establishing equivalences

that let us check a finite number of choices for δ.

Lemma 3.6.1. Let N(δ) be the number of elements in 〈δ〉∩Γ that are distinct modulo T (Γ).

Suppose rv is the transformation given by rotating the plane about a vertex v by 2π/m where

v ∼ vm (m either a, b, or c) modulo T (∆). Then N(δ) ≤ Rm := m/`m where `m is the length

of the shortest cycle in the disjoint decomposition of σm.

Proof. First, note that for some τ ∈ T (∆), rv = τδmτ
−1. So π(rv) has the same cycle

structure as σm, and rv has the same order as δm. Thus π(rnv ) fixes 1 if and only if σnm fixes

1π(τ). So, N(rv) ≤ Rm with Rm as defined above.

With this lemma, we see that any rotation around a vertex in ∆(0) cannot generate more

than R0 many distinct coset representatives for Γ/T (Γ). Next, we will show that rotations

around vertices are the only transformations we need consider in establishing R ≤ R0.

Lemma 3.6.2. Recall that any transformation δ ∈ ∆ may be written in the form τrv where

τ ∈ T (∆) and rv is given by rotation about a vertex in ∆(0) (specifically, we can write
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δ = τ0δ
n
c , but will use the more general formulation in this lemma). Then if δ = τrv ∈ Γ,

N(δ) ≤ N(rv).

Proof. Suppose that δ = τrv ∈ Γ. Then if t : ∆ → Z/cZ is the homomorphism with

T (∆) as its kernel, as described above, then t(δn) = t((τrv)
n)) = t(rnv ) = nt(rv). Suppose

t(rn1
v ) = t(rn2

v ). Then δn1 = τ0δ
n2 for some τ0 ∈ T (∆). Since δn1 , δn2 ∈ Γ, we conclude

τ0 ∈ T (Γ), and thus δn1
∼= δn2 in Γ/T (Γ). So, N(δ) ≤ N(rv).

Corollary 3.6.3. [Γ : T (Γ)] = R0.

Proof. Taking the two previous lemmas together, we see that for any δ ∈ Γ, the number of

distinct coset representatives for Γ/T (Γ) generated by δ is less than or equal to the number

generated by rotation about some vertex v, which is in turn less than R0 = max{Ra, Rb, Rc}.

So, R ≤ R0, and having previously established that R0 ≤ R, we conclude that R0 = R =

[Γ : T (Γ)], and thus the element δ0 ∈ Γ described above generates a complete set of coset

representatives for Γ/T (Γ).

As promised two sections ago, we can now see the exact circumstances when g(C/Γ) = 1.

Corollary 3.6.4. g(C/Γ) = 1 if and only if [Γ : T (Γ)] = 1, so if and only if Γ = T (Γ).

Proof. First, suppose Γ = T (Γ). Then as we have seen, the fundamental domain for C/Γ is

a parallelogram with opposite sides identified (a torus), so g(C/Γ) = 1.

Conversely, suppose g(C/Γ) = 1. From the discussion at the end section 3.3, we know

that σa decomposes into d/a many cycles of length a, σb decomposes into d/b many cycles

of length b, and σc decomposes into d/c many cycles of length c. Thus, with Ra, Rb, and

Rc defined as above, we have that Ra = Rb = Rc = 1. As we have shown [Γ : T (Γ)] is the

maximum of Ra, Rb, and Rc, it follows that [Γ : T (Γ)] = 1 and thus Γ = T (Γ).

Consider the transformation given by δ0 = δτδ
`(c∗)
x δ−1

τ on the plane. δτ−1 takes some

vertex v0 to vx, δ
`(c∗)
x rotates the plane around the vertex v0 (now in the place of vx), then δτ
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takes v0 back to its original position. So, since v0 is fixed by δ0, δ0 must give some rotation

around v0. Observe that

t(δ0) = t(δτδ
`(c∗)
x δ−1

τ ) = t(δτ ) + t(δ`(c∗)x ) + t(δ−1
τ ) = t(δ`(c∗)x )

(where t is our homomorphism whose kernel is T (∆)) so we see that the amount of the

rotation is 2π`(c∗)/x.Thus it makes sense to identify Γ/T (Γ) ∼= 〈δ0〉 as the rotation subgroup

of Γ, as its coset representatives are given by rotation around the designated vertex v0.

Example 3.6.5. In our running example with π : ∆(3, 3, 3)→ S7 given by the permutation

triple ((142)(356), (134)(276), (253)(467)), we see trivially that 〈δc〉 gives three elements of

Γ that are distinct modulo T (Γ), so we may take δ0 = δc.

For a more involved example, let π : ∆(2, 3, 6)→ S6 be given by the triple

σ := ((1, 4), (1, 2, 6)(3, 4, 5), (1, 6, 2, 4, 3, 5)).

Writing the permutations to include 1-cycles, we have

σa = (14)(2)(3)(5)(6)

σb = (126)(345)

σc = (162435)

Then

Ra = max{2/2, 2/1} = 2

Rb := max{3/3} = 1

Rc = max{6/6} = 1.
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So [Γ : T (Γ)] = max{Ra, Rb, Rc} = 2. c∗ can be any of the one-cycles in σa and `(c∗) = 1.

Take for example c∗ = (2). Then since 1σb = 2, we may take δ0 = δbδaδ
−1
b . Then π(δ0) =

(126)(345)(14)(621)(543) = (36) so δ0 is not the identity, so |〈δ0〉| ≥ 2, but lemma 3.19 gives

that |〈δ0〉| ≤ 2, so 〈δ0〉 gives exactly two coset representatives for Γ/T (Γ), a full set.

Section 3.7

Explicit equations for E(∆)

Having determined the structures of ∆ and Γ, we are now ready to begin calculating the

relevant maps between the curves obtained from our various quotients of the plane. In

particular, we will soon find an isogeny ψ : E(T (∆))→ E(T (Γ)). The computation for that

isogeny will rely on Vélu’s formula, which requires as input an explicit equation for the source

curve as well as a description of the kernel of the map. This gives us our first occasion to

compute the equation for an elliptic curve explicitly using the correspondence coming from

the Weierstrass ℘-function. Though the computation in general can be difficult, we only need

to consider two cases: the lattice corresponding to T (∆(2, 4, 4)) and that corresponding to

T (∆(3, 3, 3)) (which we can also take as the lattice corresponding to T (∆(2, 3, 6)).

First, let Λb be the lattice corresponding to ∆(2, 4, 4) which, fixing a particular scaling

in C, we can take to be generated by a translation of length one along the positive real axis

and a translation of length one along the positive imaginary axis, so Λb = 〈1, i〉. Recall that

the Eisenstein Series of weight 2k relative to a lattice Λ is defined as

G2k(Λ) =
∑

ω∈Λ,ω 6=0

ω−2k.

and that we have an elliptic curve isomorphic to C/Λ given by

E : y2 = 4x3 − g2x− g3

46



where g2 := 60G4(Λ) and g3 := 140G6(Λ). For our case with Λb = 〈i, 1〉, some extra

symmetry aids us in our calculations. First we’ll prove a useful lemma.

Lemma 3.7.1. Suppose Λ is a lattice and α ∈ C, α 6= 0. Then

g2(αΛ) = α−4Λ and g3(αΛ) = α−6g3(Λ).

Proof. We see directly that

G4(αΛ) =
∑

αω∈Λ,ω 6=0

(αω)−4 = α−4
∑

αω∈Λ,ω 6=0

(ω)−4

so g2(αΛ) = 60G4(αΛ) = 60α−4G4(Λ) = α−4g2(Λ).

The proof of the second half of the proceeds in exactly the same manner.

In the case of Λb, we see that iΛb = Λb (since i ·1 = 1 and i · i = −1 with 〈i,−1〉 = 〈1, i〉).

By the lemma above, we have

g3(iΛb) = i−6g2(Λb) = −g3(Λb).

But since iΛb = Λb, it follows that g3Λb = −g3Λb, and thus g3(Λb) = 0. Sadly, the same trick

does not let us immediately calculate the coefficient g2(Λb). However, we can calculate the

j-invariant of Λb, defined for any lattice Λ as

j(Λ) = 1728
g2(Λ)3

∆(Λ)

where the discriminant ∆(Λ) (not be confused with our triangle group ∆) is given by

∆(Λ) = g2(Λ)3 − 27g3(Λ)2.
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In the case of Λa, since g3(Λa) = 0, we have that ∆(Λ) = g2(Λ)3. We will take (without

proof here) the result from Silverman that ∆(Λa) 6= 0 [3]. Then,

j(Λb) = 1728
g2(Λb)

3

g2(Λb)3
= 1728[1]

. Furthermore, for two elliptic curves E1 and E2 over C, j(E1) = j(E2) if and only if E1 and

E2 are isomorphic over C [2]. Silverman lists an alternative but equivalent formulation of

the j-invariant of an elliptic curve written in the general form

E : y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a5

in terms of the coefficients {a1, a2, a3, a4, a5}. A direct calculation for the curve Ea : y2 =

x3 − x ( which simplifies because a4 = −1 is the only nonzero coefficient of those listed

above) gives that j(Ea) = 1728 as well. So, Ea is isomorphic over C to the curve E : y2 =

4x3 − g2(Λb)x− g3(Λb), which is in turn isomorphic to C/Λa. So, we will take

Ea : y2 = x3 − x

as our canonical curve isomorphic to C/Λb, and it will be the curve we mean when we refer

to “the” curve corresponding to C/Λb.

For Λa corresponding to T (∆(3, 3, 3)) and T (∆(2, 3, 6)), we adopt a similar strategy.

First, note that 〈i, ζ3〉 generates a choice of Λb with a fixed scaling (where ζ3 = e2πi/3), with

the property then that ζ3Λb = Λb. Thus, by the lemma above,

g2(Λa) = g2(ζ3Λa) = ζ4
3g2(Λa)

so we have g2(Λa) = ζ4
3g2(Λa) and thus g2(Λa) = 0. Then, j(λa) = 0. A direct calculation
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from its coefficients shows that the curve Ea : y2 = x3 + 1 also has j(Ea) = 0, so Ea is

isomorphic over C to C/Λa. We will then take

Ea : y2 = x3 + 1

as our canonical elliptic curve isomorphic to C/Λb in the case of ∆(3, 3, 3).

Section 3.8

The isogeny from E(∆) to E(Γ)

As we have seen, the groups of transformations ∆ and Γ have corresponding subgroups

T (∆) and T (Γ) of translations. If we apply the transformations to the origin, the collections

of resulting images form two lattices, Λ1 and Λ2 (i.e. Λ1 = {t(0) : t ∈ T (∆)} ⊆ C and

Λ2 = {t(0) : t ∈ T (Γ)} ⊆ C. Note from our prior definitions that if ω1 and ω2 are our

generating vectors for Λ1, then we have τ1 := n1ω1 + n2ω2 and m2ω2 span T (Γ) with a

procedure for finding τ1 and τ2 described above.

Then, since we can obtain τ1 and τ2 by taking integer combinations of ω1 and ω2, we

know Λ2 ⊆ Λ1. If we define

d0 :=

∣∣∣∣∣∣∣
n1 n2

0 m2

∣∣∣∣∣∣∣ = n1m2

(i.e. the determinant of the matrix whose rows are the coordinate vectors for τ1 and τ2

relative to the ordered basis {ω1, ω2} for Λ1), then d0ω1 = m2τ1 − n2τ2 and d0ω2 = n1ω2, so

d0Λ1 ⊆ Λ2.

Let E(∆) and E(Γ) respectively indicate the elliptic curves obtained from Λ1 and Λ2

via the Weierstrass ℘-function (i.e. the map from C/Λ to E(C) taking z 7→ (℘(z), ℘′(z))).

Then C/Λ1 is complex analytically isomorphic to E(∆) and C/Λ2 is complex analytically

isomorphic to E(Γ). Since d0Λ1 ⊆ Λ2, the map fd0 taking z 7→ d0z from C/Λ1 to C/Λ2
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induces an isogeny ϕ1 from E(∆) to E(Γ) (results from Silverman [3]).

We can determine the kernel of ϕ1 by first determining the kernel of fd0 . Certainly

z0 ∈ (1/d0)Λ2 if and only if d0z0 ∈ Λ2. So, ker(fd0) = (1/d0)Λ2/Λ1. Scaling by a factor of

d0 gives a natural isomorphism from (1/d0)Λ2/Λ1 to Λ2/d0Λ1. We can explicitly list a set of

representatives for Λ2/d0Λ1. Define the matrix

B =

 m2 −n2

0 n1


i.e. the matrix whose rows are the coordinate vectors for d0ω1 and d0ω2 respective to the

ordered basis {τ1, τ2} for Λ2. To compute the size of Λ2/d0Λ1, we compare the relative area of

a fundamental region for C/d0Λ1 to the area of a fundamental region for C/Λ2, analogously

to our calculation above of [T (∆) : T (Γ)] (which gives |Λ1/Λ2|) and find

|Λ2/d0Λ1| =

∣∣∣∣∣∣∣
m2 −n2

0 n1

∣∣∣∣∣∣∣ = n1m2 = d0.

To list the representatives for Λ2/d0Λ1, we can proceed as follows: If we identify ordered

pairs (x, y) with coordinates relative to the basis {τ1, τ2} for Λ2 (i.e. (x, y) indicates the point

xτ1 + yτ2), then (x1, y1) and (x2, y2) are equivalent modulo dΛ1 if and only if x1 − x2 = an1

and y1− y2 = an2 + bm2 for some a, b ∈ Z. Thus, if n1 - x1− x2 then (x1, y1) � (x2, y2), and

for a fixed x, if m2 - y1 − y2 then (x, y1) � (x, y2). Thus, the set

{xτ1 + yτ2 : 0 ≤ x ≤ n1 − 1, 0 ≤ y ≤ m2 − 1}

with n1m2 many elements gives a complete set of coset representatives for Λ2/d0Λ1. It follows

50



then that the set

{(1/d0)xτ1 + (1/d0)yτ2 : 0 ≤ x ≤ n1 − 1, 0 ≤ y ≤ m2 − 1} =

{(1/d0)x(n1ω1 + n2ω2) + (1/d))y(m2e2) : 0 ≤ x ≤ n1 − 1, 0 ≤ y ≤ m2 − 1} =

{xn1 + ym1

d0

ω1 +
xn2 + ym2

d0

ω2 : 0 ≤ x ≤ n1 − 1, 0 ≤ y ≤ m2 − 1}

gives a complete set of coset representatives for (1/d0)Λ2/Λ1.

We use the Weierstrass ℘-function to associate this kernel with the kernel of ϕ1, since

ker(ϕ1) = {(℘(z), ℘′(z) : z ∈ ker(fd0)}.

We know that

ker(fd0) = {z ∈ C/Λ1 : d0z = 0},

i.e. the d0-torsion elements in C/Λ1, so ker(ϕ1) consists of d0-torsion elements on E(∆). As

a subgroup of E(∆), each element of the form (x, y) ∈ ker(ϕ1) will have an inverse (x,−y)

also in ker(ϕ1). So, to specify ker(ϕ), it suffices to specify the unique values of ℘(z) such

that z ∈ (1/d0)Λ2/Λ1. Note that in our set of representatives for (1/d0)Λ2/Λ1, two elements

z1 and z2 have the same image under ℘ if and only z1 and z2 are inverses, i.e. if and only

if z1 + z2 ∈ Λ1. So, if z1 = k1ω1 + k2ω2 and z2 = `1ω1 + `2ω2 with k1, k2, `1, `2 ∈ Q then

z1 = z−1
2 if and only if k1 + `1 ∈ Z and k2 + `2 ∈ Z. So, if we take from the representatives

of ker(fd0) a set containing exactly one element from each pair of inverses (and containing

elements that are their own inverses), then the image of the set under ℘ gives the unique

x-coordinates of points in ker(ϕ1) on E(∆).

Let X be the collection of unique x-coordinates of points in ker(ϕ1) on E(∆). Since these

are the x-coordinates of the d0-torsion points on E(∆), we recognize them algebraically as
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roots of the dth0 division polynomial on E(∆). Let D be the dth0 division polynomial of E(∆)

and let K be a splitting field of D. If α is a primitive element for K over Q (so K = Q(α)),

then each root of D, and thus each element of X can be expressed as a polynomial in α with

coefficients in K. If we define

p(x) :=
∏
p∈X

(x− p)

where we express each p as a polynomial in α, then p(x) has coefficients in K and the

elements of X as its roots.

This polynomial p(x) provides half the input we need to determine an isogeny from

E(∆) to E(Γ). The other piece of information we need is an explicit equation for the curve

E(∆) isomorphic to C/T (∆). These we have calculated in the section above. With the

equations for these curves in hand and the polynomial representing the kernel of the isogeny

ψ : E(∆)→ E(Γ), we can use Vélu’s formula to calculate ψ explicitly. However, rather than

the map ψ : E(∆)→ E(Γ), the isogeny we will ultimately make use of in computing our Belyi

maps is the isogeny ψ̂ : E(Γ) → E(∆) corresponding to the further quotient of C/T (Γ) by

T (∆). This isogeny ψ̂ is called the dual isogeny to ψ. Its existence and uniqueness are proven

in theorem 6.1 in Silverman [3], as well as some key properties. Notably, the compositons

ψ ◦ ψ̂ and ψ̂ ◦ ψ give the multiplication by d map [d] on their respective domain curves

(where we recall d = [T (∆) : T (Γ)], which is exactly in line with what we would expect

based on the corresponding transformation of points in the lattices (where ψ corresponds to

a multiplication by d and ψ̂ corresponds to leaving a point “fixed” then taking a quotient)

[1]. Beyond this section, we will not have occasion to use the isogeny from E(∆) → E(Γ).

Its use for us came in computing its dual. So, for the sake of notational simplicity, we will

from here on take ψ to refer to the isogeny from E(Γ) to E(∆) corresponding to the further

quotient of C by T (∆) (we drop the hat from our notation).
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Section 3.9

Fixed maps between C/T (∆) and C/∆

Recall that we have defined four surfaces E(Γ), E(∆), X(Γ) and X(∆) corresponding to

the quotients C/T (Γ), C/T (∆), C/Γ, and C/∆ respectively. If S is one of these surfaces,

let C(S) be the field of meromorphic functions on S. Then we have a correspondence of

diagrams as below (for more details of this correspondence, see Theorem 2.4 and Remark

2.5 in Silverman [3]):

E(Γ) X(Γ)

E(∆) X(∆)

ψ ϕ !

C(E(Γ)) C(X(Γ))

C(E(∆)) C(X(∆))

Let E(∆) be the elliptic curve corresponding to C/T (∆), and C(E(∆) the field of mero-

morphic functions on E. Recall that for each δ ∈ ∆, we can write δ = τδnc for some n ∈ Z

and τ ∈ T (∆), i.e. each transformation δ consists of a rotation around the origin by a

multiple of 2π/c followed by a translation. So, in passing from C/T (∆) to C/∆, we take the

further quotient of C/T (∆) by the subgroup 〈δc〉 ⊆ ∆.

Suppose z is a point in C/T (∆). As before, we can use the Weierstrass-℘ function to

relate the effect of δc on z to the corresponding transformation of the point (℘(z), ℘′(z))

on the curve E. Let ζc = e2πi/c, the primitive cth root of unity with least positive complex

argument. Then, as complex numbers, δc(z) = ζcz. Thus,

℘(δc(z)) = ℘(ζcz) =
1

(ζcz)2
+

∑
ω∈Λ\{0}

(
1

(ζcz − ω)2
− 1

ω2

)

=
1

ζ2
c

 1

(z)2
+

∑
ω∈Λ\{0}

(
1

(z − ζ−1
c ω)2

− 1

(ζ−1
c ω)2

)
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But since ζ−1
c Λ = Λ in each of our three cases, we see the last line above simplifies to

=
1

ζ2
c

 1

z2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

) =
1

ζ2
c

℘(z).

Likewise, we see that since ζ−1
c Λ = Λ

℘′(δc(z)) = ℘′(ζcz) = −2
∑
ω∈Λ

1

(ζcz − ω)3
=

1

ζ3
c

(
−2
∑
ω∈Λ

1

(z − ωζ−1
c )3

)

=
1

ζ3
c

(
−2
∑
ω∈Λ

1

(z − ω)3

)
=

1

ζ3
c

℘′(z).

Specifically, in the cases of ∆(3, 3, 3),∆(2, 4, 4), and ∆(2, 3, 6), we have the correspondences,

respectively,

δ3(z) 7→ (ζ3℘(z), ℘′(z))

δ4(z) 7→ (−℘(z), i℘′(z))

δ6(z) 7→ (ζ−1
3 ℘(z),−℘′(z))

between points in C/∆ and points on the elliptic curve E.

Let α be the transformation on E(C) corresponding to the transformation δc on C/T (∆).

So, respectively in the cases of ∆(3, 3, 3),∆(2, 4, 4), and ∆(2, 3, 6), we have α given by

α3 : (x, y) 7→ (ζ3x, y)

α4 : (x, y) 7→ (−x, iy)

α6 : (x, y) 7→ (ζ−1
3 x,−y).

Note that in each case, α has order c. Recall that for our three cases of T (∆(3, 3, 3)), T (∆(2, 4, 4),
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and T (∆(2, 3, 6)), we have taken canonical elliptic curves

Ea : y2 = x3 + 1

Eb : y2 = x3 − x

isomorphic to C/T (∆) in each of the three respective cases. Let

fa(x, y) = x3 + 1− y2 ∈ C[x, y]

fb(x, y) = x3 − x− y2 ∈ C[x, y]

Then we have the three fields of meromorphic functions over E(T (∆)) in the respective cases

given by

C(Ea) =
C(x)[y]

(x3 + 1− y2)
=

C(x)[y]

(fa(x, y))

C(Eb) =
C(x)[y]

(x3 − x− y2)
=
C(x)[y]

(fb(x, y))
.

α then induces an automorphism of order c on C(E) given by taking the generators (x, y)

to α(x, y). If we let C(E)〈α〉 be the fixed field of α, then we have

C(Ea)
〈αa〉 = C(x3, y) = C(y) (because x3 = y2 − 1 ∈ C(y))

C(Eb)
〈αb〉 = C(x2, y4) = C(x2) (because y4 = x6 − 2x4 + x2 ∈ C(x2))

C(Ec)
〈αc〉 = C(x3, y2) = C(y2) (because x3 = y2 − 1 ∈ C(y2)).
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Lemma 3.9.1. Define

F3 : Ea → P1(C) F4 : Eb → P1(C) F6 : Ea → P1(C)

(x, y) 7→ y (x, y) 7→ x2 (x, y) 7→ y2.

(3.9.2)

Then F3, F4 and F6 are degree 3, 4, and 6 respectively, and are such that, if α3, α4, and

α6 are the actions on E(C) corresponding to the action of δc on C/Λ, then for all n ∈ Z

F3 ◦ αn3 (x, y) = F3(x, y) = y

F4 ◦ αn4 (x, y) = F4(x, y) = x2

F6 ◦ αn6 (x, y) = F6(x, y) = y2

and if Fi(x1, y1) = Fi(x2, y2) then (x2, y2) = αni (x1, y1) for some n ∈ Z. So, F3, F4, and F6

are the degree c maps from E(∆) to P1(C) corresponding to the quotient of C/T (∆) by 〈δc〉

giving C/∆.

Proof. This follows from our derivations of the fixed field of C(E(∆)) under α above and

the correspondence between our diagrams of curves and fields.

Since we want our final Belyi map to be ramified only at 0, 1, and ∞, we should ask

ourselves at this point where these maps F3, F4, and F6 are ramified. We see it is (almost) as

we desire. For F4, given a value of x2 ∈ P1(C) there are in general 4 distinct points (x0, y0)

satisfying x2
0 = x2 unless x2 = 0 (in which case x0 = y0 = 0, x2 = 1 (in which case y0 = 0), or

x2 =∞ (only for the point at infinity). For F6, given y2 ∈ P1(C), we have 6 distinct points

(x0, y0) on Ec satisfying y2
0 = y2 unless y2 = 0 (in which case y0 = 0), y2 = 1 (in which case

x0 = 0), or y2 =∞ (only for the point at infinity).

For F3, given a value of y ∈ P1(C) there are in general 3 distinct choices of x0 such that

(y, x0) is a point on Ea, unless y = 1 (in which case x = 0), y = −1 (in which case x = 0),
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or y = ∞ (in which case (y, x0) must be the point at infinity. But F3 is not ramified at 0.

However, let ν be the Möbius transformation given by

ν(z) =
2

z + 1

Then ν(1) = 1, ν(−1) =∞, and ν(∞) = 0. So if we define F̃3 = ν ◦ F3, then F̃3 is ramified

as we want it to be (at 0, 1,∞). For consistency of notation, we will redefine the fixed map

F3 above to be as F̃3 defined here. Then, F3, F4, and F6 give us the three properly ramified

maps from E(T (∆)) to P1(C) corresponding to the quotient by 〈δc〉. We note that F6, F4,

and F3 are Belyi maps in their own right.

Section 3.10

The Belyi map ϕ : X(Γ)→ X(∆)

So far, we have considered four important surfaces: X(Γ), X(∆), E(Γ) = X(T (Γ)), and

E(∆) = X(T (∆)). E(Γ) and E(∆) are elliptic curves over C determined by the lattices of

T (Γ) and T (∆) respectively. X(∆) is isomorphic to P1(C) and X(Γ) is either an elliptic curve

or isomorphic to P1(C), which we can determine from the permutation triple representation

of Γ. These surfaces have corresponding representations as quotients of the plane C/Γ,

C/∆, C/T (Γ), and C/T (∆). We can express the relationship between these quotients with

a diagram

C/T (Γ) C/Γ

C/T (∆) C/∆

where the top map from C/T (Γ) to C/Γ corresponds to a further quotient by 〈δ0〉 where

δ0 generates coset representatives for Γ/T (Γ) (described above), the left vertical map corre-

sponds to a further quotient of C/T (Γ) by T (∆), the bottom map corresponds to a further
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quotient of C/T (∆) by 〈δc〉 to obtain C/∆, and the right vertical map corresponds to a

further quotient of C/Γ by ∆. Containment of subgroups of ∆ and fundamental regions

for quotients of the plane is inclusion reversing in the sense that C/T (Γ) has the “largest”

fundamental domain and contains the others as subsets, with C/∆ the smallest, but T (Γ) is

contained in each of T (∆) and Γ, both of which in turn are contained in ∆.

Our goal is to determine the maps in the corresponding diagram of surfaces, and in

particular the Belyi map ϕ : X(Γ)→ X(∆). Consider the diagram

E(Γ) X(Γ)

E(∆) X(∆)

G

ψ ϕ

F

In section 3.8, we describe a procedure to determine the left map ψ, an isogeny from E(Γ) to

E(∆). We also have computed fixed maps F3, F4, and F3 from E(∆) to X(∆) corresponding

to the quotient by 〈δc〉.

To determine the top map G : E(Γ)→ X(Γ), let us first consider the case when R(Γ) =

〈δnc 〉 for some n (i.e 〈δnc 〉 gives a complete set of representatives for Γ/T (Γ)). As we did

in calculating the bottom map F , suppose z ∈ C/T (Γ) corresponds to the point (x, y) =

(℘(z), ℘′(z)) on E(Γ). Then, again taking ζc to be a primitive c-th root of unity, we have

℘(δnc (z)) = ℘(ζnc z) =
1

(ζnc z)2
+

∑
ω∈Λ\{0}

(
1

(ζnc z − ω)2
− 1

ω2

)

=
1

ζ2
cn

 1

(z)2
+

∑
ω∈Λ\{0}

(
1

(z − ζ−nc ω)2
− 1

(ζ−nc ω)2

)
Note that multiplication by ζ−nc corresponds to the transformation δ−nc ∈ Γ. As with our

calculations of the fixed bottom maps f , the calculation of g will simplify greatly if we can

determine that ζ−nc Λ2 = Λ2. Suppose p ∈ Λ2 Then for some τ1 ∈ T (Γ) we have p = τ1(0),
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so δ−nc (p) = δ−nc τ1(0). As previously noted, we can rewrite δ−nc τ1 (a translation followed by

a rotation about the origin) in the form τ ′1δ
−n
c (the same rotation about the origin followed

by a different translation). But since τ ′1δ
−n
c ∈ Γ and δnc ∈ Γ, we have that τ ′1δ

−n
c δnc = τ ′1 ∈ Γ,

thus τ ′1 ∈ T (Γ). It follows that δ−nc (p) = δ−nc τ1(0) = τ ′1δ
−n
c (0) = τ ′1(0) = p′ for some p′ ∈ Λ2.

Thus transformation by δ−nc maps Λ2 to itself as a set of points in the plane, so ζ−nc Λ2 = Λ2.

So our calculation above simplifies to

℘(δnc (z)) =
1

ζ2
cn

 1

(z)2
+

∑
ω∈Λ\{0}

(
1

(z − ω)2
− 1

ω2

) = ζ−2n
c ℘(z)

and likewise, by the same equality of δ−nc Λ2 and Λ2, we have

℘′(δnc (z)) =
1

ζ3
c

(
−2
∑
ω∈Λ

1

(z − ω)3

)
= ζ−3n

c ℘′(z).

so δnc (z) corresponds to the point (ζ−2n
c x, ζ−3n

c y) and thus the transformation on E(Γ) cor-

responding to the transformation δnc on C/T (Γ) is the map (x, y) 7→ (ζ−2n
c x, ζ−3n

c y).

Given that taking c ∈ {3, 4, 6} and n ∈ {1, 2, 3} gives all the distinct possibilities corre-

sponding to our three cases, we can assume δnc ∈ {ζ6, ζ4, ζ3, ζ2}. Then the possible transfor-

mations α on E(Γ) corresponding to δnc on C/T (Γ) consist of actions of order 6, 4, 3, 2, and

1 given respectively by

(x, y) 7→ (ζ3x,−y)

(x, y) 7→ (−x, iy)

(x, y) 7→ (ζ3x, y)

(x, y) 7→ (x,−y)

(x, y) 7→ (x, y)
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Call these actions β6, β4, β3, β2, and β1 respectively. As in our calculations of the bottom

map in our diagram from E(T (∆)) to E(∆), we want to consider the automorphism on

E(T (Γ)) given by the proper choice of β. We will first make some necessary observations on

E(T (Γ)) that will help us in calculating the fixed field of E(T (Γ)) = EΓ under 〈α〉.

Lemma 3.10.1. Suppose E(T (Γ)) is given by the equation E : y2 = ax3 + bx + c. If β6 or

β3 gives an automorphism of E(T (Γ)), then b = 0. If α4 gives an automorphism of E(T (Γ)),

then c = 0.

Proof. . First, suppose β3 gives an automorphism of E(T (Γ)). Then we have that

y2 = ax3 + bx+ c

and y2 = a(ζ3x)3 + bζ3x+ c = ax3 + bζ3x+ c

thus bζ3x = bx

so b = 0.

Noting that β2
6 = β3 gives also that b = 0 when α6 is an automorphism of E(T (Γ)). Likewise,

if β4 gives an automorphism of E(T (Γ)), then

y2 = ax3 + bx+ c

and (iy)2 = −y2 = a(−x)3 + b(−x) + c = −ax3 +−bx+ c

thus 2c = 0

so c = 0.
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Now, we will consider each of the actions β6, β4, β3, β2, and β1 and determine the map

corresponding the the identification of points on EΓ under that action. With EΓ given by

y2 = ax3 + bx + c, let g(x, y) = ax3 + bx + c − y2. Then we have the field of meromorphic

functions

C(EΓ) =
C(x)[y]

g(x, y)

on EΓ. Suppose first that δnc has order 6. Then β6 is an automorphism on EΓ and we have

C(EΓ)〈β6〉 =
C(x3)[y2]

g(x, y)
= C(y2)

with the last simplification made because we know in this case that E is of the from y2 =

ax3 + c, so x3 ∈ C(y2). Consider respectively then the cases when δnc has order 4, 3, 2, or 1.

Then we have respectively that

C(EΓ)〈β4〉 =
C(x2)[y4]

g(x, y)
= C(x2)

C(EΓ)〈β3〉 =
C(x3)[y]

g(x, y)
= C(y)

C(EΓ)〈β2〉 =
C(x)[y2]

g(x, y)
= C(x)

C(EΓ)〈β1〉 =
C(x)[y]

g(x, y)

with again the last simplifications being given by our observations in the preceding lemma

regarding the form of g(x, y). So, if we define maps

G6 : EΓ → P1(C), (x, y) 7→ y2

G4 : EΓ → P1(C), (x, y) 7→ x2
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G3 : EΓ → P1(C), (x, y) 7→ y

G2 : EΓ → P1(C), (x, y) 7→ x

G1 : EΓ → E(Γ), (x, y) 7→ (x, y)

(where G6 is the identity map in the case that Γ = T (Γ), then Gi gives the proper map

on surfaces corresponding to the further quotient of C/T (Γ) by 〈δnc 〉 where the order of

[Γ : T (Γ)] = i. This is analogous to the derivation of the maps Fi defined above.

It is not always the case, though, that Γ∩〈δc〉 gives a full set of representative for Γ/T (Γ).

Suppose our generator δ0 for coset representatives of Γ/T (Γ) consists of rotation around

some point v0 that is equivalent to either va, vb, or vc = 0 modulo ∆, but not equivalent to

vc modulo T (Γ). We will call v0 the vertex of maximal rotation. Our discussion above on

finding δ0 guarantees that such a point exists. In this case, we may not have the δ0 gives

an automorphism of E(Γ), because as a rotation of the plane δ0 need not take the lattice

corresponding to T (Γ) back to itself. However, δ0 does give a bijection of points (as it is

clearly invertible via rotation in the opposite direction), and we will see that δ0 does give an

automorphism of degree R = [Γ : T (Γ)] for an elliptic curve readily obtained from E(Γ).

Lemma 3.10.2. Let δ0 generate coset representatives for Γ/T (Γ) as described above and let

v0 be the point around which v0 rotates in C/T (Γ). Let P0 be the image of of v0 on E(Γ)

(i.e. P0 = (℘(v0), ℘′(v0)). Then δ0 induces an automorphism of degree R = [Γ : T (Γ)] on the

elliptic curve E(Γ)′ obtained from E(Γ) via the translation isomorphism T−P0 : E(Γ)→ E(Γ)

taking P 7→ P − P0.

Proof. The content of the translation isomorphism is, in effect, to move the P0 to the origin

on E(Γ)′. Then, the action induced by δ0 is bijective and fixes the origin, so gives an

automorphism on E(Γ)′.

More specifically, let Ψ: C/Γ→ E(Γ) be the isomorphism taking z 7→ (℘(z), ℘′(z)). Then
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let α0 be the action on E(Γ) induced by δ0 (i.e. α0 : Ψ(z) 7→ Ψ(δ0(z))). Let β then be the

action induced on E(Γ)′ where Ψ(z)−P0 7→ Ψ(δ0z)−P0. The bijection δ0 gives of points in

the plane and our knowledge that δ0 is a transformation of order R give that β is a bijective

map of order R on E(Γ)′, so it remains to show that β takes the origin O to itself on E(Γ)′.

If Ψ(z) − P0 = O, we must have that Ψ(z) = P0, so z ∈ Λ2 + v0. Suppose z0 ∈ Λ2 + v0,

so z0 = τ0(v0) for some τ0 ∈ T (Γ). Then we have that δ0(z0) = δ0τ0(v0) = τ ′0δ0(v0) where

τ ′0 ∈ T (∆) (making use of the previously noted property that we can replace a translation

followed by a rotation with instead the same rotation followed by the original translation

rotated). But since δ−1
0 ∈ Γ, we have τ ′0δ0δ

−1
0 = τ ′0 ∈ Γ ∩ T (∆) = T (Γ). Thus

δ0(z0) = τ ′0δ0(v0) = τ ′0(v0) = λ+ v0

for some λ ∈ Λ2, and thus

Ψ(δ0(z0))− P0 = Ψ(λ+ v0)− P0 = Ψ(Λ) + Ψ(v0)− P0 = P0 − P0 = O.

Thus, β takes O to itself, and so gives an automorphism of degree R on E(Γ)′.

With this automorphism β in hand, which identifies images of points in C/T (Γ) that differ

by elements of 〈δ0〉, we can proceed analogously to our treatment above of the automorphism

α and by determining the relevant fixed field C(E(Γ)′)〈β〉 deduce the proper map G′ : E(Γ)′ →

X(Γ). With the following lemma, we will see that the situation is entirely analogous, and

the map G′ will come easily as a monomial (except in the trivial case when Γ = T (Γ))

determined by the rotation index R.

Lemma 3.10.3. Let E be an elliptic curve given by E : y2 = x3 + Ax+B. If E admits an

automorphism α of degree 3 or 6, then A = 0. If E admits an automorphism α of degree 4

then B = 0.

63



Proof. The key fact we will use here comes from Silverman [3] that every automorphism of E

must be of the form (x, y) 7→ (u−2x, u−3y) for some u ∈ C∗ with u−4A = A and u−6B = B.

We will apply this to each of the orders 3, 4, and 6. Suppose α : E → E is an automorphism

taking (x, y) 7→ (u−2x, u−3y).

If α has order 6 then u−12 = u−18 = 1, so u−6 = 1. If A 6= 0 then we have u−4 = 1 as

well, and thus u−2 = 1 as well. Then α2(x, y) = (u−4x, u−6y) = (x, y). But α2 acting as the

identity contradicts our assumption that α has order 6, so we conclude A = 0.

If α has order 4 then u−8 = u−12 = 1, so u−4 = 1. If B 6= 0 then we have u−6 = 1 as well,

and thus u−2 = 1 as well. As above, this implies α has order less than 4, contradicting our

assumption, so we conclude B = 0.

And likewise, if α has order 3 then u−6 = u−9 = 1, so u−3 = 1. If A 6= 0 then we have

u−4 = 1 as well, and thus u−1 = 1 and so α acts as the identity, so by contradiction we

conclude A = 0.

Now, we may compute our map G′ : E(Γ)′ → X(Γ). Let β6, β4, β3, and β2 be the

automorphisms on E(Γ)′ induced by δ0 when R = [Γ : T (Γ)] = 6, 4, 3, or 2 respectively. Let

E(Γ)′ be given by E : y2 = x3 + Ax+B, then let g(x, y) = x3 + Ax+B − y2 so that

C(E(Γ)′) =
C(x)[y]

(g(x, y)

Suppose R = 6. Since β6 is of the form (x, y) 7→ (u−2x, u−3y) and the order of β6 gives us

that u−4 = 1 (as we saw above), the fixed field is of the form

C(E(Γ)′)〈β6〉 =
C(x)[y2])

(g(x, y))
= C(y2).

with the final simplification made because we know in this case E(Γ)′ is of the form y2 =

x3 +B, so x3 ∈ C(y2).
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The rest of our derivations follow the same form used above for β6 and for the automor-

phisms α before: we determine the fixed field based on the degree of the automorphism, then

simplify by our lemma above. Then applying our previously used correspondence between

maps of surfaces and the function fields over those surfaces, we have

C(E(Γ)′) =
C(x3)[y2]

(g(x, y))
= C(y2) so G′6 : (x, y) 7→ y2

C(E(Γ)′) =
C(x2)[y4]

(g(x, y))
= C(x2) so G′4 : (x, y) 7→ x2

C(E(Γ)′) =
C(x3)[y]

(g(x, y))
= C(y) so G′3 : (x, y) 7→ y

C(E(Γ)′) =
C(x)[y2]

(g(x, y))
= C(x) so G′2 : (x, y) 7→ x

The maps G′ calculated above, then, are such that G′ ◦T−P0 : E(Γ)→ X(Γ) corresponds

to the further quotient of C/T (Γ) by 〈δ0〉, giving C/Γ when δ0 is not a power of δc. So, we

complete our determination of the proper map from E(Γ) to X(Γ) in any case (noting that

the map is just the identity if R = 1). This gives us three of the four sides of our guiding

diagram. The task then remains to fill in a rational map ϕ : X(Γ)→ X(∆), ramified above

0, 1, and ∞.

E(Γ)′

E(Γ) X(Γ)

E(∆) X(∆)

G′T−P0

ξ

G

ψ ϕ

F

According to our initial plan, we do so by examining the other maps we have filled in and

choosing ϕ uniquely as the choice that will make the diagram commute. Suppose first that δ0

is a power of δc. Then say (x, y) is a point on E(Γ). Choosing F correctly based on whether

c = 2, 4, or 6, we have that F ◦ ψ(x, y) is on X(∆) = P1(C), and F ◦ ψ : E(Γ) → X(∆)
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is ramified above 0, 1,∞ (possibly after taking the Möbius transformation ν in the cases of

∆(3, 3, 3) and ∆(2, 3, 6). If we take GR : E(Γ) → X(Γ), then G(x, y) is a point on X(Γ).

If R = 1 then X(Γ) = E(Γ) so ϕ = F ◦ ψ. Otherwise, G(x, y) is either y2, x2, y, or x, and

we wish to write to write F ◦ ψ in terms of that monomial G(x, y). Let ξ : E(Γ) → P1(C)

be the composition F ◦ ψ. Then ξ ∈ C(E(Γ)) is a rational function in x and y, modulo

the relation y2 = f(x) from the equation for E(Γ). Tracing around the diagram the other,

we have that ξ = ϕ ◦ G. So, ξ = F ◦ ψ = φ ◦ G. Put another way, ξ is the pullback of

φ under G. Recall that C(X(Γ)) as the fixed field C(E(Γ)) is exactly the field C(G(x, y)).

Since ϕ ∈ C(X(Γ)), we have that ϕ is a rational expression in G(x, y). Specifically, ξ(x, y) =

F (ψ(x, y)) = ϕ(G(x, y)), so we see that ξ indeed can be rewritten as a rational function in

the monomial G(x, y). To obtain this representation from the form of ξ we calculate as the

composition F ◦ψ, we make the appropriate substitutions from the equation of E(Γ). Once

we have ξ written as a rational function in G(x, y), replacing every instance of G(x, y) in that

expression with a variable, say x0, gives our expression for ϕ, so that ϕ(G(x, y)) = F (ψ(x, y)).

The determination of ϕ is analogous in the case when δ0 is not a power of δc, except we

must incorporate the translation map τ−P0 in our path around the diagram. τ−P0 has τP0 as

an inverse. So, with (x′, y′) a point on E(Γ)′, F ◦ψ ◦ τP0(x
′, y′) is the corresponding point on

X(∆) (again possibly up to a final Möbius transformation by ν). Then for the proper choice

of G′ : E(Γ)′ → X(Γ) depending on R, we have that G′(x′, y′) is the corresponding point

on X(Γ) and C(X(Γ)) = C(G′(x′, y′)), so we choose ϕ ∈ C(G′(x′, y′)), ϕ : X(Γ) → X(∆) =

P1(C) such that

F ◦ ψ ◦ τP0(x
′, y′) = ϕ ◦G′(x′, y′).

Examples given in Chapter 4 will help to illustrate this process giving our final Belyi map

ϕ : X(Γ)→ P1(C).
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Section 3.11

Refinements and simplifications

3.11.1. Equivalences from conjugation

The work above provides a complete and correct description of our goal (the determination of

the Belyi map ϕ : X(Γ)→ X(∆)) and our algorithm that acheives that goal. However, while

developing and proving the correctness and completeness of that algorithm has been the main

enterprise of this thesis, the thesis should also serve as a useful resource for computing actual

Belyi maps from actual transitive homomorphisms π : ∆ → Sd. To that end, we describe

here several refinements, simplifications, and reframings of the previous work that ease the

computational aspects. The desired effect in separating this section from the preceding

section is to first give the most intuitive and direct description we can of a working algorithm,

and to then improve on those results for interested readers.

Recall from section 3.2 that, when defining our group Γ, we gave it a particular rep-

resentation as the preimage of the stabilizer of 1, but could have obtained equivalent re-

sults throughout if we had defined Γ instead as the preimage of the stabilizer of m for any

m ∈ {1, 2, ..., d}, where the resulting groups are conjugate. In practice, this means that,

given a permutation triple σ, we can choose which element m ∈ {1, 2, ..., d} to take as our

defining element for Γ, and we can then carry out the following calculations in terms of m

rather than 1 and obtain equivalent results. Or, if we wish to keep our definitions the same

and perform the calculations still in terms of 1, we can conjugate σ by the transposition

(1m) to swap 1 and m in each of σa, σb, and σc. To be specific, the Belyi maps we obtain

from conjugates of σ are isomorphic to σ (as given in Lemma 1.1 of Voight [4]).

To see how this simplifies our calculations, consider the process described in section 3.6

for finding the generator δ0 for coset representatives of Γ/T (Γ). Our procedure was to find

which of σa, σb, or σc fixed any element m the maximum number of times when taking
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distinct powers of the corresponding δa, δb, or δc. Then, δ0 was conjugate to either δna , δ
n
b , or

δnc for some n, with the conjugating element τ chosen such that 1π(τ) = m. Our vertex of

maximal rotation could then range over any of the distinct vertices in C/T (Γ). As different

groups Γ in general give different regions T (Γ), and any region C/T (Γ) could contain many

distinct vertices, we would potentially have to calculate many different translation maps T

in calculating many different examples.

However, allowing ourselves the freedom to pre-process σ by a conjugation, we can in-

stead take (1m)σ(1m) for our input, where m is the maximally fixed element from above.

Then, 1 will be the new maximally fixed element, and we can take a power of δa, δb, or δc

(corresponding to vertices of maximal rotation va, vb, or vc) as our generator δ0. In effect, we

perform the the conjugating step at the start of our algorithm rather than midway through,

and then need only consider three possibilities per group Γ for the translation map T (one

of which is the identity, when vc is the point of maximal rotation). So, up to a conjugation

of σ, we will assume that the vertex of maximal rotation is always either va, vb, or vc.

3.11.2. Translations of E(∆)

The first simplification above greatly reduces the variety of cases we must consider in calcu-

lating the translation map T , and removes the burden of calculating an arbitrary vertex of

maximal rotation. However, as each translation map depends on the source curve E(Γ), and

we encounter many curves E(Γ) in computing different examples, we still face the prospect

of computing many different translation maps if we wish to cover all possible examples. This

does not invalidate our results above, but we strive to simplify where we can. We can reduce

the large family of translation maps to a finite handful of options if we instead compute

translations on E(∆), where we only have our two canonical curves.

We do so as follows. Let v0 ∈ {va, vb, vc} be the vertex of maximal rotation, and let

P0 be the corresponding point Ψ(v0) on E(Γ). Consider p0 := ψ(P0) on E(∆). Since P0
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corresponds to either va, vb, or vc in C/T (Γ), p0 corresponds to either va, vb, or vc in C/T (∆)

accordingly. We can define the corresponding translation map t−p0 : E(∆) → E(∆) and,

analogously to our definition of E(Γ)′, define E(∆)′ as the elliptic curve obtained from E(∆)

via the translation t−p0 . Then, since

ψ(P + P0) = ψ(P ) + ψ(P0) = ψ(P ) + p0,

ψ induces an easy isogeny from E(Γ)′ to E(∆)′. We have a commuting diagram illustrating

the relationship of these four curves:

E(Γ) E(Γ)′

E(∆) E(∆)′

T−P0

ψ ψ

t−p0

.

Incorporating these translations into our general diagram, we have the following:

We know that G′ and F belong to our finite set of monomial maps, and we have previously

computed ψ. So, rather than computing T−P0 for each example (of which there could be

infinitely many), we compute our finite choices of t−p0 (of which there are only 9). Composing
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these translations with the fixed maps F then gives all our possible choices for the map F ′.

We reduce the problem to the following situation:

E(Γ)′ X(Γ)

E(∆)′ X(∆)

G′

ψ ϕ

F ′

.

We compute ψ as described previously. G′ is the monomial map determined by R, and F ′

is one of our finite cases listed above. So to find ϕ, we compose F ′ ◦ ψ then write it in

terms of the monomial G’(x,y). We thus achieve the same result as the previously described

algorithm, but need only ever consider the finitely many translation maps of particularly

simple forms listed above.

Section 3.12

Proof of main result

Algorithm 3.12.1. This algorithm takes as input a Euclidean, transitive permutation triple

σ = (σa, σb, σc) ∈ S3
d corresponding to a homomorphism π : ∆→ Sd with π(δa) = σa, π(δb) =

σb, and π(δc) = σc and gives as output equations for the corresponding Belyi map from X(Γ)

to P1(C).

1. Find spanning vectors for T (Γ). Output (n1, n2), (m1,m2) such that τ1 = n1ω1 + n2ω2

and τ2 = m1ω1 +m2ω2.

(i) if ∆ = ∆(3, 3, 3) then

i. σ1 := σbσ
2
c

ii. σ2 := σ2
bσc

(ii) if ∆ = ∆(2, 4, 4) then
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i. σ1 := σaσ
2
c

ii. σ2 := σ3
bσc

(iii) if ∆ = ∆(2, 3, 6) then

i. σ1 := σaσ
3
c

ii. σ2 := σ2
bσ

2
c

(iv) c1 := cycle in σ1 containing 1

(v) c2 := cycle in σ−1
2 containing 1

(vi) `1 := length of c1

(vii) `2 := length of c2

(viii) V := {(a1, a2) : 0 ≤ a1 < `1, 0 ≤ a2 < `2, 1
c
a1
1 = 1c

a2
2 }

(ix) V ′ := V ∪ {(`1, 0), (0, `2)} (spanning set for T (Γ) in ω1, ω2 coordinates).

(x) M := matrix with entries in V ′ as its rows

(xi) M ′ := matrix M reduced to Echelon form

(xii) (n1, n2) := first row in M ′

(xiii) (m1,m2) = (0,m2) := second row in M ′

(xiv) output (n1, n2) and (m1,m2)

2. Determine rotation index R := [Γ : T (Γ)]

(i) Take d as in Sd, c as in ∆(a, b, c), and (n1, n2), (m1,m2) from part 1

(ii) R := c(n1m2 −m1n2)/d

(iii) output R

3. Find kernel of the isogeny from E(∆) to E(Γ)

(i) Find kernel as points in plane with coordinates relative to period lattice
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i. M0 :=Matrix with first row (m2,−n2), second row (0, n1)

ii. a1 := |m2|

iii. a2 := |n1|

iv. d0 := n1m2 −m1n2

v. K1 := {1
d
(x1n1, x1n2 + x2m2) : 0 ≤ x1 < a1, 0 ≤ x2 < a2}

(ii) Reduce kernel to points with distinct x-coordinates on E(∆)

i. Let ki = (ai, bi) be the ith entry in K1. For 1 ≤ i, j ≤ #K1 do

A. if (ai + aj ∈ Z) and (bi + bj ∈ Z) then remove kj from K1

ii. Remove all entries (0, 0) from K1

(iii) Output K1

4. Determine isogeny from E(Γ) to E(∆)

(i) Let Λ1 be the lattice determined by T (∆) spanned by ω1, ω2

(ii) X0 := {℘((aiω1 + biω2),Λ1) : (ai, bi) ∈ K1}

(iii) Form polynomial p(x) defining kernel by taking p(x) :=
∏

(x− x0) for x0 ∈ X0

(iv) Vélu’s formula takes p(x) and the equation for E(∆) as input and outputs the

isogeny ψ̂ : E(∆)→ E(Γ) with kernel as described

(v) Takes ψ as the dual isogeny to ψ̂ where ψ : E(Γ)→ E(∆)

5. Determine vertex of maximal rotation (Assuming either va, vb, or vc per the simplifi-

cation in section 3.11)

(i) Decompose σa into product of disjoint cycles (including 1-cycles) so σa = ca,1...ca,j

(ii) Define Ra := max{a/`(ca,i}

(iii) Define Rb, Rc likewise
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(iv) R0 := max{Ra, Rb, Rc}

(v) Take x ∈ {a, b, c} such that Rx = R0

(vi) vx is the vertex of maximal rotation

6. Compute composition F ◦ ψ(x, y) ◦ TP0 : E(Γ)′ → X(∆).

(i) Let P0 = Ψ(vx) be the image of vx on E(Γ)

(ii) Let ψ ◦ TP0(x, y) = (x0, y0)

(iii) If ∆ = ∆(3, 3, 3)

i. F (x0, y0) := y0

ii. ξ(x, y) := ν(y0) = 2
y0+1

(iv) If ∆ = ∆(2, 4, 4)

i. F (x0, y0) := x2
0

ii. ξ(x, y) := x2
0

(v) If ∆ = ∆(2, 3, 6)

i. F (x0, y0) := y2
0

ii. ξ(x, y) := y2
0

(vi) Output ξ

7. Compute top map G′(x, y) : E(Γ)′ → X(Γ)

(i) If R = 6 then

i. G′(x, y) := y2

(ii) If R = 4 then

i. G′(x, y) := x2
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(iii) If R = 3 then

i. G′(x, y) := y

(iv) If R = 2 then

i. G′(x, y) := x

(v) If R = 1 then

i. G′(x, y) := (x, y)

8. Write ϕ in terms of G′(x, y)

(i) If R = 1 then

i. ϕ := ξ (Since G′ = Id)

(ii) Otherwise

i. Take ξ. Rewrite as a rational function of x0 := G′(x, y)

ii. Output ϕ := ξ as a function of x0

9. Output ϕ

Theorem 3.12.2. Algorithm 3.12.1 terminates with correct output.

Proof. Each step in the algorithm is justified by a section presented in detail in the main body

of the thesis. We provide the relevant links here and piece the parts together. For step 1, we

refer to proposition 3.3.1 describing T (∆) and the description following definition 3.3.2 to see

that T (Γ) is in fact a subgroup of T (∆) and that the vectors obtained in step 1 span it. The

calculation of the rotation index R(Γ) in step 2 comes directly from proposition 3.5.2. That

the isogeny ψ constructed in steps 3 and 4 corresponds to the further quotient of C/T (Γ)

by T (∆) comes from the construction in section 3.8 along with the use of Vélu’s formula.

Corollary 3.6.3 gives that our process for determining the vertex of maximal rotation gives
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the correct choice, and the simplification described in section 3.11 justifies us in assuming

that it is either va, vb, or vc. Once we know the vertex of maximal rotation, the case of ∆

lets us make the proper choice of F in step 6. Then, the construction of the maps G′ in

section 3.10 follows from the derivation of the fixed field C(E(Γ)′)〈β〉.

Finally, once we have determined F,G′ and ψ, we know from the description in section

3.11 of our simplified algorithm that F ◦ψ(x, y) gives from (x, y) on E(Γ′) the corresponding

point on X(∆) = P1(C). F ′ ◦ψ is holomorphic as the composition of holomorphic functions,

and ramified only at 0,1 ∞ by our calculations with the fixed maps F in section 3.9 (and

possibly the Möbius transformation ν in the case of ∆(3, 3, 3)). That we can rewrite F ◦ ψ

as a rational function of G′(x, y), and so fill in the map ϕ, comes from our calculation of

C(X(Γ)) = C(G′(x, y)) as the fixed field C(E(Γ)′)〈β〉 in section 3.10.
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Figure 3.4: Diagram exhibiting choices in algorithm
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Chapter 4

Examples and Data

Section 4.1

Description of implementation

We implemented our algorithm using the Magma computer algebra system [1]. Magma pro-

vides many computational tools that allow us to construct mathematical objects like elliptic

curves and rational functions. In particular, we used Magma’s implementation of Velu’s

formula in calculating our isogeny ψ, and its constructions of division polynomials over el-

liptic curves to identify coefficients in our maps as algebraic numbers. The construction of

these isogenies is the most time intensive step in our calculation, as in general it involves

constructing a large splitting field of a division polynomial. Even with this step, our com-

putations proceed quickly, with no computations taking more than 5 or 10 seconds for any

given example we have used.

We follow the algorithm 3.12.1 given above, with some minor technical accommodations

to remain in line with Magma’s conventions. For example, when we construct an elliptic

curve E in Magma (say our canonical curve y2 = x3 + 1), Magma automatically associate

two periods with E that span its associated lattice. These periods may not coincide exactly
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with the one we describe above (since there can be multiple ways to span the same lattice).

To accommodate this quirk, we must make sure to generate our basis vectors for T (Γ) and

to deal with lattice coordinate points relative to the lattice Magma uses in its computations.

As we only need worry about this for our two canonical elliptic curves, we can see which

lattice Magma uses, compare it to our own lattices described above, and convert coordinates

between the two by a simple change of basis operation.

Section 4.2

Structure of Γ

We now describe the output of our algorithm for a representative sample of examples. For

each input σ, we provide a transitive triple σa, σb, σc such that π : ∆(a, b, c) → Sd defined

by π(δa) = σa, π(δb) = σb, π(δc) = σc is a transitive homomorphism. Below, we provide a

table listing key aspects of the structure of the group Γ in many different cases (namely the

permutation representation, the index of Γ in ∆, generating vectors for T (Γ) relative to the

standard generating vectors for T (∆), and the rotation index R(Γ).
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Section 4.3

Belyi maps obtained from triples

We list our final products: computed Belyi maps from X(Γ) to P1(C). Some are rational

functions over Q, and some require a small field extension. The examples 1, 2, 5, 6, and 11

are maps from elliptic curves to P1(C); the rest are from P1(C) to P1(C). We also provide

factorizations of the numerator, denominator, and difference (numerator - denominator) for

the maps from P1(C) to P1(C), confirming the correspondence between ramification at 0,∞,

and 1 respectively and the cycle structure of σ. Factorizations are given up to a constant

factor.

Examples 1 − 14 come from triples taken from the LMFDB (L-functions and Modular

Forms Database) [5]. Belyi maps have already been computed for those triples via an-

other process, and our results confirm those. Example 15, however, is a new example we

have calculated using this algorithm. This result, computing new Belyi maps, suggests the

usefulness of this algorithm and construction, particularly once we complete a full-fledged

implementation in Magma.

1.∆(3,3,3) : (1,2,3), (1,2,3), (1,2,3)

ϕ(x, y) =
2

y + 1

ϕ : E → P1(C) with E given by E : y2 = x3 + 1

2.∆(2,4,4) : (1,3)(2,4), (1,2,3,4), (1,2,3,4)

ϕ(x, y) = x2

ϕ : E → P1(C) with E given by E : y2 = x3 − x

3.∆(3,3,3) : (2,4,3), (1,3,4), (1,2,3)
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Numerator:

128x3

Denominator:

x4 + 64x3 + 1152x2 − 110592

Factors in numerator:

x3

Factors in denominator:

(x− 8)

(x+ 24)3

Factors in difference:

(x− 24)3

(x+ 8)

4.∆(2,4,4) : (1,4)(2,3), (2,3,5,4), (1,4,5,2)

Numerator:

1/625x5+1/125(−8α+44)x4+1/25(−264α+702)x3+1/5(−2872α+4796)x2+(−10296α+

11753)x

Denominator:

x4 + 1/5(−152α − 164)x3 + 1/25(18696α + 1422)x2 + 1/125(−547048α + 434764)x +

1/625(1476984α− 9653287)

Field: Q(α) with minimal polynomial x2 + 1

Factors in numerator:

x(x− 10α + 55)4

Factors in denominator:

(x+ 1/5(−38α− 41))4

Factors in difference:

(x− 24α + 7)
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(x2 + (−8α− 206)x− 336α− 527)2

5.∆(2,3,6) : (1,4)(2,5)(3,6), (1,3,5)(2,4,6), (1,2,3,4,5,6)

ϕ(x, y) = y2

ϕ : E → P1(C) with E given by E : y2 = x3 + 1

6.∆(3,3,3) : (1,6,2)(3,5,4), (1,6,5)(2,4,3), (1,3,5)(2,4,6)

Numerator:

1/8x2y − 1/2xy + 7/8y

Denominator:

x2 − 4x+ 4

ϕ : E → P1(C) with E given by E : y2 = x3 − 15x+ 22

7.∆(2,3,6) : (1,4), (1,2,6)(3,4,5), (1,6,2,4,3,5)

Numerator:

(36α− 36)x5 + (−72α+ 216)x4 + (−648α+ 360)x3 + (1872α− 4032)x2 + (36α+ 7452)x−

2376α− 3960

Denominator:

x6 + (12α − 18)x5 + (−120α + 75)x4 + (360α + 20)x3 + (−240α − 585)x2 + (−372α +

894)x+ (360α− 323)

Field: Q(α) with minimal polynomial x2 − x+ 1

Factors in numerator:

(x− 2)

(x2 + 2x− 11)

(x− 2α− 1)2

Factors in denominator:

(x+ 2α− 3)6
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Factors in difference:

(x2 + (−8α + 6)x+ 16α− 19)3

8.∆(2,4,4) : (1,3)(2,4), (1,6,3,2)(4,5), (1,4,5,2)(3,6)

Numerator:

1/81x6 +1/81(−8α3 +12α2 +16)x5 +1/81(−28α3 +56α2 +28α+106)x4 +1/243(−664α3 +

1052α2−112α+1328)x3 +1/81(−260α3 +520α2 +260α+793)x2 +1/243(−1928α3 +4416α2−

3048α + 3856)x+ 1/729(−7136α3 + 14272α2 + 7136α− 928)

Denominator:

x4 + (−8α3 + 12α2 + 16)x3 + (−36α3 + 72α2 + 36α+ 90)x2 + (−144α3 + 180α2 + 72α+

288)x− 108α3 + 216α2 + 108α + 297

Field: Q(α) with minimal polynomial x4 − 2x3 − 2x+ 1

Factors in numerator:

(x+ 1/3(−4α3 + 12α + 8))2

(x+ 1/3(−4α3 + 9α2 − 6α + 8))4

Factors in denominator:

(x− 2α3 + 3α2 + 4)4

Factors in difference:

(x+1/3(−10α3 +15α2 +6α+8))2 (x+1/3(−4α3 +3α2 +20))2 (x+1/3(−4α3 +12α2 +11))

(x+ 1/3(8α3 − 12α2 − 12α− 19))

9.∆(3,3,3) : (1,4,2)(3,5,6), (1,3,4)(2,7,6), (2,5,3)(4,6,7)

Numerator:

686x6 + (448056α + 1106910)x4 + (579528432α + 497811258)x2 + (182085249240α +

47193240762)

Denominator:

x7 + 343x6 + (756α + 35217)x5 + (224028α + 553455)x4 + (19560744α − 53399493)x3 +

(289764216α+248905629)x2+(−15699388572α+1563888627)x+(91042624620α+23596620381)
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Field: Q(α) with minimal polynomial x2 − x+ 1

Factors in numerator:

(x2 + 1/7(1524α + 3765))3

Factors in denominator:

(x− 18α + 19)

(x2 + (6α + 108)x+ 858α− 2049)3

Factors in difference:

(x+ 18α− 19)

(x2 + (−6α− 108)x+ 858α− 2049)3

10.∆(2,3,6) : (1,6)(2,5)(3,4), (2,5,3)(4,6,7), (1,6,3,2,4,7)

Numerator:

1/117649x7+1/16807(216α+10062)x6+1/16807(13277304α+161838081)x5+1/16807(185025496752α−

541083993948)x4+1/2401(−57828337334064α+53117786814255)x3+1/2401(22932183445658568α+

9125749429516386)x2 + 1/2401(4027890021580307304α− 4980103140754780695)x

Denominator:

x6 +1/7(9144α+22590)x5 +1/49(206974440α+177789735)x4 +1/343(1820852492400α+

471932407620)x3+1/2401(7762285366137360α−748615262796225)x2+1/16807(15965535056399620056α−

5859303744968449506)x+1/117649(12585356000994278904840α−7731959004293205559239

Field: Q(α) with minimal polynomial x2 − x+ 1

Factors in numerator:

x

(x3 + (756α + 35217)x2 + (19560744α− 53399493)x− 15699388572x+ 1563888627)2

Factors in denominator:

(x+ 1/7(1524α + 3765))6

Factors in difference:

(x+ 360α− 37)
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(x2 + (384α− 15726)x− 2779920α + 3462237)3

11.∆(2,4,4) : (1,5)(2,6)(3,7)(4,8), (1,4,3,6)(2,5,8,7), (1,2,3,8)(4,5,6,7)

Numerator:

1/16x4 + 1/2x2 + 1

Denominator:

x2

Factors in numerator:

(x2 + 4)2

Factors in denominator:

x2

Factors in difference:

(x− 2)2

(x+ 2)2

ϕ : E → P1(C) where E is given by y2 = x3 + 4x

12.∆(2,3,6) : (1,4)(2,7)(3,6)(5,8), (1,3,8)(4,7,6), (1,5,8,6,2,7)(3,4)

Numerator:

1/4096x8 + 9/16x6 + 270x4 − 62208x2 + 2985984

Denominator:

x6

Factors in numerator:

(x4 + 1152x2 − 110592)2

Factors in denominator:

x6

Factors in difference:

(x− 24)3

(x− 8)
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(x+ 8)

(x+ 24)3

13.∆(2,4,4) : (1,5)(2,4)(3,9)(7,8), (1,9,4,5)(2,8,3,6), (2,6,9,5)(3,7,8,4)

Numerator:

1/6561∗x9+8/27∗x8+204∗x7+52488∗x6+354294∗x5−1033121304∗x4+79033779756∗

x3 − 2259436291848 ∗ x2 + 22876792454961 ∗ x

Denominator:

x8−648∗x7+148716∗x6−12754584∗x5+28697814∗x4+27894275208∗x3+711304017804∗

x2 + 6778308875544 ∗ x+ 22876792454961

Factors in numerator:

x

(x2 + 486 ∗ x− 19683)4

Factors in denominator:

(x2 − 162 ∗ x− 2187)4

Factors in difference:

(x− 81)

(x4 − 2268 ∗ x3 + 39366 ∗ x2 − 14880348 ∗ x+ 43046721)2

14.∆(2,3,6) : (2,9)(3,8)(4,7)(5,6), (1,5,8)(2,3,6)(4,7,9), (1,3,9,4,2,5)(6,8)

Numerator:

1/531441x9+16/27x8+41796x7−759606336x6+4028398244622x5−7686602264866896x4+

7271251221054624084x3 − 3501407652208395494688x2 + 717897987691852588770249x

Denominator:

x8+11664x7+53144100x6+111577100832x5+76255974849870x4−88944969064888368x3−

145891985508683145612x2 + 58149737003040059690390169

Factors in numerator:

x
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(x− 6561)2

(x3 + 164025x2 − 215233605x+ 94143178827)2

15.∆(2,4,4) : (1,9)(2,8)(3,7)(4,6), (1,4,5,2)(3,8)(6,9,10,7), (1,6)(2,3,10,9)(4,7,8,5)

Numerator:

1/625x10 + 1/125(4α3 + 4α)x9 + 1/125(200α2 + 388)x8 + 1/125(3332α3 + 6692α)x7 +

1/125(83256α2+161630)x6+1/125(562556α3+1336716α)x5+1/25(1376312α2+2866580)x4+

1/25(4115020α3 + 11437324α)x3 + 1/25(19107336α2 + 61193305)x2 + 1/25(37943168α3 +

52177040α)x+ 1/25(51750464α2 + 63920640)

Denominator:

x8 + (20α3 + 20α)x7 + 1/5(5240α2 + 8772)x6 + (14036α3 + 34916α)x5 + 1/25(8217960α2 +

19103494)x4 + 1/5(10922908α3 + 24086588α)x3 + 1/125(2458698280α2 + 5470860228)x2 +

1/25(1132770508α3 + 2537281628α)x+ 1/625(64065634680α2 + 143338896001)

Field: Q(α) with minimal polynomial x4 − 5

Factors in numerator:

(x+ 8α)2

(x2 + (5α3 + α)x+ 29α2 + 10)4

Factors in denominator:

(x2 + (5α3 + 5α)x+ 1/5(185α2 + 318))4

Factors in difference:

(x− 4α2 − 4α− 9)

(x+ 4α2 − 4α + 9)

(x2 + (5α3 − 2α2 + 7α + 8)x+ 18α3 + 43α2 − 12α + 86)2

(x2 + (5α3 + 2α2 + 7α− 8)x− 18α3 + 43α2 + 12α + 86)2
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Section 4.4

Future work

Magma is a powerful system —our calculations would be exceedingly difficult to compute

by hand without it. However, the power of Magma comes with some drawbacks. The

language requires rigid definitions of every map and object, with careful designations of

which universe or family contains each item. So, some things that seem intuitively easy from

a human perspective, like taking a polynomial and replace every instance of x3 with x, or

considering a function f over an extended domain when the definition of how to extend the

function is clear (e.g. “given f : Q → Q taking x 7→ x + 5, define f : R → R similarly”)

can be difficult. In particular, Magma is very sensitive to the base field of definition for

elliptic curves and polynomials, which makes it difficult to move freely between curves and

to compose the maps in our guiding diagram.

So, at this point, our implementation in Magma still requires a human hand to guide it.

The maps (i.e. ψ, F ′, G′) are computed by Magma, then it takes some care to ensure they

take the proper forms for us to compose them and determine ϕ. This process is somewhat

time intensive and requires attention to detail. Our immediate goal will be to “clean” the

code and implement it fully in Magma, so that within a single function we can give input

σ, press the start button, then receive our map ϕ as output without any additional work.

Once this implementation is in place, we can compute many more examples of Belyi maps,

even for larger, more complicated permutation triples.
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