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Abstract

This thesis consists of the expansion and development of a model of cancer growth

with vasculature to include acidification of the tumor microenvironment and an acid

mediated transition to malignancy via the acquisition of acid resistance and the use

of constitutive glycolysis. This model has been parametrized using data from trans-

genic adenocarcinoma of the mouse prostate, or TRAMP mice which spontaneously

develop prostate adenocarcinoma, the most common form of prostatic cancer in hu-

mans. The results of simulations using this model match prostate cancer data in

monolayers, spheroids, and in vivo and show tumor responses to early and late buffer

therapy which match the results observed in the lab - early intervention with sodium

bicarbonate is sufficient to stop the development of malignancy but treatment just

six weeks later does not hinder malignancy. Unexpectedly, the late administration of

buffer therapy in this model resulted in a greater proportion of malignant cells in the

tumor than in tumors without treatment, suggesting that late buffer therapy may re-

sult in worse outcomes. Additionally, simulations under varied angiogenic conditions

were carried out to explore the various behaviors of the model and three behaviors

emerged - tumor death, a tumor volume equilibrium, and unlimited tumor growth,

all of which are observed physiologically.
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Chapter 1

Literature Review

Section 1.1

Introduction

It is known that acidosis is a consequence of tumor growth, the effects of which

may be measured directly on the surface of a tumor[1]. Two studies have shown that

alkalinization can delay the progress of prostate cancer and reduce the development

of malignancy [2, 3]. Both of these phenomena are consistent with the hypotheses

put forth about the role of acid in tumor progression and the competitive nature of

cancer phenotypes and genotypes. Specifically, it has been suggested that increasing

acidosis, a natural consequence of hypoxic regions in the tumor, both encourages the

appearance of acid resistance, selects for acid resistant strains in a passive Darwinian

process, and thereby produces malignancy via the Warburg effect [4].

During early tumor growth prior to angiogenesis, central regions of the tumor be-

come hypoxic because oxygen is unable to diffuse to the center of the tumor, thereby

preventing complete progression through the Krebs cycle/oxidative phosphorylation.
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1.1 Introduction

This lack of oxygen means there are too few oxygen atoms to serve as electron recep-

tors which causes ATP levels to decline, thus forcing the cells to become quiescent

i.e. temporarily frozen in the G0 phase of the cell cycle. This hypoxic, nutrient poor,

tumor microenvironment selects for glycolysis to enable cells to continue proliferat-

ing, which acidifies the extracellular environment, further increasing its hostility. In

addition to altering the phenotype of cells, these environmental factors destabilize

the genome of cells introducing mutation and increasing the genetic diversity of cells

within the tumor[5].

Additionally, the acid degrades extracellular matrix (ECM) permitting tumor cells

to invade thus further accelerating their approach toward malignancy. The article

by Damaghi et al., develops an acid-mediated invasion model through long term

experiments in which premalignant cancer cells were cultured at low pH. The protein

LAMP2 is upregulated which is important as it typically is heavily glycosylated and

present on lysosomal membranes to protect them from hydrolysis by the acid in

the lumen of the lysosomes [6]. In acid resistant cancer cells, they saw both an

upregulation of LAMP2 and a relocalization of LAMP2 protein to the cell membrane.

They found that in becoming adapted, tumor cells become aggressive and migratory;

the more acidic central portion of the tumor is initially the highest proportion of

malignant cells but these cells eventually migrate toward the perimeter of the tumor

and outcompete other cells. These experimental results indicating acid resistance and

tumor aggressiveness in the presence of acid support the study presented here.

The model proposed in this paper is motivated largely by Fang et al. which de-

scribes a model of carcinogenesis through which cells must experience acidosis and

related acid resistance in order to become malignant, shown schematically in Fig-
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1.1 Introduction

ure 1.1. [7]

Figure 1.1: The progression to malignancy as described in (Fang et al)

A qualitative description of Figure 1.1 can be summarized as:

(a) transition from proliferation to quiescence due to hypoxia

(b) phenotypic change from quiescent hypoxic cells to acid resistant cells in acidic

and hypoxic surroundings

(c) further phenotypic and/or genotypic change to acid resistant anaerobic glycol-

ysis in acidic surroundings, consistent with the development of malignancy

(d) selection for acid resistant phenotypes, increased aggression associated with cell

motility, and faster aerobic glycolysis

Prostate cancers are globally the second most common cancer to affect men and

the most common cancer in men in the United Kingdom.[8] This prevalence and the

high death rate associated with prostate cancers are likely connected to the lack of

symptoms in early cancers – they often go undetected until they are more advanced.

For this reason, screening for Prostate Specific Antigen (PSA) which increases rapidly

upon the emergence of prostate cancers has been employed but overdiagnosis and

unnecessary treatment of cancers which may never have progressed has garnered con-

siderable controversy around the use of this early detection method.[9] Additionally,

the treatments which have become the standard of care for prostate cancer – surgery,
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1.2 Tumor Growth Modeling

radiotherapy, and proton beam therapy – are associated with significant side effects so

alternative therapy options are being explored.[11] Because the prostate is comprised

primarily of glandular tissue, more than 95% of prostate cancers are adenocarcinoma,

so a model calibrated to experiments from a mouse model of prostate adenocarcinoma

and buffer therapies to combat the acidifying tumor environment will be developed

and analyzed in this thesis.

Section 1.2

Tumor Growth Modeling

Mathematical modeling in biology and specifically oncology is beneficial as it

allows for the exploration of biological systems without the use of time consuming

and expensive bench research, both of which are especially pertinent to in vivo ex-

periments. Moreover, math models serve as a means to further explore the impacts

of various aspects of cancers such as the rates of angiogenesis or the relative im-

pacts of TNF-α and acidosis, which are difficult to manipulate and measure in the

lab but are nevertheless central to the behaviors of cancer. To model tumor growth,

data from experiments at increasing levels of complexity are utilized to establish a

model parametrization that can capture behaviors at the cellular and whole tumor

level. First, data for a monolayer is used to establish the transition between cell cycle

stages and the rates of tumor cell development, then a spheroid is used to first model

solid tumor growth without the added complexity of vasculature. Next, measure-

ments of pH are used to determine the parameter values associated with acidification

and the acquisition of malignancy, and finally, data from xenotransplanted tumor

cells in a mouse flank and the spontaneously arising tumors in transgenic adenocarci-
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1.2 Tumor Growth Modeling

noma of the mouse prostate (TRAMP mice) are used to develop the full model. The

characteristics of the levels of the model are described below.

1.2.1. Monolayer

One mode of studying cellular behavior involves culturing cells in a flat dish un-

der highly controlled conditions which thus enables monitoring of the relative preva-

lence of the various cell cycle stages and a determination of the doubling time for the

cells. Monolayer cultures provide an opportunity to model short-term, essentially un-

constrained exponential cell growth, since the only limiting factors are nutrient avail-

ability (which can experimentally be made sufficiently large to not constrain growth)

and space which is remedied through cell passaging or restriction of monitoring to a

short time window.

Monolayer growth and the cell cycle are easily described by a three-dimensional

linear model.[12] The monolayer is parametrized by treating the unsynchronized cell

cycle limiting distribution as an eigenvector of the system with the eigenvalue λ =

ln(2)
Doubling Time

. Three parameters c1, cs, and c2, correspond to a transition rate between

stages of the cell cycle and da is the natural death rate which, for this model, is taken

to be 0. The values G∗1, G
∗
2, and S∗ represent the proportions of cells in each stage.

These equations are reproduced from He et al. below:

c2 =
(λ+ daG

∗
2)

G∗2

c1 =
(2c2G

∗
2 − λG∗1)
G∗1

cs =
(c1G

∗
1 − λS∗)
S∗
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1.2 Tumor Growth Modeling

1.2.2. Spheroid

Because solid tumors in the body are three-dimensional, 2D monolayer cultures

are inadequate to capture all of the characteristics of a tumor. Specifically, cells grown

in a monolayer lack the cell-cell interactions and the microenvironmental differences

between a cell on the outside and one in the center of a cluster of cells. A somewhat

more complex model of tumor development that is evaluated in the lab are multi-

cellular tumor spheroids (MCTS) - spherical cellular aggregates comprised of one or

more cell types that effectively represent avascular tumors up to roughly one cubic

millimeter in size.[13] MCTS greater than 500µm in diameter exhibit physiochemical

gradients similar to small metastases in the body including the gradient of oxygen,

metabolic wastes, and nutrients and can thus capture patterns of quiescence, hypoxia,

and acidosis observed in tumors in the body.

When MCTS are cut in cross-section, they exhibit a characteristic pattern of

three concentric layers of cells: a necrotic core surrounded by a layer of quiescent

cells which receive inadequate nutrients and oxygen to divide, further surrounded

by a layer of proliferative cells on the surface of the spheroid where oxygen and

nutrients are abundant.[14] Nutrients and oxygen exist in a gradient with the greatest

concentrations in the proliferative layer nearest the culture media and very low levels

within the quiescent and necrotic regions; the gradient of lactic acid is opposite with

acid accumulation in the center of the MCTS and relatively low acid levels in the

proliferative region.[14] In order to commit to cellular division, cells must overcome

specific energy barriers, and in cells with inadequate access to oxygen this is impossible

so the cells arrest their cycle in the G0 phase in which they do not divide.[15] As such,

the development of quiescence is modeled as a transition from the G1 phase to the

6



1.2 Tumor Growth Modeling

quiescent compartment and the return to the cell cycle is modeled as a transition

from quiescence into the S phase. In spheroids, there is a critical depth which varies

by cell type below which cells can no longer proliferate and thus a quiescent layer

develops; with further oxygen deprivation, cells can no longer survive so they become

necrotic thereby generating a necrotic core. A model of spheroid growth is expected

to meet certain qualitative observations common to all spheroids: an equilibrium for

the radius of the proliferating and quiescent shells as well as a cessation of growth.

A visualization of the three MCTS layers is presented in Figure 1.2.

Figure 1.2: A visual representation of a spheroid indicating the relative positions of
the proliferative layer, quiescent layer, and the necrotic core. The level of oxygen and
pH decline moving from the outside toward the core.

1.2.3. Xenograft

The most complex and thus the most similar experimental system to human

tumors are in vivo studies which take place in the body of an animal. Several options

to study tumor growth in vivo include xenotransplantation or the insertion of human

cells into nude mice which lack an immune system, xenotransplantation of tumor
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1.3 Cancer Physiology

cells from one location of an animal’s body to a location with more favorable condi-

tions to study, or the use of either carcinogenic agents or transgenic mice that will

spontaneously develop cancers. For this thesis, data from studies using transgenic

TRAMP mice which spontaneously develop adenocarcinoma in their prostates and

xenotransplantation of TRAMP prostate cancer cells from the prostate to the flank

where they can more readily be monitored are considered.

Because these studies take place in the body, there is no longer an avascular

constraint as in the spheroids. The tumors experience two phases, first an avascular

phase that lacks its own blood supply and matches the spheroids in most aspects

except nutrient availability, and a later vascular phase which is most similar to the

tumors that are detected in people.[16] The model for the xenograft thus includes a

compartment for vascular endothelial growth factor (VEGF) which is secreted under

low oxygen conditions to signal for the addition of vasculature. In the spheroid there

is considerable accumulation of acid due to the glycolytic activity of the tumor cells

and TNF-α which is secreted by necrotic cells in the necrotic core region. In the body

the vasculature carries away both necrosis and acid making this a more representative

means of modeling the role of acid in tumor malignancy.

Section 1.3

Cancer Physiology - VEGF and TNF-α

Metastasis and growth of cancers is closely linked to vascularization of the tu-

mor – without access to blood vessels, solid tumors cannot reliably grow larger than

a few millimeters in size and thus are not of considerable concern.[17] One of the

major secretable factors employed by tumors is vascular endothelial growth factor
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1.3 Cancer Physiology

(VEGF) which is a glycoprotein that is over-expressed in pancreatic cancers among

others and is closely associated to disease progression and angiogenesis.[17] VEGF

has several roles in angiogenesis, first involving upregulation of enzyme secretion for

basement membrane and extracellular matrix degradation, followed by upregulation

of endothelial cell proliferation and maintenance of the new vessels.[18] Therapies tar-

geting VEGF have been shown to slow angiogenesis considerably thereby confirming

its role in the development of blood vessels in cancers, but the effect of these therapies

is limited and tumors will begin to secrete other factors to signal for blood vessels,

thereby evading these therapies.[19] As it pertains to acidosis, VEGF was found to

increase endothelial proliferation at physiological pH (7.4) but had diminishing effect

on endothelial cell proliferation with decreasing pH and zero effect at pH 6.4.[19]

Another secretable factor which is important to tumor development and is thus

incorporated into the model is Tumor Necrosis Factor alpha (TNF-α). In relatively

simple models of spheroids, the presence of TNF−α along with depleted oxygen

and nutrient conditions is adequate to generate results that match data for spheroid

growth thus suggesting its importance.[20] TNF-α is secreted by necrotic cells and

plays dual and seemingly contradictory roles in oncology – it is implicated in the

stimulation of angiogenesis as evidenced by upregulated VEGF mRNA in the presence

of TNF-α but also induces cancer cell apoptosis.[21, 22] Thus, TNF-α is implicated

both in tumor regression through cell death and in the recruitment of vasculature

which can prevent the otherwise imminent death of quiescent cells experiencing severe

hypoxia and nutrient deprivation thereby resulting in tumor growth. Both of these

factors are included as compartments in the model described in this thesis in arbitrary

units.
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1.4 Tumor Metabolism

Section 1.4

Tumor Metabolism and the Warburg Effect

Under typical conditions, vascularized tissue receives sufficient oxygen for its

cells to maximize the energy gained from glucose through glycolysis, the mitochon-

drial tricarboxylic acid (TCA) cycle and subsequent oxidative phosphorylation in the

mitochondria .[23] As such, well oxygenated cells maintain their cellular processes by

maximizing the utility of the glucose they receive, but do not take up more glucose

than they require. Otto Warburg noted that even in the presence of adequate oxygen,

cancer cells often take up considerably more glucose than they require and ferment

the resultant pyruvate from glycolysis into lactic acid instead of further oxidizing it

in the TCA cycle .[24] As a result, the pH of the tumor, surrounding tissue, and

eventually the entire body decreases as the tumor becomes more aggressive. The use

of glycolysis in the presence of oxygen is considerably less efficient than progressing

completely through oxidative phosphorylation, yielding 2 ATP molecules per molecule

of glucose as opposed to 36 and the cause of this switch to constitutive glycolysis is

thus a point of interest.[23]

Some hypotheses as to why cells switch to a less efficient metabolic strategy are

outlined by Heiden et al. and summarized here. It is possible that while non-

proliferating cells evolved to maximize their use of glucose to account for the scarcity

of resources, proliferating cells in the body are exposed to an essentially constant

source of nutrients; thus cancers that have undergone the Warburg effect have access

to sufficient glucose to maintain a high ratio of ATP to ADP using aerobic glycolysis

regardless of how frequently they divide. This thesis explores one possible explana-
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1.4 Tumor Metabolism

tion for constitutive glycolysis as a competitive strategy for the cancer which enables

malignant cells to secrete acid and withstand acidification better than their non-

malignant proliferating counterparts. Because of the rapidity with which the tumor

cells convert to acid resistance and subsequently malignancy, it is assumed that the

acquisition of acid resistance in acidified hypoxic conditions is phenotypic but irre-

versible, quiescence is a reversible phenotypic change, and malignancy can be either

phenotypic or genotypic and is associated with increased motility and other hallmarks

of cancer.

To complement their evaluation of prostate tumor response to buffer therapy at

various buffer concentrations, Ibrahim-Hashim et al. 2017 carried out an analysis

of breast cancer xenografts and spheroids. For this experiment, they generated a

well mixed combination of two breast cancer cell lines, the non- invasive MCF-7

and the highly invasive MDA-MB-231. MCF-7 cells are non-motile, exhibit typical

levels of glycolysis, and are non-invasive which closely matches the properties we have

defined for the proliferating tumor cells. The MDA-MB-231 cells on the other hand

exhibited Warburg-like glycolytic levels, were highly motile, and highly invasive as

would be expected of the malignant cells defined here. In spheroid culture, the more

aggressive MDA-MB-231 cells migrated to the outside of the spheroid, surrounding

a core of MCF-7 cells within hours; this experiment will serve as justification for the

greater transition rate of MQ cells back to MS cells as the malignant cells will have a

tendency to move rapidly toward well-oxygenated regions where they can proliferate.

Additionally, the cells were injected into mouse mammary fat pads and experiments

were carried out in which the mice were either in the control case or received NaHCO3

buffer therapy; mice who did not receive therapy posessed primarily aggressive MDA-

11



1.5 Buffer Therapy and Prostate Cancer

MB-231 while those who did receive the treatment showed significant increases in the

ratio toward the less aggressive MCF-7 cells.

Section 1.5

Buffer Therapy and Prostate Cancer

Prostate cancer is one of the most common cancers in men and carries a particu-

larly low survival rate upon metastasis – a mere 29.3% survival rate over five years.[10]

Unfortunately, detection is particularly difficult because it is typically asymptomatic

until the cancer is considerably advanced or has already metastasized; thus, many men

undergo annual prostate specific antigen testing as a precautionary measure thereby

permitting early intervention. Treatments are typically comprised of combination

and low-dose therapies to prolong survival but not necessarily cure the cancer as the

treatments are not perfectly effective and all carry considerable side effects – some

of the currently available treatment options include surgery, radiotherapy hypofrac-

tionation, and proton beam therapy. Additionally, there are currently clinical trials

exploring chemotherapy, hormonal therapy, cryosurgery, and high intensity focused

ultrasound.[11]

There are currently several modes of studying prostate cancers including cultures

of mouse and human cell lines of prostate cancer, xenotransplantation of human

prostate cancer (such as the PC3 and LNCaP cell lines) in mice, and a transgenic

mouse in which prostatic adenocarcinoma arises known as TRAMP mice. TRAMP

mice are of particular interest as the cancer arises spontaneously and the cells undergo

a series of mutations comparable to those in human men with prostatic adenocarci-

noma thereby making this model uniquely suited to studying the cancer. Specifically,

12



1.5 Buffer Therapy and Prostate Cancer

the mice undergo a predictable series of events, developing the invasive cancer pre-

cursor prostatic epithelial neoplasia (PIN) by 12 weeks, well differentiated adenocar-

cinoma by 24 weeks, and metastasis by 30 weeks of age.[25, 26, 27] Additionally, the

mice are found to die from the disease within 52 weeks but this can be prolonged

through the administration of buffer therapy.[28] Some experiments employ the xeno-

transplantation of cancer cells harvested from the TRAMP prostate into the flank

thereby enabling measurements of tumor volume and growth which would not other-

wise be measurable as the cancer is spread throughout the prostate and not in one

distinct tumor.

As described previously, solid tumors undergo the Warburg effect which is charac-

terized by an increase in acid levels due to constitutive glycolysis even in the presence

of adequate oxygen. Buffer therapy is a mode of cancer treatment which attempts

to slow the growth of cancers and their progression toward malignancy through the

administration of an alkaline substance. While this therapy has not yet been ad-

ministered in humans, several studies in mouse have shown that individuals that

have received alkaline water orally prior to the development of tumors showed sig-

nificant delays in tumor progression both in prostate and breast cancer.[2] Other

studies found complete elimination of malignant cells in TRAMP prostate cancers

when buffer therapy was administered sufficiently early but essentially no response

to therapy with late administration.[3, 28] Additionally, a hybrid cellular automata

model of a metabolically heterogeneous tumor calibrated to TRAMP prostate growth

showed a decline in malignancy with early buffer intervention but a selection for the

most aggressive malignant cells when the therapy is administered late.[29]

13



Chapter 2

Model Development

A system of fifteen nonlinear ordinary differential equations has been generated

to represent the transitions between compartments as presented in Figure 2.1. The

variables of interest are listed below in Table 2.1 and the differential equations and

their descriptions are presented in this chapter.

Table 2.1: Model Variables
Variable Meaning
G1 Proliferating Tumor Cells (G1 Phase)
S Proliferating Tumor Cells (S Phase)
G2 Proliferating Tumor Cells (G2 Phase)
Q Quiescent Tumor Cells
N Necrotic Cells
T TNF-α
R VEGF
V Vasculature
AH Anaerobic/Glycolytic and Acid Resistant Cells
MQ Quiescent Malignant Cells
MG1 Malignant Cells (G1 Phase)
MS Malignant Cells (S Phase)
MG2

Malignant Cells (G2 Phase)
L1 Acidification of the Hypoxic Region
L2 Acidification of the Oxygenated Region

Table 2.1

14



2.1 The Original Model

Section 2.1

The Original Model

Figure 2.1: White boxes represent the various cancer cells: proliferative (G1, S, and
G2), quiescent (Q), and necrotic (N). Solid arrows represent cell transitions. Dotted
arrows reflect influence of one compartment on another such as the secretion of VEGF
(R) by quiescent cells, secretion of TNF-α (T ) by necrotic cells, and the development
of vasculature (V ) due to VEGF signaling.

Equations 1-8 as presented below were taken from Wallace et al. and He et al.

and built upon;[32, 12] Figure 2.1 is a box visualization of these equations. The new

terms from this thesis in the first eight equations have been marked by under-brackets

and the descriptions of these new terms are highlighted in grey. Additional equations

that have been incorporated into the model will be described later.
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2.1 The Original Model

1. Proliferating Tumor Cells (G1 Phase).

dG1

dt
= 2c2G2 − c1(B)G1 − c1(1−B)G1 − cfFG1−D2G1

= cell division and transition to G1 phase − transition to S phase − quiescence

− apoptosis due to TNF-α − death due to acid

2. Proliferating Tumor Cells (S Phase).

dS

dt
= c1BG1 − csS + CQ− cfFS−D2S

= transition to the S phase − transition to the G2 phase + return of cells from Q

− apoptosis due to TNF-α − death due to acid

3. Proliferating Tumor Cells (G2 Phase).

dG2

dt
= csS − c2G2 − daG2 − cfFG2−D2G2

= transition to the G2 phase − cell division and transition to G1 phase

− natural cell apoptosis − apoptosis due to TNF-α − death due to acid

4. Quiescent Cells.

dQ

dt
= c1(1−B)G1 − CQ− eHQ−D1Q− ahq3Q

= transition of hypoxic cells from G1 − return of cells to S − necrotic death of Q

− death due to acid − development of acid resistance
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2.1 The Original Model

5. Necrotic Cells.

dN

dt
= eHQ+[D2(G1 + S +G2) +D1Q+D3(AH +MQ) +D4(MG1 +MS +MG2)]−m(v0 + V )N

= necrotic death of Q + acid related death of proliferative, quiescent, acid resistant

glycolytic, and acid resistant malignant cells − natural removal of dead matter

6. TNF-α.

dT

dt
= jN − k(v0 + V )T

= production of TNF-α from necrotic tissue − removal of T by vasculature

7. VEGF Production and Removal.

dR

dt
= cR(G2 + S +G1 +MG1 +MS +MG2)

T

sR + T
+ cqv(Q+AH +MQ)− qR(v0 + V )R

= production of VEGF by proliferating and malignant cells in the presence of TNF-α

+ production of VEGF by quiescent, acid resistant hypoxic, and quiescent

malignant cells − natural removal of VEGF signal

8. Development of Vasculature.

dV

dt
= (1−DV ) cv

R(v0 + V )

sv +R + v0 + V
−DV V

= acid mediated vasculature growth in the presence of VEGF signal

− tissue death due to acid
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2.2 Additions to the Model

Section 2.2

Additions to the Model

Figure 2.2: A representation of the structure of the model developed in this study.
Transitions between cell compartments including cell necrosis are shown as solid black
arrows and the basic progression to malignancy proposed is shown by the large black
arrows. Additions to the model due to Wallace et al and extended by He et al are
represented by the blue and green boxes. Although no specific geometry is assumed,
all cells are allocated to either a well-oxygenated or hypoxic region, each with its own
level of acidity.

To evaluate the impacts of acidosis on tumor development quantitatively, the

mechanistic tumor model developed by Wallace et al. and extended in He et al.,

which includes compartments for proliferating, quiescent, and necrotic cells, VEGF

and TNF-alpha signals, and growing vasculature is further developed.[32, 12] The
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2.2 Additions to the Model

extended model includes the process by which the initial tumor growth produces

a population of hypoxic cells which in turn engenders glycolysis. The resulting acid

production is modeled explicitly in the hypoxic region and cell death depends on levels

of acid in that region. In addition, the acid produced in the hypoxic region mediates

the emergence of an acid resistant phenotype whose death rate also depends on the

surrounding acidic environment but they are more tolerant to low pH. Continued

exposure to acidity further mediates a transition to malignancy and then malignant

aerobic glycolysis via the Warburg Effect at a low rate. The model conflates the

appearance of a constitutively glycolytic, acid resistant phenotype with malignancy,

assuming such cells will migrate to oxygen rich regions which they further acidify,

modeled as a separate compartment with some diffusion between the hypoxic and

normoxic acid compartments. Selection of rapidly proliferating cells in this model

occurs due to differing tolerance for the increasingly acidic environment. The model

includes the growth of vasculature, which has multiple roles: delivering nutrients

and oxygen, removing necrotic material, VEGF signals, TNF-alpha, and acid. A

schematic diagram of the resulting model is shown in Figure 2.2 and the new equations

are described as follows.

9. Anaerobic/Glycolytic Acid Resistant Cells.

dAH

dt
= ahq3Q+ cgaAH −mhAH −D3AH

= conversion from quiescent to acid resistant + cell division − acquisition of malignancy

− death due to acid exposure in the hypoxic region
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2.2 Additions to the Model

10. Malignant Cells (G1 Phase).

dMG1

dt
= 2k2MG2 − k1(BM)MG1 − k1(1−BM)MG1 − kfFMG1 −D4MG1

= cell division and transition to G1 phase − transition to S phase − quiescence

− apoptosis due to TNF-α − death due to acid in oxygenated region

11. Malignant Cells (S Phase).

dMS

dt
= k1BMMG1 − ksMS + CMMQ − kfFMS −D4MS

= transition to the S phase − vasculature dependent transition to the G2 phase

+ return of cells from MQ− apoptosis due to TNF-α

− death due to acid in oxygenated region

12. Malignant Cells (G2 Phase).

dMG2

dt
= ksMS − k2MG2 − daMG2 − kfFMG2 −D4MG2

= transition to the G2 phase − cell division and transition to G1 phase− natural apoptosis

− apoptosis due to TNF-α− death due to acid in oxygenated region

13. Quiescent Malignant Cells.

dMQ

dt
= mHAH + k1(1−BM)MG1 − CMMQ −D3MQ

= development of malignancy from AH + transition of hypoxic cells from G1

− return of cells to MS− death due to acid
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2.2 Additions to the Model

14. Acidification of the Hypoxic Region.

dL1

dt
= xh(Q+ AH +MQ)− l(L1 − L2)− sbq1L1H(t− τ)

= input of acid from acid resistant hypoxic cells and glycolytic cells

in hypoxic region − diffusion of acid − removal of acid treatment at time τ

15. Acidification of the Oxygenated Region.

dL2

dt
= xm(MG1 +MS +MG2)− l(L2 − L1) + q(3.9810717× 10−14 − L2)(V + v1)− sbq2L2H(t− τ)

= input of acid from each of the three phases of malignant cells − diffusion of acid

− restoration of normal pH − removal of acid treatment at time τ

In these equations, it is assumed first that the dynamics of the malignant cells are

essentially the same as the normal proliferative cells in that they become quiescent

under hypoxic conditions and they are modeled in three cell cycle stages. They

differ however in their response to acidosis; the proliferative cells can withstand a

pH as low as 6.3 while the malignant cells are able to withstand a pH as low as 6.0.

Additionally, because malignant cells are assumed here to have acquired motility,

they will be parametrized to return to proliferation from the quiescent compartment

at a different rate than the non-malignant proliferative cells such that there is a new

functional parameter. CM .

2.2.1. Functional Parameter Descriptions

Equations for not-yet-defined variables in the above system include a series of

rate-bounded transitions characterized as functional responses, expressions for the pH

corresponding to a region, as well as a few notational shortcuts.
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2.2 Additions to the Model

(a) B = v0+V
s1+G1+v0+V

= availability of nutrients relative to the volume of cells in G1

(b) C = cq
v0+cqsV

sq+P+v0+cqsV

= available nutrients as a fraction of the quiescent cells that become

proliferative

(c) BM = v0+V
s1+MG1+v0+V

= availability of nutrients relative to the volume of cells in MG1

(d) CM = cqm
v0+cqsV

sq+M+v0+cqsV

= available nutrients as a fraction of the malignant quiescent cells that become

proliferative (malignant)

(e) H = 1− V
sh+fhP+ghQ+V

= describes the transition of quiescent cells to necrotic

(f) F = T
sn+T

= a rate based on TNF-α production which controls apoptosis

(g) P = G1 + S +G2

= total proliferating cells = G1 phase + S phase + G2 phase cells

(h) M = MG1 +MS +MG2

= total proliferative malignant cells = G1 phase + S phase + G2 phase cells

(i) pH1 = − log(L1 × 106)

= pH of hypoxic region
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2.2 Additions to the Model

(j) pH2 = − log(L2 × 106)

= pH of oxygenated region

The next three parameters control the response of various compartments under

acidifying conditions. q1 and q2 relate to the clearance of acid during the ap-

plication of buffer therapy. Because the bicarbonate solution used in TRAMP

mouse experiments has a pH of about 8.5 [37], the therapy is only permitted to

increase the pH of each acid compartment until it has attained the same pH as

the therapy; above the therapy pH, these two parameters are set to zero and

thus the therapy ceases to have an effect. The q3 parameter works similarly

and only permits the acquisition of acid resistance below a pH slightly below

7.2 which is the lower limit for a healthy physiological pH.[34, 36]

(k) q1 = −min(0, (pH1 − 8.5))

= control of the pH increase of the hypoxic region to buffer therapy

(l) q2 = −min(0, (pH2 − 8.5))

= control of the pH increase of the normoxic region to buffer therapy

(m) q3 = −min(0, (pH1 − 7.185))

= acid mediated transition to acid resistant

The following four parameters represent the acid related death of various cell

types. Here, the acidity of interest is local environmental pH instead of blood

pH (7.35 - 7.45 but taken here to just be the average, 7.4) because a person
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2.2 Additions to the Model

cannot survive with pH 7 and a pH of 7.2 is considered extremely acidotic.

Cells, however can survive to pH as low as 6.3 for normal tissue and as low

as 6 for acid resistant cells.[1, 35] As such, functions are established such that

non-malignant cells have no response when the pH is above the lower bound for

healthy tissue which is 7.2 and increasing in their death probability on a sine

curve to 1 for the threshold pH for death. Malignant cells only begin to die

from acid exposure at a pH of 7.185 which is taken here to be the pH at which

a transition to acid resistance takes place. Finally, the vascular recruitment

is allowed to proceed as usual at pH 7.4 and responsiveness to VEGF ceases

altogether at pH 6.4 as per the research of Faes et al.[19]

(n) Acid-related death of tumor cells in the hypoxic region (Q)

D1 =



1 pH1 ≤ 6.3

0.5 · sin
(
pH1 · π

0.9
+ 4.712

)
+ 0.5 6.3 < pH1 < 7.2

0 pH1 ≥ 7.2

(o) Acid-related death of tumor cells in the oxygenated region (G1, S, G2)

D2 =



1 pH2 ≤ 6.3

0.5 · sin
(
pH2 · π

0.9
+ 4.712

)
+ 0.5 6.3 < pH2 < 7.2

0 pH2 ≥ 7.2
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2.2 Additions to the Model

(p) Acid-related death of malignant cells in the hypoxic region (AH ,MQ)

D3 =



1 pH1 ≤ 6

0.5 · sin
(
pH1 · π
1.185

+ 4.51313

)
+ 0.5 6 < pH1 < 7.185

0 pH1 ≥ 7.185

(q) Acid-related death of malignant cells in the oxygenated region (MG1, MS, MG2)

D4 =



1 pH2 ≤ 6

0.5 · sin
(
pH2 · π
1.185

+ 4.51313

)
+ 0.5 6 < pH2 < 7.185

0 pH2 ≥ 7.185

(r) Acid-related death of endothelial cells (V )

DV =



1 pH2 ≤ 6.4

0.5 · sin
(
pH2 · π + 0.31378

)
+ 0.5 6.4 < pH2 < 7.4

0 pH2 ≥ 7.4
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Chapter 3

Parameter Development

The model was parametrized first as a monolayer for which data for the cell

cycle was utilized; next as a spheroid for which data about proliferation, quiescence,

and necrosis was available; finally, in vivo experimental data was used to parametrize

tumor growth in a mouse model. By establishing parameters sequentially, behavior

at the cellular, tumor, and body levels is captured in a way that would be impossible

if the model was simply parametrized to in vivo data.

Section 3.1

Monolayer Experimental Parameters, c1, cs, c2, da

To parametrize the monolayer, the equations to calculate the parameters c1, cs, c2

from He et al. as described in chapter 1 were utilized. This thesis is concerned with

modelling tumor growth in TRAMP mice, so TRAMP monolayer cell cycle data from

Ghosh et al. was utilized in computing the three cell cycle parameters. The results

from Ghosh et al. show a doubling time of 0.833333 days, 59.55 percent of the cells

were in G1 phase, 28.83 percent of the cells were in S phase, and 11.63 percent of
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3.1 Monolayer Parameters

the cells were in G2 phase for TRAMP prostate cancer cells in culture [31]. Thus,

the parameters c1, cs, and c2 can be found in Table 3.1 and the growth curves are

plotted below in Figure 3.1.

Plugging the values for doubling time and percentage of cells in each phase into

the equations from He et al., the parameter values were calculated to be the following:

c1 =
(λ+ daG

∗
2)

G∗2
= 1.961763658 day−1

cs =
(2c2G

∗
2 − λG∗1)
G∗1

= 3.220357473 day−1

c2 =
(c1G

∗
1 − λS∗)
S∗

= 7.151991545 day−1

Figure 3.1: Plot of the change in monolayer cell population and the populations of
each cell cycle phase over time using the parameters obtained from Ghosh et al.
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3.2 Spheroid Parameters

Section 3.2

Spheroid Experimental Parameters

3.2.1. Spheroid Parameters, v0, j, k, s1, sq, e, sn, cq, cf

The data for the spheroid tumor growth was less directly available but was possible to

compute from a paper on prostate cancer spheroid growth from 1999 by Ballangrud et

al. The paper made use of measurements of spheroid volume, prostate specific antigen

(PSA) secretion, and (BrdUrd) staining in the LNCaP-FGC human prostatic cancer

cell line. The cell line is designated FGC or “fast growing clone” and is commonly

used in mouse xenografts; it is assumed here that the growth dynamics of the fast

growing LNCaP cells more closely match those of TRAMP cells and as such the data

will be used in the spheroid fit.

Ballangrud et al. recorded spheroid volume data for 24 LNCaP spheroids and

plotted them; the MATLAB function GRABIT was utilized to pull data from the

paper’s figures. The values for volume and day are included in the second appendix

in Table A2-1 as well as the conversion from volume to radius. These radii were

plotted against time to generate Figure 3.2 and a linear regression was used to find

the days at which the spheroid had radius 200µm and 300µm which correspond to

the sizes at which measurements of quiescent and necrotic cells were obtained.
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3.2 Spheroid Parameters

Figure 3.2: Linear fit of the data pulled from Balangrud et al. as observed in Appendix
II, Table A2-1

Next, several conversions between cross sectional area in the spheroid (as recorded

in the data by Ballangrud et al.), radius, and volume had to take place. A visualization

of a spheroid in cross section is provided below in Figure 3.3.

Figure 3.3

The necrotic radii were determined by subtracting the radius of the viable region
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3.2 Spheroid Parameters

from the total radius of each spheroid. Only about 50% of the viable cells stained for

BrdUrd which means that only half were proliferating; this is taken to indicate that

half of the cross sectional area of cells in the viable region are proliferative and the

other half are quiescent because the cell counts were taken in slices of the spheroid.[30]

Thus, the viable area (Av), necrotic radius (rN) and the following computations are

used to determine the radii of the proliferative (rP ) and quiescent (rQ) compartments:

rQ =

√
Av

2π
+ r2N − rN

rP =

√
Av

π
+ r2N − rQ − rN

The values determined from this calculation are listed in Appendix II Table A2-

2. The radii for the proliferative, quiescent, and necrotic regions were converted to

volumes under the assumption that the spheroid is a perfect sphere and that it is

comprised of perfect layers of quiescent and then proliferative cells surrounding a

necrotic core as illustrated in Figure 1.2. The equations for the three compartment

volumes are below:

volN =
4

3
π(rN)3

volQ =
4

3
π(rQ + rN)3 − volN

volP =
4

3
π(rP + rQ + rN)3 − volQ − volN

Parameter Selection. The parameters v0, j, k, s1, sq, e, sn, cq, cf were tuned to get

the best fit of the data for the volumes of the whole spheroid and the proliferative,

quiescent, and necrotic compartments by hand. The fit was then refined using the

custom genetic algorithm described in Chapter 7, which minimizes the relative mean
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3.2 Spheroid Parameters

squared error between the curves output by the model and the data points. The

parameters associated with this fit and a description of their roles can be seen in

Table 3.1 and the figures associated with this fit can be seen in Appendix I.

3.2.2. Acidosis Parameters, ah, k1, ks,mh, kf , k2, xh, l, xm, q, cga

To incorporate acid into the model, the data from Ballangrud et al. used pre-

viously is again utilized at the same time as data for the pH of each spheroid com-

partment to develop a parametrization for the spheroid with acidosis and malignancy.

Additionally, data from several sources are utilized to develop the acidic conditions

below which each cell type cannot survive. The parameters determined here will be

maintained in the parametrization for the complete model.

The data for extracellular pH of spheroids measured by the depth from the surface

of the spheroid was limited and it was not possible to find such data for prostate

cancer spheroids; thus, an assumption is made that spheroids of any cell type will

have a comparable pH gradient when cultured under identical conditions. A study by

Alvares-Pérez et al. measured pH in spheroids cultured in the same media as those

in Ballangrud ed at., and developed from the C6 and H35 cell lines which are rat

glioma and hepatoma cell lines respectively. They measured pH at a resolution of 0.1

pH unit and determined iso-pH shells in the spheroids based on probe depth.

As described in the previous section, there is data for the radii of each of the

layers of the spheroid at model days 8.766 and 14.23. The proliferative compartment

had radius 33.6µm and 35.3µm and the quiescent compartment had radius 42.4µm

and 40.7µm on the two days. Because the radii essentially did not change over

the five day period, it is assumed that the compartments have reached their terminal

thicknesses at this size although their volumes will continue to increase as the necrotic
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3.2 Spheroid Parameters

compartment grows. The pH of each compartment is taken as the pH at the half way

point between the compartment boundaries as shown in Figure 3.4 The proliferative

region thus falls within the iso-pH region from Alvares-Pérez et al. for pH 7.1 and

the quiescent compartment is in the iso-pH region for pH 7.0. Thus, these are taken

to be the pH to which the spheroid compartments P and Q will equilibrate.

Figure 3.4: A representation of the depths corresponding to the centers of the qui-
escent and proliferative regions in a prostate cancer spheroid. These depths were
matched to data for pH organized by probe depth in rat glioma and hepatoma.

Anderson et al. provides data concerning the probability of death of the various

cell types as a result of acid exposure. While this study was carried out in tumors

comprised of HeLa cells which are not directly pertinent to this study, interesting

results about the pH tolerance of highly metastatic vs non metastatic tumor cells

emerged. Inside non-metastatic tumors, the external pH at the cell surface was found

to be 6.7-6.9 but inside highly metastatic tumors the cell surface pH was 6.1-6.4.

Additionally, they found that the average pH was 7.4 without tumors producing acid

by glycolysis which matches physiological pH and provides an initial condition for

both L1 and L2. Thus, it is tentatively assumed that this pH indicates that the

lethal levels of pH for non-acid-adapted cancer cells are somewhere in the range of
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3.2 Spheroid Parameters

6.4-6.7 thereby providing a threshold at which a percentage of non-resistant cells will

die off. Recall the general equation for death due to acid exposure for all cell types:

D =



0 pH ≤ pHdeath

0.5 · sin
(

pH · π
(pHphysio − pHdeath)

+ n

)
+ 0.5 pHdeath < pH < pHphysio

1 pH2 ≥ pHphysio

where pHdeath is the pH below which cells of a given type cannot survive, pHphysio

is a healthy blood pH, and n which is a numeric factor that guarantees that the curve

begins at zero and ends at one within the range of pHdeath and pHphysio. Because

there is evidence that malignant cells survive in a pH of 6.1, further substantiated

by a study on PC3-M and PNEC cells which are human prostate cancer cell lines

which found that few to no cells survive below a pH of 6.0, the pHdeath for malignant

cells was set to 6.0.[1, 35] Additionally, because the less malignant spheroids typically

maintained a pH 0.3 greater than the highly metastatic spheroids and because there

was evidence that the centers of these spheroids attained pH 6.4, the pHdeath for cells

that have not acquired acid resistance is set to 6.3.

Normal tissue pH can be as low as 7.2 so this was taken to be the value for pHphysio

for the non-acid resistant cells.[34, 36] In order for cells to become acid resistant in

this model, the pH of the hypoxic compartment must sink below the low bound for

physiological pH, 7.2 and thus a somewhat lower pH value of 7.185 is set both for

the threshold at which cells begin to turn acid resistant and for the pHphysio of the

malignant cells.
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3.2 Spheroid Parameters

Parameter Selection. A hand fit was carried out first and the parameters were

then refined with the genetic algorithm described in Chapter 7. The parameters

corresponded to the best fit for the whole tumor volume, quiescent, proliferative, and

necrotic compartment volumes, and acid accumulation in the two spheroid regions

were determined.[30, 33] The parameters associated with this fit can be found with

an explanation of their roles in Table 3.1. A plot of three graphs is presented below

in Figure 3.5 where Panel A corresponds to a fit to equilibrium pH values from

Alvarez-Pérez et al., Panel B corresponds to a fit of the compartment volumes during

the earlier time points of the simulation, and Panel C shows a fit to whole spheroid

volume over the full simulation; spheroid volumes are those obtained from Ballangrud

et al.
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3.2 Spheroid Parameters 35

Figure 3.5: The best fit for the spheroid with acidosis. Panel A shows the change
in pH of both the normoxic (P,M) and hypoxic (Q,AH ,MQ) compartments over a
window of 200 days where the dotted lines represent the equilibrium value for acid
accumulation in each of the compartments as determined from the work of Alvarez-
Pérez et al.[33] Panel B is zoomed in for the first 17 days and shows the fit of the
data from Ballangrud et al. for the various spheroid compartments.[30] Panel C is
the same as B but it shows both a fit of the whole tumor data from Ballangrud et al.
and the long-term behavior of the model over the full 200 day period.[30]



3.3 In Vivo Parameters

Section 3.3

In Vivo Experimental Parameters,

v0, cv, cR, sR, qR, cqv, cqs, sv, sh, fh, gh, q

A study by Astigiano et al. from 2016 involved the xenotransplantation of 6×106

TRAMP C1 cells into the flank of 6 week old male mice. Because the cells were

injected subcutaneously, they were able to form essentially spherical tumors, the size

of which is considerably easier to quantify than TRAMP prostate cancer in situ, which

is irregular and has origins in many locations. Measurements of tumor volume were

acquired for 10, 12, 14, 17, 19, 21, and 24 days post-injection. As in the spheroid,

it is assumed that while the curve for volume is nonlinear, the plot of changing

radius over time can be modelled with a linear regression thereby allowing for the

determination of an initial volume when the cells were first injected. Additionally, this

paper contains data for a treatment with alkaline water which will become relevant

later for parametrizing buffer treatment during the experimental phase of this thesis.

To determine the initial tumor volume for input in the model, tumor radius for each

day was computed from the corresponding tumor volume under the assumption that

the tumors were perfect spheres. A linear regression of the tumor radii to the day

post-injection was determined in excel, the plot of which is below in Figure 3.6.
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3.3 In Vivo Parameters

Figure 3.6: Linear fit of the data pulled from Astigiano et al. as observed in Appendix
II, Table A2-3

From Figure 3.6, the linear regression has an R2 value of 0.946 and there is an

initial radius of 1471.3µm. It was important to determine the initial radius and thus

volume of the tumors because the cells were injected into the flank after being cultured

essentially as a monolayer. It is thus assumed that all of the injected cells were

proliferative, so the initial conditions for quiescent and necrotic cells were set to zero.

Additionally, it was assumed that some of the cells were exposed to vasculature at

the site of injection as the original tissue also required oxygen, so the initial condition

for vasculature was set to 1.5% of the initial volume. A hand fit of the data was

determined, after which the genetic algorithm was applied with 400 individuals and

300 generations as described in Chapter 7. The results of the fit can be found in

Appendix I, Figure 7.1 and the parameters are in Table A1-1.
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3.3 In Vivo Parameters

In Vivo Acidosis. Data from two papers by Ibrahim-Hashim et al. included data

for the pH of a TRAMP prostate in mice that were 24 weeks and 52 weeks of age.[3, 28]

Because they found that the TRAMP mice developed in situ prostate tumors and

PIN by four weeks of age, it was assumed that day zero for the model corresponds to

four weeks of age. The studies recorded a pH value of 6.7 for the prostate of 24 week-

old TRAMP mice and 6.4 for 52 week-old mice; these two pH values thus correspond

to days 140 and 336 in the model. These data points were used in fitting the hypoxic

acid compartment because the vasculature in the normoxic compartment will rapidly

clear acid from the environment of these cells.

Only four parameters were manipulated from the initial in vivo and acidic spheroid

to generate a fit of the data from Astigiano et al. and Ibrahim-Hashim et al.: q which

controls the rate at which vasculature clears acid had to decrease somewhat, l which is

the rate of acid exchange between the normoxic and hypoxic compartments increased

because there are no longer discreet shells in the tumor, cqv had to increase to signal

for additional vasculature, and v1 is a new parameter which governs acid clearance

into the tissue (without vasculature). The parameter values can be seen in Table 3.1.

Plots of the best fit are seen below in Figure 3.7 in which Panel A shows a fit to the

pH values obtained from the two papers by Ibrahim-Hashim et al., Panel B shows

the fit to the whole tumor data by Astigiano et al., and Panel C shows the long-term

behavior of the model including a linear growth phase of the whole tumor at later

time points.
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3.3 In Vivo Parameters 39

Figure 3.7: Panel A shows the pH of the normoxic compartments (P and M in blue
and that of the hypoxic compartments (Q, AH , and MQ) in red; datapoints to which
the modeled hypoxic pH was matched from Ibrahim-Hashim et al. are shown as red
circles in this panel.[3, 28] Panel B shows the short-term behavior of the model over
a 25 day period which is the time period over which Astigiano et al. collected data;
datapoints for whole tumor volume are shown as black circles to which the black
curve was matched.[2] Panel C shows the long-term behavior of the model.



3.3 In Vivo Parameters

Table 3.1: Model Parameters
Monolayer Spheroid Spheroid Acid Full Model Description

da 0 0 0 0 Natural Death Rate
c1 1.961763658 1.961763658 1.961763658 1.961763658 G1 to S Transition
cs 3.220357473 3.220357473 3.220357473 3.220357473 S to G2 Transition
c2 7.151991545 7.151991545 7.151991545 7.151991545 G2 to G1 Transition

v0 – 2.798 2.798 14.86 Available Nutrients
j – 0.543 0.543 0.543 TNF-α Production
k – 0.0005 0.0005 0.0005 TNF-α Removal
s1 – 1.601 1.601 1.601 B Half-Saturation Constant
cq – 76.2 76.2 76.2 C Maximum Rate
sq – 259 259 259 C Half-Saturation Constant
e – 0.427 0.427 0.427 Q Necrotic Death
m – 0.0284 0.0284 0.0284 Removal of Necrosis
sn – 534 534 534 F Half-Saturation Constant
cf – 0.01 0.01 0.01 TNF-α Induced Death (P)
k1 – – 1.961763658 1.961763658 MG1 to MS Transition
ks – – 3.220357473 3.220357473 MS to MG2 Transition
k2 – – 7.151991545 7.151991545 MG2 to MG1 Transition
kf – – 0.01 0.01 TNF-α Induced Death (M)
mh – – 0.1 0.1 Acquisition of Malignancy
ah – – 0.1 0.1 Acid Resistance
xh – – 8.8× 10−18 8.8× 10−18 Hypoxic Acid Production

l – – 0.094 10 Intratumoral Acid Diffusion
xm – – 8× 10−18 8× 10−18 Normoxic Acid Production

q – – 0.049 0.4 Acid Removal by Environment
cga – – 5.7× 10−5 5.7× 10−5 Acid Resistant Proliferation
cqm – – 0.8 0.8 CM Maximum Rate
cR – – – 6 VEGF Production by P,M
sR – – – 5000 VEGF Stimulation by TNF-α

cqv – – – 85 VEGF Production by Q,MQ, AH

qR – – – 17.935 VEGF Removal
cv – – – 0.8619 Angiogenesis
sv – – – 343.17 Describes Vasculature
cqs – – – 0.3733 Describes C
sh – – – 100 H Half-Saturation Constant
fh – – – 1.256 Describes H
gh – – – 0.01 Describes H
v1 – – – 10 Tissue Clearance of Acid

Table 3.1: Grey highlights indicate that a spheroid parameter was changed in vivo
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Chapter 4

Results

Section 4.1

Buffer Therapy

In a study by Ibrahim-Hashim et al., TRAMP mice were administered 200mM

sodium bicarbonate buffer therapy in their drinking water beginning at four and ten

weeks of age resulting in two outcomes – a complete regression of the malignant cells

in mice that received early intervention and essentially no response in those that were

treated late.[3] Ibrahim-Hashim et al. found that at four weeks of age the TRAMP

mice had tumors confined to the ducts, either in situ or as PIN lesions and this was

thus set as the first time of buffer therapy administration.[28] Thus, day zero in the

model is taken to be four weeks of age in the mice and day 42 (or six weeks into the

model) is taken to be mice at ten weeks of age.

The parametrized model was adapted to simulate the administration of buffer
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4.1 Buffer Therapy

therapy through the subtraction of a term of the form

sb · qn · Ln ·HS(t− τ)

from each of the differential equations corresponding to the acid compartments, L1

and L2 or equations 14 and 15 in Chapter 2 of the thesis. Here, the subscript n is

either 1 or 2 where 1 corresponds to the hypoxic compartment and 2 corresponds to

the normoxic compartment.

A 2012 study by Ibrahim-Hashim et al. found that the pH of the prostate in mice

that received early buffer therapy was roughly pH 7.7 at the time of sacrifice. Thus,

the buffer therapy parameter, sb was selected to be equal to 7000 so the pH of the

hypoxic compartment was about 7.7 at day 336 which corresponds to week 52 in the

experiments.[3] The parameter qn is defined as the negative of the minimum between

zero and the difference between the compartment pH and 8.5; sodium bicarbonate

in 0.1 molar aqueous solution has pH 8.3 and the pH of saturated solution ranges

between 8 and 9, so the pH of the 0.2 molar aqueous solution used in the experiments

was taken to be 8.5.[37] The qn parameter thus allows the pH of the compartments

to increase at most to the pH of the buffer administered but stops the treatment

from elevating the pH above that of the buffer. Finally, the term is multiplied by

a heaviside function in MATLAB therefore allowing the time at which treatment is

first administered to be controlled - this time is represented by τ and is set to 0 (four

weeks of age) and 42 (10 weeks of age) for the early and late treatments.

The results of the early and late buffer treatments are shown below in Figure 4.1

and Figure 4.2.
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4.1 Buffer Therapy 43

Figure 4.1: This figure shows the result of early buffer therapy on the acid levels and
tumor volume. Panel A shows the pH of the normoxic region (comprised of P and
M) in blue and that of the hypoxic region (comprised of Q,AH ,MQ) in red upon the
administration of buffer therapy at simulation day zero. Panel B shows the long-term
trends in the volume of the various compartments (note that there are no malignant
cells); the only visible compartments are the proliferative cells in blue, quiescent cells
in red, and the whole tumor volume in black. Panel C shows the compartments which
attained volumes much lower than those of W , P , and Q to visualize their dynamics.
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Figure 4.2: This figure shows the results of the late administration of buffer therapy
on acid levels and tumor volume. Panel A shows the pH of the normoxic cell com-
partments in blue and that of the hypoxic compartments in red. Panel B shows the
long-term trends of the volumes of the various compartments. Because the volumes
of W , MQ, P , and Q were much greater than other compartments, those of N . AH ,
MQ, and M are displayed in panel C to capture their dynamics.



4.2 Changes in Angiogenesis

The early administration of buffer therapy in this in silico experiment as shown in

Figure 4.1 captures the complete prevention of development of malignancy as observed

by Ibrahim-Hashim et al. in the lab.[28] With sufficiently early intervention, the pH

of the hypoxic region is unable to reach the threshold at which acid resistant and

subsequently malignant cells are hypothesized to develop and as such, acid is unable

to drive the tumor toward a malignant and aggressive phenotype. The failure to

prevent malignancy with therapy administered six weeks later (at ten weeks of age)

is also captured by the model as observed in Figure 4.2.

Interestingly, when buffer therapy is administered late in this model, the malignant

cells are able to attain population sizes that exceed those in untreated tumors resulting

in a tumor that is more aggressive than it would have been without intervention. This

appears to occur because the tumor has adequate time to secrete acid and thereby

start the process of the acquisition of acid resistance and malignancy but the buffer

therapy then raises the pH above the threshold at which cells die from acid exposure.

This leads to a tumor with two growth periods, rapid growth upon the administration

of buffer (as seen from day 100 to 200) followed by a slowing of tumor growth which

resembles the model without buffer therapy after the pH of the tumor has returned

to a lower and harmful level.

Section 4.2

Changes in Angiogenesis

The level of VEGF produced in the model is controlled by two parameters, cR and cqv.

The parameter cR controls the rate in which the cells in the normoxic proliferative

and malignant compartments (P and M) generate VEGF under the influence of
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4.2 Changes in Angiogenesis

TNF−α while cqv controls the production of VEGF by quiescent, acid resistant, and

quiescent malignant cells. The effects of changing these two parameters can be seen

in Figure 4.3

Figure 4.3: The panel at left is a heatmap for which each pixel represents the normal-
ized final tumor volumes in a 1000-day simulation where the x-axis shows the input
value of the cR parameter and the y-axis shows the input value of the cqv param-
eter. There are three distinct regions of parameter combinations corresponding to
three simulation behaviors, denoted A, B, and C. In the heat map, yellow indicates
a large tumor volume relative to the maximum and blue represents a smaller tumor
volume relative to the maximum. Representative curves for each of the three regions
are shown in the panel at right which represents change in whole tumor volume over
time.

To visualize the impacts of various combinations of these parameters, a heat map

of normalized final tumor volumes (final tumor volume after 1000 days divided by

maximum tumor volume attained during the 1000 days) was generated. This heat

map shows three distinct regions, each corresponding to a different behavior of the

system. Three distinct behaviors are observed when the parameters controlling an-

giogenesis are varied: death of the tumor, an equilibrium tumor size, and indefinite

increase in tumor size. A plot of the ratios of malignant cells to whole tumor volume
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4.2 Changes in Angiogenesis

and non-malignant cells to whole tumor volume for each of the three aforementioned

cases is presented below in Figure 4.4.

Figure 4.4: Panel A shows the ratio of the volume of the malignant compartments (M
and MQ) to the whole tumor volume over time for each of the three cases described
above. Panel B shows the ratio of the volume of the non-malignant compartments
(P , Q, AH) to the whole tumor volume over time. Case A is shown in Blue, Case B
is shown in Red, and Case C is shown in yellow.

4.2.1. Case A - Tumor Death

To visualize Case A, the conditions under which the tumor population declines with

time, a representative simulation was carried out with parameters:

(cR, cqv) = (0.005, 0.0015)

The various compartment volumes of the tumor are visualized below in Figure 4.5.
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4.2 Changes in Angiogenesis

Figure 4.5: This figure is a representative simulation of the “Case A” scenario. Here,
panel A shows the volumes of all of the tumor compartments and the whole tumor
volume over a 550 day simulation. Because the volumes of N , AH , MQ, and M are
small compared to W , P , and Q, these are plotted alone in Panel B to visualize their
dynamics; the acid resistant and malignant cells do not enter the model here.

Note that the only compartments that are making a significant contribution to

the total tumor size are P, Q, and N although the necrotic compartment is con-

siderably smaller than the viable compartments. The acid resistant and malignant

compartments all have a volume of zero under these vascular conditions. Next, the

various secreted factors and the vasculature are visualized as subplots in Figure 4.6

to evaluate the relative roles of each factor on the death of the tumor.
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4.2 Changes in Angiogenesis

Figure 4.6: Panel A shows the concentration of acid in the normoxic region (blue)
and the hypoxic region (red). Panel B shows the change in VEGF level over the
duration of the 550 day simulation. Panel C shows the TNF-α level throughout the
simulation. Panel D shows the change in vasculature over time.

Over the 550 day period, the acid level of the hypoxic region declines while TNF-

α increases. This suggests that the acid is not responsible for the regressing tumor

volume but rather that TNF-induced apoptosis is important. Additionally, despite

an increasing level of VEGF, the vasculature is lost as the tumor volume decreases,

so it is likely that the cells are oxygen deprived which also contributes to their death;

they signal for vasculature but VEGF is inadequate to stimulate angiogenesis.
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4.2 Changes in Angiogenesis

4.2.2. Case B - Size Equilibrium

To visualize Case B, a tumor with volume that reaches a stable equilibrium, the

following parameters were entered in the model:

(cR, cqv) = (1, 0.2)

As with case A, the volumes of the various compartments of the tumor are plotted

in Figure 4.7

Figure 4.7: This figure is a representative simulation of the “Case B” scenario. Panel
A shows the volumes of the tumor compartments and the whole tumor volume over
a 550 day simulation. The volumes of N , AH , and M are considerably smaller than
those of W , P , and Q, and MQ so the smaller compartments are plotted alone in
Panel B to visualize their dynamics.
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4.2 Changes in Angiogenesis

The quiescent malignant cells are the greatest contributor to the whole tumor

volume in case B which is in a strong contrast to the entirely nonmalignant cells of

Case A which had low angiogenesis. Here, all of the tumor compartments reach a

non-zero equilibrium by day 150. Plots of the various other factors are presented in

Figure 4.8.

Figure 4.8: Panel A shows the concentration of acid in the normoxic region (blue)
and the hypoxic region (red). Panel B shows VEGF, Panel C shows TNF-α, and
Panel D shows the change in vasculature over time.

Acid, TNF-α, and VEGF all equilibrate and the TNF-α level is considerably lower

than that in Case A while VEGF and acid are considerably higher.
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4.2 Changes in Angiogenesis

4.2.3. Case C - Unhindered Growth

The final scenario of interest is Case C, a tumor with volume that grows indefinitely.

The following parameters were entered in the model:

(cR, cqv) = (2, 0.4)

As in the previous cases, the volumes of the various compartments of the tumor are

plotted in Figure 4.9

Figure 4.9: This figure is a representative simulation of the “Case C” scenario. Panel
A shows the volumes of the tumor compartments and the whole tumor volume over
a 550 day simulation. The volumes of N , AH , and M are considerably smaller than
those of W , P , and Q, and MQ so the smaller compartments are plotted alone in
Panel B to visualize their dynamics.
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4.2 Changes in Angiogenesis

As shown in Figure 4.9, the tumor grows indefinitely but several compartments

reach a steady state (MQ and N). In the first 30 days, the growth of the tumor

is primarily due to the proliferative compartment (P ), then between day 30 and

day 80 the growth of the quiescent malignant compartment is the driver of tumor

growth, after which point MQ equilibrates and compartments P and Q with minor

contributions from AH and M are the drivers of tumor growth. The dynamics of the

various secreted factors are now plotted in Figure 4.10.

Figure 4.10: Panel A shows the concentration of acid in the normoxic region (blue)
and the hypoxic region (red). Panel B shows VEGF, Panel C shows TNF-α, and
Panel D shows the change in vasculature over time.
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Chapter 5

Sensitivity Analysis

Two methods are used here to evaluate the sensitivity of the model to the various

parameters. Tornado plots are generated by running simulations in which all of the

parameters remain constant, each parameter is increased by ten percent while the

others remain constant, and each parameter is decreased by ten percent while the rest

remain constant. An additional analysis was carried out for the xenograft in which

a Latin hypercube was generated such that all of the parameters are simultaneously

varied randomly with limits of an increase or decrease of ten percent from the original

parameter value.

5.0.1. Spheroid Sensitivity

First, the spheroid was analyzed without acidosis to determine the relative impacts

of the various parameters controlling spheroid growth. Figure 5.1 shows the tornado

plot for a spheroid without acidosis. This is plotting the sum of the whole spheroid

volume over all the time steps on the x axis to represent the sensitivity of the model

to the changing parameters.
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Figure 5.1: A tornado plot for the spheroid where the final spheroid volume in a 200
day period is plotted on the x-axis and the parameters that were permitted to change
in the spheroid parametrization are listed on the y-axis. Blue or “high level” denotes
that the parameter was increased by 10% and red or “low level” indicates that the
parameter was decreased by 10%. The only parameters that are shown here are those
that were permitted to vary in the initial parametrization of the spheroid without
acidosis.

As seen in the above figure, the most significant parameters for the value of the

whole spheroid volume are cq, v0,m, sq, e.

Spheroid with Acidosis. The sensitivity of the spheroid model with acidosis was

evaluated at several time points: day 30, 60, and 200. These correspond to times

at which the population of cells is increasing maximally (30), the time at which the

population reaches its maximum value (60), and a time at which the subpopulations

have equilibrated (200). The tornado diagrams in Figure 5.2 reflect the values for

the total spheroid volume and the average tumor pH for the three times of interest

when the various parameters are increased ten percent, decreased ten percent, or left

as they are in the original parametrization; all other parameters remain fixed.
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Figure 5.2: This figure contains tornado plots for the aforementioned time points,
day 30, 60, and 200. Panels A-C show tornado plot for the tumor volume at each
of the time points of interest where the parameter marked on the y-axis was either
increased by 10%, decreased by 10%, or left the same while all other parameters were
held constant; the x-axis shows the tumor volume. Panels D-F show the tornado
plots for the pH averaged across the hypoxic and normoxic tumor compartments for
each of the time points with the parameters again increased or decreased by 10% or
held constant while all other parameters remained constant; the x-axis shows average
pH. Blue or ”high level” denotes that the parameter was increased by 10% and red
or ”low level” indicates that the parameter was decreased by 10%.



Sensitivity Analysis

The parameters selected for the analysis of the spheroid with acidosis were those

which had the greatest impact for the simple spheroid model (cq, v0,m, sq, e), those

involved in the generation and impact of TNF−α (j, k, sn), and those involved in

acidosis (xm, l, q, xh). These specific parameters are of interest as they may help

elucidate the relative importance of TNF−α and acidosis in the cessation in the

growth of the spheroid which stabilizes in volume over time.

5.0.2. In Vivo Sensitivity

The whole tumor growth in the full in vivo model is characterized by two phases, a

logistic growth phase at the earliest time points followed by a constant growth rate

and thus a linear increase in tumor volume. This trend and a linear fit to the linear

portion of the curve is presented below in Figure 5.3.

Figure 5.3: This figure shows the whole tumor volume over time for the parametriza-
tion established in Chapter 3 in black and its linear regression corresponding to the
tumor growth rate during the late time points of the simulation when tumor growth
is linear.
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The slope of the terminal growth phase of the whole tumor is thus defined as the

tumor growth rate. This value is obtained using the MATLAB gradient function on

the whole tumor volume and the value for the gradient is taken at the simulation end

time. A tornado diagram was generated to show the response of the tumor’s growth

rate to alterations in individual parameter values. The tumor growth rate where the

parameters were left as they were in the original model parametrization is plotted in

the center of the tornado plot. The growth rates when each parameter is increased

by ten percent while the others remain unaltered are shown as blue bars and those

where each parameter is decreased by ten percent while the others remain unaltered

are marked by red bars. This tornado diagram can be seen below in Figure 5.4

Figure 5.4: A tornado plot for the whole in vivo model where the tumor growth rate
is plotted on the x-axis and the parameters that were permitted to change in the
parametrization that yielded the greatest shifts in tumor growth rate are listed on
the y-axis. Blue or ”high level” denotes that the parameter was increased by 10%
and red or ”low level” indicates that the parameter was decreased by 10%.
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The tornado diagrams only allow for a determination of the role of parameters

with a fixed increase or decrease in their value and all other parameters must be held

constant. The parameters do not act in isolation, however, so a secondary analysis

was carried out in which all of the parameters were simultaneously varied by random

amounts. The full model has 36 parameters so a 36 × 360 Latin hypercube, the n-

dimensional generalization of a Latin square, was generated using MATLAB with all

entries ranging from zero to one to generate a near-random distribution of parameter

values. The following was then carried out on each entry of the hypercube (denoted

here as LH) to give a value by which the parameters could be multiplied such that

the parameters can range from a decrease in 10% to and increase in 10% of their

value.

(LH − 0.5) · 0.1 + 1

A vector of the parameters was multiplied component-wise by every row of the hy-

percube and the resultant matrix thus corresponded to a set of 360 parametrizations

for the model. The results of these simulations are presented in Figure 5.5; a scatter

plot and linear regression was generated for every pairing of parameter value (on the

x-axis) and tumor growth rate (on the y-axis). A linear regression of the data points

for each parameter was carried out and the correlation coefficient (r) is listed with

the parameter being plotted above each subplot.

Figure 5.6 then shows every parameter and its associated correlation coefficient

in a similar format to the previous tornado plot in Figure 5.4 so that they can be

compared.
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Figure 5.5: Using a Latin Hypercube, 360 randomized parameter combinations were
generated within the parameter value ±10%. The values for the parameters were
plotted on the x-axes and the tumor’s ultimate growth rate was plotted on the y-
axis. Correlation coefficients were determined for each pairing of parameter and the
tumor growth rate; the parameter and correlation coefficient are listed above each
subplot. Any parameter with correlation greater than the arbitrary value of 0.3 is
marked with two asterisks.
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Figure 5.6: This figure presents the correlation coefficient r corresponding to each
model parameter as determined from the Latin Hypercube analysis of the parameter
correlations to terminal tumor growth rate. The figure is presented such that pa-
rameters which had a positive correlation with the tumor growth rate are presented
to the right and those with a negative correlation are presented to the left similar
to a tornado plot. The parameters which appeared as significant contributors in the
original tornado plot are highlighted in yellow along the y-axis.



Sensitivity Analysis

It should be noted that the parameters that caused the greatest increase in tumor

growth rate in the analysis that yielded the tornado plot in Figure 5.4 (cqs, cq, cqv, cv, c1)

are also the five most highly correlated to an increase in tumor growth rate in the

Latin hypercube analysis although their order is not the same. Additionally, the

parameters which, when increased 10% for the tornado plot generated the greatest

decrease in tumor growth rate (qR, e) also had the strongest negative correlations for

the Latin hypercube analysis. These two analyses are in agreement that perhaps the

most important parameters to the terminal tumor growth rate in this model are:

cqs, cq, cqv, cv, c1, qR, and e
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Chapter 6

Equilibrium Analysis

There are likely several equilibria present in this model, three conditions will be

explored: the disease-free equilibrium, an equilibrium in which the only cancer cells

are malignant, and proof that there cannot be an equilibrium for which the cancer cells

are only non-malignant given the assumptions presented in this paper. The disease-

free equilibrium will be evaluated both for the spheroid and for the full xenograft

model.

Section 6.1

Disease-Free Equilibrium - Spheroid

For the equilibrium to be disease free, the following compartments must equal zero

at equilibrium:

G1, S,G2, Q,AH ,MQ,MG1,MS,MG2 = 0

Thus, it is only necessary to determine equilibrium values for N, T, V, L1, and L2.

Substituting zero for the disease terms, the following equilibria are determined.
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6.1 Disease-Free Equilibrium - Spheroid

Necrotic Cells:

dN

dt
= 0 = −m(v0 + V )N

0 = N∗
(6.1)

TNF-α:

dT

dt
= 0 = jN − kv0T

0 = 0− k(v0)T

0 = T ∗

(6.2)

Hypoxic Region Acid (L1):

dL1

dt
= 0 = −l(L1 − L2)

L∗1 = L∗2

(6.3)

Normoxic Region Acid (L2):

dL2

dt
= 0 = −l(L2 − L1) + q(3.9810717× 10−14 − L2)(V + v1)

0 = 0 + q(3.9810717× 10−14 − L2)(V + v1)

L∗2 = L∗1 = 3.9810717× 10−14

(6.4)

Thus, the Jacobian on the following page is generated with all variables set to

zero except L1 and L2 which have value 3.9810717 × 10−14mmol/(106µm3) which is

equivalent to physiological pH.
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6.1 Disease-Free Equilibrium - Spheroid



∂
∂G1

∂
∂S

∂
∂G2

∂
∂Q

∂
∂N

∂
∂T

∂
∂AH

∂
∂M1

∂
∂MS

∂
∂M2

∂
∂MQ

∂
∂L1

∂
∂L2

dG1
dt

−c1 0 2c2 0 0 0 0 0 0 0 0 0 0

dS
dt

c1B −cs 0 C 0 0 0 0 0 0 0 0 0

dG2
dt

0 cs −c2 − da 0 0 0 0 0 0 0 0 0 0

dQ
dt

c1(1 − B) 0 0 −e − C 0 0 0 0 0 0 0 0 0

dN
dt

0 0 0 e −mv0 0 0 0 0 0 0 0 0

dT
dt

0 0 0 0 j −kv0 0 0 0 0 0 0 0

dAH
dt

0 0 0 0 0 0 cga − mh 0 0 0 0 0 0

dM1
dt

0 0 0 0 0 0 0 −k1 0 2k2 0 0 0

dMS
dt

0 0 0 0 0 0 0 k1BM −ks 0 CM 0 0

dM2
dt

0 0 0 0 0 0 0 0 ks −k2 − da 0 0 0
dMQ
dt

0 0 0 0 0 0 mh k1(1 − BM ) 0 0 −CM 0 0

dL1
dt

0 0 0 xh 0 0 xh 0 0 0 xh −l l

dL2
dt

0 0 0 0 0 0 0 xm xm xm 0 l −l − q



6.1.1. Model Stability

While it is possible to establish feasible conditions under which the disease-free equi-

librium for the spheroid model with acidosis must be stable, these criteria are unlikely

to be attained by tumors physiologically. These criteria are determined below where

all parameters are taken to be strictly positive. The Jacobian for the acidotic spheroid

model is a block triangular matrix. As such, the Jacobian can be partitioned into

four blocks, from left to right: a four-by-four, a three-by-three, a four-by-four, and

in the bottom right a two-by-two. From “Mathematical Tools for Data Mining: Set

Theory, Partial Orders, Combinatorics”, if A is a block lower triangular partitioned

matrix,



A11 0 ... 0

A21 A22 ... 0

...
...

. . .
...

Am1 Am2 ... Amm


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6.1 Disease-Free Equilibrium - Spheroid

where Aii ∈ Rpi×pi and 1 ≤ i ≤ m, then spec(A) =
⋃m

i=1 spec(Aii).[38] As such,

the eigenvalues of the Jacobian will be determined from the eigenvalues of the blocks

as described below.

Block A11. Because block A11 is 4 × 4, its eigenvalues are not straightforward to

evaluate algebraically. As such Gerschgorin’s Circle theorem is employed to deter-

mine the ranges within which the eigenvalues can lie and thus determine criteria for

stability. Gerschgorin’s Circle Theorem [40] states every eigenvalue for a square ma-

trix must lie within the union of disks in the complex plane centered on diagonal

elements, aii, with a radii defined by the sum of the absolute values of all off-diagonal

elements in the ith row:

Ri =
n∑

j=1,i6=j

| aij |

Both B and BM must be less than one. The Gerschgorin Disk radii are computed for

the four rows of A33 and the signs of their corresponding eigenvalues are discussed

below:

(a) Disk 1 (i = 1): R1 = 2c2

The maximum and minimum eigenvalues associated with this disk are a1,1 ±

R1. Thus, if there are eigenvalues contained in this disk the real parts of the

eigenvalues can range from

−c1 − 2c2 to − c1 + 2c2

This will always be negative where c1 > 2c2.

(b) Disk 2 (i = 2): R2 = c1B + C
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The real parts of eigenvalues bounded within disk 2 can range from

−cs − c1B − C to − cs + c1B + C

Plugging in the functional forms for B and C, the eigenvalues could range from

−cs − c1
v0

s1 + v0
− cq

v0
sq + v0

to

−cs + c1
v0

s1 + v0
+ cq

v0
sq + v0

This is always negative where

cs > c1
v0

s1 + v0
+ cq

v0
sq + v0

It should be noted however that both v0
s1+v0

and v0
s1+v0

are necessarily less than

one as the denominators are the sum of the numerator and another positive

number. Thus, the above criterion for which the disk must be negative can be

simplified to

cs > c1 + cq

(c) Disk 3 (i = 3): R3 = cs

The real parts of the eigenvalues bounded within disk 3 can range from

−cs − c2 − da to cs − c2 − da

This is always negative where c2 + da > cs

(d) Disk 4 (i = 4): R4 = c1(1−B)
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The real parts of the eigenvalues bounded within disk 4 can range from

−e− C − c1(1−B) to − e− C + c1(1−B)

The ranges can be rewritten as

−e− cq
v0

sq + v0
− c1

(
1− v0

s1 + v0

)
to

−e− cq
v0

sq + v0
+ c1

(
1− v0

s1 + v0

)
All of the real parts of this disk are negative where

e+ cq
v0

sq + v0
> c1

(
1− v0

s1 + v0

)

As before, the fraction v0
s1+v0

is necessarily less than 1, and thus the above condition

will still be true where:

e+ cq
v0

sq + v0
> c1

Thus, there are conditions established for the parameters such that the four eigenval-

ues associated with block A11 will all be negative. There is a corollary to Gerschgorin’s

Circle theorem which utilizes the columns that will be evaluated to determine if there

is a better statement of the parameter requirements.

Corollary. All eigenvalues for a square matrix must lie within the union of disks

in the complex plane centered on diagonal elements, ajj, with radii defined by the
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sum of the absolute values of all off-diagonal elements in the jth column:

Cj =
n∑

i=1,j 6=i

| aij |

The Gerschgorin Disks for the four columns of the block are evaluated below:

(a) Disk 1 (j = 1): C1 = c1

The eigenvalues that could be associated with this disk range from −2c1 to 0.

This will always be negative.

(b) Disk 2 (j = 2): C2 = cs

The second disk ranges from −2cs to 0. This disk is always negative.

(c) Disk 3 (j = 3): C3 = 2c2

Disk three ranges from −3c2 − da to c2 − da This disk is always negative if

da > c2.

(d) Disk 4 (j = 4): C4 = C + e

The fourth disk ranges from −2e− 2C to 0. This disk is always negative.

Thus, the only requirement for all of the eigenvalues for block 1 to be zero is that

da > c2.

Block A22. Next, the eigenvalues for the second block, A22 are evaluated. The

second block presented below is simple to evaluate as it is a lower triangular matrix:
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
−mv0 0 0

j −kv0 0

0 0 cga −mh


The eigenvalues of a lower triangular matrix are the diagonal entries of the matrix

and thus the three eigenvalues for block J22 are −mv0,−kv0, cga −mh. Because the

parameter values are defined to be positive, the eigenvalues −mv0 and −kv0 will

always be negative. cga −mh will be negative when mh > cga.

Block A33. Finally, the third block matrix A33 is evaluated utilizing Gerschgorin

Disks similarly to the first block. Beginning with the rows of the matrix, the following

relationships can be determined:

(a) Disk 1 (i = 1): R1 = 2k2

The real parts of the eigenvalues bounded within disk 1 can range from

−k1 − 2k2 to − k1 + 2k2

This disk is entirely negative where k1 > 2k2.

(b) Disk 2 (i = 2): R2 = k1BM + CM

The real parts of the eigenvalues that could be contained within disk 2 range

from

−ks − k1BM − CM to − ks + k1BM + CM
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Substituting in the functional forms for BM and CM ,

−ks − k1
v0

s1 + v0
− cqm

v0
sq + v0

to

−ks + k1
v0

s1 + v0
+ cqm

v0
sq + v0

This disk is entirely negative where

ks > k1
v0

s1 + v0
+ cqm

v0
sq + v0

As described previously in block A11, because the fractional terms above must

be less than one, the above condition is also true where:

ks > k1 + cqm

(c) Disk 3 (i = 3): R3 = ks

The real parts of eigenvalues that could be contained within disk 3 range from

−ks − k2 − da to ks − da − k2

The disk is entirely negative when k2 + da > ks.

(d) Disk 4 (i = 4): R4 = k1(1−BM)

The real parts of any eigenvalues that could be contained within disk 4 range

from

−CM − k1(1−BM) to − CM + k1(1−BM)
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Substituting in the functional forms, these bounds are equivalent to:

−cqm
v0

sq + v0
− k1

(
1− v0

s1 + v0

)
to

−cqm
v0

sq + v0
+ k1

(
1− v0

s1 + v0

)
The eigenvalues that could be contained in this disk are always negative where

cqm
v0

sq + v0
> k1

(
1− v0

s1 + v0

)

Because the fraction v0
s1+v0

is less than one, the above is still true where:

cqm
v0

sq + v0
> k1

The aforementioned corollary to Gerschgorin’s Circle theorem is evaluated for the

columns of this block to again determine if there are simpler relationships between

the parameters:

(a) Disk 1 (j = 1): C1 = k1

The eigenvalues that can be contained in disk 1 range from −2k1 to 0 and are

thus always negative.

(b) Disk 2 (j = 2): C2 = ks

The real part of disk 2 ranges from −2ks to 0 so this disk is also always negative.

(c) Disk 3 (j = 3): C3 = 2k2
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Disk 3 ranges from −3k2 − da to −da + k2 and is thus always negative where

da > k2.

(d) Disk 4 (j = 4): C4 = CM

Disk 4 ranges from −2CM to 0 and is also always negative.

Block A44. The determinant for the bottom right block, A44 is determined:

det(A44 − λI) =

∣∣∣∣∣∣∣
−l − λ l

l −l − q − λ

∣∣∣∣∣∣∣ = (−l − λ)(−l − q − λ)− l2

= l2 + lq + lλ+ lλ+ qλ+ λ2 − l2

= λ2 + (2l + q)λ+ lq

From the quadratic formula, the eigenvalues for this block are thus:

λ =
−(2l + q)±

√
(2l + q)2 − 4lq

2

=
−(2l + q)±

√
4l2 + 4lq + q2 − 4lq

2

λ =
−(2l + q)±

√
(2l)2 + q2

2

For the eigenvalue in which the terms in the numerator are subtracted, the real

portion must be negative because all parameters are defined to be positive. Addition-

ally, the eigenvalue for which the numerator terms are added will always be negative

because the parameters l and q are taken to be strictly positive and thus:
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2l + q >
√

(2l)2 + q2

(2l + q)2 > (2l)2 + q2

4l2 + 2lq + q2 > 4l2 + q2

2lq > 0

Thus, the eigenvalues associated with A44 are both negative.

Spheroid Stability Criteria. Thus, sufficiency criteria can be established such

that all eigenvalues must be negative, thereby corresponding to a stable disease-free

equilibrium in the spheroid. Using the relationships from blocks 1 and 3 for which

the columns were considered, the criteria are as follows:

(a) da > c2

(b) mh > cga

(c) da > k2

These criteria are unlikely to be met physiologically because the death rate of

cancer cells is not likely greater than their proliferation rate. Another set of criteria

can be established when the Gerschgorin disks associated with the rows of A11 and

A33 are considered. These are stated as follows:

(a) c1 > 2c2; cs > c1 + cq; c2 + da > cs; and e+ cq
v0

sq+v0
> c1

(b) mh > cga

(c) k1 > 2k2; ks > k1 + cq; k2 + da > ks; and cqm
v0

sq+v0
> k1
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Criteria (a) and (c) are largely the same here except for the addition of e in the

last condition for criterion (a) and as such only one criterion will be discussed. Only

considering the second condition of criterion (a), if the nutrients are restricted such

that v0 is sufficiently small, then cs > c1
v0

s1+v0
+ cq

v0
sq+v0

will necessarily be true and it

is under these conditions that the tumor can die and a disease-free equilibrium will

be stable. Where v0 is not small though, then the second criterion is best stated as

cs > c1 + cq.

Considering the first three conditions from criterion (a), the following emerges:

c2 + da > cs

c2 + da > c1 + cq

c2 + da − cq > c1

c2 + da − cq > 2c2

da > cq + c2

It is unlikely that da > cq + c2 for the same reason as the criteria from column-

derived Gerschgorin disks; it is not likely that a tumor will have a death rate that

is greater than its proliferation rate. The same results will occur when considering

criterion (c). Thus, unless the nutrients available are severely restricted, a stable

disease free equilibrium in the spheroid is biologically unlikely; a stable disease-free

equilibrium is however possible under treatment that restricts access of the spheroid

to nutrients.
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6.1.2. Substituted Parameters

Next, to analyze the stability of the spheroid under its current parametrization, the

various parameter values that were found for the spheroid model with acidosis are

plugged into the Jacobian yielding the following.



−1.9618 0 14.304 0 0 0 0 0 0 0 0 0 0

1.2479 −3.2204 0 0.8144 0 0 0 0 0 0 0 0 0

0 3.2204 −7.152 0 0 0 0 0 0 0 0 0 0

0.7139 0 0 −1.2414 0 0 0 0 0 0 0 0 0

0 0 0 0.427 −0.07946 0 0 0 0 0 0 0 0

0 0 0 0 0.543 -1.399E-4 0 0 0 0 0 0 0

0 0 0 0 0 0 −0.3999 0 0 0 0 0 0

0 0 0 0 0 0 0 −1.9618 0 14.304 0 0 0

0 0 0 0 0 0 0 1.2479 −3.2204 0 0.03206 0 0

0 0 0 0 0 0 0 0 3.2204 −7.152 0 0 0

0 0 0 0 0 0 0.4 0.7139 0 0 −0.03206 0 0

0 0 0 3.91E-18 0 0 3.91E-18 0 0 0 3.91E-18 −0.17 0.17

0 0 0 0 0 0 0 4.13E-17 4.13E-17 4.13E-17 0 0.17 −0.5



After plugging in the various parameters and computing the eigenvalues using

MATLAB the following nine eigenvalues emerge and thus the equilibrium is unstable:

−0.3999,−0.07946,−0.0001399,−1.724,−0.572,−0.098,−0.096, 0.322, 0.542

Section 6.2

Disease-Free Equilibrium - Full Model

As per section 6.0.1, the following variables are zero at equilibrium:

G1, S,G2, Q,N,AH ,MQ,MG1,MS,MG2
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Thus, the only remaining variables to evaluate are T , R, V , L1, and L2. It has been

determined that L∗1 = L∗2.

TNF-α:

dT

dt
= 0 = jN − k(v0 + V )T

0 = 0− k(v0 + V )T

0 = T ∗

(6.5)

VEGF:

dR

dt
= 0 = −qR(v0 + V )R

0 = R∗
(6.6)

Normoxic Region Acid (L2):

dL2

dt
= 0 = −l(L2 − L1) + q(3.9810717× 10−14 − L2)(V + v1)

0 = 0 + q(3.9810717× 10−14 − L2)(V + v1)

L∗2 = L∗1 = 3.9810717× 10−14

(6.7)

Vasculature:

dV

dt
= 0 = (1−DV )cv

R(v0 + V )

sv +R + v0 + V
−DV V

0 = 0−DV V

0 = 0 · V

(6.8)

The Jacobian for the disease-free equilibrium can be seen on the next page. Note

that the order of the equations was changed prior to the calculation of the Jacobian

to make the block triangular matrix easier to analyze.
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                                              
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                                              
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6.2.1. Model Stability

This section serves to show that it is not possible to define parameter conditions

under which the disease-free equilibrium in the in vivo model is guaranteed to be

stable where all parameters are assumed strictly positive. As in the acidotic spheroid

model, the Jacobian for the full model disease-free equilibrium is a lower block trian-

gular matrix. Thus, from ”Mathematical Tools for Data Mining: Set Theory, Partial

Orders, Combinatorics”, it is again true that the spectrum for the matrix is the same

as the union of the spectra of its partitioned blocks. Thus, as in section 6.1.1, the

Jacobian is partitioned into blocks as marked in the Jacobian.

Block A11. The first block is most readily analyzed using Gerschgorin’s circle theo-

rem as the eigenvalues of a matrix must lie within the union of disks in the complex

plane defined for each row as being centered on the diagonal element of the matrix

with a radius equal to the sum of the off-diagonal elements. Except for the element

entered in the fourth row, fourth column of the block, this block is identical to Block

A11 as described in section 6.1.1 for the spheroid. As such, the work to determine the

criteria of the first disks will not be reproduced here but the criteria are listed.

(a) Disk 1 (i = 1): Always negative where c1 > 2c2.

(b) Disk 2 (i = 2): Always negative where:

cs > c1
v0 + V ∗

s1 + v0 + V ∗
+ cq

v0 + V ∗

sq + v0 + V ∗

It should be noted however that both v0+V ∗

s1+v0+V ∗ and v0+V ∗

s1+v0+V ∗ are necessarily

less than one as the denominators are the sum of the numerator and another
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positive number. Thus, the above criterion for which the disk must be negative

can be simplified to the following, especially where v0 is small and vasculature

is low

cs > c1 + cq

(c) Disk 3 (i = 3): Always negative where c2 + da > cs

(d) Disk 4 (i = 4): R4 = c1(1−B)

The real parts of the eigenvalues bounded within disk 4 can range from

−eH − C − c1(1−B) to − eH − C + c1(1−B)

The ranges can be rewritten as

−e− cq
v0 + cqsV

∗

sq + v0 + cqsV ∗
− c1

(
1− v0 + V ∗

s1 + v0 + V ∗

)
to

−e− cq
v0 + cqsV

∗

sq + v0 + cqsV ∗
+ c1

(
1− v0 + V ∗

s1 + v0 + V ∗

)
All of the real parts of this disk are negative where

e+ cq
v0 + cqsV

∗

sq + v0 + cqsV ∗
+ c1

v0 + V ∗

s1 + v0 + V ∗
> c1

As in the analysis of the spheroid, the Gerschgorin Disks for the four columns of the

block are also evaluated by the same work as section 6.1.1; the only disk that differs

is disk 4, so the results of disks 1-3 are simply reproduced here from the previous
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section:

(a) Disk 1 (j = 1): This will always be negative.

(b) Disk 2 (j = 2): This disk is always negative.

(c) Disk 3 (j = 3): This disk is always negative if da > c2.

(d) Disk 4 (j = 4): C4 = C + eH

The fourth disk ranges from −2eH − 2C to 0. This disk is always negative.

Block A22. Block A22 is a lower triangular matrix so its eigenvalues can be read off

the diagonal and the eigenvalues are thus −m(V +v0), −k(V +v0), and cga−mh. The

first two eigenvalues are always negative because the parameters and compartments

are taken to be positive and the third is negative where mh > cga.

Block A33. The third block is again analyzed by the Gerschgorin Circle Theorem,

first in its rows and then in the columns:

A33 =



−qR(V + v0) 0 cqv 0 0 0

cv(V+v0)
V+sv+v0

0 0 0 0 0

0 0 −CM k1(1−BM) 0 0

0 0 0 −k1 0 2k2

0 0 CM k1BM −ks 0

0 0 0 0 ks −k2 − da


(a) Disk 1 (i = 1): R1 = cqv

The real values of this disk can range from −qR(V +v0)−cqv to −qR(V +v0)+cqv

and it is thus always negative where qR(V + v0) > cqv.
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(b) Disk 2 (i = 2): R2 = cv(V+v0)
V+sv+v0

The diagonal element corresponding to disk 2 is zero; unless cv(V+v0)
V+sv+v0

is zero

which is not possible under the assumption that the parameters are strictly

positive, it is not possible to guarantee that the disk is always negative.

(c) Disk 3 (i = 3): R3 = k1(1−BM)

This disk can range from −CM − k1(1−BM) to −CM + k1(1−BM). The disk

is always negative when CM > k1(1−BM).

(d) Disk 4 (i = 4): R4 = 2k2

Disk 4 ranges from−k1−2k2 to−k1+2k2 and is thus always negative if k1 > 2k2.

(e) Disk 5 (i = 5): R5 = CM + k1BM

Disk 5 ranges from −kS −CM − k1BM to −kS +CM + k1BM and is thus always

negative when kS > CM + k1BM

(f) Disk 6 (i = 6): R6 = ks

The real values of Disk 6 range from −k2 − da − ks to −k2 − da + ks and is

always negative when k2 + da > ks.

Disk 2 from the rows of this block makes it impossible to establish criteria in

which the eigenvalues are guaranteed to be negative. As such, the columns will be

considered in the corollary to Gerschgorin’s Circle Theorem.

(a) Disk 1 (j = 1): C1 = cv(V+v0)
V+sv+v0

Disk 1 ranges from −qR(V ∗ + v0) − cv(V+v0)
V+sv+v0

to −qR(V ∗ + v0) + cv(V+v0)
V+sv+v0

. The

real parts of this disk are always negative when qR(V ∗ + v0) >
cv(V+v0)
V+sv+v0
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(b) Disk 2 (j = 2): C2 = 0

This disk suggests that one of the eigenvalues is zero as the column is all zeros.

(c) Disk 3 (j = 3): C3 = CM + cqv

This disk can range from −2CM − cqv to cqv and it is thus not possible to

guarantee that this disk is always negative.

(d) Disk 4 (j = 4): C4 = k1

Disk 4 ranges from −2k1 to 0 and is thus always negative.

(e) Disk 5 (j = 5): C5 = ks

Disk 5 ranges from −2ks to 0 and is thus always negative.

(f) Disk 6 (j = 6): C6 = 2k2

Disk 6 ranges from −3k2 − da to k2 − da and is always negative if da > k2.

There are no conditions under which the union of the Gerschgorin Disks associated

with Block A33 have strictly negative real parts and it is thus not possible to establish

conditions that guarantee that all eigenvalues in this matrix are negative.

Block A44. The determinant of this 2× 2 block is determined as follows:
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6.2 Disease-Free Equilibrium - Full Model

det(A44 − λI) =

∣∣∣∣∣∣∣
−l − λ l

l −l − q(v1 + V )− λ

∣∣∣∣∣∣∣
= (−l − λ)(−l − q(v1 + V )− λ)− l2

= l2 + lq(v1 + V ) + lλ+ lλ+ q(v1 + V )λ+ λ2 − l2

= λ2 + (2l + q(v1 + V ))λ+ lq(v1 + V )

From the quadratic formula, the eigenvalues for this block are thus:

λ =
−(2l + q(v1 + V ))±

√
(2l + q(v1 + V ))2 − 4lq(v1 + V )

2

=
−(2l + q(v1 + V ))±

√
4l2 + 4lq(v1 + V ) + q2(v1 + V )2 − 4lq(v1 + V )

2

=
−(2l + q(v1 + V ))±

√
4l2 + q2(v1 + V )2

2

As with the spheroid, when the square root term in the numerator is subtracted

then the eigenvalue must be negative because all of the compartments and parameters

are defined to be non-negative. When the term is added, the following inequality is

obtained, therefore indicating that the numerator (and thus the eigenvalue) is always

negative:

(2l + q(v1 + V )) >
√

(2l + q(v1 + V ))2 − 4lq(v1 + V )

(2l + q(v1 + V ))2 > (2l + q(v1 + V ))2 − 4lq(v1 + V )

4lq(v1 + V ) > (2l + q(v1 + V ))2 − (2l + q(v1 + V ))2

4lq(v1 + V ) > 0
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6.2 Disease-Free Equilibrium - Full Model

Both eigenvalues associated with block A44 will always be negative since the pa-

rameters and vasculature are assumed to be positive.

Block A22 makes it impossible to set criteria under which this equilibrium will

always be stable using Gerschgorin’s circle theorem. It will always be possible for

positive eigenvalues to exist when all parameters in this model are assumed positive.

6.2.2. Substituted Parameters

Because V ∗ can be any number in this equilibrium, it is set to zero for simplicity.

The eigenvalues obtained using MATLAB from the following matrix are as follows,

indicating that the equilibrium is unstable:

− 0.00743,−0.422, 0,−266.5, 0.8009492,−6.306283 + 3.150423i,−6.306283− 3.150423i,

− 5.084582,−1.801961,−22.19804,−6.513404 + 3.160107i,−6.513404− 3.160107i,

0.7024726,−0.05326382,−0.099998
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6.2 Disease-Free Equilibrium - Full Model
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Chapter 7

Numerical Methods

All of the simulations in this thesis were carried out in MATLAB; the simulations

for the monolayer, spheroid, and acidotic spheroid were solved using ode45 and the

those for the in vivo model were solved using ode23s. Additional functions included

GRABIT to acquire data from paper figures and lhsdesign to develop the Latin hy-

percube matrix. The methods employed to develop the genetic algorithm used here

for parameter optimization are described below.

Section 7.1

Genetic Algorithm

After hand fitting the model parameters to best fit the data, a custom genetic

algorithm was employed to optimize the parameter values. Genetic algorithms are a

means of optimization that resemble biological evolution. For this algorithm, a hand

fit is first carried out with parameters restricted to biologically feasible values to pro-

vide the algorithm with a starting point. Next, the parameter ranges are established

by setting maximum and minimum values to each parameter that is allowed to vary,
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7.1 Genetic Algorithm

as one order of magnitude smaller and one order of magnitude larger than the hand

fit value. An individual is defined as a given parameter vector. Next, a matrix of

n individuals where n mod 4 = 0 is initialized by setting individual 1 to the hand-

fit vector and randomly selecting parameters from within the previously established

range for every parameter for the remaining n− 1 individuals.

After generating a matrix of individuals, each individual is fed as a parameter

vector into the differential equation solver, ode45. Vectors containing data from

the biological literature as well as the resultant curves from the ode solver are then

evaluated using a custom fitness function. The function is used to compute a value

for relative mean squared error (rMSE) as follows:

rMSEj =
a∑

i=1

(
x(ti)− d(ti)

d(ti)

)2

rMSEtot =
b∑

j=1

rMSEj

(7.1)

where x(ti) is the model value at a given time point, d(ti) is the data point at the same

time, and i ranges from 1 to the number of data points available (a). Relative mean

squared error is computed for each of the model curves for which data is available

and the total rMSE (rMSEtot) is calculated as the sum of these errors such that j

ranges from 1 to the number of data sets, b.

Next, the first n/2 individuals of the fitness matrix are determined by a tourna-

ment style competition of the original set of n individuals. Individuals are randomly

paired and the individual with the lowest rMSE is selected for the fitness matrix

where their parameter values and rMSE is stored. The n/2 best individuals from the

random pairings are then permitted to ”reproduce” which accounts for the following
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7.1 Genetic Algorithm

n/4 individuals. Reproduction is simulated by again randomly pairing the individuals

in the fitness matrix to form the ”parents” and then randomly selecting parent pa-

rameter values from each of their vectors of parameters, thereby generating offspring

with different combinations of preexisting parameters. The offspring are added as the

n/2+1 to the 3n/4 individuals of the fitness matrix. Finally, n/4 individuals are ran-

domly selected from the first n/2 fitness matrix individuals and develop ”mutations”

by randomly increasing or decreasing a random parameter by an amount between 0

and 100%; the mutated parameters values are constrained by the initially assigned

parameter ranges.

This process constitutes one “generation”. The algorithm is permitted to run

until the rMSE stabilizes and at least 25 generations have passed with no change in

rMSE. This 25 generations of stability is arbitrary but the fit with the algorithm is

considerably more accurate than a hand fit and negligible changes in fit based on very

small shifts in parameter values are not of interest at this time.

MATLAB code for the algorithm’s functions as applied to the spheroid can be

found in Appendix 4. The code was modified to accommodate additional equations

and parameters for the acidotic spheroid and in vivo fit but is in essence the same.
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Appendix I

Spheroid Parametrization Without Acid

Figure 7.1: Panel A represents the long-term fit of the whole tumor volume to the
values for tumor volume described in Table 1. Additionally, panel A qualitatively
shows the volume of each compartment and the volume of the entire spheroid reaching
a constant volume over a long period of time, as anticipated. Panel B shows the fit
of the model to the regional spheroid volumes described in Table A2-2 in the short
term.
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Appendix

In Vivo Parametrization Without Acid

Figure 7.2: Fit of the data from Astigiano et al. as observed in Table A2-3 using the
in vivo tumor parameters seen in Table A1-1.
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Appendix

Table of Parameters for the Base Model (No Acid)

Table A1-1: In vivo Parameters

Parameter Value Explanation

da 0 Natural Death Rate
c1 1.961763658 G1 to S Transition
cs 3.220357473 S to G2 Transition
c2 7.151991545 G2 to G1 Transition
v0 14.8629058785908 Available Nutrients
j 0.542510626458240 TNF-α Production
k 0.0005 TNF-α Removal
s1 1.60067459244845 Describes B
sq 258.628255950016 Describes C
e 0.427326531579406 Q Necrosis
m 0.0283884658509696 Removal of Necrosis
sn 534.453837615470 Describes F
cq 76.1888838144399 Describes C
cf 0.01 TNF-α Induced Death (P )
cv 0.861901279053398 Angiogenesis
cR 6 VEGF Production by P
sR 5000 VEGF Stimulation by TNF-α
qR 17.9354396208518 VEGF Removal
cqv 50 VEGF Production by Q
cqs 0.373345804060691 Describes C
sv 343.170179716681 Describes Vasculature
sh 100 Describes H
fh 1.25635942479245 Describes H
gh 0.01 Describes H
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Appendix II

This appendix is comprised of tabulated data either taken directly from the literature

using the MATLAB function GRABIT or processed from articles as described in the

body of the thesis.

Table A2-1: Spheroid Data (Ballangrud et al.)
day volume (µm3) radius (µm)
0 0.6× 106 52.3223868
4.155 4.7221× 106 104.075584
9.686 3.424× 107 201.441238
16.36 1.668× 108 341.483045
21.82 3.916× 108 453.855941
28.62 7.921× 108 573.980495
34.15 1.152× 109 650.311284
45 1.770× 109

55.57 2.165× 109

Table A2-2: Spheroid Compartment Data (Ballangrud et al.)
Day Radius (µm) Necrotic (µm) Quiescent (µm) Proliferative (µm)
8.7660 200 124 42.3971 33.6029
14.2323 300 224 40.7414 35.2586
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Appendix 101

Table A2-3: Whole In Vivo Data (Astigiano et al.)
day adjusted day volume (µm3) radius (µm)
10 24.08642 70947905659 2568.13
12 26.08642 87083211548 2749.679
14 28.08642 84041189828 2717.281
17 31.08642 1.16697× 1011 3031.5
19 33.08642 1.86121× 1011 3541.894
21 35.08642 1.93735× 1011 3589.548
24 38.08642 2.51437× 1011 3915.435



Appendix III

This appendix consists of the partial derivatives associated with the Jacobians for the

spheroid model with acidosis and for the full in vivo model with acidosis.

Spheroid Partials

Acidotic Spheroid: Partial Derivatives (a)

∂
∂G1

∂
∂S

∂
∂G2

dG1
dt

−c1 − cfF −D2 0 2c2

dS
dt

c1B
[
1− G1

s1+G1+v0

]
− CQ

sq+P+v0
−cs − CQ

sq+P+v0
− cfF −D2 − CQ

sq+P+v0

dG2
dt

0 cs −c2 − da − cfF −D2

dQ
dt

c1
[
1−B + BG1

s1+G1+v0

]
+ CQ

sq+P+v0

CQ
sq+P+v0

CQ
sq+P+v0

dN
dt

D2 D2 D2

dT
dt

0 0 0

dAH
dt

0 0 0

dMG1
dt

0 0 0

dMS
dt

0 0 0

dMG2
dt

0 0 0
dMQ

dt
0 0 0

dL1
dt

0 0 0

dL2
dt

0 0 0
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Acidotic Spheroid: Partial Derivatives (b)

∂
∂Q

∂
∂N

∂
∂T

∂
∂AH

∂
∂MG1

dG1
dt

0 0 − cf sn
(sn+T )2

G1 0 0

dS
dt

C 0 − cf sn
(sn+T )2

S 0 0

dG2
dt

0 0 − cf sn
(sn+T )2

G2 0 0

dQ
dt

−C −D1 − ah − eH 0 0 0 0

dN
dt

D1 + eH −mv0 0 D3 D4

dT
dt

0 j −kv0 0 0

dAH
dt

ahq3 0 0 cga −mh −D3 0

dMG1
dt

0 0 − kf sn
(sn+T )2

MG1 0 −k1 − kfF −D4

dMS
dt

0 0 − kf sn
(sn+T )2

MS 0 k1BM

[
1− MG1

s1+MG1+v0

]
− CMMQ

sq+M+v0
dMG2

dt
0 0 − kf sn

(sn+T )2
MG2 0 0

dMQ

dt
0 0 0 mh k1

[
1−BM + MG1

s1+MG1+v0

]
+

CMMQ

sq+M+v0

dL1
dt

xh 0 0 xh 0

dL2
dt

0 0 0 0 xm

Acidotic Spheroid: Partial Derivatives (c)

∂
∂MS

∂
∂MG2

∂
∂MQ

∂
∂L1

∂
∂L2

dG1
dt

0 0 0 0 − ∂(D2)
∂L2

G1

dS
dt

0 0 0 0 − ∂(D2)
∂L2

S

dG2
dt

0 0 0 0 − ∂(D2)
∂L2

G2

dQ
dt

0 0 0 − ∂(D1)
∂L1

Q 0

dN
dt

D4 D4 D3
∂(D1)
∂L1

Q+
∂(D3)
∂L1

(AH +MQ)
∂(D2)
∂L2

P +
∂(D4)
∂L2

M

dT
dt

0 0 0 0 0

dAH
dt

0 0 0 − ∂(D3)
∂L1

AH 0

dMG1
dt

0 2k2 0 0 − ∂(D4)
∂L2

MG1

dMS
dt

−ks −
CMMQ

sq+M+v0
− kfF −D4 − CMMQ

sq+M+v0
CM 0 − ∂(D4)

∂L2
MS

dMG2
dt

k2 −k2 − da − kfF −D4 0 0 − ∂(D4)
∂L2

MG2

dMQ

dt

CMMQ

sq+M+v0

CMMQ

sq+M+v0
−CM −D3 − ∂(D3)

∂L1
MQ 0

dL1
dt

0 0 xh −l l

dL2
dt

xm xm 0 l −l − q
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Full Model Partials

Full Model: Partial Derivatives (a)

∂
∂G1

∂
∂S

dG1
dt

−c1 − cfF −D2 0

dS
dt

c1B
[
1− G1

s1+G1+v0+V

]
− CQ

sq+P+v0+cqsV
−cs − CQ

sq+P+v0+cqsV
− cfF −D2

dG2
dt

0 cs
dQ
dt

c1
[
1−B + BG1

s1+G1+v0+V

]
+ CQ

sq+P+v0+cqsV
− efhV Q

(sh+fhP+ghQ+V )2
CQ

sq+P+v0+cqsV
− efhV Q

(sh+fhP+ghQ+V )2

dN
dt

efhV Q
(sh+fhP+ghQ+V )2

+D2
efhV Q

(sh+fhP+ghQ+V )2
+D2

dT
dt

0 0

dR
dt

cR
T

sR+T
cR

T
sR+T

dV
dt

0 0

dAH
dt

0 0

dMG1
dt

0 0

dMS
dt

0 0

dMG2
dt

0 0
dMQ

dt
0 0

dL1
dt

0 0

dL2
dt

0 0
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Full Model: Partial Derivatives (b)

∂
∂G2

∂
∂Q

∂
∂N

∂
∂T

dG1
dt

2c2 0 0 − cf sn
(sn+T )2

G1

dS
dt

− CQ
sq+P+v0+cqsV

C 0 − cf sn
(sn+T )2

S

dG2
dt

−c2 − da − cfF −D2 0 0 − cf sn
(sn+T )2

G2

dQ
dt

CQ
sq+P+v0+cqsV

− efhV Q
(sh+fhP+ghQ+V )2

−C −D1 − ahq3 − e(H + ∂H
∂Q

Q) 0 0

dN
dt

efhV Q
(sh+fhP+ghQ+V )2

+D2 e(H + ∂H
∂Q

Q) +D1 −m(v0 + V ) 0

dT
dt

0 0 j −k(v0 + V )

dR
dt

cr
T

sR+T
cqv 0 cRsR

(sR+T )2
(P +M)

dV
dt

0 0 0 0

dAH
dt

0 ahq3 0 0

dMG1
dt

0 0 0 − kf sn
(sn+T )2

MG1

dMS
dt

0 0 0 − kf sn
(sn+T )2

MS

dMG2
dt

0 0 0 − kf sn
(sn+T )2

MG2

dMQ

dt
0 0 0 0

dL1
dt

0 xh 0 0

dL2
dt

0 0 0 0

Full Model: Partial Derivatives (c)

∂
∂R

∂
∂V

dG1
dt

0 0

dS
dt

0 c1
s1+G1

(s1+G1+v0+V )2
G1 +

cqs(sq+P )

(sq+P+v0+V )2
Q

dG2
dt

0 0

dQ
dt

0 −c1 s1+G1
(s1+G1+v0+V )2

G1 −
cqs(sq+P )

(sq+P+v0+V )2
Q+ e sh+fhP+ghQ

(sh+fhP+ghQ+V )2
Q

dN
dt

0 −e sh+fhP+ghQ
(sh+fhP+ghQ+V )2

Q−mN

dT
dt

0 -kT

dR
dt

−qR(v0 + V ) −qRR

dV
dt

cv(1−DV )(v0+V )
sv+R+v0+V

[
1− R

sv+R+v0+V

]
cv

(sv+R)R

(sv+R+v0+V )2
(1−DV )−DV

dAH
dt

0 0

dMG1
dt

0 0

dMS
dt

0 k1
s1MG1

(s1+MG1+v0+V )2
MG1 +

cqm(sq+M)

(sq+M+v0+cqmV )2
MQ

dMG2
dt

0 0
dMQ

dt
0 −k1 s1MG1

(s1+MG1+v0+V )2
MG1 −

cqm(sq+M)

(sq+M+v0+cqmV )2
MQ

dL1
dt

0 0

dL2
dt

0 q(3.9810717× 10−14 − L2)
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Full Model: Partial Derivatives (d)

∂
∂AH

∂
∂MG1

∂
∂MS

dG1
dt

0 0 0

dS
dt

0 0 0

dG2
dt

0 0 0

dQ
dt

0 0 0

dN
dt

D3 D4 D4

dT
dt

0 0 0

dR
dt

cqv cR
T

sR+T
cR

T
sR+T

dV
dt

0 0 0

dAH
dt

cga −mh −D3 0 0

dMG1
dt

0 −k1 − kfF −D4 0

dMS
dt

0 k1BM

[
1− MG1

(s1+MG1+v0+V )

]
− CMMQ

sq+M+v0+cqsV
−ks −

CMMQ

sq+M+v0+cqsV
− kfF −D4

dMG2
dt

0 0 ks
dMQ

dt
mh k1

[
1−BM + BMMG1

(s1+MG1+v0+V )

]
+

CMMQ

sq+M+v0+cqsV

CMMQ

sq+M+v0+cqsV

dL1
dt

xh 0 0

dL2
dt

0 xm xm

Full Model: Partial Derivatives (e)

∂
∂MG2

∂
∂MQ

∂
∂L1

∂
∂L2

dG1
dt

0 0 0 − ∂(D2)
∂L2

G1

dS
dt

0 0 0 − ∂(D2)
∂L2

S

dG2
dt

0 0 0 − ∂(D2)
∂L2

G2

dQ
dt

0 0 − ∂(D1)
∂L1

Q 0

dN
dt

D4 D3
∂(D1)
∂L1

Q+
∂(D3)
∂L1

(AH +MQ)
∂(D2)
∂L2

P +
∂(D4)
∂L2

M

dT
dt

0 0 0 0

dR
dt

cR
T

sR+T
cqv 0 0

dV
dt

0 0 0 − ∂(DV )
∂L2

[
cv

R(v0+V )
sv+R+v0+V

+ V
]

dAH
dt

0 0 − ∂(D3)
∂L1

AH 0

dMG1
dt

2k2 0 0 − ∂(D4)
∂L2

MG1

dMS
dt

− CMMQ

sq+M+v0+cqsV
CM 0 − ∂(D4)

∂L2
MS

dMG2
dt

−k2 − da − kfF −D4 0 0 − ∂(D4)
∂L2

MG2

dMQ

dt

CMMQ

sq+M+v0+cqsV
−CM −D3 − ∂(D3)

∂L1
MQ 0

dL1
dt

0 xh −l l

dL2
dt

xm 0 l −l − q(v1 + V )
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Spheroid Genetic Algorithm Solver

1

2 f unc t i on [ ] = so lve t ramp sphero idGenet i c
3

4 c l o s e a l l
5 c l e a r a l l
6

7 c1 = 1.961763658 ; %Ghosh et a l . Role o f RhoA a c t i v a t i o n in
the growth and morphology o f a murine p ro s t a t e tumor c e l l
l i n e

8 c2 = 7.151991545 ; %Ghosh et a l . Role o f RhoA a c t i v a t i o n in
the growth and morphology o f a murine p ro s t a t e tumor c e l l
l i n e

9 da = 0 ; %There i s no notab le data r e co rd ing apopto s i s so I
take i t as zero

10 c f = 0 . 0 0 1 ;
11 e = 0 . 4 1 9 ;
12 m = 0 . 0 2 8 ;
13 j = 3 ;
14 k = . 0 5 ;
15 s1 = 1 . 2 ;
16 cq = 75 ;
17 sq = 270 ;
18 sn = 1000 ;
19 v0 = 2 . 7 6 ;
20 cs = 3 .220357473 ; %Ghosh et a l . Role o f RhoA a c t i v a t i o n in

the growth and morphology o f a murine p ro s t a t e tumor c e l l
l i n e
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21

22 parVec = [ c1 c2 da c f e m j k s1 cq sq sn v0 cs ] ;
23 numPars = length ( parVec ) ;
24 parameterRanges = ze ro s (2 , numPars ) ;
25 parameterRanges ( 1 , 1 : 2 ) = parVec ( 1 : 2 ) ;
26 parameterRanges ( 2 , 1 : 2 ) = parVec ( 1 : 2 ) ;
27 parameterRanges (1 , 14 ) = parVec (14) ;
28 parameterRanges (2 , 14 ) = parVec (14) ;
29 parameterRanges ( 1 , 3 : 1 3 ) = parVec ( 3 : 1 3 ) /10 ;
30 parameterRanges ( 2 , 3 : 1 3 ) = parVec ( 3 : 1 3 ) ∗10 ;
31 parameterRanges (1 , 8 ) = parVec (8 ) /100 ;
32 parameterRanges (1 , 4 ) = parVec (4 ) /100 ;
33

34 %% I n i t i a l i z a t i o n Algorithm
35 i n d i v i d u a l s = 1000 ; % note , t h i s MUST be d i v i s i b l e by 4
36 gene ra t i on s = 1000 ;
37 emptyMat = ze ro s ( i n d i v i d u a l s , numPars+1) ;
38 parMat = emptyMat ;
39

40 % Time
41 Tf = 60 ; %t o t a l time in days
42 dt = . 0 1 ; %time step
43 tspan = 0 : dt : Tf ; %time span with Tf days increment ing by time

step dt
44

45 % I n t i a l Condit ions
46 G10 = 0 . 5 9 5 5∗0 . 6 ; %Determined from the percentages in Ghosh

et a l . and volume in Enmon et a l .
47 S0 = 0 . 2 8 8 3∗0 . 6 ; %Determined from the percentages in Ghosh et

a l . and volume in Enmon et a l .
48 G20 = 0 . 1 1 6 3∗0 . 6 ; %Determined from the percentages in Ghosh

et a l . and volume in Enmon et a l .
49 Q0 = 0 ; %The rad iu s i s smal l so I assume a l l c e l l s are

r e c e i v i n g oxygen
50 N0 = 0 ; %I f the re i s no hypoxia the re i s l i k e l y no n e c r o s i s
51 T0 = 0 ; %No n e c r o t i c c e l l s no produce TNF−alpha
52

53 x0 = [ G10 S0 G20 Q0 N0 T0 ] ;
54

55 saveParamList = ze ro s ( generat ions , numPars+1) ;
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56

57 % Data
58 BallangrudW = [ 4 . 1 5 5 4 . 7 2 2 1 ; 9 .686 3 4 . 2 4 ; 16 .36 1 6 6 . 8 ; 21 .82

3 9 1 . 6 ; 28 .62 7 9 2 . 1 ; 34 .15 1152 ; 45 1770 ; 55 .57 2 1 6 5 ] ;%; 0
0 . 6 ; 55 .57 2 1 6 5 ] ;

59 BallangrudN = [8 .766043512 7986447 .935/10ˆ6 ; 14.23231661
47079589 .16/10ˆ6 ] ;

60 BallangrudQ = [8 .766043512 11312160 .25/10ˆ6 ; 14.23231661
30644226/10ˆ6 ] ;

61 BallangrudP = [8 .766043512 14211713 .46/10ˆ6 ; 14.23231661
35373520 .37/10ˆ6 ] ;

62

63 % i n i t i a l i z e s a parameter matrix with in the presented ranges
above

64 f o r i = 1 : i n d i v i d u a l s
65 f o r hj = 1 : numPars
66 parMat ( i , h j ) = parameterRanges (1 , hj ) +((

parameterRanges (2 , hj )−parameterRanges (1 , hj ) )∗ rand
(1 , 1 ) ) ;

67 end
68 end
69

70 parMat ( 1 , : ) = [ parVec 0 ] ;
71 % [1.96176365800000 7.15199154500000 0 0.0100000000000000

0.424436140690927 0.0286306389614026 0.452839322174707
0.000500000000000000 1.57028445806767 76.2775807224025
260.396218587230 605.851505759063 2.79087965840100
3.22035747300000 0 ] ;

72

73 %% Execute the Algorithm
74

75 f o r gen = 1 : g ene ra t i on s
76 % r e i n i t i a l i z a t i o n
77 tournamentVec = randperm ( i n d i v i d u a l s ) ;
78 reprodVec = randperm ( i n d i v i d u a l s /2) ;
79

80 i f gen == 1
81 s t a r t = 1 ;
82 e l s e
83 s t a r t = i n d i v i d u a l s /2+1;
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84 parMat ( 1 : i n d i v i d u a l s , 1 : numPars+1) = f i tMat ;
85 end
86

87 f o r i = s t a r t : i n d i v i d u a l s
88

89 [ t , x ] = ode45 ( @math27 TumorModel spheroid , tspan , x0 ,
[ ] , parMat ( i , : ) ) ;

90 G1 = x ( : , 1 ) ;
91 S = x ( : , 2 ) ;
92 G2 = x ( : , 3 ) ;
93 Q = x ( : , 4 ) ;
94 N = x ( : , 5 ) ;
95

96 P = G1 + S + G2;
97 W = G1+S+G2+Q+N;
98

99 parMat ( i , numPars + 1) = f i tFun ( dt ,P, BallangrudP ,Q,
BallangrudQ ,N, BallangrudN ,W, BallangrudW ) ;

100 % parMat ( : , 1 : numPars ) = f i tMat ( : , 1 : numPars ) ;
101

102 end
103

104 f i tMat = ze ro s ( i n d i v i d u a l s , numPars+1) ;
105

106 % compet i t ion
107 f o r pr = 0 : 2 : i n d i v i d u a l s −2
108

109 tournamentA = tournamentVec ( pr+1) ;
110 genA = parMat ( tournamentA , 1 : numPars ) ;
111 f i tA = parMat ( tournamentA , numPars+1) ;
112

113 tournamentB = tournamentVec ( pr+2) ;
114 genB = parMat ( tournamentB , 1 : numPars ) ;
115 f i t B = parMat ( tournamentB , numPars+1) ;
116

117 i f f i tA < f i t B
118 f i tMat ( pr /2+1 ,1:numPars ) = genA ;
119 f i tMat ( pr /2+1 ,numPars+1) = f i tA ;
120 e l s e
121 f i tMat ( pr /2+1 ,1:numPars ) = genB ;
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122 f i tMat ( pr /2+1 ,numPars+1) = f i t B ;
123 end
124 end
125 f i tMat = sort rows ( f i tMat ( 1 : i n d i v i d u a l s / 2 , : ) , numPars+1) ;
126

127 % reproduct ion , s e l e c t s parameters from e i t h e r parent
128 f o r i = 1 : 2 : i n d i v i d u a l s /2−1
129

130 reprodA = reprodVec ( i ) ;
131 reprodB = reprodVec ( i +1) ;
132

133 f o r changeLoop = 1 : numPars
134 genRpos = ( ( i −1)/2)+( i n d i v i d u a l s /2) + 1 ;
135 parentPick = cat ( 1 , ( f i tMat ( reprodA , : ) ) , ( f i tMat (

reprodB , : ) ) ) ;
136 f i tMat ( genRpos , changeLoop ) = parentPick ( randi (2 ) ,

changeLoop ) ;
137 end
138 end
139

140

141 % mutation
142 f o r m = 3/4∗ i n d i v i d u a l s +1: i n d i v i d u a l s
143

144 indivMutant = reprodVec (m−3/4∗ i n d i v i d u a l s ) ;
145 parMutant = randi ( numPars ) ;
146 f i tMat (m, 1 : numPars ) = f i tMat ( indivMutant , 1 : numPars ) ;
147 f i tMat (m, parMutant ) = 2∗ rand (1 , 1 ) ∗ f i tMat (

indivMutant , parMutant ) ;
148

149 i f f i tMat (m, parMutant ) < parameterRanges (1 , parMutant )
150 f i tMat (m, parMutant ) = parameterRanges (1 , parMutant

) ;
151 e l s e i f f i tMat (m, parMutant ) > parameterRanges (2 ,

parMutant )
152 f i tMat (m, parMutant ) = parameterRanges (2 , parMutant

) ;
153 end
154 end
155
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156 %pick ing the f i t t e s t to p l o t from f i r s t h a l f o f
i n d i v i d u a l s

157 f i t = f i tMat (1 , numPars+1) ;
158

159 bestParVec = f i tMat ( 1 , 1 : numPars ) ;
160 [ t , x ] = ode45 ( @math27 TumorModel spheroid , tspan , x0 , [ ] ,

bestParVec ) ;
161 G1 = x ( : , 1 ) ;
162 S = x ( : , 2 ) ;
163 G2 = x ( : , 3 ) ;
164 Q = x ( : , 4 ) ;
165 N = x ( : , 5 ) ;
166 T = x ( : , 6 ) ;
167 P = G1 + S + G2;
168 W = G1+S+G2+Q+N;
169

170 namestr = [ ’ Change in Spheroid Volume No Treatment − ’ ,
num2str ( gen ) ] ;

171

172 f i g u r e (1 )
173 c l f ( f i g u r e (1 ) )
174 axes ( ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , 16)
175 p lo t ( t , P, ’b ’ , ’ LineWidth ’ , 1 . 5 ) ;
176 hold on
177 p lo t ( t , Q, ’ g ’ , ’ LineWidth ’ , 1 . 5 ) ;
178 hold on
179 p lo t ( t , N, ’ r ’ , ’ LineWidth ’ , 1 . 5 ) ;
180 hold on
181 p lo t ( t , W, ’ k ’ , ’ LineWidth ’ , 1 . 5 ) ;
182 hold on
183 p lo t ( BallangrudP ( : , 1 ) , BallangrudP ( : , 2 ) , ’∗b ’ , ’

MarkerSize ’ , 6 ) ;
184 hold on
185 p lo t ( BallangrudQ ( : , 1 ) , BallangrudQ ( : , 2 ) , ’∗g ’ , ’

MarkerSize ’ , 6 ) ;
186 hold on
187 p lo t ( BallangrudN ( : , 1 ) , BallangrudN ( : , 2 ) , ’∗ r ’ , ’

MarkerSize ’ , 6 ) ;
188 hold on
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189 p lo t ( BallangrudW ( : , 1 ) , BallangrudW ( : , 2 ) , ’∗k ’ , ’
MarkerSize ’ , 6 ) ;

190 hold on
191 ylim ( [ 0 2300 ] )
192 x l a b e l ( ’Time in Days ’ , ’ FontSize ’ , 13) ;
193 y l a b e l ( ’ Volume (umˆ3∗10ˆ6) ’ , ’ FontSize ’ , 13) ;
194 l 2=legend ( ’ P r o l i f e r a t i n g ’ , ’ Quiescent ’ , ’ Nec ro t i c ’ , ’ Whole

’ , ’ Locat ion ’ , ’ northwest ’ ) ;
195 t i t l e ( namestr ) ;
196 s e t ( l2 , ’ FontSize ’ , 12) ;
197 t ex t ( 0 . 3 , 0 . 6 5∗2 3 0 0 , [ ’ rMSE: ’ , num2str ( f i t ) ] )
198 drawnow
199 pause ( 0 . 0 0 1 )
200

201 printPNG ( f i g u r e (1 ) , [ ’ SpheroidFitAcid− ’ , num2str ( gen ) , ’ . png
’ ] ) ;

202

203 saveParamList ( gen , : ) = [ bestParVec f i t ] ;
204 save ( ’ pa ramTr ia lSca l eSh i f t ’ , ’ saveParamList ’ )
205 end
206 f i g u r e (2 )
207 c l f ( f i g u r e (2 ) )
208 axes ( ’FontName ’ , ’ Times New Roman ’ , ’ FontSize ’ , 16)
209 p lo t ( t , P, ’b ’ , ’ LineWidth ’ , 1 . 5 ) ;
210 hold on
211 p lo t ( t , Q, ’ g ’ , ’ LineWidth ’ , 1 . 5 ) ;
212 hold on
213 p lo t ( t , N, ’ r ’ , ’ LineWidth ’ , 1 . 5 ) ;
214 hold on
215 p lo t ( t , W, ’ k ’ , ’ LineWidth ’ , 1 . 5 ) ;
216 hold on
217 p lo t ( BallangrudP ( : , 1 ) , BallangrudP ( : , 2 ) , ’∗b ’ , ’ MarkerSize ’

, 6 ) ;
218 hold on
219 p lo t ( BallangrudQ ( : , 1 ) , BallangrudQ ( : , 2 ) , ’∗g ’ , ’ MarkerSize ’

, 6 ) ;
220 hold on
221 p lo t ( BallangrudN ( : , 1 ) , BallangrudN ( : , 2 ) , ’∗ r ’ , ’ MarkerSize ’

, 6 ) ;
222 hold on
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223 p lo t ( BallangrudW ( : , 1 ) , BallangrudW ( : , 2 ) , ’∗k ’ , ’ MarkerSize ’
, 6 ) ;

224 hold on
225 xlim ( [ 0 2 0 ] )
226 ylim ( [ 0 175 ] )
227 x l a b e l ( ’Time in Days ’ , ’ FontSize ’ , 13) ;
228 y l a b e l ( ’ Volume (umˆ3∗10ˆ6) ’ , ’ FontSize ’ , 13) ;
229 l 2=legend ( ’ P r o l i f e r a t i n g ’ , ’ Quiescent ’ , ’ Nec ro t i c ’ , ’ Whole ’ , ’

Locat ion ’ , ’ northwest ’ ) ;
230 t i t l e ( namestr ) ;
231 s e t ( l2 , ’ FontSize ’ , 12) ;
232 t ex t ( 0 . 3 , 0 . 6 5∗2 3 0 0 , [ ’ rMSE: ’ , num2str ( f i t ) ] )
233 drawnow
234 pause ( 0 . 0 0 1 )
235

236 printPNG ( f i g u r e (2 ) , [ ’ SpheroidFitAcidZoom− ’ , ’ . png ’ ] ) ;
237 end
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Spheroid Equation Input

1 f unc t i on dxdt = tramp sphero id (˜ , x , par )
2

3 dxdt = NaN(6 , 1 ) ;
4

5 G1 = x (1) ; %P r o l i f e r a t i n g Tumor C e l l s G1 Stage
6 S = x (2) ; %P r o l i f e r a t i n g Tumor C e l l s S Stage
7 G2 = x (3) ; %P r o l i f e r a t i n g Tumor C e l l s G2 Stage
8 Q = x (4) ; %Quiescent C e l l s
9 N = x (5) ; %Necrot i c /Hypoxic C e l l s

10 T = x (6) ; %TNF−alpha
11

12 % Constant Parameters
13 c1 = par (1 ) ;
14 c2 = par (2 ) ;
15 da = par (3 ) ;
16 c f = par (4 ) ;
17 e = par (5 ) ;
18 m = par (6 ) ;
19 j = par (7 ) ;
20 k = par (8 ) ;
21 s1 = par (9 ) ;
22 cq = par (10) ;
23 sq = par (11) ;
24 sn = par (12) ;
25 v0 = par (13) ;
26 cs = par (14) ;
27

28 % P r o l i f e r a t i n g Tumor C e l l s
29 P = G1+S+G2; %P r o l i f e r a t i v e Region
30 W = G1+S+G2+Q+N; %Whole Tumor
31

32 % Function Parameters
33 B = ( v0 ) . / ( s1+G1+(v0 ) ) ;
34 C = cq . ∗ ( v0 ) . / ( sq+P+v0 ) ;
35 H = 1 ;
36 F = T. / ( sn+T) ;
37

38 % Model Equations
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39 dxdt (1 ) = 2 .∗ c2 .∗G2−c1 .∗B.∗G1−c1 .∗(1−B) .∗G1−c f .∗F.∗G1; % G1
40 dxdt (2 ) = c1∗B.∗G1−cs .∗S+C.∗Q−c f .∗F.∗S ; % S
41 dxdt (3 ) = cs .∗S−c2 .∗G2−da∗G2−c f .∗F.∗G2; % G2
42 dxdt (4 ) = c1 .∗(1−B) .∗G1−C.∗Q−e∗H∗Q; % Q
43 dxdt (5 ) = e .∗H.∗Q− m∗v0∗N; % N
44 dxdt (6 ) = ( j .∗N) − ( k∗v0∗T) ; % T
45

46 end
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Fitness Function

1 f unc t i on f i t n e s s = f i tFun ( tStep , model1 , data1 , model2 , data2 ,
model3 , data3 , model4 , data4 )

2 % rMSE = ( ( s−d) /d) ˆ2
3

4 switch narg in
5 case 3 % t h i s i s what we used f o r xenogra f t where 1 i s

whole volume
6 modelTime1 = round ( data1 ( : , 1 ) / tStep , 0 ) ;
7 RMSE1 = sum ( ( ( model1 ( modelTime1 )−data1 ( : , 2 ) ) . / ( data1

( : , 2 ) ) ) . ˆ 2 ) ;
8

9 f i t n e s s = RMSE1;
10

11 case 5
12 modelTime1 = round ( data1 ( : , 1 ) / tStep , 0 ) ;
13 RMSE1 = sum ( ( ( model1 ( modelTime1 )−data1 ( : , 2 ) ) . / ( data1

( : , 2 ) ) ) . ˆ 2 ) ;
14

15 modelTime2 = round ( data2 ( : , 1 ) / tStep , 0 ) ;
16 RMSE2 = sum ( ( ( model2 ( modelTime2 )−data2 ( : , 2 ) ) . / ( data2

( : , 2 ) ) ) . ˆ 2 ) ;
17

18 f i t n e s s = RMSE1 + RMSE2;
19

20 case 7 %t h i s i s what we used f o r sphero id
21 % 1 i s p r o l i f e r a t i v e , 2 i s qu ie scent , 3 i s n e c r o t i c
22

23 modelTime1 = round ( data1 ( : , 1 ) / tStep , 0 ) ;
24 RMSE1 = sum ( ( ( model1 ( modelTime1 )−data1 ( : , 2 ) ) . / ( data1

( : , 2 ) ) ) . ˆ 2 ) ;
25

26 modelTime2 = round ( data2 ( : , 1 ) / tStep , 0 ) ;
27 RMSE2 = sum ( ( ( model2 ( modelTime2 )−data2 ( : , 2 ) ) . / ( data2

( : , 2 ) ) ) . ˆ 2 ) ;
28

29 modelTime3 = round ( data3 ( : , 1 ) / tStep , 0 ) ;
30 RMSE3 = sum ( ( ( model3 ( modelTime3 )−data3 ( : , 2 ) ) . / ( data3

( : , 2 ) ) ) . ˆ 2 ) ;
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31

32 f i t n e s s = 5∗RMSE1 + RMSE2 + RMSE3;
33

34 case 9
35 modelTime1 = round ( data1 ( : , 1 ) / tStep , 0 ) ;
36 RMSE1 = sum ( ( ( model1 ( modelTime1 )−data1 ( : , 2 ) ) . / ( data1

( : , 2 ) ) ) . ˆ 2 ) ;
37

38 modelTime2 = round ( data2 ( : , 1 ) / tStep , 0 ) ;
39 RMSE2 = sum ( ( ( model2 ( modelTime2 )−data2 ( : , 2 ) ) . / ( data2

( : , 2 ) ) ) . ˆ 2 ) ;
40

41 modelTime3 = round ( data3 ( : , 1 ) / tStep , 0 ) ;
42 RMSE3 = sum ( ( ( model3 ( modelTime3 )−data3 ( : , 2 ) ) . / ( data3

( : , 2 ) ) ) . ˆ 2 ) ;
43

44 modelTime4 = round ( data4 ( : , 1 ) / tStep , 0 ) ;
45 RMSE4 = sum ( ( ( model4 ( modelTime4 )−data4 ( : , 2 ) ) . / ( data4

( : , 2 ) ) ) . ˆ 2 ) ;
46

47 f i t n e s s = 3∗RMSE1 + 3∗RMSE2 + 3∗RMSE3 + RMSE4;
48 end
49 end
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