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Abstract

Image and function recovery from typically noisy and often under-sampled data is important in

a wide variety of applications. Algorithms based on an inverse problem approach are often used

in both the applied mathematics and statistics communities. In some cases, the resulting methods

look quite similar. Specifically, deterministic techniques using regularization are standard in both

communities, although they go by different names. For example, the celebrated LASSO technique

developed in the statistics community [24] is very similar to the compressive sensing algorithms

often used in sparse signal reconstruction [10]. We note that the type of regularization used is

always problem dependent, and more detailed analysis of such techniques may be found in [24].

Sometimes the methodology differs substantially. For example, the Markov Chain Monte Carlo

(MCMC) methods often employed by the statistics community takes a Bayesian approach, [17, 27].

A distinguishing feature of MCMC is that an entire distribution is recovered, rather than just a point

estimate.

This thesis discusses how the deterministic and Bayesian approaches can be effectively com-

bined to obtain a more accurate recovery process given noisy and under-sampled data. By combin-

ing these methodologies we are able to reduce the uncertainty of the solution distribution. The new

method is also more efficient than the standard MCMC. Although the technique introduced here is

inherently multi-dimensional, for ease of presentation this thesis considers only one-dimensional

problems.
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Chapter 1

Introduction

Image and function recovery from typically noisy and often under-sampled data is important in

a wide variety of applications. Algorithms based on an inverse problem approach are often used

in both the applied mathematics and statistics communities. In some cases, the resulting methods

look quite similar. Specifically, deterministic techniques using regularization are standard in both

communities, although they go by different names. For example, the celebrated LASSO technique

developed in the statistics community [24] is very similar to the compressive sensing algorithms

often used in sparse signal reconstruction [10]. We note that the type of regularization used is

always problem dependent, and more detailed analysis of such techniques may be found in [24].

Sometimes the methodology differs substantially. For example, the Markov Chain Monte Carlo

(MCMC) methods often employed by the statistics community takes a Bayesian approach, [17, 27].

A distinguishing feature of MCMC is that an entire distribution is recovered, rather than just a point

estimate.

This thesis discusses how to effectively combine the deterministic and Bayesian approaches to

obtain a more accurate recovery process given noisy and under-sampled data. By combining these

methodologies we are able to reduce the uncertainty of the solution distribution. The new method

is also more efficient than the standard MCMC.
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To further motivate this investigation, we describe some characteristic features of deterministic

and Bayesian approaches. For instance, when using a deterministic approach, one expects to re-

cover a point estimate solution which can be viewed as the maximum a-posteriori estimate (MAP).

These techniques include regularization terms that help to penalize the solution to favor some prior

information that is not data related. This is an active field of research that often falls under the

general heading of compressive sensing [23], although there are many variations. Many efficient

numerical algorithms have been developed such as ADMM, focal underdetermined system solvers

(FOCUSS) and matching pursuit algorithms [13]. Theoretical and computational results demon-

strate that it is possible to accurately recover functions and images even when the data are sparsely

sampled. However, there are several major drawbacks inherent to this methodology. A major

complaint among practitioners is that choosing the regularization parameters (e.g., how the data

fidelity is weighed compared to the regularization terms) is highly application dependent. Further,

it may not be robust even within the same application. This problem has been addressed in several

ways, one of which is by using the variance based joint sparsity (VBJS) approach, which will

be described shortly. A second drawback is limited by its very construction – a MAP estimate

is a point estimate. While this might be acceptable in a variety applications, it is limiting in the

sense that any uncertainty quantification about the solution is inaccessible [6]. For this reason it

is desirable to consider the Bayesian framework, which enables the solution to be sampled from

a distribution. The workhorse under this framework is the Markov Chain Monte Carlo (MCMC)

method, which also has several variants, some of which will be described in this thesis. How-

ever, while being able to sample from a solution distribution is appealing, it is also often costly

to construct, especially when a large search space must be explored. Moreover, in the Bayesian

approach it is important to accurately depict the corresponding prior, likelihood and thus posterior

estimates a-priori. This thesis leverages the VBJS approach in [18, 3] to more accurately describe

the posterior. As a result, the overall uncertainty in the solution distribution is reduced (as depicted

by tighter confidence intervals), and the MCMC becomes well mixed with fewer iterations.
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Past works on leveraging the power of MCMC to solve inverse problems include [33, 7, 6].

In [6], The Metropolis-Hastings algorithm [17, 27] is employed to both recover the unknown dis-

tribution and also quantify uncertainty of the recovered distribution. As previously mentioned, in

this thesis, the posterior probability density is modified by utilizing the concept of Variance Based

Joint Sparsity (VBJS) [18, 3]. Specifically, the one-dimensional inverse problem introduced in [6]

is investigated. The reasoning for adopting VBJS in constructing the posterior probability density

is because the edge domain of the one-dimensional unknown is assumed to be sparse. Therefore,

assuming sparsity may improve recovery of the unknown while improve the uncertainty quantifi-

cation of the posterior probability density.

The structure of this thesis is as follows. Chapter 2 presents background information in proba-

bility, statistical inversion, Variance Based Joint Sparsity, and the Metropolis-Hastings algorithm.

In Chapter 2.7, relevant papers are analyzed to build the foundation for the problem investigated

in this thesis. This pioneering research gives motivation to the power and potential of the subject

investigated. Next, in Chapter 3, the specific construction of the one-dimensional problem is pro-

vided. In Chapter 4 we present some results of our new method and discussion. Finally, Chapter

5, provides some concluding remarks and ideas for future work.
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Chapter 2

Background

The topics covered here are background information required to understand the scope of the re-

search of this paper.

2.1 Inverse Problems and Regularization

In the study of inverse problems, one seeks to recover an unknown variable from some sampled

data, often riddled with noise. Further, the problem may be under-sampled, and therefore ill-posed

[24, 32]. Suppose the goal is to reconstruct an unknown x ∈ Rn. We have

y = Ax + e, (2.1)

where y ∈ Rn is the sample data collected, A ∶ Rn → Rn is a forward operator, and e ∈ Rn is

some additive noise. The naive approach to recover the variable x would be to attempt to solve the

equation

x = A−1(y − e) = A−1(y) −A−1(e). (2.2)
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Observe that in (2.2),A−1emay dominate the solution recovery. In particular, the noise corresponds

to eigenspaces of A of small eigenvalues, and thus singular values. By taking the inverse of the

operator, the noise will then correspond to very large singular values in A−1 in (2.2). This makes

naively taking the inverse of the operatorA a very poor method for recovering x [21]. Further, since

the model may be ill-posed, the operator A may not be well-conditioned and its corresponding

inverse operator may not exist. Therefore, x may not uniquely exist within the solution space. In

order to approximate x, the least-squares solution is used to obtain

x = argmin
x

∣∣Ax − y∣∣22 (2.3)

It is well documented that (2.3) may yield poor results due the presence of noise [21]. In particular,

without imposing constraints based on assumed knowledge, the solution x will be over-fitted to the

noisy data. Therefore, a regularization term is often added to impose information assumed about

the model. One then optimizes

x = argmin
x

{∣∣Ax − y∣∣22 + λ∣∣Lx∣∣
q
p} (2.4)

for some 0 ≤ p <∞. Define q = p if 1 ≤ p <∞ and q = 1 otherwise.

The first term in (2.4) is often referred to as the fidelity term and the second term is the regular-

ization. The operator L varies based on the assumptions placed on the variable x. The coefficient

on the regularization term λ > 0 is a tuning parameter for the model, which varies depending on

the problem at hand. Generally, an increase in noise requires the increase of the tuning parameter,

λ. This is because the collected data are not as reliable as the assumed knowledge. To success-

fully approximate the variable x, (2.4) must balance the need for fidelity to the data through the

least-squares term, but also maintain the assumptions imposed in the regularization term to prevent

over-fitting to the noise.
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2.2 Variance Based Joint Sparsity

Another important concept in this investigation on inverse problems is joint sparsity [18, 3]. In

particular we employ the variance based joint sparsity (VBJS) method introduced in [3, 18], which

is described below.

2.2.1 `1 regularization for recovering piecewise smooth functions.

Often the regularization term in (2.4) is used to promote sparsity in the sparse domain of the

corresponding solution x. Indeed, many algorithms under the general area of compressive sensing

are designed specifically for this purpose [23]. The sparse domain, by definition, is the domain in

which the corresponding solution is presumably sparse, and is formally defined as follows:

Definition 1. Consider a vector u ∈ RN . This vector u is s-sparse for some 1 ≤ s ≤ N if

∣∣u∣∣0 = ∣supp(u)∣ ≤ s. (2.5)

There are potentially a variety of sparse domains one could choose for this purpose. For ex-

ample, when recovering piecewise smooth functions, a good choice for the sparsity domain is the

edge domain, since there are only a few edges (equivalently jump discontinuities). Gradient and

wavelet domains (and their variants) are also commonly used, as are total variation (TV), and high

order total variation (HOTV). Indeed, these domains are inherently linked by construction. More

information on general recovery algorithms that use `1 regularization to exploit sparsity can be

found in [18, 3].

If we wanted to use (2.4) to regularize the solution, ideally we would choose the `0 pseudo-

norm, which is not a norm in the classical sense [12]. However, this is well known to be an NP
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hard problem [12] so instead the `1 norm is used as a surrogate. It’s important to understand

why the `1 rather than the `2 norm is used. This is because the `1 norm penalizes the the small

values relatively more while it penalizes large values relatively less compared to the `2 norm.

This is particularly important because the sparse domain is assumed to be mostly near-zero other

than regions with edge information [24]. However, computing (2.4) with the `2 norm is more

computationally efficient, so these trade offs must be considered in applications.

Suppose that L is the sparsifying operator. In `1-regularization, the penalty on the norm of Lx

is proportional to the magnitude of Lx. On the other hand, `2-regularization squares each entry

value in Lx. As a result, the `1 norm penalizes smaller values more than `2 norms, and penalizes

larger values less compared to the `2 norm [9]. Therefore, since the prior belief is that the edge

domain of x is sparse, `1 is typically the preferred norm for the regularization term.

Since in this thesis we are considering the vector x to be values of a piecewise smooth function,

we will use the edge domain as the sparsity domain. To this end, this thesis adopts the polynomial

annihilation operator, [5], as the sparsity operator L, as it has been demonstrated to effectively re-

cover the edges of piecewise smooth functions from grid point data (here the vector x).1 Therefore,

since x is considered to be a piecewise smooth function, the edge domain in (2.5) would be u = Lx.

We stress that other sparsity operators might be better suited for different types of data sets.

2.2.2 Recovery from multiple measurement vectors

Suppose now that we have multiple measurements vectors in their sparse domain, U = [u1, u2, u3, . . . , uJ]

where uj ∈ RN , j = 1, . . . , J . Then we say that U is s-joint sparse if

∣∣U ∣∣2,0 = ∣
J

⋃
j=1

supp(uj)∣ ≤ s (2.6)

1The polynomial annihilation operator is analogous to Higher-Order Total Variation, [4], with certain technical
differences.
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where each uj is s-sparse according to (2.5).

In addition to incorporating sparsity into the recovery process, when provided multiple mea-

surement vectors (MMV), joint sparsity can be used to leverage the assumption that all vectors

must be similar in the edge domain [18, 3]. The VBJS approach exploits this notion by introducing

a weight for the regularization term in (2.4) that enforces this shared sparsity presumption.

The idea is to enforce sparsity in the recovered solution (2.1) in regions of the domain where the

variance is small in the sparse domain. The example below illustrates how VBJS is implemented

to solve inverse problems [3, 18].

Recall the inverse model (2.1) where x is the variable one seeks to recover. Let x = (xi)Ni=1 ∈ RN

be an N -dimensional vector that represents a piecewise smooth function. Assume we have J

measurements of the underlying unknown variable x. Assume that U = [u1, u2, u3, . . . , uJ] are the

measurement vectors in the edge domain such that ui = Lxi. Then it is assumed that the multiple

measurement vectors have similar support defined as

supp(u1) ≈ supp(u2) ≈ supp(u3) ≈ . . . ≈ supp(uJ).

It follows then that a variance vector v = {vi}Ni=1 can be constructed as

vi =
1

J

J

∑
j=1

(uji)
2 − (

1

J

J

∑
j=1

uji)
2

i = 1, . . . ,N, (2.7)

such that supp(u) ≈ ⋃Jj=1 supp(uj) From the variance vector v⃗, a spatially variant weight vector w

for the regularization term is then constructed. One idea of weight construction is to simply define

wi ∶=
1

vi + ε
, i = 1, . . . ,N,

where ε ≪ vi and is inserted to prevent division by zero. In this thesis, this simple method of

obtaining the inverse described above of the variance is not used. Instead, we use a more sophisti-
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cated method described in [18] to ensures normalization. The construction is as follows. Suppose

again there are J measurements of the same unknown x. Further, suppose L is a sparse operator

such that U = [u1, u2, u3, . . . , uJ] is jointly sparse such that ui = Lxi. Then each sample in the

sparse domain is normalized so that

ũi,j =
∣ui,j ∣

maxi ∣ui,j ∣
,

where j = 1, . . . , J . Then a weighting scalar C is defined as the average `1 norm across all mea-

surements of the normalized sparsifying transform of the measurements,

C =
1

J

J

∑
j=1

N

∑
i=1

ũi,j.

The purpose of the weighting scale is to ensure that small edges are not deemed insignificant

relative to large ones. Finally, the weights w ∈ RN is define as

wi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

C(1 − vi
maxi vi

) if i /∈ I

1
C (1 − vi

maxi vi
) if i ∈ I

where vi is defined in (2.7). The set I is defined as

1

J

J

∑
j=1

ũi,j > τ.

The constant τ is a threshold such at when the above inequality is satisfied by some index i, the

corresponding yi is assumed to be an edge. By observing Figure 4.2, we can clearly see difference

in weights between regions that satisfy and do not satisfy the corresponding threshold τ .
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Remark: We note that the construction of Lxj , j = 1, . . . , J , requires each solution xj , to be

known. Obviously this is not the case since we are given the measurement data yj , j = 1, . . . ,N

in (2.1) and indeed we are seeking the solution x. In [3, 18], an approximation x̃j to each xj

was first done using an unweighted (standard) form of (2.4) with p = q = 1, with λ chosen

randomly. Then Lx̃j was calculated to approximate the edge domain for each measurement

vector. It is possible to do this approximation of the edges more efficiently and without first

reconstruction x, and this has since been done for the measurement vectors being noisy Fourier

data [3], but for the purpose of this investigation, we use the approach suggested in [3, 18].

With these calculations in hand, we are now ready to construct the VBJS method:

Algorithm 1 VBJS Weights Construction
Data: Set of measurement vectors in their jointly sparse domain, U = [u1, u2, u3, . . . , uJ]

Result: Modified regularization formula

Calculate weights w = [w1,w2,w3, . . . ,wJ]

Choose a sparsifying operator (e.g., the polynomial annihilation operator in [5])

Set matrix W = diag(w)

Modify (2.4) to be x = argminx{∣∣Ax − y∣∣
2
2 + λ∣∣WLx∣∣1}

This modification to the `1 regularization allows the greater enforcement of sparsity in regions

of the domain where it is believed to be truly sparse. Specifically, regions of high variance in the

sparse domain correspond to non-zero entries. Therefore, as seen in Figure 4.2, those regions are

penalized less to enforce fidelity to the sample data. On the other hand, small variance regions

correspond to truly sparse regions, so the penalty is correspondingly higher there.
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2.3 Probability Preliminaries

We now introduce some fundamental probability concepts that are needed for this investigation.

There are great texts that thoroughly explain these concepts such as [8, 24, 30]. First, the concept

of the probability space is formalized through a measure-theoretic foundation. From there, the

characterizations of a random variable, probability distribution, and probability density are defined.

Further, the concept of joint probability density and conditional probability density are defined,

culminating this section with the Bayes formula [32]. Suppose Ω is an abstract space and Γ is a

collection of subsets of Ω. The collection Γ is said to be a σ-algebra if the following are true:

1. Ω ∈ Γ,

2. If A ∈ Γ then Ac = Ω ∖A ∈ Γ, and

3. If Ai ∈ Γ for i ∈ N, then ⋃∞
i=1Ai ∈ Γ.

Further, a mapping µ ∶ Γ→ R is a probability measure if the following are true:

1. µ(A) ≥ 0 for all A ∈ Γ,

2. µ(∅) = 0, and

3. If Ai ∈ Γ are disjoint (Ai ∩Aj = ∅ for i ≠ j) for all i ∈, then µ(⋃∞
i=1Ai) = ∑

∞
i=1 µ(Ai).

A measure µ ∶ Γ → R is finite if µ(Ω) < ∞. Suppose we have a measure P ∶ Γ → [0,1] where

P(Ω) = 1, then the (Ω,Γ,P) defines a probability space (measurable space), where Ω is the sample

space, Γ is the set of events, and P is the probability measure.

For the purposes of this thesis, assume that the sample space R is equipped with the Borel

σ-algebra, which is the smallest σ-algebra that contains the topology (collection of open sets) of

R. Further, assume the Lebesgue measure restricted to the Borel σ-algebra. An in-depth treatment

of the foundations of measure theory can be found in [16].
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Now consider a function f ∶ Ω → T where T is any topological space. Then the function

f is said to be µ-measurable if and only if for any open set A of T , its pre-image f−1(A) is a

µ-measurable set in Ω.

The next measure-theoretic concept needed is the Radon-Nikodym Theorem and the Radon-

Nikodym derivative [16]. Suppose there are two σ-finite measures µ and ν on a measurable space

(Ω,Γ) such that ν is absolutely continuous with respect to µ (note µ(A) = 0 implies ν(A) = 0

for any A ∈ Γ). Then for some µ-measurable function f ∶ Ω → R, we have ν = ∫A fdµ where the

integral is for any measurable set A ∈ Γ. Note that any µ-measurable function f that satisfies the

equation ν = ∫A fdµ are equal almost everywhere with respect to measure µ. Thus the equivalence

class of functions f is called the Radon-Nikodym derivative of ν with respect to µ and may denoted

as f = dν
dµ .

The necessary concepts in probability are now delineated. Consider the probability space

(Ω,Γ,P). We assume events A,B ∈ Γ, with P(A) > 0 and P(B) > 0.

• Events A,B ∈ Γ are said to be independent if P(A ∩B) = P(A)P(B).

• The probability of event A conditioned on event B is

P(A∣B) =
P(A ∩B)

P(B)
. (2.8)

• The Law of Total Probability is given by

P(A) = P(A∣B)P(B) + P(A∣Bc)P(Bc). (2.9)

The next important concept is the idea of random variables. Consider again a sample space

(Ω,Γ,P). A random variable defined on this sample space is a measurable function X ∶ Ω→ R. A

random variable X may generate a measure µX equipped with the Borel σ-algebra. This measure
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is called the probability distribution of the random variable X . For any event A ∈ Γ,

µX(A) = P(X−1(A)) = P(X ∈ A).

A random variable X is absolutely continuous if it is absolutely continuous with respect to the

Lebesgue measure [30]. Then by the definition given above of the Radon-Nikodym derivative, it

is guaranteed that a measurable function fX ∶ Ω → R exists such that for any µX-measurable set

A ∈ Γ we can express the probability distribution as

µX(A) = ∫
A
fX(x)dx.

Here, the function fX ∶ Ω → R is the Radon-Nikodym derivative dµX
dx and said to be the

probability density function.

Finally, the concept of the probability density function leads to the definitions of the joint

probability density and the conditional probability density. Suppose X1 ∶ Ω → R and X2 ∶ Ω → R

are both random variables defined on the sample space (Ω,Γ,P). The joint probability distribution

µX1,X2 is defined as

µX1,X2(A1,A2) = P(X1
−1(A1) ∩X2

−1(A2)), A1,A2 ∈ Γ.

If both random variables are absolutely continuous with respect to the Lebesgue measure, then

it follows that the probability density function denoted as fX1,X2 ∶ R ×R→ R is defined as

µX1,X2(A1,A2) = ∫
A1×A2

fX1,X2(x1, x2)dx1dx2. (2.10)
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Further, if the random variables X1 and X2 are independent then for any two outcomes x1, x2 ∈ Ω,

µX1,X2(x1, x2) = µX1(x1)µX2(x2).

This definition can be extended to their respective probability density functions to arrive at

fX1,X2(x1, x2) = fX1(x1)fX2(x2).

Now the marginal probability distribution of X1 ∈ Rn is defined as

µX1(A1) = ∫
A1×Rm

fX1,X2(x1, x2)dx1dx2 = ∫
A1

fX1(x1)dx1, (2.11)

and the marginal probability density is

fX1(A1) = ∫
Rm
fX1,X2(x1, x2)dx2 (2.12)

For any eventsA1,A2 ∈ Γ with positive measures, the conditional measure µX1∣X2
is then given

by

µX1∣X2
(A1∣A2) =

µX1,X2(A1,A2)

µX2(A2)
.

Under certain conditions [8], the Law of Total Probability 2.9 may be expressed as

µX1∣X2
(A1∣A2) = ∫

A2

µX1∣X2
(A1∣x2)dµ(x2), (2.13)

and the probability density of X1 conditioned on X2 is

fX1∣X2
(A1∣A2) =

1

fX1∣X2
(A2)

∫
A1×A2

fX1,X2(x1, x2)dx1dx2.
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If the set A2 consists of a single point x2 then the above equation becomes

µX1∣X2
(A1∣x2) = ∫

A1

fX1,X2(x1, x2)

fX1∣X2
(x2)

dx1.

The probability density fX1∣X2
can then be defined as

fX1∣X2
(x1∣x2) =

fX1∣X2
(x1, x2)

fX2(x2)
. (2.14)

Finally, the Bayes formula is the most important concept to the statistical inversion perspective

on regularization problems. It is defined as

fX2∣X1
(x2∣x1) =

fX1∣X2
(x1∣x2)fX2(x2)

fX1(x1)

, (2.15)

where fX2∣X1
(x2∣x1) is the posterior density, fX1∣X2

(x1∣x2) is the likelihood function, fX2(x2) is

the prior density, and fX1(x1) is a normalization constant.

2.4 Statistical Inversion

In inverse problems, one seeks to recover underlying unknown variables from noisy or under-

sampled data. Classical inverse problems techniques recover single estimates of the unknown

variables by removing ill-posed conditions. Prior information is often included through the use of

regularization terms [32].

On the other hand, statistical inversion relies on a non-deterministic approach. Instead, the

unknown is modeled as a random variable with the goal to recover information about the unknown

variable’s probability distribution. Statistical inversion is used to extract this information while

also quantifying the uncertainty of the result. This approach relies on Bayes formula (2.15), in
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which the distributions of the prior and noise are assumed to be known.

2.4.1 General Statistical Inversion Method

Assume that all random variables are sampled from the same probability space (Ω,Γ,P). Define

Y ∶ Ω→ Rm to be an observable random variable. Then the random variable Y can be sampled as

Y (ω) = y (2.16)

where ω is an outcome in the sample space Ω and y is the observed data. The goal is to recover

information about an un-observable, unknown random variable X ∶ Ω → Rn. Further, assume the

noise distribution describing the random variable E ∶ Ω → Rk is known. Although E models the

noise and parameters that are not of interest, its approximate distribution is needed to recover the

solution distribution describing the random variable X .

Let g ∶ Rn ×Rk → Rm be the forward operator which models the relationship between the un-

observable and observable random variables. Then the statistical forward model can be realized

as

Y = g(X,E). (2.17)

Recall from (2.10) the joint probability density of X and Y , fX,Y (x, y), where f ∶ Rn ×Rm → R.

Then the marginal density, (2.12) is then

f̃X(x) = ∫
Rm
fX,Y (x, y)dy.

Further, the likelihood function is the conditional probability density (2.14) of Y given the un-
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known X:

fY ∣X(y∣x) =
fX,Y (x, y)

f̃X(x)
,

where f̃X(x) ≠ 0.

Conversely, using Bayes formula, (2.15), the conditional probability density of X given the

known data Y is the posterior probability density and encodes the desired information about the

unknown random variable X:

f̂X(x) = fX ∣Y (x∣y) =
fY ∣X(y∣x)f̃X(x)

fY (y)
. (2.18)

Finally, it important to note that the generalized Total Law of Probability, (2.13), provides that the

probability density function of the observable random variable Y is

fY (y) = ∫
Rn
fX,Y (x, y)dx = ∫

Rn
fY ∣X(y∣x)f̃X(x)dx ≠ 0.

We now have all of the tools needed to explain the Bayesian approach to solving inverse prob-

lems. Specifically, in the Bayesian approach, the goal is to use the given observation data modeled

by (2.16) to characterize the conditional probability density fX ∣Y (x∣y) of the random variable X

by calculating (2.18).

This thesis uses the following to characterize the probability density function of the unknown

random variable X:

1. The likelihood function fY ∣X must be defined to characterize the relationship between the

observations and the unknown variable X .

2. The prior density function f̃X(x) must be chosen to reflect assumptions of the prior infor-

mation about the unknown X .

3. The posterior probability density f̂X(x) = fX ∣Y (x∣y) should be explored to interrogate the
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distribution of X .

2.4.2 Likelihood Function with Additive Noise

The construction of the likelihood function should be the most straightforward aspect of the statis-

tical inversion model. The forward model g(X,E) from (2.17) is used along with the assumption

that the noise random variable E is additive and independent from the unknown random variable

X . This independence is leveraged to arrive at the likelihood function, which is now described.

Since the noise is assumed to be additive, the forward model in (2.17) can be written as

Y = g(X) +E (2.19)

where the random variables are again defined as X ∶ Ω→ Rn, Y ∶ Ω→ Rm and E ∶ Ω→ Rm. Now

suppose we acquire realizations y = Y (ω), x =X(ω) and e =E(ω). The realized model in (2.19)

can then be expressed as

Y = y = g(x) + e

with likelihood function

fY ∣X,E(y∣x, e) = δ(y − g(x) − e)

where δ is the Dirac delta function. By marginalizing, the likelihood function becomes

fY ∣X(y∣x) = ∫
Rm
fY ∣X,E(y∣x, e)fE∣X(e∣x)de

= ∫
Rm
δ(y − g(x) − e)fY ∣X,E(y∣x, e)fE∣X(e∣x)de

= fE∣X(y − g(x)∣x)

= fE(y − g(x)∣x). (2.20)
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The last equality above comes from the assumption that X and E are independent. Finally, we

arrive at the posterior probability density of the model assuming the noise is additive:

f̂X(x)∝ fE(y − g(y))f̃X(x). (2.21)

2.4.3 Prior on the Unknown

Accurate construction of the appropriate prior density function tends to be the most crucial yet

also most difficult because the prior belief of a model is often qualitative in nature [24]. In general,

the prior density should inform the prior belief about the characterization of the unknown random

variable X . In particular, if S is a collection of expected vectors representing possible realizations

of X , and U is a collection of unexpected vectors, it should be the case that

f̃X(x) ≫ f̃X(x′),

where x ∈ S and x′ ∈ U .

Here we consider the `1 prior and the `2 prior, as they are both consistent with our goal of

function recovery:

1. The `1 prior: For x ∈ Rn and some α > 0, the prior density is given as

f̃X(x) = (
α

2
)
n

exp(−α∣∣x∣∣1). (2.22)

This `1 prior is also referred to as the Laplacian prior, and is known to enforce sparse solu-

tions.

2. The `2 Prior: The `2 prior, also called the Gaussian prior, is often assumed when appropriate

because it is easy to use and provides good approximations due to the Central Limit Theorem
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[20]. Let x0 ∈ Rn and Σ ∈ Rn×n be a symmetric positive definite matrix. Then the Gaussian

prior for the random variable X with mean x0 and covariance Σ is defined as

f̃X(x) = (
1

2πdet(Σ)

n
2

) exp ( −
1

2
(x − x0)

TΣ−1(x − x0)) (2.23)

The choice the prior distribution can determine whether the posterior probability density has

a closed form solution. The `2 prior is Gaussian, which is a conjugate to itself [1]. This implies

that if the likelihood is Gaussian and the prior is Gaussian, then the posterior probability density

is also Gaussian. Therefore, a closed for solution may be derived from the means and variances of

the likelihood and the prior distributions.

However, if the prior is `1, no conjugacy relations exists and the posterior probability density

function has no closed form. This makes recovering the posterior density function particularly

difficult as sampling is much less efficient.

2.4.4 Evaluating the Posterior Probability Density with Estimation

In order to find the statistical expectation of the random variable X , the regularization in (2.4) is

re-framed in a non-deterministic manner through Maximum a Posteriori (MAP) estimation. Given

the posterior probability density function fX ∣Y of the random variable X ∶ Ω→ R, one attempts to

obtain an estimate by maximizing the posterior as

xMAP = argmax
x∈R

fX ∣Y (x∣y) (2.24)

It is important to realize that the (2.24) formulation may have similar pitfalls as the regularization in

(2.4). The maximum xMAP may either not exist or not be unique depending on the characterization

of the posterior probability density function. Finally we point out that the MAP estimate in (2.24)
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is the typical regularization problem in the deterministic approach. This will also be discussed

again later in the thesis.

2.5 Markov Chain Monte Carlo (MCMC)

We now introduce the Markov Chain Monte Carlo (MCMC) method, which is at the heart of

this thesis. MCMC is our choice of statistical technique through which statistical inversion is

investigated. The following mathematical definitions and algorithms are drawn from [17]. We also

include insights from the luminaries, Metropolis and Hastings [22, 25].

The delineation of the theory behind MCMC described below requires basic knowledge about

Markov Chains, including their convergence and stationary properties. An overview of this neces-

sary background information can be found in [14].

Consider a distribution px, x ∈ S with ∑x px = 1 where the state space S can be a subset of

the line or even a d-dimensional subset of Rd. The problem posed and solved by [25] was how to

construct a Markov chain with stationary distribution π such that π(x) = px, x ∈ S.

Let Q be any irreducible transition matrix on S satisfying the symmetry condition Q(x, y) =

Q(y, x) for all x, y ∈ S. Define a Markov Chain (θ(n))n≥0 as having transition from x to y proposed

according to Q(x, y).

This proposed value for θ(n+1) is accepted with the probability min{1,
py
px

} and rejected other-

wise, leaving the chain in state x. If we denote by TA the transitions accepted, we can write the

transition probabilities P (x, y) of the above chain (θ(n))n≥0 as

P(x, y) = P(θ(n+1)) = P(θ(n+1) = y, TA∣θ(n) = x)

= P(θ(n+1) = y, θ(n) = x)P(TA)

= Q(x, y)min{1,
py
px

}.
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Further, for y = x we have

P(x,x) = P(θ(n+1)) = x,TA∣θ(n) = x) + P(θ(n=1) ≠ x,TA∣θ(n) = x)

= P(θ(n+1) = x∣θ(n) = x)p(TA) +∑
y≠x

P(θ(n+1) = y, TA∣θ(n) = x)

= Q(x,x) +∑
y≠x

Q(x, y)

⎡
⎢
⎢
⎢
⎢
⎣

1 −min{1,
py
px

}

⎤
⎥
⎥
⎥
⎥
⎦

.

We now obtain the stationary distribution of this chain. First we show that px satisfies reversibil-

ity. For x ≠ y, we have π(x)P(x, y) = π(y)P(y, x) for all x, y ∈ S. For x ≠ y, suppose without loss

of generality, py > px, we have pxPr(x, y) = pxQ(x, y) = Q(x, y)min{1,
py
px

}py = pyP(y, x).

Thus the chain is reversible and there is a stationary distribution. If Q is a-periodic, so is p and

the stationary distribution is also the limiting distribution. Note that not all stationary distributions

also constitute as limiting distributions. Therefore Pπ = π ⇏ limn→∞P n(x, y) = π(y), where P

is the transition probability.

2.5.1 Metropolis-Hastings Algorithms

Consider a distribution π from which a sample must be drawn via Markov chains. This is needed

when the non-iterative generation of π is infeasible. In this case, a transition kernel p(θ, φ) must

be constructed so that π is the equilibrium distribution of the chain.

Now consider the reversible chains where the kernel p satisfies

π(θ)p(θ, φ) = π(φ)p(φ, θ) (2.25)

for all (θ, φ). This is called detailed balance [14]. Detailed balance is a sufficient (but not neces-

sary) condition to ensure convergence.
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The kernel p(θ, φ) consists of two elements: an arbitrary transition kernel q(θ, φ) and a proba-

bility α(θ, φ) where

p(θ, φ) = q(θ, φ)α(θ, φ)

for θ ≠ φ. The transition kernel defines a density p(θ, ⋅), for every φ ≠ θ and defines a mixed

distribution for the new state φ of the chain. In [22], the paper proposed an acceptance probability

α(θ, φ) = min{1,
π(φ)q(φ, θ)

π(θ)q(θ, φ)

⎫⎪⎪
⎬
⎪⎪⎭

(2.26)

Combined with some transition kernel, (2.26) should produce a reversible chain. Algorithms based

on chains and transition kernels are referred to as Metropolis-Hastings algorithms.

In [29], it was shown that if q is irreducible and a-periodic, and α(θ, φ) > 0 for all (θ, φ), then

the Metropolis Hasting algorithm gives a irreducible, a-periodic chain with transition kernel p and

limiting distribution π. The following is the algorithm for running a Markov chain (X)t for `

iterations:
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Algorithm 2 Metropolis-Hastings Algorithm
Result: The chain (X)`i=1

initialize x0 and i = 1

while i ≤ ` do
propose xcand ∼ q(xk∣xk−1)

α(xcand, xk−1) = min{1, π(x
cand)q(k−1,xcand)

π(xk−1)q(xk−1,xcand)
}

sample u ∼ U[0,1]

if u < α then
accept the candidate so let xk = xcand

else
reject the candidate so let xk = xk−1

end

end

2.5.2 Convergence Characterization

A useful monitoring device of the method is given by the average percentage of iterations for which

moves are accepted [27]. If q(⋅, ⋅) and π(⋅, ⋅) are continuous, generally smaller step sizes lead to

greater acceptance rates but slower convergence rates. This is because the step size is too small to

efficiently explore the domain of the target distribution.

On the other hand, if the proposal distribution has a large variance, then the step size tend to be

large. This may lead to a relatively lower acceptance rate. However, a lower acceptance rate does

not necessarily indicate that the domain is fully explored.

Therefore, the acceptance may be monitored as an indicator for how well the Markov chain is

exploring the domain of the target distribution. The acceptance rate however cannot directly imply

how well the Markov chain is converging to the target distribution.
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There does not exist an ideal acceptance rate as it depends on the target distribution and the cho-

sen proposal distribution. It has been proposed that target distributions in one or two dimensions

should correspond to an acceptance ratio of approximately 1
2 while target distributions of higher

dimensions should correspond to acceptance rates of approximately 1
4 [27]. These goal acceptance

rates are not definitive and mainly correspond to Metropolis-Hastings algorithms equipped with a

Gaussian proposal distribution.

2.6 Sample Auto-correlation Function

One important tool for analyzing stochastic processes is the sample auto-correlation function. In

this thesis, auto-correlation is used to assess the Markov chains used in recovering the unknown.

Therefore, the preliminary derivation and explanation of auto-correlation for time series analysis

is included in this section. The material is drawn from [11].

The sample auto-correlation is a tool that assesses any correlation between sample observations

of a stochastic process at an arbitrarily fixed distance apart. This distance is called the lag.

Let us first define the correlation between two stochastic processes (X)t = (x1, x2, x3, . . . , xN)

and (Y )t = (y1, y2, y3, . . . , yN) as

r =
∑
N
i=1(xi − x)(yi − y)√

∑
n
i=1(xi − x)

2∑
N
i=1(yi − y)

2
, (2.27)

where x and y are the arithmetic mean of the stochastic processes (X)t and (Y )t respectively.

The correlation is non-existent if the above formula evaluates to 0. Intuitively, when r ≈ −1, a

high value of (X)t tends to correspond with a low value of (Y )t, while a low value of (X)t tends

to correspond to a high value of (Y )t. On the other hand, for r ≈ 1, a high value of (X)t tends

to correspond to a high value of (Y )t, and similarly a low value of (X)t tends to correspond to a
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low value of (Y )t.

This idea of correlation may be applied to a time series analysis in which one state in a stochas-

tic process is compared to another state in the same stochastic process at a different time. The time

difference defined to be the lag. For example, suppose we are givenN observations x1, . . . , xN , for

which we want to compare the pairs (x1, x2), (x2, x3), (x3, x4), . . . , (xN−1, xN). In this case, the

lag is 1 because the time difference between the two observations in a pair is 1. Then from (2.27),

the auto-correlation of lag 1 is

r1 =
∑
N−1
i=1 (xt − x(1))(xi − x(2))

√
∑
N−1
i=1 (xi − x(1))2∑

N−1
t=1 (xi − x(2))2

, (2.28)

where

x(k) =
N−k

∑
i=1

xi
N − 1

.

For practical purposes, (2.28) may be approximated with

r1 =
∑
N−1
i=1 (xi − x)(xi+1 − x)

(N − 1)∑
N
i=1
(xi−x)2

N

, (2.29)

where

x =
N

∑
i=1

xi
N
.

For large N , N−1N ≈ 1, (2.29) becomes

r1 =
∑
N−1
i=1 (xi − x)(xi+1 − x)

∑
N
i=1(xi − x)

2
. (2.30)

In general, the auto-correlation function for a lag of k ∈ N is

rk =
∑
N−k
i=1 (xi − x)(xi+k − x)

∑
N
i=1(xi − x)

2
. (2.31)
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Then rk is said to be the sample auto-correlation coefficient at a lag of k.

Finally, we note that the auto-correlation is usually visually assessed through a correlogram,

which is a plot of the sample auto-correlation coefficients rk against the lag k for k = 1, . . . ,M .

Usually M is a much smaller number than N . This thesis will also use this visualization for

assessment and comparison of methods (See Chapter 4). In particular we note that if a stochastic

process only has a short-term correlation, then the value should start of close to −1 or 1 but decay

to approximately 0 as the lag k increases.

2.7 The History of Markov Chain Monte Carlo

The papers discussed and analyzed here are relevant to the methodology presented in Chapter 2.

Moreover, the historical and scientific context provided both explain and motivate the focus of this

thesis.

The set of techniques known to the world as Monte Carlo originated from Los Alamos, New

Mexico during World War II [28]. At the time, it was not yet associated with Markov Chan Monte

Carlo, which was coined later. The idea of using statistical sampling to approximate distributions

allowed physicists to compute intractable integrals in order to work on the atomic bomb.

It is believed that original Monte Carlo formulation was born out Mathematician Stanisław

Marcin Ulam’s desire to solve of the combinatorially intractable problem of computing the proba-

bility of winning the game solitaire in the 1940’s. Ulam was a brilliant mathematician and nuclear

physicist who worked on the Manhattan project. Ulam’s colleague, John von Neumann utilized

Ulam’s Monte Carlo method to study neutron fusion.
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2.7.1 Two significant papers by Metropolis et. al.

In 1952 Nicholas Metropolis published a ground-breaking paper in which he advanced the idea

of Monte Carlo by using stochastic processes. Metropolis was credited with the invention of the

first Markov Chain Monte Carlo (MCMC) algorithm. Through MCMC, Metropolis was able to

compute integrals that in general do no possess closed form solutions.

In the next year, Metropolis and his co-authors [25] demonstrated the ergodicity of the Metropolis-

Hastings algorithm (given by Algorithm 2). The significance of ergodicity lies in the fact that it

corresponds to guarantees in convergence to a stationary distribution [14] in Markov chain theory.

2.7.2 The Hastings paper in 1970

The Metropolis algorithm was adopted by statistician W. K. Hastings as a statistical technique

to overcome the “curse of dimensionality” problem [22]. Further, Hastings introduced the Gibbs

sampling technique, where each component of the posterior probability density is updated one at

a time in iterations.

From the 1953 to 1990, the advancements in MCMC was stagnant mostly because the compu-

tational power at the time was inadequate for efficient MCMC simulations. This stagnation finally

ended when Gelfand and Smith published a paper using MCMC to calculate marginal densities.

Their efforts engendered a shift on the statistics community to embrace the power of MCMC [19].

Since then, MCMC became a highly investigated research area in the 1990’s as researchers

were awed by the power of the Gibbs Sampler in approximating probability distributions and also

stunned by its generality in applications. Techniques such as the Metropolis-Hastings algorithm

are now commonplace in the statistical community. Finally, as discussed in this thesis, MCMC,

and in particular the Metropolis-Hastings algorithm, can be also used and further enhanced for
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function and image recovery using the numerical analysis perspective of solving inverse problems.

2.7.3 Quantifying Uncertainty with MCMC

In recent years, MCMC has become a point of interest to the inverse problems and uncertainty

quantification communities. Among them is the works of Johnathan M. Bardsley, which have

influenced the work of this thesis. In particular, the methods developed here build upon his work

in applying MCMC to regularization through a Bayesian framework described in [6]. There, the

linear inverse problem

b = Ax + η (2.32)

is considered where b ∈ Rm is the observable data and x ∈ Rn is the variable to be recovered. The

operator A ∈ Rm×n is the forward matrix and η ∈ Rm is the the noise which for practical reasons

is assumed to be independent, identical Gaussian random distribution. Each component of η has a

variance of λ−1, where λ is defined to be the precision.

The solution is then modeled as a standard regularization problem, given by

xα = argmax
x

{∣∣Ax − b∣∣2 + αxTLx}. (2.33)

In (2.33), the xα is the solution to the inverse problem, L is the regularization operator and α is the

regularization parameter. A more indepth discussion on the general formulation of L can be found

in Section 2.1.

Viewed from the perspective of statistical inversion through Bayes’ Theorem,

fx∣∣∣b(x∣b)∝ fb∣∣∣x(b∣x)fx(x),
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the regularization problem (2.33) is derived as

fb∣∣∣x(b∣x)∝ exp ( −
λ

2
∣∣Ax − b∣∣2)

fx(x)∝ exp ( −
δ

2
xTLx)

− ln fx∣∣∣b(x∣b)∝ ∣∣Ax − b∣∣2 +
δ

λ
xTLx,

which was discussed in Section 2.4. In addition to λ as the prior precision of the data, δ is intro-

duced here as the prior precision. In [6] the regularization parameter is defined as α = δ
λ . This

is a crucial aspect of that investigation as the regularization parameter must typically be tuned for

an inverse problem. By contrast, in this investigation α = δ
λ is treated as part of the posterior

probability density to be recovered computationally.

With this formulation, one hopes to better characterize the solution to (2.33) than traditional

methods can. Specifically, the standard approach to solving a regularization problem such as equa-

tion (2.33) is to find the MAP estimate explained in Section 2.4.4. However, the MAP estimate

only finds the peak of the posterior probability density without any insight into higher moment

information such as variance.

Therefore, instead of only computing the MAP estimate, in [6] Gibbs sampler [17, 27] is used to

explore the posterior probability density to gain insights into the variance and thus the uncertainty

of the regularization formulation in (2.33). It is assumed that a region with high variance also

corresponds to high uncertainty in the variable x.

In particular δ and λ are also recovered along with the unknown variable x.

Some assumptions are need in order to proceed:

1. The prior distributions of δ and λ are assumed to be Gamma distributions.

2. The regularization operator L is defined with Gaussian Markov random fields as explained

in [31].
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3. Each entry in x should be similar to its neighbors (refer to [6] for details).

Then the conditional distributions needed to recover the full posterior are

fx∣∣∣λ,δ,b(x) ∝ exp (
λ

2
∣∣Ax − b∣∣2 −

δ

2
xTLx)

fλ∣∣∣x,δ,b(λ) ∝ λ
n
2
+αλ−1 exp ([ −

1

2
∣∣Ax − b∣∣2 − βλ]λ)

fδ∣∣∣x,λ,b(δ) ∝ λ
n
2
+αδ−1 exp ([ −

1

2
∣∣Ax − b∣∣2 − βδ]δ), (2.34)

in which αλ = αδ = 1 and βλ = βδ = 10−4. The choice of these hyper-parameters makes then

”uninformative” because the mean and variance of the corresponding Gamma distributions is α
β =

104 and α
β
2 = 108 [6].

Algorithm 3 A MCMC Method for Sampling from p(x, δ, λ∣b)

Result: The chains (X)n, (λ)n, and (δ)n

initialize δ0, λ0 and set k = 0

while k ≤ n do
compute xk

compute λk+1

compute δk+1

set k ← k + 1

end

In Algorithm 3, each sample in the while-loop is correspondingly drawn from

x∣λ, δ, b ∼ N ((λATA + δL)−1λAT b, (TA + δL)−1)

λ∣x, δ, b ∼ Γ(
n

2
+ αλ,

1

2
∣∣Ax − b∣∣2 + βλ)

δ∣x,λ, b ∼ Γ(
n

2
+ αδ,

1

2
xTLx + βδ).
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More details can be found in [6], where information can also be found about how the algorithm

can be made computationally tractable by leveraging numerical linear algebra techniques. Finally,

the algorithm warrants MCMC chain convergence anlaysis which is also included in [6].

The remainder of this thesis explores using a new technique for recovering the solution to

(2.32). An important distinction between this investigation and the one in [6] is that here we use

the Metropolis-Hastings algorithm, rather than the Gibbs Sampler. In [6], the Gibbs Sampler is

feasible because the full conditional distributions (2.34) have closed-form solutions due to the

deliberate choice of the of a Gaussian distribution for the prior and a Gamma distributions for

the hyper-parameters. Here, however, the `1 prior is chosen to quantify the prior belief. As a

consequence, there does not exist a closed form for the posterior probability density. Therefore,

the Metropolis-Hastings algorithm is implemented instead in Algorithm 4.

To expand upon the findings in [6], and to reduce the uncertainty in the function recovery, the

method introduced in this thesis uses an `1 prior to encourage sparsity in the edge domain. We

note that `1 priors have been used before for this purpose. What is novel here is the introduction

of a weighted `1 prior that takes advantage of the joint sparsity occurring across multiple measure-

ment vectors. This is accomplished by using the variance based joint sparsity (VBJS) method, [3],

which was previously described in Section 2.2.2. The new weighted `1 prior is directly incorpo-

rated into (2.21), which is later used to form (3.7). With these tools, we are able to both further

quantify uncertainty as well as to reduce it.
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Chapter 3

Methodology

3.1 Problem Set-up

We consider the one-dimensional additive model given by (2.19). We assume that the model is

linear, i.e., g(X) = AX with A ∈ Rn×n, and the noise E additive Gaussian white noise (AGWN)

sampled from a Gaussian distribution, N [0, σ]. These assumptions yield the resulting statistical

model

Y = AX +E, (3.1)

where all random variables are sampled from a common probability space (Ω,Γ,P).

The underlying function we seek to recover is given by

h(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

40, 0.1 ≤ s ≤ 0.25

10, 0.35 ≤ s ≤ 0.325

2π
0.05
√
2π
e−(

s−0.75
0.05

)
2

, s > 0.5

0, otherwise,

(3.2)
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where s ∈ [0,1]. We chose (3.2 because it is almost identical to the example used in [6], thus

making our new method easier to compare to current state of the art.

Figure 3.1: Test function given in (3.2).

Figure 3.1 displays the function given in (3.2). Observe that there are several challenging

features to recover, including discontinuities, steep gradients and variation in scales. In particular,

it is often difficult to recover small and narrow features, such as the one shown for 0.35 ≤ s ≤

0.25. The exponential function (Gaussian hump) also may require significant data for adequate

resolution. Moreover, the recovery of each feature gets more difficult as we increase the variance

σ of the AGWN E in (2.19).

Similar to [6], the domain Ω is discretized uniformly with n = 80 grid-points in the interval

[0,1] and A ∈ Rn×n is constructed to model Gaussian blur for given σ

Blur(s) =
exp(−s

2

2σ2 )
√
πσ2

.
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That is, the entries of A are given by

[A]ij =
1

n

exp(
−(

i−j
n
)2

2σ2 )
√
πσ2

, 1 ≤ i, j,≤ n. (3.3)

In the model described in (3.1), the underlying structure of X is assumed to be sparse in the

edge domain, which we approximate using the polynomial annihilation (PA) technique introduced

in [5]. As discussed in Section 2.2, the PA operator is akin to higher order total variation (HOTV)

with nuanced differences in the derivation and normalization. For the remainder of this thesis, the

regularization operator L will refer to the PA operator with a order to be specified [5].

Recall that the posterior density derived in (2.21) uses the assumption that the noise is additive

and independent from the unknown random variable X . Given that E ∼ N [0, σ], it follows that

the distribution of the noise has probability density function

fE(e) = C1 exp{ −
1

2
(e − 0)T

1

σ2
(e − 0)} = C1 exp{ −

∣∣e∣∣22
2σ2

}, (3.4)

for some constant C1 ∈ R. Thus, the likelihood (2.20) is

fY ∣X(y∣x) = fE(y −Ax) = C1 exp{ −
∣∣y −Ax∣∣22

2σ2
}. (3.5)

The `1 norm is chosen for the prior distribution because the prior assumption about the sampled

vector x = X(ω), ω ∈ Ω is that it is sparse in the edge domain. Since the true function can be

modeled as a piecewise polynomial (and specifically not as a piecewise constant), it is better to

choose the second-order polynomial annihilation operator L on x to obtain Lx that is sparse on the

domain [0,1].1 In this way, for most of the domain, Lx can be assumed to closely approximate

1Indeed, an argument can be made for using a third order given the exponential term in (3.2). However, noise in the
model starts to interfere with the ability to recover the sparse domain. It is important to note that the standard gradient
(equivalently TV norm) is not appropriate, since the underlying assumption there would be that the gradient domain is
sparse, which it is not in this case for (3.2).
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zero, that is, there are only a few non-zero entries in the resulting vector Lx. Refer to 2.2.1 for a

detailed explanation of the `1 norm in regularization. Analogous to the `1 prior defined in (2.22)

for a sparse solution, we have

f̃X(x) = C2 exp{−α∣∣Lx∣∣1}, (3.6)

for some C2, α ∈ R with α > 0. Then the posterior distribution (2.21) becomes

f̂X(x) = C3 exp{ − α∣∣Lx∣∣1 −
1

2σ2
∣∣y −Ax∣∣22}. (3.7)

Finally, the goal is to recover samples of the posterior distribution described by the density

f̂X(x) in (3.7) using the Metropolis-Hastings algorithm with a weighted regularization function

described in Section 2.2 [3, 18] so that the weighted posterior distribution is

f̂X,w(x) = C3 exp{ − α∣∣WLx∣∣1 −
1

2σ2
∣∣y −Ax∣∣22}, (3.8)

in which the weighting matrix W ∈ RJ×J is calculated with Algorithm 1.

From MCMC techniques, the uncertainty of the recoveries of (3.7) and (3.8) may be quantified

using higher moment characterization of the MCMC chains and compared.

3.2 MAP Estimation

To initiate our MCMC sampling techniques and establish a more appropriate prior, we seek mul-

tiple measurement vectors. First, to obtain J measurement vectors, we sample from the random

variable Y to obtain the vectors y⃗ = [y1, y2, y3, . . . , yJ].

In order to apply the Metropolis-Hastings algorithm effectively, the data y⃗ is pre-processed

to reveal preliminary insights into the structure of the posterior density. To begin, we calculate
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point estimations using the MAP estimation technique described in Section 2.4.4. This allows us

to better interrogate the peak of the posterior distribution given in (3.7) and (3.8). Thus, for each

measurement vector we calculate its corresponding MAP estimate as

xiMAP ≡ argmax
x∈Rn

log [f̂X(x)]

= argmax
x∈Rn

{ log(C3) − (α∣∣Lx∣∣1 +
1

2σ2
∣∣yi −Ax∣∣

2
2)}

= argmin
x∈Rn

{α∣∣Lx∣∣1 +
1

2σ2
∣∣yi −Ax∣∣

2
2}, i = 1, ..., J. (3.9)

Because the constants C3, α, and σ are assumed to be unknown, these values must be tuned. For

this problem, C3 = 1, α = 1 and σ = 1. Consequently, ⃗xMAP = [x1MAP , x
2
MAP , x

3
MAP , . . . , x

J
MAP ]

offers information on the mode of the posterior distribution. Thus, the MCMC chain of the

Metropolis-Hastings algorithm may be initialized at the arithmetic average of these J MAP es-

timates. For the numerical experiments considered in this thesis we fix J = 20 and note that a

thorough exploration into the consequence of changing this parameter is left for future work.
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3.3 Metropolis-Hastings Algorithm

To sample from either the unweighted or weighted posterior probability densities (3.7) and (3.8)

using MCMC, the Metropolis-Hastings algorithm is needed. For more background and theoretical

details of the Metropolis-Hastings algorithm, refer to Section 2.5. The history of the algorithm is

further explained in Section 2.7.

The Metropolis-Hastings algorithm relies on an ergodic Markov chain that converges to the

corresponding posterior probability density [20, 14]. In the end, the mean of the Markov chain is

used to approximate a point estimate of the random variable X , while higher order information,

such as the variance of the chain, is used to build confidence intervals.

First, we construct a Markov kernel with stationary distribution that corresponds to the posterior

probability density. This allows the generation of a Markov chain (X(t)) using the kernel. The

chain is constructed to satisfy ergodicity so that the the Markov chain converges to appropriate

posterior probability density. Suppose that the vector x⃗0 is the solution to the MAP estimate (3.9)

and let ` be a predetermined length of the Markov chain.

The proposal distribution is denoted at q and the acceptance distribution is defined as α. In each

iteration of the chain, the proposal distribution q proposes a candidate state based on the current

state of the chain then the acceptance distribution is the probability of accepting the proposed

candidate as the next state of the Markov chain. For details, refer to Section 2.5.

In this thesis, the proposal distribution is chosen to be the Gaussian distribution, in which

xcand ∼ q(xk∣xk−1) becomes xcand ∼ N (xk−1,0.1) which is the Gaussian distribution with mean

xk−1 and standard deviation 0.1. Suppose that f̂X(x) is the posterior probability density. Notice

that the Gaussian distribution is symmetric so the acceptance distribution simplifies to

α(xcand∣xk−1) = min

⎧⎪⎪
⎨
⎪⎪⎩

1,
q(xk−1∣xcand)f̂X(xcand)

q(xcand∣xk−1)f̂X(xk−1)

⎫⎪⎪
⎬
⎪⎪⎭

= min

⎧⎪⎪
⎨
⎪⎪⎩

1,
f̂X(xcand)

f̂X(xk−1)

⎫⎪⎪
⎬
⎪⎪⎭

(3.10)
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because then q(xk−1∣xcand) = q(xcand∣xk−1). Refer to Section 2.5 for details.

Algorithm 4 Metropolis-Hastings Algorithm
Data: x⃗0 is arithmetic mean of the MAP estimates

Result: Markov chain M ∈ Rn×`

initialize x⃗0 and i = 1

while i ≤ ` do
propose xcand ∼ q(xk∣xk−1)

α(xcand∣xk−1) = min

⎧⎪⎪
⎨
⎪⎪⎩

1, f̂X(x
cand)

f̂X(xk−1)

⎫⎪⎪
⎬
⎪⎪⎭

sample u ∼ U[0,1]

if u < α then
accept the candidate so let xk = xcand

else
reject the candidate so let xk = xk−1

end

end

The iterations of the Markov chain from the above algorithm may be represented by a matrix

M ∈ Rn×` where n is the number of grid points and ` is the length chosen for the Markov chain.

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x01 x11 x21 . . . x`1

x02 x12 . . . x32

⋮ ⋮ ⋮ ⋱ ⋮

x0n x1n x2n . . . x`n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Each column of the matrix M represents one state in the Markov chain. An entry xij is the jth

grid point of the ith state in the Markov chain. Suppose that the constant B < ` is the burn-in rate

then the approximated posterior distribution f̂X(x) is

f̂(xi) =
1

` −B

`

∑
t=B+1

xti (3.11)
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Thus, after discarding the first B states in the Markov chain, the mean is taken of the remaining

chain to approximate the posterior distribution. For this problem, the number of iterations is chosen

to be 50000 iterations and the first half of the states are discarded. Therefore, ` = 50000 and

B = 25000.

In total, the Metropolis-Hastings algorithm described in Algorithm 4 is performed for both

the unweighted posterior probability density f̂X(x) described in (3.7) and the weighted posterior

probability density f̂X,w(x) described in (3.8).

3.3.1 Convergence Analysis

Theoretically, the chains in the Metropolis-Hastings algorithm should converge to their respective

posterior probability densities (3.7) and (3.8) (refer to Subsection 2.5.2 for the theoretical details

of convergence analysis). However, in practice, the convergence of the Metropolis-Hastings algo-

rithm is difficult to guarantee or even quantify.

One issue that becomes immediately apparent is where the Markov chain should be initiated.

Often times, one must approximately know the support of the posterior distribution to run a Markov

chain. Otherwise, the chain may appear to be converging to the stationary distribution, but in reality

miss the mode of the distribution of interest. Therefore, it is auspicious for the chain to begin within

the mode of the posterior probability density.

In Algorithm 4, the beginning state of the chain is the MAP estimate (2.24). the MAP estimate

is the peak of the mode of the posterior probability density. This starting state ensures that the

Markov chain is exploring the correct region of the posterior probability density [27].

In order to diagnose the convergence of the Markov chain, the trace plot and the acceptance rate

over time are used as indicators [15]. The trace plot is a plot of the state of the chain over time of

iterations. It is an indication of the convergence to the posterior probability density. Theoretically,
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if the Markov chain is at the posterior probability density, the states of the chain should not be

correlated and the trace plot should exhibit behavior as if the states are drawn from independent

identical distributions. Therefore, if the at a time of the Markov chain, there is high auto-correlation

between states, it implies that the Markov chain is not at the stationary distribution.

To quantify the convergence to the posterior probability density, the correlogram of the trace

plot is computed. The MATLAB package Autocorrelation Function (ACF) is used with the lag to

be 10 iterations [26]. Refer to Section 2.6 for the derivation of auto-correlation and the construction

of the correlogram. In this problem, the correlogram plots the lag from 1 to 5000.

Finally, the acceptance ratio is also used to indicate the convergence of the Markov chain. As

pointed out in Subsection 2.5.2, an acceptance rate that is too high may indicate the Markov chain

is stuck in a certain region of the posterior probability density and have not explored the entire

support of the density. In contrast, an acceptance rate that is too low may indicate that the proposed

states are too small compared to the current state. The chain may be moving too quickly on the

domain of density and may be caused by the variance of the proposal being too large. Further,

even with a low acceptance rate, it remains possible that the chain does not explore certain isolated

modes of the posterior probability density [27].

It is debatable what the ideal acceptance rate should be for the Metropolis-Hastings algorithm.

According to Roberts et al. (1997), the acceptance rate should be close to 1
2 for a one-dimensional

problem [27]. This metric was primarily derived from the use of the Gaussian proposal distribution.

42



3.4 MCMC with Unweighted and Weighted `1 Regularization

The true function to be recovered is (3.2) discretized into the vector x ∈ R80. In total, 20 samples of

Y = AX +E are drawn as described to compute the MAP estimates with each of the AWGN stan-

dard deviation: 0.25,0.50,0.75 and 1.00. The arithmetic mean of the signal-to-noise ratio (SNR)

in decibels of samples are 36.75,32.20,27.43, and 25.13, respectively. The SNR of a signal y ∈ RN

is obtained by calculating the ratio of its summed squared magnitude of the sample to that of the

noise e ∈ RN [2]. For each noise level, using the arithmetic mean of the MAP estimates as the

starting state, the Metropolis-Hastings algorithm in Algorithm 4 is ran to recover the unweighted

posterior probability density and another Metropolis-Hastings algorithm in Algorithm 4 is ran to

recover the weighted posterior probability density. When constructing the weights for the posterior

probability density, the hyper-parameter τ must be tuned [18]. Refer to Section 2.2 for the defini-

tion of the threshold τ . In general, an increase in the SNR of the sample corresponds to the need

for a greater τ value because a greater threshold for noise is needed. In this one-dimensional prob-

lem, the τ values are chosen to be 0.05,0.10,0.15, and 0.20, corresponding to increasing AWGN

standard deviation.

To quantify the convergence of the MCMC chains of the Metropolis-Hastings algorithm, sev-

eral convergence checking plots are presented in 4. They compare the convergence rates and the

distributions of the MCMC chains through standard MCMC analysis described in Section 2.5.
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Chapter 4

Results and Discussion

4.1 Numerical experiments

We now present results for recovering the function in (3.2) using the MAP estimate, the MCMC

method using the (unweighted) posterior in (3.7), and the newly proposed weighted MCMC tech-

nique which uses the weighted posterior in (3.8) . For clarity of presentation, solid red will always

be used to plot the MCMC recovery without weights (which we will refer to as the unweighted

MCMC), while solid blue will denote the weighted MCMC.

4.1.1 Recovery of Unknown Posterior Probability Density

Figure 4.1 shows the means of the MAP estimates and MCMC with the unweighted posterior

probability density (3.7). The MAP estimate mean is used as the first state to initialize the Markov

chains in Algorithm 2. Observe that both the MAP estimate and the unweighted MCMC mean

become less accurate as the standard deviation of the noise random variable is increased.

The unweighted MCMC is able to explore the region of the posterior probability density (3.7)
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that captures the peak x = 10 better than the MAP estimate for all tested levels of noise. On the

other hand, the unweighted MCMC mean appears to be influenced by the increase in noise more

than the MAP estimates. This can be observed in the regions where x = 0, where the unweighted

MCMC mean has relatively greater oscillatory behavior when the noise standard deviation is in-

creased to σ = 0.75 and σ = 1.00.

(a) σ = 0.25, SNR = 36.75 dB (b) σ = 0.50, SNR = 32.20 dB

(c) σ = 0.75, SNR = 27.43 dB (d) σ = 1.00, SNR = 25.13 dB

Figure 4.1: MAP mean and the Unweighted MCMC

The main premise of this investigation is to use information that comes from the numerical

convergence properties of the sparse domain estimate to design weights that distinguish smooth

regions from areas where jump discontinuities occur. It is the weight vector in (3.8) that allows a

more accurate posterior for the MCMC. Figure 4.2 shows the weights constructed by Algorithm 1

in Section 2.2. The regions where the edge domain is assumed to be near-zero correspond to the

higher weights while the regions where the edge domain is assumed to be non-zero correspond to

near-zero weights. As is expected, the weights become less meaningful as the amount of noise is
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increased, or equivalently as the SNR decreases. In particular observe that for standard deviation

σ = 3, the constructed weights are no longer as helpful in determining sparse regions. Hence

the weighted and unweighted MCMC reconstructions become correspondingly less distinctive.

Although not a part of this investigation, it should be noted that with increased resolution (i.e. using

more than 80 grid-points between [0,1]) will improve the approximation of the sparse domain.

Other non-linear enhancements, such as those discussed in [3], also show promise in reducing the

impact of noise on the sparse domain regularization term. These ideas will be considered in future

work.

(a) σ = 0.00, SNR =∞ dB (b) σ = 0.25, SNR = 36.75 dB (c) σ = 0.50, SNR = 32.20 dB

(d) σ = 0.75, SNR = 27.43 dB (e) σ = 1.00, SNR = 25.13 dB (f) σ = 3.00, SNR = 15.76 dB

Figure 4.2: Weights constructed using the Algorithm 1

Figure 4.3 shows the mean values of the unweighted and weighted chain. Although both for-

mulations see worse recovery with higher noise, the weighted MCMC show a better mean conver-

gence to the true function. This difference is particularly pronounced in the regions that are sparse

in the edge domain, which is not surprising when the weights plotted in Figure 4.2 are taken into

consideration. In the regions without edges, the weights are relatively high, and thus smoothness is
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heavily enforced. Therefore, the mean of the weighted MCMC is smoother in regions correspond-

ing to the smooth regions in h(x) in (3.2).

(a) σ = 0.25, SNR = 36.75 dB (b) σ = 0.50, SNR = 32.20 dB

(c) σ = 0.75, SNR = 27.43 dB (d) σ = 1.00, SNR = 25.13 dB

Figure 4.3: Unweighted MCMC and weighted MCMC

The 95% confidence intervals of of the chains are calculated and displayed in Figure 4.4. Com-

paratively, the confidence interval in for the weighted MCMC is much tighter. In particular, this

difference is again more pronounced in regions where the edge domain of the true function is

sparse.
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(a) σ = 0.25, SNR = 36.75 dB (b) σ = 0.25, SNR = 36.75 dB

(c) σ = 0.50, SNR = 32.20 dB (d) σ = 0.50, SNR = 32.20 dB

(e) σ = 0.75, SNR = 27.43 dB (f) σ = 0.75, SNR = 27.43 dB

(g) σ = 1.00, SNR = 25.13 dB (h) σ = 1.00, SNR = 25.13 dB

Figure 4.4: Unweighted MCMC (left) and weighted MCMC (right) with the 95% their respective
confidence intervals
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4.1.2 Convergence Analysis of MCMC

(a) σ = 0.25, SNR = 36.75 dB (b) σ = 0.50, SNR = 32.20 dB

(c) σ = 0.75, SNR = 27.43 dB (d) σ = 1.00, SNR = 25.13 dB

Figure 4.5: Auto-correlation for unweighted MCMC.

In Figure 4.5, Figure 4.6, Figure 4.7, and Figure 4.8, different entries of the recovered x ∈ R80

were chosen for each plot. A plot label of x = v ∈ R represents that the plot corresponds to the

mean value of the entries that represent region hinv(v) in the domain where the function h is the

true function (3.2).

Figure 4.5 plots the auto-correlation of the unweighted MCMC against the lag described in

Section 2.6, while Figure 4.6 does the same plot for the weighted MCMC. In all chosen regions of

the domain, the auto-correlation of the weighted MCMC is clearly smaller in magnitude as the lag

increases. Note in particular that the auto-correlation decays to zero and begins oscillating around
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zero much earlier for the weighted MCMC, indicating that the weighted MCMC may converges

to the respective posterior probability density earlier as well. This will also be the topic of future

investigations, as it may be possible to develop more efficient and adaptive algorithms that take

advantage of this apparent faster convergence in smoother regions.

(a) σ = 0.25, SNR = 36.75 dB (b) σ = 0.50, SNR = 32.20 dB

(c) σ = 0.75, SNR = 27.43 dB (d) σ = 1.00, SNR = 25.13 dB

Figure 4.6: Auto-correlation for weighted MCMC

Figures 4.7 and 4.8 display trace plots at chosen regions of the domain. One indication that

a Markov chain is converging well to the posterior is that its corresponding trace plots appear to

contain values sampled from independent, identical distributions. Similarly, an indication that the

posterior probability density provides a good recovery to the true function is that the the points in

the trace plots hover around the true value [15].

Observe that the trace plots of the unweighted MCMC appear to have much greater correlation

between neighboring samples. By contrast the trace plots for the weighted MCMC exhibit less
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correlation, in particular in the smooth regions of the domain. It is also evident that the trace plots

of the weighted MCMC yield much closer values to the true function (given by the red line on each

graph). This result corroborates both the MCMC mean plots and the auto-correlation plots.

(a) σ = 0.25, SNR = 36.75 dB (b) σ = 0.50, SNR = 32.20 dB

(c) σ = 0.75, SNR = 27.43 dB (d) σ = 1.00, SNR = 25.13 dB

Figure 4.7: Trace plots with unweighted MCMC
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(a) σ = 0.25, SNR = 36.75 dB (b) σ = 0.50, SNR = 32.20 dB

(c) σ = 0.75, SNR = 27.43 dB (d) σ = 1.00, SNR = 25.13 dB

Figure 4.8: Trace plots with weighted MCMC

Lastly, Figures 4.9 and 4.10 show the acceptance rates of the unweighted MCMC and the

weighted MCMC. Both acceptance rates have little variation and appear to hover around some

constant. However, the acceptance rates for all selected regions of the weighted MCMC is lower.

In Section 2.5, it was posited that a one-dimensional problem with a Guassian proposal distribu-

tion should ideally obtain an acceptance rate of about 1
2 [27]. This benchmark, however, is far

from conclusive. Factors such as the posterior probability density and proposal distribution’s may

influence the acceptance rate.
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(a) σ = 0.25, SNR =
36.75 dB

(b) σ = 0.50, SNR =
32.20 dB

(c) σ = 0.75, SNR =
27.43 dB

(d) σ = 1.00, SNR =
25.13 dB

Figure 4.9: Acceptance ratio of unweighted MCMC

(a) σ = 0.25, SNR =
36.75 dB

(b) σ = 0.50, SNR =
32.20 dB

(c) σ = 0.75, SNR =
27.43 dB

(d) σ = 1.00, SNR =
25.13 dB

Figure 4.10: Acceptance ratio of weighted MCMC

4.2 Discussion

The numerical results demonstrate that adding the spatially varying weights to the prior in (3.6)

to form (3.8) not only improve the recovery of the unknown function but also increased the con-

fidence of the recovery. Based on these results, we would anticipate similar improvements in

multi-dimensions.

In particular we note that in Figure 4.3, the recovery using the weighted is noticeably better

than that from the unweighted version, and that this is true for all noise levels that were tested.

The improvement is the most pronounced in the flat regions, corresponding to 0 values in the edge

domain [3]. This is exactly what the weighted MCMC is intended to do – in smooth regions the

posterior has a larger penalty on the prior since we expect it is a more reliable source than the data.
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In addition to determining if the new method is able to improve function recovery, that is, the

point estimate reconstruction, another important metric to measure is the variance of the resulting

MCMC chain of the recovered posterior probability density. The variance of the MCMC chain

provides insight into the rate of convergence as well as (of course) the variance of the posterior

probability density itself. From Figure 4.4 it is evident that the weighted MCMC chain yields

lower variance than the unweighted MCMC chain does. The 95% confidence interval constructed

for the weighted MCMC chain appears to be much tighter than that of the unweighted MCMC at

all noise levels. This difference is especially pronounced in the flat regions where the values are

zero in the edge domain. This is particularly significant since a main reason practitioners choose to

perform MCMC rather than use a traditional MAP estimate for solving inverse problem is so that

they are able to quantify uncertainty. This is especially important when the the solution must be

later used for inference or other downstream processing. Hence improving the confidence of the

recovered solution should be of significant interest to a wide range of scientific applications.

This improvement is further corroborated by the convergence analysis. Comparing the auto-

correlation plots in Figures 4.5 and 4.6, it is apparent that the auto-correlation approaches 0 at a

relatively much faster rate for the weighted MCMC method. This suggests that the weights allow

the MCMC to converge to the posterior probability density faster and has potentially important

computational efficiency consequences. For example, a tolerable auto-correlation can be incor-

porated into an algorithm telling a practitioner when the solution is effectively recovered and in

what region, so more resources can be spent interrogating other more critical regions of interest.

According to Figures 4.7 and 4.8, the trace plots of the weighted MCMC appear to have noticeably

lower correlation between the states. Ideally, the trace plots should appear to have each point sam-

pled from identical, independent distributions (i.i.d.) centered around the mean, which suggests

that the solution is “well-mixed” [15]. Thus, these plots provide another piece of evidence that

insinuates the weighted MCMC method yields better convergence properties.
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Chapter 5

Conclusion and Future Work

This thesis developed a method to ascertain the unknown recovery and uncertainty quantification

of a one-dimensional inverse problem through the Bayesian framework, specifically by using the

Metropolis-Hastings Algorithm. However instead of using the standard (unweighted) sparsity prior

to create the posterior probability density, a new weighted sparsity prior was generated using the

variance based joint sparsity (VBJS) method. The proposed weights are intended to variably penal-

ize distinct regions of the domain depending on the variance of the unknown samples in the edge

domain as described in Section 2.2. By imposing these weights on the penalty in the edge domain,

this thesis demonstrated that marked improvements can be made to the convergence properties of

MCMC for a one-dimensional inverse problem. In turn, this lead to improved computational ef-

ficiency, as fewer iterations are needed. The new method also yielded tighter confidence intervals

constructed from the Markov chains constructed by the Metropolis-Hastings algorithm.

Our new method is promising and many new research ideas should be explored to further

improve function (or image) recovery as well as provide more information about the uncertainty

quantification of the inverse model. For instance, a similar methodology could be applied to prob-

lems of higher dimensions, in which ensuring the convergence of the MCMC is traditionally very

difficult. Adding weights to the prior may allow better convergence to the posterior probability
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density, which is crucial in problems of higher dimensions.

Another idea that should be explored is using first-moment information such as expected value

to improve the construction of the weights. In this thesis, the variance among different MAP

estimates is used to construct the weights. However, it should also be the case that zero regions in

the edge domain should have an expected value near zero. Thus a non-zero mean of a region in the

edge domain may indicate an edge while a near-zero mean may indicate that the variance in that

region stems from noise.

Moreover, the use of the `2 norm for the prior should be experimented with in the weighted

posterior probability density. The reasoning provided in Chapter 3 for choosing the `1 norm is to

enforce sparsity in the edge domain. However, if the weights are chosen so that they sufficiently

enforce sparsity, it should be acceptable to use the `2 norm, which typically yields more computa-

tionally efficient methods. This may also provide further insights into the unknown function.

Finally, it is important to try this method on real-world problems. As noted previously there

are many applications for which this methodology would be useful. For example, in synthetic

aperture radar (SAR) imaging, multiple measurements are collected in the phase history domain

(essentially treated as Fourier data). This would yield a different transform matrix A in the model.

Photoacoustic and ultrasound imaging provide other interesting applications. In all cases, it is

often useful to know more than a point estimate, and specifically to be able to obtain a solution

distribution. All of these topics will be explored in future work.
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