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Abstract

The evolutionary dynamics of a finite population can be modeled on graphs, where in-

dividuals inhabit graph nodes and competing types reproduce, migrate, and die. We

explore the dynamics of the Moran process, where a mutant type and a resident type

compete for fixation influenced by their reproductive advantages. Previous literature

has explored how characteristics of graphs can affect the likelihood of mutant success.

In particular, related research explores graph structure, which influences offspring mi-

gration, and graph coloring, which models environmental impacts on reproduction.

We expand on this work by evaluating mutant fixation on two-colored two-clique and

clique-like graphs, representing connected islands of nodes with high-quality resources

and low-quality resources. This thesis explores how increasing connectivity between

and within these islands, varying island sizes, changing fitness heterogeneity for both

types, and modeling resource depletion impact the fixation probability of a mutant

type. Firstly, we find that as environmental variability increases, increasing clique

inter-connectivity typically decreases fixation probability. Secondly, we show that

increasing the relative size of low-quality resource cliques increases fixation proba-

bility. Thirdly, we find that fixation probability is generally highest when residents

but not mutants are susceptible to environmental heterogeneity. Lastly, we conclude

that resource depletion can actually improve mutant success rates. Overall, mutants

perform better with cliques–specifically those that have fewer inter-connections, more

poor-quality nodes, less environmental variation, and more resource degradation.
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Chapter 1

Introduction

Section 1.1

Evolutionary Dynamics on Graphs

The study of evolutionary dynamics explores the interaction and success of various

strategies or types within a reproducing population [1, 11]. Evolutionary processes

are influenced by reproduction, the production of offspring, mutation, or the creation

of new (potentially favorable or unfavorable) types, and selection, or the survival of a

type based on its reproductive success [2, 14, 25]. These processes are also very much

influenced by randomness [17]; in addition to intrinsic differences in the reproduction

of different types, environmental variations influence how these evolutionary interac-

tions occur [27]. We study how reproductive, spatial, and environmental differences

characterize and impact evolutionary interactions.

1.1.1. Moran Process

We explore in this paper the likelihood of survival of a mutant type in a finite popula-

tion. There are two commonly known stochastic processes for evolutionary dynamics:

the Moran process and the Fisher-Wright process [27]. The former process involves a

1



1.1 Evolutionary Dynamics on Graphs Introduction

single individual giving birth at each time period, allowing individuals to survive for

multiple generations, while the latter involves simultaneous births of all individuals

resulting in a completely new generation at each time step [26, 27]. To model our

exploration of mutant survival in this paper, we use the Birth-death Moran process

to simulate the birth and death of individuals over time. A more detailed description

of the Moran process is as follows.

Take a population of size N , comprised of NA individuals of type A, or mutant

individuals, and NB individuals of type B, or resident individuals [25, 27]. The two

types could represent any pair of competing groups, such as alleles or phenotypes

[5]. We start with 1 individual of type A and N − 1 individuals of type B [9], as an

important question in evolutionary dynamics asks what occurs following the inception

of a mutant [3]. In the simplest Birth-death Moran process, at each time step t, one

individual is randomly chosen to reproduce and one individual is randomly chosen

to die [25]. The total population size remains constant, and either type A gains

an individual and type B loses one, type B gains one and type A loses one, or the

population sizes of both types A and B remain the same.

In the non-neutral Birth-death Moran process, we assume that individuals of type

A have a reproductive rate of ra = r > 1 and that individuals of type B reproduce

at a rate of rb = 1, so individuals of type A have an advantage in selection [25]. In

this case, an individual is chosen to reproduce based on its relative fitness, and once

this reproduction occurs, a random individual is chosen to die [25]. Given i mutants

in the population, the probability that the number of mutants increases is [9]

pi,i+1 =
r · i

r · i+N − i
· N − i

N − 1
(1.1)

while the probability of decreasing the number of mutants in the population is [9]

2



1.1 Evolutionary Dynamics on Graphs Introduction

pi,i−1 =
N − i

r · i+N − i
· i

N − 1
. (1.2)

Typically in some evolutionary process, after long periods of time, only one type

survives [29]. In the Moran process, there is no possibility of coexistence between

types, and so at a certain time step the process will end in one of the two absorbing

states with either 0 or N mutants [25]. This means that p0,1 = pN,N−1 = 0 [6, 9]. With

some algebraic manipulation of the above equations, we discern that the probability

of a mutant fixating, ρ, in a homogeneous population where all nodes have an equal

likelihood of being replaced is equal to [7, 25]

ρ =
1− 1

r

1− 1
rN

. (1.3)

We find that in large finite populations, where N >> 1 [25],

ρ ≈ 1− 1

r
(1.4)

These equations reveal that population size does not necessarily guarantee fixation

or extinction; rather, success in this randomized evolutionary process is influenced

by a variety of factors, including the degree to which mutants are reproductively

advantageous [25].

Some other forms of update rules include the Death-birth process, in which a

random individual is replaced by an individual’s offspring, chosen with probability

relative to fitness (similar to its reproductive rate), or Imitation, where a random

individual dies and its neighbor is chosen reproduce based on its fitness (in this case

the offspring can replace its parent) [1]. In this paper, we exclusively focus on the

Birth-death Moran process described above.

3



1.1 Evolutionary Dynamics on Graphs Introduction

1.1.2. Graph Theory

The dynamics of the Moran process can be modeled using graphs. In this literature,

the vertices of a graph translate to the individuals of a population and weighted

edges model dispersal rates that capture how offspring move into nearby vertices [4].

These edges between nodes can be undirected, meaning that adjacent individuals can

replace each other, based on the degree of the node and the individual’s fitness [10].

Undirected edges represent symmetric interactions between individuals [18], so an

edge between vertex i and j denotes that an offspring from vertex i can replace the

individual in vertex j and vice versa [25]. While mathematical representations, these

graphs can represent real-world biological and ecological phenomena. Evolutionary

graphs could describe processes anywhere from cell structure and hierarchy within

multi-cellular organisms to social and cultural relations between humans [25].

One particular metric of interest in these graphs is fixation probability, ρ, or the

likelihood that a mutant individual will completely overtake the population [4], which

is averaged over all states starting with one mutant. This probability influences the

rate of evolution [28]. Previous work has shown that the structure of a graph can

greatly influence the success of a mutant strategy and evolutionary dynamics [9].

Varying graph structure can represent a variety of real-world phenomena. The

spatial arrangement of some ecosystems, like rivers, can influence reproduction and

migration of species, similar to how the structure of colonic crypts can impact the

growth of cancer cells [22]. For these reasons, to model how natural processes work,

we observe how evolutionary dynamics change with various graph structures. The

method of observing how spatial structure interacts with evolutionary dynamics has

become an important part of mathematical descriptions of evolutionary processes

[21].

The Moran process on the complete graph, or a graph with undirected edges be-
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1.1 Evolutionary Dynamics on Graphs Introduction

tween all nodes, represents evolutionary dynamics on a well-mixed population [13],

and is the general comparison baseline for evaluating the fixation probability in cer-

tain graph structures [22]. If a graph increases the fixation probability of a mutant

compared to that of the complete graph when the mutant is advantageous (r > 1)

and comparably decreases the fixation probability when the mutant is disadvanta-

geous (r < 1), then the graph is an amplifier of selection [22]. Some well-known

amplifiers are stars [4], or graphs with one central node of degree N − 1, and super-

stars, or graphs with chains of vertices and a central node with a large out-degree

and low in-degree [15]. In fact, Broom et al. show that certain graph structures can

increase fixation probability, as stars have the highest fixation probability, followed

by star-like graphs, while regular graphs tend to have the lowest likelihood of fixation

[19]. In contrast, if the fixation probability on a particular graph structure increases

when the mutant is disadvantageous and decreases when the mutant is advantageous,

compared to the complete graph, then the graph is a suppressor of selection [22].

Another aspect of the structure of these graphs in evolutionary dynamics is with

regards to the isothermal theorem. The theorem states that a large number of graph

structures, called isothermal graphs, have fixation probabilities that are the exact

same as the fixation probability for the well-mixed population [24]. Previous work

in this field also found that the initial graph position of the mutant also matters, as

there is a negative relationship between the degree of the inception vertex and the

likelihood of fixation [19]. Additionally, there is a positive relationship between the

fixation probability of a mutant in a randomly placed node and the diversity of vertex

degrees in a graph [20].

Aside from these effects of graph structures and reproductive fitness of types on

fixation probability, environmental factors can also influence the success of a mu-

tant type in fixating. For example, ecological variation through the availability of
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resources could exert favorable or unfavorable constraints on an individual, affecting

their reproductive rate [11]. Known as resource heterogeneity [11], this could impact

any and all types within a population, thereby also affecting interactions between the

types.

1.1.3. Resource Heterogeneity

Looking at resource heterogeneity and environmental variation allows to further un-

derstand a variety of real-world processes. Variation across environments is everywhere–

from the varied effectiveness of a drug on cancerous cells, to habitat diversity and its

impact on breeding and species reproduction, to how an individual’s education and

familial environment affect their future salary and success [16].

Current literature explores the impact of resource heterogeneity in graph models of

evolutionary dynamics using coloring, where a vertex’s color represents the quality of

resources it provides [16], or a proxy for the fertility of the individual that resides in the

vertex [30]. While the number of colors, or environmental conditions, in a graph can

be up to N , where each vertex is a different color, we follow a model with two colors,

or two levels of resource quality [11]. Vertices that provide high-quality resources to

an individual positively benefit the individual’s reproductive fitness, and vertices with

low-quality resources are a detriment to an individual’s fitness. The difference between

the high-quality resource locations and low-quality resource locations translates to the

resource heterogeneity of the graph [11]. Current methods in this field assume that

the effect of a resource level in an environment on an individual’s fitness varies by

type; for all types, the resulting change in fitness is proportional to the standard

deviation of the reproductive fitness [11].

The resulting fitnesses of types A and B in a resource heterogeneity model can

be seen below, where r represents the type’s mean fitness, σ represents the standard

deviation for the type’s fitness, and cv represents the color c at vertex v, so cv = 1 at

6



1.2 Outline Introduction

high-quality resource vertices and cv = −1 at low-quality resource vertices [11].

fa,v = ra + σa · cv (1.5)

fb,v = rb + σb · cv (1.6)

Four main identifications that result from this model include symmetric interac-

tions, where σa = σb, also known as background fitness heterogeneity, asymmetric

interactions, where σa = −σb [11], mutant heterogeneity, where σb = 0, and resident

heterogeneity, where σa = 0 [16].

Dynamic environments are also of interest. These situations could translate to

high-quality resources and beneficial conditions lessening over time, such as depleting

nutrients or worsening climate [16]. Previous literature has found that the likelihood

at which these resources “move” can in some cases amplify the effects of heterogeneity

on fixation, and in other cases decrease how heterogeneity impacts fixation probability

[16].

Section 1.2

Outline

This paper seeks to extend current literature regarding the interplay between re-

source heterogeneity, graph structure, and fixation probability. We first explore how

increasing the connectedness of a graph influences the likelihood of fixation as fitness

changes across various environments. We study this increase on the number of con-

nections within islands (cliques or clique-like subgraphs) and between islands. Our

results reveal that intra-connectivity plays much less of a role on mutant success than

inter-connectivity between cliques. We find that increasing the inter-connectedness of

7



1.2 Outline Introduction

a two-clique or clique-like graph tends to decrease the fixation probability of a single

mutant as both type A and type B experiences more variable environments.

We also try to understand how relative sizes of these subgraphs influence fixation

probability. We find that while the impacts on fixation probability are slight, mutants

do see benefits to two-clique graphs with larger low-quality resource cliques compared

to high-quality resource cliques. The trends in inter-connectivity on balanced two-

clique graphs are also verified for these unbalanced two-clique graphs.

Consistent with previous literature’s exploration of fitness heterogeneity, we also

question how varying this fitness heterogeneity model affects fixation probability; that

is, how relative fitness deviations between type A and type B individuals influences

fixation. For two-clique graphs with less inter-connectivity, we find that background

fitness heterogeneity–when mutant types and resident types face the same environ-

mental variation–allows the mutant to perform better the more advantageous they

are (when they have a larger mean fitness). However, as inter-connectivity between

these cliques increase, other heterogeneity models perform better. Specifically, when

only residents face environmental variation, mutants perform best.

Lastly, we explore how dynamic environments affect the fixation probability of a

population. We show that incorporating resource depletion actually allows the mutant

to succeed more often, and actually helps some graph structures that typically inhibit

mutant fixation become structures that aid in mutant fixation.

8



Chapter 2

Model and Methods

Section 2.1

Two-Clique and Clique-Like Graphs

Previous work in evolutionary graph theory has explored the implications of popu-

lation structure and resource heterogeneity on fixation probability for a variety of

different graphs. For example, Kaveh et al. exactly compute a formula for the fixa-

tion probability of biregular, properly-two colored graphs, including bipartite cycles,

stars, lattices, and complete graphs [16]. Others have looked at clique-based graphs

of one-color, formed by combining cliques with isolated vertices and cycles, and have

found graph variations that can change from amplifiers to suppressors [12].

In contrast to properly-two colored or bipartite graphs, where adjacent vertices are

different colors, or clique graphs with only nodes of one type, we seek to understand

the implications of connections between nodes of similar types and different types.

Forming islands, these clusters of similar environments can mimic larger connected

regions with similar quality resources, allowing individuals of any type to move freely

among nodes with no environmental changes, while being able to travel to different

terrain as well. We observe the evolutionary result of increasing the connectivity both

9



2.1 Two-Clique and Clique-Like Graphs Model and Methods

within and between these islands of similar nodes. We characterize these connected

islands, or subgraphs, or using the standard graph theoretical definition of a clique. In

relation to evolutionary dynamics and resource heterogeneity, we refer to like-nodes as

vertices that have the exact same color, or represent the same environmental habitat

or resource quality level.

Definition 2.1 (Two-Clique Graph). A clique of a graph G is a maximal complete

subgraph of like-nodes [8]. A two-clique graph is a graph G comprised of two cliques,

[23], C1 and C2, such that ∃ at least one v1 ∈ V (C1) and at least one v2 ∈ V (C2)

where (v1, v2) ∈ E(G).

In conjunction with using maximal complete subgraphs, as seen in Figure 2.1

a), we expand the graphs we consider by relaxing our notion of two-clique graphs

to include two-clique-like graphs, which have cyclic islands instead of completely

connected islands. This allows us to observe the effect of intra-connectedness within

an island (clique or clique-like subgraph) on a mutant’s ability to fixate. Figure 2.1

b) provides examples of graphs that are two-clique-like.

Definition 2.2 (Two-Clique-Like Graph). A subgraph of graph G is clique-like if

it is a maximal cyclic subgraph of like-nodes. A two-clique-like graph is a graph G

comprised of two clique-like subgraphs, CL1 and CL2, such that ∃ some vl1 ∈ V (CL1)

and vl2 ∈ V (CL2) where (vl1, vl2) ∈ E(G).

Additionally, as consistent with literature, we focus on graphs with only two col-

ors, each coloring one clique. Subsequently, we color low quality resource nodes red,

and high quality resource nodes green. In addition to varying the amount of con-

nections within these red and green cyclic and complete subgraphs, we also explore

how increasing the number of inter-connectedness, or adjacencies between islands, can

impact fixation probability. In Figure 2.2, we display a number of common graphs

10



2.1 Two-Clique and Clique-Like Graphs Model and Methods

Figure 2.1: Two-Clique and Clique-Like Graph Examples

Part a) provides examples of balanced (left-most) and unbalanced two-clique graphs.
The two shades of grey represent different node types, and the complete subgraphs of
each type of node form cliques. Part b) provides examples balanced (left-most) and
unbalanced two-clique-like graphs.

11



2.2 Algebraic Approach & Algorithm Model and Methods

Figure 2.2: Common Two-Clique and Clique-Like Two-Colored Graph Examples

Three different classifications of graphs are shown here, which capture the spread of
intra-connectivity and inter-connectivity that we explore in this paper.

that we explore in this paper, along with associated names that we use to describe

them. In these graphs and others that we initially explore, unless otherwise specified,

we focus on the background heterogeneity fitness model, where mutant and resident

types experience the same environmental fluctuations (σ).

Section 2.2

Algebraic Approach & Algorithm

In order to calculate fixation probabilities given a graph structure, coloring, and

fitnesses for each type in the population, or ρ(G,C, r, σ), we utilize two approaches: an

algebraic approach to numerically compute exact fixation probability, and a simulated

approach averaged across multiple runs until mutant fixation or extinction. The

algebraic approach is as follows.

Following the method outlined by Hindersin and Traulsen (2014), we find the

transition matrix Ts× s of the Markov chain of the Moran process graph states,

where t is the number of transient states of the model, a is the number of absorbing

12



2.2 Algebraic Approach & Algorithm Model and Methods

states, and s = t + a is the total number of states [9]. In the case of the Moran

process, we have that a = 2. The matrix Ts× s is comprised as follows, where Qt× t

captures the transition probabilities between transient states and Rt× a captures the

transition probabilities from transient to absorbing states [9].

Ts× s =

Qt× t Rt× a

0a× t Ia× a

 (2.1)

We compute the fundamental matrix of the Markov chain, F, by

Ft× t = (I −Q)−1 (2.2)

and then compute, Φ, which calculates the absorption probabilities based on the

expected time spent in transition states given by F and the probabilities from tran-

sition to absorbing states given by R [9].

Φt× a = Ft× t ·Rt× a (2.3)

The i, j-th entry of Φ is the probability of arriving to absorbing state j from

transient state i [9]. In our model, fixation probability, ρ, is defined as the average of

the absorption probabilities for each i transient state starting with one single mutant

and transitioning to the absorbing state m with all mutants.

ρ =

∑n
i=1Φi,m

n
(2.4)

We provide an example of the calculation of this transition matrix of the Markov

chain Moran process using a cycle graph with N = 4 [9], with the states as shown

in Figure 2.3. Because any node can contain a mutant or resident type, there are in

total 2N possible graph states. However, the symmetry of the cycle greatly reduces

13



2.2 Algebraic Approach & Algorithm Model and Methods

Figure 2.3: Transient and Absorbing States for 4-Node Cycle

The five states above represent the unique graph states for a cycle of four nodes.
While there are 24 = 16 possible states, due to the symmetry of the cycle, there are
only three transient and two absorbing states. It can be seen in the figure that states
4 and 5 and absorbing states, since they do not transition to any other state but
themselves.

the number of transient states we need to consider. Assuming that the fitnesses fa = r

and fb = 1, the transition matrix is provided below.

T5× 5 =



2
r+3

r
r+3

0 0 1
r+3

1
2(r+1)

1
2

r
2(r+1)

0 0

0 1
3r+1

r
3r+1

2r
3r+1

0

0 0 0 1 0

0 0 0 0 1


(2.5)

.

Here, the mutant type is represented by the orange nodes, and the resident type

is represented by black nodes. In the above matrix, each row i represents a state,

st in Figure 2.3, and each column j represents st+1, the state at the next time step,

so the resulting ij-th entry corresponds to the transition probability between st and

st+1.

We turn to the application of this approach on larger graphs, specifically related to

the two-clique and clique-like two-colored graphs of interest in our paper. Figure 2.4

illustrates the number of transition states to be considered for a singly-connected two-

clique graph with two colors, represented the the shading of the black (resident) and

14



2.2 Algebraic Approach & Algorithm Model and Methods

Figure 2.4: Transient and Absorbing States for Singly-Connected Two-Clique 6-Node
Graph

The figure displays the 20 unique states for the singly-connected two-clique graph.
Although the graph has two colors, or node-types, which could reduce the number
of potential symmetries in graph states, there still remains symmetry between the
non-singly-connected nodes in the clique subgraphs. Due to the exponential nature
of the number of these graph states, an algorithm was created to generalize for all
graphs with and without symmetries by looking at each of the 2N states.

15



2.3 Simulation Approach Model and Methods

orange (mutant) nodes. While there are not, in this case, 26 states to be considered,

the exponential possibility of the number of transition states led us to create an

algorithm for computational efficiency and generalizability in solving for transition

matrices and consequently the fixation probability of any graph.

2.2.1. The Algorithm

The overall premise of the algorithm is as follows.

• Initialize a graph, encoding all 2N graph permutations of individual positions

as binary strings.

• Find the next possible graph states for each graph state.

• Calculate probabilities of transitioning (Ts× s) from any state of the graph to

any other state of the graph using adjacent vertices and vertex fitnesses.

• Perform the Hindersin & Traulsen calculations to find ρ =
∑n

i=1 Φi,m

n
for all n

transient states starting with one single mutant and transitioning to the ab-

sorbing state m with all mutants.

The pseudocode in the following written algorithm captures the general encoding

of a graph as a binary state and a return of the transition matrix, which is used to

compute fixation probabilities.

Section 2.3

Simulation Approach

Another method of solving for fixation probability does not include exact numerical

computational results, but instead simulates the Moran process over thousands of

runs. The approach we use is the Monte Carlo algorithm. This type of algorithm

16



2.3 Simulation Approach Model and Methods

Algorithm Transition Probabilities

a← Vertex Adjacency Dictionary
b← Adjacency Binary States Dictionary
c← Transition Matrix

procedure Get Adjacent Graph States(a)
for state = 1, 2, . . . 2size(a) do

Convert state into binary number string bstate
while index < length(bstate) do

Neighbor 1← Replace index in bstate with 0
Neighbor 2← Replace index in bstate with 1
b← Neighbor 1, Neighbor 2

end while
end for
return b

end procedure

procedure Calculate Fitness(vertex)
if vertex has mutant then

if vertex is red then
return 1 - σ

end if
return 1 + σ

else
if vertex is red then

return r - σ
end if
return r + σ

end if
end procedure

procedure Find Transition Probability(frombstate, tobstate)
Find the vertex where a mutant or a resident is added from frombstate to

tobstate
Find all neighboring vertices S that also could produce an offspring of that type
d← Neighbor Vertex Fitness Sum
e← Total Vertex Fitness Sum
for neighbornode in S do

d← d+ Calculate Fitness(neighbornode)
degree(neighbornode)

end for
while node < length(fromstate) do

e← e+Calculate Fitness(neighbornode)
end while
return d

e

end procedure
17



2.3 Simulation Approach Model and Methods

Algorithm Transition Probabilities

procedure Create Transition Matrix(b)
for bstate1 from 1 . . . 2size(a) do

for bstate2 from 1 . . . 2size(a) do
if (bstate1, bstate2) in b then

c← Find Transition Probability(bstate1, bstate2)
else

c← 0
end if

end for
end for
return c

end procedure

uses the statistical output from these runs to estimate fixation probability [18]. The

steps of the simulation algorithm follow:

• Initialize a state vector of the graph n⃗ of length N , for N individuals. n⃗i = 0 if

there is a resident at node i and n⃗i = 1 if there is a mutant at node i.

• Choose a vertex for initial mutant at t = 0.

• Until an absorbing state is reached, pick a random number x at each time step.

• Calculate the cumulative sum of fitnesses and find the first site i such that x >

Cumulative Sum(i). This node i will be the node that reproduces in the time

step.

• Randomly pick a node j neighboring i to receive the mutant or resident offspring

at node i, so n⃗j = n⃗i.

• Once an absorbing state is reached, rerun (approx. 50,000 times).

• Report the fixation probability by finding the share of runs that led to mutant

fixation out of all runs that led to mutant fixation or extinction.
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2.3 Simulation Approach Model and Methods

It is important to highlight that the simulated method must factor in the initial

inception position of the mutant. This requires us to find all fixation probabilities

arising from the inception of a mutant in any unique node. We then will average these

probabilities over all of these inception positions to get what we mean by ρ(G,C, r, σ),

or the average fixation probability only based on the graph structure, coloring, and

fitnesses.
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Chapter 3

Results

Section 3.1

Network Connectedness

As discussed in literature, population or graph structure is one of the primary factors

of interest that can affect fixation probability. Based on the two-clique and clique-like

graphs we defined, we explore the resulting impact of the relationships within and

between these islands on the success of a mutant type. We first simply look at how the

two-clique model varies compared to a complete graph with no fitness heterogeneity

of the same size, representing a homogeneous or well-mixed population. It is observed

in Figure 3.1 that the singly-connected two-clique graph with green (light) and red

(dark) nodes amplifies selection, while the n-connected and completely-connected two-

clique graphs suppress selection. This highlights that island connectivity can greatly

affect mutant survival.

We perform a robustness check for the fixation probability results for the singly-

connected, n-connected, and completely-connected two-clique graphs with simulated

calculations. In Appendix Figure A.4.1, we find nearly identical results.
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3.1 Network Connectedness Results

Figure 3.1: Fixation Probability on Well-Mixed and Two-Clique Models

This figure compares the singly-connected, n-connected, and completely-connected
two-clique graphs of 8 nodes, to the complete, or well-mixed population across the
various r values of 0.9, 1.0, 1.1, 1.5, and 2.0 and σ values from 0 to 0.99 (0.81 for
r = 0.9). The black line corresponds to the well-mixed result, while the blue, green,
and pink points correspond to the singly-connected, n-connected, and completely-
connected two-clique graphs respectively. From the figure, we can see that for nearly
all σ values, the singly-connected two-clique graph allows mutants to succeed with
higher probabilities, while the n-connected and completely-connected graphs perform
worse for mutants than the well-mixed complete graph.
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3.1 Network Connectedness Results

Figure 3.2: Varying Intra-connectedness

The graph on the left is a two-clique-like graph and the graph on the right is a two-
clique graph. Due to the nature of these defined graphs, the two-clique graph is
more intra-connected than the two-clique-like graph, as the former has completely-
connected islands, while the latter only has cyclically-connected islands.

3.1.1. Intra-connectedness

We define intra-connectedness as the relationship among nodes of similar type within

an island. To increase intra-connectedness means that one increases the number of

adjacencies or connections inside of an island. We provide an example of changing

intra-connectedness in Figure 3.2.

Hence, we explore how fixation probability differs for two-clique-like graphs and

two-clique graphs, holding other factors constant for comparison purposes. Our re-

sults can be seen in Figure 3.3. We see that increasing the connectivity of the islands

from clique-like subgraphs to clique subgraphs only modestly affects fixation proba-

bility. This is reasonable, given that a four-node cycle and complete graph differ by

only two edges.

Based on Figure 3.3, in the singly-connected and n-connected cases, fixation prob-

ability for two-clique graphs surpasses that for two-clique-like graphs, but this flips

once there is complete connectivity between cliques. Interestingly, fixation probability

increases with σ for the singly-connected case across both two-clique and clique-like

graphs but decreases with σ for the n-connected and completely-connected cases. We

conclude that intra-connectivity alone cannot determine how likely it is for a mutant
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3.1 Network Connectedness Results

to succeed, and that between island connectivity can affect fixation.

3.1.2. Inter-connectedness

Aside from within-island relationships, we evaluate the evolutionary benefit of having

more connections between dissimilar node types. We define inter-connectedness as

the relationship among nodes of different types between two islands, like a bipartite

relationship. We provide an examples of increases in these inter-connections in Figure

3.4. Let us define the types of increases as follows: a) represents a star-like increase

in connectivity, b) represents a linear increase in connectivity, and c) represents a zig-

zag increase in connectivity. We can see that this star-like increase in connectivity

is asymmetric, and increases the degree of one node for one type and all nodes for

the other type. Increasing connectivity linearly eventually increases the degrees of

all nodes of both types by one, and increasing connectivity in the zig-zag manner

increases the degrees of by about one until completely connectivity is reached between

the islands.

One could hypothesize that increasing the inter-connectivity of a graph could

increase a mutant’s ability to dominate the graph, given a constant fitness, as the

mutant’s offspring will have access to more nodes. For the linear increase in inter-

connectedness, we see in Figure 3.5 that as fitness fluctuations increase in both red

and green nodes, increasing the number of connections between the red and green

nodes (here displayed as dark and light nodes respectively) decreases the mutant’s

likelihood of fixation for r > 1 and increases it for r < 1. In other words, increasing

linear inter-connectedness suppresses selection. We observe this pattern in a two-

clique-like graph with eight nodes and larger size graph of N = 10 as well (Appendix

Figures A.4.2 and A.4.3). This may be a result of increasing inter-connectivity causing

the graphs to diverge from being star-like structures with one or two central nodes,

as in the singly-connected case.
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3.1 Network Connectedness Results

Figure 3.3: Fixation Probability Given Increasing Intra-connectedness

This figure compares the singly-connected, n-connected, and completely-connected
two-clique graphs of 8 nodes to the singly-connected, n-connected, and completely-
connected two-clique-like graphs of 8 nodes across the various r values of 1.1, 1.5, and
2.0 and σ values from 0 to 0.99. The top-left panel compares the singly-connected
graphs, the top-right compares the n-connected graphs, and the bottom-middle com-
pares the completely-connected graphs. The pink lines represent two-clique graphs
while the blue lines represent two-clique-like graphs.
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3.1 Network Connectedness Results

Figure 3.4: Varying Inter-connectedness

For parts a), b), and c), inter-connectedness increases as we move from left to right,
as more nodes are adjacent to nodes of the opposite type. We note that a) provides
asymmetry between the islands, while b) and c) maintain that the two islands have
the same number of nodes with the exact same degrees. Also, we call attention to
the fact that these inter-connections can be repeated for two-clique-like graphs with
cyclic islands.

We also evaluate how increasing inter-connectivity in the zig-zag fashion affects

fixation probability. As shown in Figure 3.6, increasing inter-connectivity by increas-

ing the degree of all of the nodes dose not produce as stark of a difference in fixation

probability that linear increases caused. While the two-clique-like result, in Appendix

Figure A.4.4, reveals that more inter-connectivity could translate to a lower decrease

in fixation likelihood as σ increases, this difference is slight, so the results for two-

clique and clique-like graphs are similar. This suggests that perhaps once each node on

an island is sufficiently connected to the other island, increases in inter-connectivity

do not largely impact fixation. However, we also note that once every node in an

island is at least connected to one node in the other island, the graph structure is a

suppressor of selection.

We lastly consider the asymmetric case of increasing inter-connectedness. Figure
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3.1 Network Connectedness Results

Figure 3.5: Linear Increasing of Inter-Connectedness in Two-Clique Graphs

This figure compares the singly-connected, doubly-connected, triply-connected, and
n-connected two-clique graphs of 8 nodes across the various r values of 0.9, 1.0, 1.1,
1.5, and 2.0 and σ values from 0 to 0.99 (0.81 for r = 0.81). The pink, blue, green,
and black lines represent the singly-connected, doubly-connected, triply-connected,
and n-connected graphs respectively.
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3.1 Network Connectedness Results

Figure 3.6: Zig-Zag Increasing of Inter-Connectedness in Two-Clique Graphs

This figure compares the n-connected, zig-zag-connected, cross-connected, and
completely-connected two-clique graphs of 8 nodes across the various r values of 0.9,
1.0, 1.1, 1.5, and 2.0 and σ values from 0 to 0.99 (0.81 for r = 0.81). The pink, blue,
green, and black lines represent the n-connected, zig-zag-connected, cross-connected,
and completely-connected graphs respectively.
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3.2 Unbalalanced Graphs Results

Figure 3.7: Star-Like Increasing of Inter-Connectedness in Two-Cliques

This figure compares graphs with one, two, three, and four star-like inter-connected
two-clique graphs of 8 nodes across the various r values of 0.9, 1.0, 1.1, 1.5, and 2.0
and σ values from 0 to 0.99 (0.81 for r = 0.81). The pink, blue, green, and black
lines represent the graphs with one, two, three, and four star-like between-clique
connections respectively.

3.7 and Appendix Figure A.4.5 confirms two patterns; firstly, the star-like nature of

the inter-island connectivity results in these graph structures amplifying selection,

and secondly, as not every node in each island is connected to the other island, we do

not see a decrease in fixation probability as σ increases.

Section 3.2

Unbalalanced Graphs

One underlying assumption of the models we have thus considered is that the islands

of different types are the same size. We loosen this assumption here to understand how

varying the quantity of resource beneficial and detrimental nodes can affect mutants’

survival. Figure 3.8 illustrates how changing the island size of the low resource quality
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3.3 Varying Fitness Heterogeneity Results

cyclic island impacts fixation probability. It can be seen that the greater number of

nodes of the red type, the more of an amplifier of selection the graph is. This draws

from previous conclusions that the star is a common amplifier, and the 1-7 two-clique

graph is the most star-like. This finding follows the literature, as clique-stars, or

stars with large central cliques, as defined by Choi and Yu (2018) amplify selection

[12]. What is most interesting is that when the star-like structure has a majority

of green nodes, the fixation probability decreases with greater σ values. This could

result from the fact that in the case where more nodes are green, the central node

of the star-like structure is red, which harms a mutant’s ability (or any individual’s

ability) to fixate in that node. We see similar behaviors in two-clique-like graphs, as

shown in Appendix Figure A.4.6.

Figures 3.9 and 3.10 displays how inter-connectivity interacts with changing is-

lands sizes. We see that the more inter-connected the islands are, the less successful

the mutant is given larger environmental variation which is consistent with balanced

two-clique graphs.

Section 3.3

Varying Fitness Heterogeneity

While all previous results in this paper have focused on the assumption of background

fitness heterogeneity, where σa = σb, we transition to looking at other fitness models.

As mentioned in literature, mutants and residents can have exactly opposite fitness

deviations (σa = −σb), or one of the types can have no deviation (σa = 0 or σb =

0). We explore these assumptions and evaluate how they change our results. We

can initially explore these results in Figure 3.11, where we can see that all models

perform relatively similarly, but also that background, opposite, and mutant fitness

heterogeneity may see lower fixation at higher σ values. We explore each model more

29



3.3 Varying Fitness Heterogeneity Results

Figure 3.8: Varying Island Sizes of Two-Clique Graphs

This figure displays fixation probability for seven different graphs, six of which have
unbalanced island sizes across σ value of 0 to 0.99 for r values 1.1, 1.5, and 2.0. Each
line color corresponds to the colored graph displayed above. We note that in the
calculation of these fixation probabilities, we keep the standard deviation of fitness
constant at σ. However, because the number of green and red nodes changes across
graph structures, to hold constant the overall standard deviation across graphs, we
adjust the resulting deviation in red and green nodes for each graph as follows. For
1-7 or 7-1 structures, the single node has deviations of +/-

√
7 · σ, while the other

seven nodes have deviations of +/-
√
7
7
·σ. For 2-6 or 6-2 structures, the isolated pair

of nodes have deviations of +/-
√
3 · σ, while the other six nodes have deviations of

+/-
√
3
3
·σ. Lastly, for 3-5 or 5-3 structures, the three nodes have deviations of +/-

√
15
3
·σ, while the other five nodes have deviations of +/-

√
15
5
·σ.

30



3.3 Varying Fitness Heterogeneity Results

Figure 3.9: Unbalanced 3-5 Two-Clique Graph

This figure compares the singly-connected, n-connected, completely-connected unbal-
anced two-clique graphs with five red nodes and three green nodes. These comparisons
are across the various r values of 0.9, 1.0, 1.1, 1.5, and 2.0 and σ values from 0 to
0.99 (0.81 for r = 0.81). The pink, blue, green, and black lines correspond to the
singly-connected, n-connected, completely-connected graphs respectively.
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3.3 Varying Fitness Heterogeneity Results

Figure 3.10: Unbalanced 5-3 Two-Clique Graph

This figure compares the singly-connected, n-connected, completely-connected unbal-
anced two-clique graphs with three red nodes and five green nodes. These comparisons
are across the various r values of 0.9, 1.0, 1.1, 1.5, and 2.0 and σ values from 0 to
0.99 (0.81 for r = 0.81). The pink, blue, green, and black lines correspond to the
singly-connected, n-connected, completely-connected graphs respectively. We can see
that for particular values of σ, specifically around 0.81, fixation probability peaks for
the singly-connected graph for larger r values. This could translate to fitness devia-
tions providing conditions that are extremely favorable for the advantageous mutant
compared to the resident, unlike larger σ values that could negatively impact mutant
success.
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3.3 Varying Fitness Heterogeneity Results

Figure 3.11: Fixation Probability of Completely-Connected Two-Clique Graph with
Opposite, Mutant, and Resident Heterogeneity

This figure displays at fixation probability in terms of σa, the mutant’s sigma, and σb,
the resident’s sigma, for the completely-connected two-clique 8 node graph. Each of
the three panels compares background, opposite, mutant, and resident heterogeneity
across σ values of 0 to 0.99 for the mutant and -0.99 to 0.99 for the resident. The
left panel shows fixation probability for r = 1.1, the middle panel shows fixation
probability for r = 1.5, and the right panel shows fixation probability for r = 2.0. In
this figure, a) refers to the background fitness heterogeneity model, where σa = σb,
b) refers to opposite fitness heterogeneity, where σa = −σb, c) refers to mutant
heterogeneity, where σb = 0, and d) refers to resident heterogeneity, where σa = 0.

in depth in the figures below.

3.3.1. Opposite Heterogeneity

We first consider opposite heterogeneity, where nodes that are beneficial for the mu-

tant type are detrimental to the resident type and vice versa. Figure 3.12 reveals

that one major impact of this opposite heterogeneity is on the n-connected graph

structure, whose fixation probability now exceeds that of the complete, well-mixed

population for all r and σ values. Interestingly, we also find that background fitness

heterogeneity only wins in cases of larger mutant advantage (higher r values) in the

singly-connected two-clique model.
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3.3 Varying Fitness Heterogeneity Results

Figure 3.12: Fixation Probability of Completely-Connected Two-Clique Graph with
Background vs Opposite Fitness Heterogeneity

Each of the three figures compares background fitness heterogeneity (pink lines) to
opposite fitness heterogeneity (blue lines), across r values of 0.9, 1.0, 1.1, 1.5 and 2.0,
and σa values from 0 to 0.99 (0.81 for r = 0.9). The top-left panel looks at the singly-
connected two-clique 8 node graph, the top-right panel looks at the n-connected two-
clique 8 node graph, and the bottom-middle panel looks at the completely-connected
two-clique 8 node graph.
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3.4 Dynamic Coloring Results

3.3.2. Mutant Heterogeneity

Next, we look at mutant heterogeneity, where only the mutant experiences resource

heterogeneity or environmental variation. Figure 3.13 reveals, in contrast to op-

posite heterogeneity, that mutant heterogeneity does not amplify fixation with the

n-connected two-clique graph. Interestingly, we see that of the three other models,

background fitness heterogeneity finds most similarity with the mutant heterogeneity

model for the n-connected and completely-connected graphs, which follows because

we are primarily observing how mutants perform in response to their environment

with fixation probability.

3.3.3. Resident Heterogeneity

Lastly, we observe resident heterogeneity, where only the resident experiences resource

heterogeneity or environmental variation. Figure 3.14 reveals once again that resi-

dent heterogeneity amplifies fixation with the n-connected two-clique graph. When

observing all four models, it seems as though the resident heterogeneity model allows

the mutant to perform most successfully across the three types of graphs considered

in almost all specifications. This suggests that environmental variation hurts mu-

tants, even when some of this variation is beneficial. This is supported by the fact

that with resident heterogeneity, the resident can achieve a fitness that is at most or

slightly higher than the mutant, while in contrast to the mutant, the resident also

suffers from detrimental variation as well.

Section 3.4

Dynamic Coloring

Dynamic coloring involves the active changing of environmental characteristics of

nodes that contribute to fitnesses. On bipartite graphs, Kaveh et al. find that in-
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3.4 Dynamic Coloring Results

Figure 3.13: Fixation Probability of Completely-Connected Two-Clique Graph with
Background vs Mutant Fitness Heterogeneity

Each of the three figures compares background fitness heterogeneity (pink lines) to
mutant fitness heterogeneity (green lines), across r values of 0.9, 1.0, 1.1, 1.5 and 2.0,
and σa values from 0 to 0.99 (0.81 for r = 0.9). The top-left panel looks at the singly-
connected two-clique 8 node graph, the top-right panel looks at the n-connected two-
clique 8 node graph, and the bottom-middle panel looks at the completely-connected
two-clique 8 node graph.
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3.4 Dynamic Coloring Results

Figure 3.14: Fixation Probability of Completely-Connected Two-Clique Graph with
Background vs Resident Fitness Heterogeneity

Each of the three figures compares background fitness heterogeneity (pink lines) to
resident fitness heterogeneity (black lines), across r values of 0.9, 1.0, 1.1, 1.5 and 2.0,
and σb values from 0 to 0.99 (0.81 for r = 0.9). The top-left panel looks at the singly-
connected two-clique 8 node graph, the top-right panel looks at the n-connected two-
clique 8 node graph, and the bottom-middle panel looks at the completely-connected
two-clique 8 node graph.
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3.4 Dynamic Coloring Results

creasing the movement of resource quality around a network increases the effects of

strong heterogeneity and decreases the effects of weaker heterogeneity on fixation

probability [16]. We explore the impact of dynamic coloring on the two-clique and

two-clique-like graphs we consider in this paper.

First, we describe our process. Exploring dynamic coloring necessitates a simulation-

based approach in order to randomly assign environmental quality to nodes at each

time step. We model a beneficial environment that randomly can deteriorate over

time. To do this, we suppose that green, or beneficial, nodes will become red, or

detrimental, nodes until a certain proportion of green nodes have switched. This

attempts to model high-quality resource depletion. However, once enough of these

green nodes have converted to red nodes, we allow them to revert back to being high-

quality green nodes, suggesting the environment was able to replenish its resources.

We augment the method from Model and Methods 2.3 Simulation Approach to illus-

trate these assumptions. After picking a random node to be replaced at each time

step, we add:

• Given a probability p and a maximum proportion of possible green node to red

node conversions m, if m has not been attained, choose a random green node

to become a red node with probability p. If m has been met, then choose one

of the converted red nodes to become a green node once again.

An example of the coloring changes that occurs to a graph during this dynamic

simulation can be found in Figure 3.15.

The results of performing this dynamic coloring on the graphs of interest from Fig-

ure 2.2 can be seen in Figure 3.16 (and Figure A.4.7 in the Appendix). As seen by the

difference between the solid (representing dynamic coloring) and dashed (represent-

ing static coloring) lines, for nearly all mutant inception points and graph structure

specifications, dynamic coloring increases a mutant’s likelihood of fixating given in-
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3.4 Dynamic Coloring Results

Figure 3.15: Example of Simulated Dynamic Coloring on N-Connected Two-Clique
Graph

This figure is just one example of dynamic coloring on a graph with a 0.25 recoloring
probability p and a maximum green to red conversation threshold, m, of 0.75, when
r = 1.5 and σ = 0.5. We can see that all green nodes do not convert to red, due to
the imposed threshold, and that once this threshold is reached, some nodes can be
replenished and can revert to green.
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3.4 Dynamic Coloring Results

creasing environmental variability. This suggests that mutant resilience is amplified

further when resource depletion occurs; mutant types are less harmed by environ-

ments with low quality resources than resident types are. This model also finds that

the n-connected two-clique graph, previously a suppressor of selection in the static

coloring environment, amplifies selection in a dynamic one. While there are many

other dynamic coloring models, we find here that resource degradation might not

harm, and may even help, the chances of mutant fixation.

40



3.4 Dynamic Coloring Results

Figure 3.16: Fixation Probability of Singly-Connected, N-Connected, Completely-
Connected Two-Clique Graph with Dynamic and Static Coloring

This figure displays the results of dynamic coloring on two-clique graphs, with
p = 0.25, m = 0.75, and r = 1.5 across σ values from 0 to 0.99. The top-left
panel corresponds to the singly-connected graph, the top-right panel corresponds to
the n-connected graph, and the bottom-middle panel corresponds to the completely-
connected graph. In all figures, the bolded blue solid and dashed lines represent
the average fixation probabilities, while the various other colors represent different
mutant initialization nodes, captured by the graph diagrams on the right.
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Chapter 4

Discussion

Our results explore the impacts of varying population structures and environmental

characteristics of nodes on mutant fixation probability. Through four different anal-

yses, we find that mutants succeed in environments of decreased inter-connectivity,

decreased high-quality resources, and decreased environmental variability.

Section 4.1

Analysis

We first evaluate how network connectivity between and within cliques and clique-

like subgraphs can influence fixation probability. We find that two-clique graphs

can be both amplifiers and suppressors of selection, depending on these connections

between cliques and clique-like groups. The difference between two-clique and clique-

like graphs is seemingly negligible, as they perform similarly. However, once inter-

connectivity is introduced, larger changes in mutant success can arise. We observe

that increasing inter-connectivity in a balanced way, distributed evenly and sym-

metrically across nodes (linear increasing of inter-connectivity) influences fixation

probability more than when increasing connections between cliques in a zig-zag or

star-like fashion. Overall, while increasing the intra-connectivity of subgraphs can
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4.1 Analysis Discussion

influence (both increase and decrease) fixation probabilities as environmental vari-

ability increases, inter-connectivity plays a much larger role in fixation probability.

We conclude that the more linear inter-connectivity between cliques, the less likely

the mutant is to succeed as environmental variability increases.

Another aspect of population structure we evaluate is how fixation changes when

island size changes. We find that while the relative size of cliques does not influence

fixation probability much, when larger cliques are composed of red nodes, the fixa-

tion probability is higher, and this increases as red node clique sizes increase. Hence,

thee larger the share of low-quality resource nodes, the higher the fixation proba-

bility as environmental variability increases. Additionally, the trend of increasing

inter-connectivity leading to lower fixation probability generally holds for unbalanced

graphs as well.

We move on to our exploration of environmental differences across the nodes in

our graphs. In our evaluation of four fitness heterogeneity models, we find that typ-

ically, given higher inter-connectivity among cliques, other fitness models perform

similarly, if not better, than background fitness heterogeneity. In fact, only in the

singly-connected two-clique case do identical environmental deviations for mutants

and residents (background fitness heterogeneity) help advantageous mutants (those

with a higher r) fixate. We also observe that the resident fitness heterogeneity model

seems to result in the highest fixation probability for our structures of interest, reveal-

ing that mutants have the most opportunity for success when they are not subject to

fluctuations in their fitness.

Lastly, we study dynamic coloring, and find that in almost all cases, resource

depletion and introducing dynamic coloring increases fixation probability. These ef-

fect sizes vary by graph type; the n-connected two-clique, which typically suppresses

selection, amplifies selection at r = 1.5 with dynamic coloring. We conclude that
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4.2 Future Research Discussion

resource depletion (and a periodic replenishment if applicable) increases a mutant’s

likelihood of success across two-clique graph inter-connectivity, inception nodes, and

environmental variability.

4.1.1. Implications

This work, while based on simplified models, provide insights into a variety of real-

world instances. From biological phenomena like cell growth and reproduction, to

ecological processes including species migration, to social phenomena such as human

interaction, populations and individuals within populations face certain dynamics and

relationships that can modeled. Any underlying trends we have found as a result of

varying assumptions in these models can be applied to actual scenarios, allowing our

work to actively take part in our discovery of how the world works.

Section 4.2

Future Research

One main aspect of this paper includes small graphs of eight to ten nodes. While

these simplified models provide insights on small-scale evolutionary dynamics, these

models can be the building motifs for larger graphs. Our methods could be extended

for larger graphs to allow us to verify if the results we find are maintained across

population and clique size.

Other dimensions of exploration involve expanding from two cliques and two colors

to multi-clique and multi-colored graphs. While less variability in our models through

binary differences in colors and islands provides simplicity, the real world is riddled

with a spectrum of variability, and modeling this could provide further insights.

An additional area with more potential for exploration is the study of dynamic

coloring and environmental variation. In this paper, we explore the cyclic depletion
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4.3 Conclusion Discussion

and revival of high quality resource locations. However, many other types of envi-

ronmental fluctuations could exist in reality and in a model, including cyclic weather

or climate changes, the physical movement of resources between nodes, random as-

signment of environmental quality each year, and even the colonization of one type

of environmental resource by another. It would be interesting to further pursue how

these assumptions and model characteristics could influence the dynamics between

the types interacting with these environments.

Section 4.3

Conclusion

The field of modeling evolutionary dynamics is constantly expanding, with plenty of

promising future work to continue probing how various factors influence the success

of different types. We explore four alternate specifications of the Moran process on a

particular graph to identify how graph structure and graph coloring influence fixation

probability. Our results reveal a trend that the mutant typically prefers the lesser

of two evils–for example, resource depletion is beneficial for the mutant, especially

because the resident type has to experience it as well! Future exploration can continue

to push the boundaries of what we know of evolutionary dynamics, identifying and

verifying conditions in mutant behavior in the fight for survival.
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Figure A.4.1: Fixation Probability of Singly-Connected, N-Connected, Completely-
Connected Two-Clique-Like Graph with Simulation and Numerically Solved Calcu-
lations

This figure displays the results of algebraic (shown by “x”) and simulation (shown by
“o”) fixation probability on two-clique graphs across r values of 0.9, 1.0, 1.1, 1.5, and
2.0, and σ values from 0 to 0.99 (0.81 for r = 0.9). The colors represent different r
values, where 0.9, 1.0, 1.1, 1.5, 2.0 are black, blue, green, pink, and red respectively.
The top-left corresponds to the singly-connected two-clique 8 node graph, the top-
right corresponds to the n-connected two-clique 8 node graph, and the bottom-middle
corresponds to the completely-connected two-clique 8 node graph.
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Figure A.4.2: Increasing Linear Inter-connectedness for 8-Node Two-Clique-Like
Graph

This figure compares the singly-connected, doubly-connected, triply-connected, and
n-connected two-clique-like graphs of 8 nodes across the various r values of 0.9, 1.0,
1.1, 1.5, and 2.0 and σ values from 0 to 0.99 (0.81 for r = 0.81). The pink, blue, green,
and black lines represent the singly-connected, doubly-connected, triply-connected,
and n-connected graphs respectively.
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Figure A.4.3: Increasing Linear Inter-connectedness for 10-Node Two-Clique-Like
Graph

This figure compares the singly-connected, doubly-connected, triply-connected, quad-
connected, and n-connected two-clique-like graphs of 10 nodes across the various r
values of 0.9, 1.0, 1.1, 1.5, and 2.0 and σ values from 0 to 0.99 (0.81 for r = 0.81).
The pink, blue, green, black, and cyan lines represent the singly-connected, doubly-
connected, triply-connected, quad-connected, and n-connected graphs respectively.
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Figure A.4.4: Increasing Zig-Zag Inter-connectedness for Two-Clique-Like Graph

This figure compares the n-connected, zig-zag-connected, cross-connected, and
completely-connected two-clique-like graphs of 8 nodes across the various r values
of 0.9, 1.0, 1.1, 1.5, and 2.0 and σ values from 0 to 0.99 (0.81 for r = 0.81). The
pink, blue, green, and black lines represent the n-connected, zig-zag-connected, cross-
connected, and completely-connected graphs respectively.
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Figure A.4.5: Increasing Star Inter-connectedness for Two-Clique-Like Graph

This figure compares graphs with one, two, three, and four star-like inter-connected
two-clique-like graphs of 8 nodes across the various r values of 0.9, 1.0, 1.1, 1.5, and
2.0 and σ values from 0 to 0.99 (0.81 for r = 0.81). The pink, blue, green, and black
lines represent the graphs with one, two, three, and four between clique-like subgraph
connections respectively.
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Figure A.4.6: Varying Island Sizes of Two-Clique-Like Graphs

This figure displays fixation probability for seven different graphs, six of which have
unbalanced island sizes across σ value of 0 to 0.99 for r values 1.1, 1.5, and 2.0. Each
line color corresponds to the colored graph displayed above. We note that in the
calculation of these fixation probabilities, we keep the standard deviation of fitness
constant at σ. However, because the number of green and red nodes changes across
graph structures, to hold constant the overall standard deviation across graphs, we
adjust the resulting deviation in red and green nodes for each graph as follows. For
1-7 or 7-1 structures, the single node has deviations of +/-

√
7 · σ, while the other

seven nodes have deviations of +/-
√
7
7
·σ. For 2-6 or 6-2 structures, the isolated pair

of nodes have deviations of +/-
√
3 · σ, while the other six nodes have deviations of

+/-
√
3
3
·σ. Lastly, for 3-5 or 5-3 structures, the three nodes have deviations of +/-

√
15
3
·σ, while the other five nodes have deviations of +/-

√
15
5
·σ.
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Figure A.4.7: Fixation Probability of Singly-Connected, N-Connected, Completely-
Connected Two-Clique-Like Graph for Dynamic and Static Coloring

This figure displays the results of dynamic coloring on two-clique-like graphs, with
p = 0.25, m = 0.75, and r = 1.5. The top-left panel corresponds to the singly-
connected graph, the top-right panel corresponds to the n-connected graph, and the
bottom-middle panel corresponds to the completely-connected graph. The bolded
blue solid and dashed lines represent the average fixation probabilities, while the
other colors represent different mutant initialization nodes, captured by the graph
diagrams on the right. The top-left figure includes all eight initialization points due
to a lack of symmetries in the singly-connected two-clique-like graph, and evidently
has some zero fixation probabilities.
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