
CAPTURING DYNAMICAL SYSTEMS USING DEEP LEARNING
AND UNDERSTANDING OPTIMAL DATA SIZE IN TRAINING

TIME SERIES PREDICTION MODELS

A Thesis
Submitted to the Faculty

in partial fulfillment of the requirements for the
degree of

Bachelor of Arts

in

Mathematics

by Brian Wang

Advised by Professor Yoonsang Lee
Dartmouth College

Hanover, NH

May 2023





Abstract

This thesis examines capturing dynamical systems (specifically, the Lorenz 96 model)

using deep learning. Specifically, this work looks into situations where only partial

observations of a dynamical system are available, and predictions need to be made

on the future states of these partial observations using past data. The ultimate goal

of this work is to build a deep learning model that can simulate a dynamical system

under various levels of sparsity in observations and use this model to study the nature

of the relationship between sparsity and optimal trajectory length of historical data to

use for the model. We leverage existing and create new qualitative and quantitative

analysis techniques that allow us to determine the optimal trajectory length for each

level of sparsity and compare results across different modes of experiments. We find

that the relationship between sparsity and optimal trajectory length follows a non-

linear relationship, with there being an exponential decaying relationship between

the number of dimensions in our observations and the optimal trajectory length for

our deep learning model (for dt = 0.01). Further study is needed to understand how

this pattern between sparsity and optimal trajectory length generalizes to simulating

dynamical systems of varying complexity using varying time steps with varying types

of sparsity for our observations.
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Chapter 1

Motivation

Section 1.1

Motivation

We live in a world where we have to make predictions based on incomplete obser-

vations. For instance, we make predictions on the weather and the price of stocks

without knowing all the variables that influence these items of interest, the values

for those variables, and the function that relates those variables to our items of

interest. For instance, the price of a stock V OO could be governed by some for-

mula with 1 trillion variables: V OO = 0.9∗VOO-PREV-DAY - 0.00754∗BPS-RAISE

+...+ 0.0000000312∗NYC-ANALYST-A-SLEEP-HOURS.

However, it is not possible for us to always know these variables. Sometimes, we

need to rely solely on the values of our items of interest to make predictions (e.g.

making predictions for VOO based on the last few values of VOO).

Within the index fund VOO, there are 500 stocks. These 500 stocks are all related

to each other in some way (whether by being in the same industry, being affected by

the same macroeconomics headwinds/tailwinds, etc.). If we are trying to predict the

prices of all 500 stocks, we may use the previous 5 hours of past prices to predict the
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1.2 Problem Statement Motivation

next hour’s prices. If we are trying to predict the prices of 200 stocks, and only have

information on 200 stocks, we may have to use more previous hours of past prices

since we are now missing some information we could have derived from seeing the

other 300 stocks. But how much further back in time do we need to look to make

accurate predictions?

Section 1.2

Problem Statement

The goal of this thesis is to create guidelines for how much historical data to look at

when predicting values for a partially observed system. We aim to use the sparsity

of the data as the main guideline for determining the amount of historical data (i.e.

trajectory length) to look at. We also aim to determine whether the level of sparsity

of data and the optimal trajectory length follows a non-linear or linear relationship.

Section 1.3

Problem Framing

In this thesis, our complex system will be the Lorenz 96 dynamical system. Our partial

observations of this system will consist of observing every other point, observing every

three points, etc. We will have data on this system for every 0.01 seconds (dt = 0.01)

and for each level of sparsity, we will test various trajectory lengths to find the optimal

length of historical data to use. For our predictions, we aim to not only predict the

next few partial observations correctly, but to have our prediction system capture the

overall dynamics of the Lorenz 96 model, being able to simulate the values of the

variables and the interactions between different variables in the system correctly over

time.
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Chapter 2

Related Work

Previous research has already studied how prediction models can learn complex dy-

namical systems [12]. They consider the performance of these prediction models in

settings where there aren’t full observations (i.e. when we are working with partial

observations). Considering the performance of these models in the face of partial

observations is crucial, as in the real world we rarely have access to a full system

(and even if we do, it could be computationally expensive to consider all variables

of a system). These studies have also looked into new methods to qualitatively and

quantitatively assess the performance of these prediction models, which we will adopt

when building our own prediction models [12].

However, previous studies do not consider another facet of data missingness be-

yond sparsity of variables: the length of historical data passed into models. This is

particularly important to consider, as it is often tricky to know how much histori-

cal data to use when making predictions on time series data. Having guidelines on

trajectories to try for certain levels of sparsity would significantly help expedite the

model tuning process.

Our approach looks into the performance of prediction models in settings with

only partial observations of systems, as we examine the optimal length of historical
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Related Work Related Work

data and its relationship with the sparsity of the data at hand, recognizing that a

lack of data could lead to low quality predictions (because the model is not able to

understand the relationship between the variables) while too much data could also

lead to low quality predictions (because the model struggles to separate out what

values are important to consider and struggles to pick out an overall trend).
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Chapter 3

Methods

Section 3.1

Experiments

3.1.1. Sparsity (s)

We aim to build models that will be able to use values of various subsets of variables

in the Lorenz 96 model and predict the future values for all variables in that subset.

We run experiments for for sparsity ranging from s = 1 (full observations) to s = 8

(observing every 8 variables. For a given s, we will observe the variables x0, xs, x2s,

..., observing a total of ⌈N
s
⌉ variables.

For instance, for sparsity s = 2, we will consider the values for 20 (⌈N
s
⌉) variables

(i.e. x0, x2, ..., x38) and try to predict future values for those 20 variables.

3.1.2. Trajectory Length (tl)

For a time t+1, our deep learning model will use the values of our variables in the tl

previous time steps (i.e. xt−(tl−1), xt−(tl−2), ..., xt) to predict xt+1. We aim to find some

mathematical relation between between sparsity and the optimal length for historical

data. We aim to see if this relationship tends to be linear or non-linear.
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3.2 Data Methods

Section 3.2

Data

3.2.1. Lorenz 96 Model

Formulated by Edward Lorenz [9], the Lorenz 96 model is a dynamical system used

in data assimilation problems. With N variables (with N ≥ 4) and a forcing constant

F, the Lorenz 96 model is governed by the following differential equations:

∀i ∈ {1, 2, ...N}, dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F (3.1)

For the edge cases, the Lorenz 96 model defines x − 1 = xN−1 , x0 = xN , and

xN+1 = x1

In our experiments, we use N = 40 and F = 8 (a value for F known to cause

chaotic behavior). A sample of the first three variables of the Lorenz 96 is shown in

Figure 3.1.

Figure 3.1: Sample 3-dimensional Phase Plot of Lorenz with dt=0.01

3.2.2. Simulating Lorenz 96 and Training Data Generation

Using an initial condition of (8.0081, 8, 8, ..., 8), we simulate the Lorenz 96 using the

Python scipy library’s solve ivp function (a high-order numerical solver) using the

‘RK45’ integration method [3]. In the Runge-Kutta-Fehlberg method, steps are taken

6



3.2 Data Methods

using the fifth-order accurate formula (using local extrapolation), working under the

assumption that the error is controlled due to accuracy of the fourth-order method

[8]. This integration method is suitable for our complex dynamical system.

Using the initial condition and the solve ivp function, we integrate the Lorenz 96

function from t = 0s to t = 10000s with t = 0.01 (so 1,000,000 time steps).

As mentioned earlier, for a time t+1, our deep learning model will use the values of

our variables in the tl previous time steps to predict xt+1. During the training of our

model, the model will be used to predict the values of our variables for 5 steps. For

time steps t+2 to t+5 , the model will use a combination of the actual values of our

variables (values for x before time t+1) and predicted values of our variables (values

for x after time t) as the values for the previous tl time steps. For instance, to predict

the values of the variables at time t+2, the model will use xt−(tl−2), xt−(tl−3), ..., xt

and x̂t+1 as the value of the variables in the previous tl time steps (the motivation

for predicting 5 steps instead of just 1 is explained later in the section on the loss

function).

As such, from our our data of 1,000,000 time steps, we randomly select 10,000

sequences of size tl + 5).

3.2.3. Testing Data Generation

Prediction is carried out to T = 500s (50,000 time steps) from a new initial condition

(8.0081, 8, 8, ..., 8). We give our model the values for each of the variables of interest

for the first tl time steps (to have data from x1, x2, ..., xtl). The model predicts the

values of the variables of interest one time step at a time, using its past predictions

as the input (e.g. to predict the value of the variables at time step tl + 2, the model

will use x2, x3, ..., and xtl and x̂tl+1.
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3.3 Predictive Model Methods

Section 3.3

Predictive Model

3.3.1. Model Architecture

We build a custom deep learning model using tensorflow [6] that uses three hidden

layers with 200 neurons each (1 LSTM layer and 2 Dense layers) and one output Dense

layer whose number of nodes is equal to the dimensionality of our data. We arrive

at this architecture after significant testing via the full model, arriving at the specific

number of neurons after determining that it is a good medium between underfitting

and overfitting. In this case, the LSTM layer is used because of its ability to learn

long-term dependencies between time steps in time series data [2]. The LSTM layer

is especially appropriate in the case of trying to capture the dynamics of the Lorenz

96 model, as the derivatives of each variable are governed by values of variables in

previous time steps. Each layer uses the “tanh” activation function, which is the

default used for recurrent neural networks [11] (other activation functions, like “relu”

are better suited for computer vision problems).

Figure 3.2 shows an example of the model summary for the model used when

working with data of sparsity 6 (where we are working with 7 variables).

Figure 3.2: Sample model architecture for s=6
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3.3 Predictive Model Methods

3.3.2. Loss Function

In deep learning, a loss function is used to compare the predicted output values of a

model to the target values (the actual output values from the training data).

To prevent model drift, a recurrent loss function is implemented to measure the

performance of the model of predicting the values for the variables of interest in

time steps t + 1 to t + 5 (different from the usual loss function that only looks

at predictions for time step t + 1). Using the method explained in section 3.2.2,

predictions xt+1, xt+2, ..., xt+5 are made for time steps t+1 to t+5. Afterwards, the

following function is applied to calculate loss:

loss =
t+5∑

ti=t+1

N∑
i=1

(xi,ti − x̂i,ti)
2 (3.2)

Our training loss is calculated as the sum of the losses among the 5,000 training

samples. Our validation loss is calculated as the sum of the losses among the 5,000

testing samples.

Without a recurrent loss function, the model’s predictions may “spiral out of

control” as it compounds its mistakes when using past predicted values to predict

future values, as seen in Figure 3.3.

Figure 3.3: Predicted vs. actual values for x0 (with model trained on non-recurrent

loss function)
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3.3 Predictive Model Methods

3.3.3. Model Training

The network hyperparameters are optimized using the Stochastic Optimization Method

Adam, which is well-suited for contexts like our work due to the size of the data we

are using [7]. We utilize a constant learning rate of 10-3 for 2,000 epochs.

A train-test-split of 0.5-0.5 is used, with half of the 10,000 samples created during

the training data generation used for training the model and the other half used to

validate the training of the model. We use the resulting model of the epoch that has

the lowest validation loss. Figure 3.4 shows the training and validation loss curves

for the model training using s = 1 (full observations) and s = 3 (partial observations)

data. For the training of both of these models, we use the resulting model of the

epoch label with a green dot since this represents the epoch where the validation

curve is the lowest. In Figure 3.4(a), we are preventing over fitting by taking the

model from the epoch before the training and validation curve diverge.

To save on precious computing resources, we have safeguards in place to prevent

the model for training for too many epochs. If our model’s validation loss increases by

10% from the minimum validation loss at least 100 epochs away from the minimum

point (to account for temporary spikes), we will halt the training of the model before

5000 epochs (as seen in Figure 3.4(a)). To account for variation when the validation

loss is lower, we prevent an unnecessary early cutoff by scaling our threshold for cut-

ting off training to be 1.5 times the minimum validation loss for minimum validation

losses that are less than 10 and 2 times the minimum validation loss for minimum

validation losses that are less than 5.
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3.4 Qualitative Evaluation Methods

(a)
(b)

Figure 3.4: Training/validation loss curves from: (a) s = 1, tl = 3 (b) s = 3, tl = 7

Section 3.4

Qualitative Evaluation

3.4.1. Phase Plot

We use two-dimensional phase plots to understand how the model is simulating the

relationships between different variables. These phase plots track the trajectory of

the predicted and actual values of 2 variables at a time.

These phase plots are valuable because they not only tell us whether the model

is properly capturing the range of values for each variable, but also tells us whether

these values are appropriate given the value of other related variables. For instance,

in Figure 3.5, the range of values for the variables are all captured properly, with both

variables ranging between -10 to 10 in each figure. However, our phase plot in Figure

3.5(b) is able to show us that at times, the model is not capturing the relationship

between two variables properly (as it is in Figure 3.5(a)), with times where the values

of the related variables are quite different from one another (though they should be

11



3.4 Qualitative Evaluation Methods

close to the xi = xj line).

(a) (b)

Figure 3.5: Sample phase plots

3.4.2. Time Series Plot (Full)

In addition to looking at the interaction between variables, we also look at the tra-

jectories of each variable’s predicted and actual values over time. We consider time

series plots to see whether our model is able to capture the oscillations and range of

values for each variable (like we see in Figure 3.6(a)). These time series plots can also

tell us when our model gets ”stuck” predicting the same values like seen in Figure

3.6(b).

12



3.4 Qualitative Evaluation Methods

(a) (b)

Figure 3.6: Sample time series plots (t = 0 to t = 500)

3.4.3. Time Series Plot (Partial)

Because the full time series plots contain 50,000 time steps, it is hard to see how our

model is performing on a more micro-level scale. As such, we consider the time series

plots from t = 1 to t = 2 (avoiding the first 100 time steps because our model uses the

actual values for the first tl time steps before it starts making its own predictions).

As shown in Figure 3.7, these granular time series plots can help us better understand

how are predictive model is simulating the frequency and amplitude of the oscillations

of each of our variables.

13



3.4 Qualitative Evaluation Methods

Figure 3.7: Sample time series plots (t = 1 to t = 2)

3.4.4. Histogram of Values

Meanwhile, in addition to assessing whether the predictive models are capturing the

range of values properly using previous qualitative analysis techniques, histograms

can help us understand whether the deep learning models are predicting values of

each variable with the right frequency (i.e. following the actual distribution of the

values of the test trajectory). For instance, though both histograms in Figure 3.8

show that the model is predicting the right range of values, our histogram is able to

show that in Figure 3.8(b), the distribution of predicted values has an unnecessary

left skew. Meanwhile, Figure 3.8(a) demonstrates the model capturing properly both

the range of values and the relative frequency of values in that range.

For the histogram analysis for each variable, we divide the range of values into 50

bins and plot the predicted and reference distribution of values on top of each other.

14



3.4 Qualitative Evaluation Methods

(a) (b)

Figure 3.8: Sample histograms

3.4.5. Autocorrelation Plot

Autocorrelation provides a measurement for the correlation between a time series

plot and its lagged counterpart. We compute the autocorrelation for each variable

using the statsmodels acf function [4], computing the autocorrelation for 0 to 100

lags (representing a lag of t = 0 to t = 1) for both the predicted and actual test

trajectories.

If the plots of the autocorrelation values are similar, we can conclude that the

model is able to capture the relationship between a variable and its past values. For

instance, though not perfect, the autocorrelation of the predicted values in Figure

3.9(a) follow a similar trend to that of the actual values, taking an initial dip and

oscillating near 0 as we approach time t = 100. On the other hand, Figure 3.9(b)

shows that the predictive model is poor at relating previous values to new values, as

the autocorrelation is positive for up to 40 time lags (when it should be near 0 after

about 5 lags) and becomes negative for time lags 40 to 100.
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3.5 Quantitative Evaluation Methods

(a) (b)

Figure 3.9: Sample autocorrelation plots

Section 3.5

Quantitative Evaluation

3.5.1. Point-wise error

We look at the reference test trajectories and compare that against the trajectories

predicted by the model. We normalize by the number of testing points we have and by

the number of dimensions we are working with (which varies depending on sparcity)

so that we have comparable metrics to work with.

point− wise− error =

∑50000
ti=1

∑N
i=1 xi,ti − x̂i,ti

50000 ∗N
(3.3)

This may not be the best measurement, since a model that perfectly predicts the

trajectory (but is one time step behind or ahead) would be severely penalized by this

metrics. Yet, this could still tell us if in general, the model is predicting roughly

the correct range of values and if the predicted trajectories are following the true

trajectories somewhat well.
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3.5 Quantitative Evaluation Methods

3.5.2. Relative Entropy (Kullback-Leibler divergence)

Earlier, the qualitative analysis on the histogram of values helped us understand

whether the distribution of predicted values generally aligned with the true distribu-

tion of values in the test trajectory. We want a more rigorous understanding of how

well the predicted and actual distribution of values line up.

We use the Kullback-Leibler divergence, which with numBins = 50, actual dis-

tribution p, and predicted distribution q is computed as

D =
b=50∑
b=1

pb ∗ log(
pb
qb
) (3.4)

That is, entropy is a measure of the likelihood that we could arrive at a distribution

q after sampling from a distribution p. The lower the number, the more likely it is

(i.e. less entropy means that the two distrbution p and q are more similar).

To compute K-L Divergence, we use the scipy library’s entropy function [5]. To

deal with potential zeroes for pb and qb, we set pb,= 0.00001 when pb = 0 to prevent

an undefined value for log (since log(0) is undefined) and qb = 0.00001 when qb = 0

to prevent a divide by zero error.

Then, to make our measure of K-L Divergence comparable among experiments

with different sparsity levels (so different numbers of dimensions), we normalize the

sum of the K-L divergences by the number of dimensions there are.

entropy =

∑N
i=1 Di

N
(3.5)

3.5.3. Histogram Differences

Because of the nature of the Kullback-Leibler Divergence formula, there is a wide

range of values and the computed entropy is prone to being heavily affected by outliers

(as the entropy for one variable could significantly affect the average entropy). Thus,

17



3.5 Quantitative Evaluation Methods

we also use histograms to get a ”pseudo-measure” of entropy that is on a scale of 0

to 1.

To compute our ”histogram differences” metric for each variable, we first find the

minimum among all predicted and actual values and the maximum among all pre-

dicted and actual values. From there, we separate the area between the minimum

and maximum into 50 equally-sized bins. For each bin b, let’s say there are pb occur-

rences of values in the predicted distribution and ab occurrences of values in the actual

distribution. We compute the histogram differences using the following equation

HD =

∑b=50
b=1 |pb − ab|
50000 ∗ 2

(3.6)

Thus, two completely overlapping distributions will have a histogram difference

score of 0 and two completely separate distributions will have a histogram difference

score of 1.

Among all of our variables for a given sparsity, we look at the average, minimum,

and maximum HD to understand how well in general and at the extremes that our

predicted model is capturing the distribution of values of the test trajectory.

3.5.4. Approximate Entropy

We already have measurements that indicate how well our model is predicting the

range of values. However, we also need to consider how well the model simulates

the fluctuations of the time series data. We use Approximate Entropy to quantify

the amount of regularity and the unpredictability of fluctuations over time-series

data. Smaller values indicate that the data is more regular and predictable, while

higher values indicate the opposite. The Approximate Entropy is calculated by a

6-step algorithm [10]. We use a default embedding dimension of 2 and the default

Chebyshev distance metric.
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3.5 Quantitative Evaluation Methods

We use the EntroPy [1] implementation of the approximate entropy function to

compute the approximate entropy for the predicted (aep) and actual (aea) values

for each of our variables. We calculate the average approximate entropy error by

performing the following calculation

approx− entropy − error =

∑N
i=1

|aepi−aeai|
aeai

N
(3.7)
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Chapter 4

Results and Discussion

Section 4.1

Model with Complete Observations (s = 1)

4.1.1. Analysis and Optimal Trajectory Length

For s = 1 (full observations), we aim to pick the optimal trajectory length. We run

experiments from tl = 3 to tl = 15 and we first perform quantitative analysis to

determine what trajectory lengths we should qualitatively analyze.

In Table 4.1, for each metric, we highlight the value that indicates the best pre-

dictive model in green and the second best predictive model in orange. From Table

4.1, it is clear that trajectory length 5 is by far the most optimal, leading in 5 of the

6 metrics.

We consider the aforementioned promising tl = 5 and analyze the performance

qualitatively. Figure 4.1(a) suggests that our model is doing quite well, capturing

both the oscillation and range of values properly. This property is also reflected by

the relatively low approximate entropy error, suggesting that our model is good at

capturing the unpredictability of fluctuations in the time-series data. At the same

time, the more details time plot in Figure 4.2(b) suggests that our model is doing a

20



4.1 Model with Complete Observations (s = 1) Results and Discussion

Table 4.1: Experiment Results for s = 1 with tl = 3 to tl = 15
trajectory
length

pointwise
error

entropy average
histogram
difference

minimum
histogram
difference

maximum
histogram
difference

approximate
entropy
error

3 3.0101 7.6751 0.8994 0.8406 0.9502 0.9132
4 3.3263 2.0117 0.5677 0.5075 0.6373 0.177
5 4.0952 0.0071 0.0379 0.0203 0.0633 0.0551
6 4.2146 7.1802 0.962 0.9502 0.9696 0.9981
7 5.4116 3.4508 0.6165 0.3209 0.9862 0.8827
8 4.2438 6.99 0.9606 0.9442 0.9896 0.9998
9 6.1262 7.1326 0.9732 0.9408 0.9988 0.9991
10 3.9356 0.6126 0.3213 0.1436 0.5447 0.1342
11 5.6605 3.1674 0.9007 0.8069 0.9563 0.947
12 3.9945 5.1344 0.7654 0.5484 0.8798 0.1729
13 5.0146 6.9434 0.9659 0.9419 0.9977 0.9998
14 4.2583 1.0493 0.4133 0.261 0.5714 0.1002
15 5.0195 6.5941 0.9669 0.9412 0.9887 0.9999

somewhat good job of capturing both the amplitude and frequency of the oscillations,

though it is far from perfect. The histogram in Figure 4.3(c) suggests that the model

is doing a good job capturing the range of values for a variable, and the relative

frequency of values inside that range. This fact is also captured by the low entropy

and low histogram differences for tl = 5. Finally, the phase plot in Figure 4.3(d)

suggests that the model is doing a good job of capturing the interaction between

different variables in the model.
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4.1 Model with Complete Observations (s = 1) Results and Discussion

(a) (b)

(c) (d)

Figure 4.1: Visual Analysis of s = 1, tl = 5 (a) Time plot of t = 0 to t = 500

(b) Time plot of t = 1 to t = 2 (c) Histogram (d) Phase plot

We then consider tl = 3, which is the only trajectory length to have a metric better

than that of tl = 5 for s = 1, with the lowest point-wise error. However, looking at

Figure 4.2, it becomes clear that tl = 3 is significantly inferior to tl = 5. The model

using tl = 3 simply flat-lines (as seen in Figure 4.2(b)), and its status as having the

lowest point-wise error is simply because its predictions always lay in the middle of

the possible range of actual values. While the model is still able to capture a tiny bit

of the nature of the interactions between different variables (seen in Figure 4.2(a)), its

predicted distribution of values is significantly off from the actual distribution (seen

in Figure 4.2(c)).
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4.1 Model with Complete Observations (s = 1) Results and Discussion

(a) (b) (c)

Figure 4.2: Visual Analysis of s = 1, tl = 3 (a) Phase Plot (b) Time plot of t = 0

to t = 500 (c) Histogram

We then consider tl = 10, which holds the second best metric in 4 categories.

Looking at Figure 4.3, the performance of the model using tl = 10 is relatively good,

with the phase plot in Figure 4.3(a) showing that the model can capture the inter-

actions between adjecent variables well and Figure 4.3(b) showing that the model

is properly capturing the relationship between previous time steps and future time

steps with an autocorrelation plot for predicted values that closely traces the auto-

correlation plot for the actual values. However, the model’s downsides leads us to

not consider tl = 10 as the best, as it can be seen that the predicted range fails to

capture the upper part of the range of actual values (as seen in Figure 4.3(c)). This

can be seen further in Figure 4.3(d), with the predicted values having a positive skew

when the distribution of actual values is relatively normal.
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(a) (b)

(c) (d)

Figure 4.3: Visual Analysis of s = 1, tl = 10 (a) Phase Plot (b) Autocorrelation

Plot (c) Time plot of t = 0 to t = 500 (d) Histogram

After this qualitative analysis is performed, we proceed with tl = 5 as our optimal

trajectory length for s = 1.

4.1.2. Limitations

Although our model performs quite well for tl = 5, there are still some limitations for

its performance. 7 of the 39 phase plots appear like the ones shown in Figure 4.4(a),

failing to capture the relationship between 2 adjacent variables at times. Moreover,

the autocorrelation plot in Figure 4.4(b) shows that the model is not capturing the

relationship between past time steps and future time steps that well, as the autocor-

relation plot oscillates and flattens way too late (after a lag of about 40 time steps

instead of about 5 time steps). However, due to the aforementioned merits of this
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4.2 Sparsity vs. Optimal Trajectory Length Results and Discussion

model, we proceed with it for the rest of our analysis. The future work section de-

scribes potential improvements so that our models do not have these limitations in

the future. In an ideal world, our baseline model should be close to perfect when

using full observations in the optimal trajectory length.

(a) (b)

Figure 4.4: Limitations of model for s = 1, tl = 5 (a) Phase Plot (b) Autocorrelation

Plot

Section 4.2

Relationship between Sparsity and Optimal

Trajectory Length

4.2.1. Determining Best Trajectory Lengths

We follow a similar process to the one above to determine the optimal trajectory

length for all of our levels of sparsity, trying out many trajectory lengths (up to

tl = 60 for s = 6), using quantitative analysis to filter out the top few candidate

trajectory lengths, and then using qualitative analysis to finalize our selection of the

optimal trajectory length for a given sparsity. Table 4.2 describes provides a summary

of the models’ performance using the optimal trajectory lengths for each sparsity.

When we plot the level of sparsity against optimal trajectory length, we can see
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Table 4.2: Experiment Results among optimal t′ls for each of s = 1 to s = 6
sparsity trajectory

length
pointwise
error

entropy average
histogram
difference

minimum
histogram
difference

maximum
histogram
difference

approximate
entropy
error

1 5 4.0952 0.0071 0.0379 0.0203 0.0633 0.0551
2 5 4.3646 0.0380 0.0864 0.0287 0.1489 0.0970
3 11 4.3477 0.0277 0.0706 0.0428 0.1207 0.1768
4 19 4.5298 0.1237 0.1791 0.0770 0.2704 0.3603
5 34 4.9963 0.1257 0.1745 0.1150 0.2876 0.2541
6 47 4.3806 0.1451 0.2260 0.1872 0.2459 0.1347

in Figure 4.5(a) that there is an increasing exponential relationship between the

level of sparsity and the optimal trajectory length. This relationship is made even

more apparent when we plot the number of dimensions, which is equal to ⌈40
s
⌉ in our

case, against the optimal trajectory length in Figure 4.5(b), showing an exponentially

decaying relationship between the number of dimensions in our observations to the

optimal trajectory length.

(a) (b)

Figure 4.5: (a) Sparsity vs. Optimal Trajectory Length (b) Number of Dimensions

Observed vs. Optimal Trajectory Length
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4.2 Sparsity vs. Optimal Trajectory Length Results and Discussion

4.2.2. Diminishing Predictive Accuracy

The quantitative analysis suggests that over time, the predictive accuracy for the

optimal trajectory length decreases as we increase sparsity. As seen in the Figures

4.6(a) & Figure 4.6(b), entropy and histogram differences increase over time as spar-

sity increases.

(a) (b)

Figure 4.6: Metric analysis for optimal trajectory length of varying sparsities

(a) Sparsity vs. Entropy (b) Sparsity vs. Average Histogram Difference

Furthermore, the qualitative analysis also suggests that predictive accuracy for

the optimal trajectory length decreases as we increase sparsity. As can be seen in the

histograms in Figure 4.7 (a)-(f), the predicted distributions veer further and further

from the actual distribution of values as sparsity increases, as the predicted values

experience some forms of non-normal behavior with skew & inaccurate ranges.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: Sample histograms for optimal trajectory length for (a) s = 1 (b) s = 2

(c) s = 3 (d) s = 4 (e) s = 5 (f) s = 6

Though we were able to find relatively high performing trajectory lengths for s = 1

to s = 6, we were unable to find an optimal trajectory length for s = 7 (searching

from tl = 45 to tl = 80), with the best average histogram difference being 0.433

(with a sample from this tl being shown in Figure 4.8). At this point, we halt the

experiments due to the low prediction quality.

However, despite the diminishing predictive accuracy for the optimal trajectory

length of a specific sparsity as sparsity increases, it should still be noted that the

performance of the model when using the optimal trajectory length is still relatively

good when the sparsity is high. For instance, for s = 5 (with optimal tl = 34),

the average entropy is 0.1257 and for s = 6 (with optimal tl = 47), the average

entropy is 0.1451. Both of these entropy values are significantly better than the

entropy of the predictions made when we had full observations (in s = 1) when we

did not use the optimal tl = 5, as the second best entropy was 0.6126. Meanwhile,
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4.2 Sparsity vs. Optimal Trajectory Length Results and Discussion

Figure 4.8: Histogram for s = 7, tl = 75

our average histogram differences of 0.1745 (for s = 5, tl = 34) and 0.2260 (for

s = 6, tl = 47) are better than the average histogram differences made when we had

full observations when we did not use the optimal tl = 5, as the second best average

histogram difference was 0.3213. It is worth noting that the maximum histogram

difference among all variables for s = 5 is 0.2876 and for s = 6 is 0.2459, which

is lower than the second best average histogram difference for s = 1. Thus, it is

reasonable to conclude that the model can still achieve relatively high performance

even when our data is quite sparse, observing as low as 7 of the 40 variables in our

dynamical system.
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Chapter 5

Future Work

There is a variety of work that should be completed to improve the robustness and

augment our results.

As seen in the results section, even with full observations, the deep learning model

is still far from perfect. To improve the robustness of our testing, we should first

improve the baseline model. Though we have already tried various architectures

and activation functions, we should consider even more neural network architectures.

Furthermore, we could also improve the baseline model by increasing the amount

of data that is passed into the model. To do so, we would need to leverage more

advanced computing resources (like better GPUs as we are currently using Google

Colab Pro).

We should also see whether our pattern for the relationship between sparsity

and optimal time length hold for different dt’s (other than dt = 0.01). This would

require another few whole sets of experience, but could prove valuable in validating

the relationship between sparsity and optimal time length or providing a different set

of rules that govern optimal time length (that are also affected by the value for dt).

We should also consider the relationship between different types of sparsity (with

the same level of sparsity) and whether they have different optimal time lengths. For
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instance, for s = 2, we could have x0, x2, ..., x38 or we could also have x0, x1, x2, ..., x19

and these two different types of sparsity could have drastically different optimal time

lengths.

Finally, we should run experiments that consider more complex and less complex

dynamical systems (e.g. a less complex dynamical system could be one where only

the preceding variable in a vector and the current variable dictate the value of the

derivative of the current variable). It would be important to see whether the guide-

lines for the general pattern between sparsity and optimal time lengths hold in these

different systems.
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