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Abstract

We compute a census of isomoprhism classes of cubic fourfolds over F2 using a new

method of efficient orbit enumeration. With this census, we were able to compute

the zeta functions of all smooth cubic fourfolds over F2. This analysis provides us

with information about the point counts, cohomology, and other invariants of cubic

fourfolds.
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Introduction

The study of cubic fourfolds relates to a number of topics currently being investigated

- the rationality problem, algebraic cycles, and hyperkähler varieties. In this thesis,

we introduce a new method of orbit enumeration which was used to generate a census

of isomoprhism classes of cubic fourfolds over F2. We additionally utilize this census

to enumerate the zeta functions of all smooth cubic fourfolds over F2.

The census and its results are based on the paper A census of cubic fourfolds over

F2 [1]. This thesis will attempt to expand upon some of the ideas necessary for an

undergraduate to understand the paper.

In the first chapter, we will explore the new method of efficient orbit enumerations

deemed filtration. We will review some elementary group theory, to both prove the

efficacy of, and understand, this algorithm.

In the next chapter, we will develop the theory needed to understand both the

Weil conjectures and the census results. This section serves as a brief introduction to

étale cohomology and zeta functions.

In the final chapter we will explore the results of the census using some of the

language and theory developed over the two prior chapters.

We will now examine an example which illustrates the central problem being

discussed in this thesis.
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0.1 Motivating Example

We will consider the problem of enumerating orbits of the action of linear transforma-

tions on cubic forms in two variables. Ultimately, this thesis will examine a slightly

altered problem, that is, enumerating orbits of cubic forms in six variables (known as

cubic fourfolds).

Definition 0.1. A cubic form in two variables is the vanishing locus of a homoge-

nous cubic polynomial f(x) ∈ F2[X, Y ]. That is the vanishing locus of

f(x) = aX3 + bX2Y + cXY 2 + dY 3

with a, b, c, d ∈ F2.

In the world of algebraic geometry, we view this equation, not strictly as a poly-

nomial, but as the locus of points which satisfy f(x) = 0, known as the vanishing

locus of f(x) and this will be denoted V (f(x)). Suppose we wanted to enumerate

all cubic forms and their vanishing loci.

Consider, for example, the cubic form given by X3 + Y 3. This equation has van-

ishing locus over F2 given by

V (X3 + Y 3) = {(0, 0), (1, 1)}

However, all the properties algebraic geometers care about (smoothness, point-counts,

etc.) are preserved between cubic forms that are related by linear transformations.

v



For example, consider the invertible linear transformation

M :=

1 1

1 0

 ∈ GL2(F2)

We can think of this matrix as acting on the generators {X, Y } ∈ F2[X, Y ]. In this

case M will send these to {X + Y, Y } and so this will send the cubic form X3 + Y 3

to X3 + X2Y + XY 2. In this way, the cubic forms of these two polynomials are

equivalent by invertible linear transformation and so all the relevant properties an

algebraic geometer may care about are preserved. Then our problem of enumerating

cubic forms is actually a reduced problem, that is, how can we enumerate cubic forms

up to invertible linear transformation.

Though initially, this appears to be a problem of smaller scope compared to enu-

merating cubic forms as a whole, it requires us to consider all the ways in which

invertible linear transformations can permute our cubic forms. It is easy to see based

on the definition of a cubic form that there are 24 = 16 total cubic forms, but how

many distinct cubic forms are there (up to linear isomorphism)? Furthermore, how

can we quickly find all the distinct forms (up to linear isomorphism)? These questions

become increasingly more difficulty as the number of forms increases. For example,

homogenous cubic forms in 6 variables have 256 total forms, so answering the question

of how many are distinct seems impossible without a complete enumeration over all

forms and all invertible linear transformations. We will rephrase this complicated

enumeration problem in the world of group theory to find a means to enumerate such

cubic forms in a tractable manner.
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Chapter 1

Enumerating Orbits

Section 1.1

Burnside’s Lemma

As a general reference for this section, see [3, Part 1].

1.1.1. Group Actions

Definition 1.1. A group is an order-pair (G, ·), consisting of a set equipped with a

binary operation

· : G×G→ G

such that the following hold:

(a) ∀ g1, g2, g3 ∈ G

g1 · (g2 · g3) = (g1 · g2) · g3,

(b) ∃ e ∈ G such that ∀ g ∈ G

e · g = g · e = g,

1



1.1 Burnside’s Lemma Enumerating Orbits

(c) ∀ g ∈ G we have ∃ g−1 ∈ G such that

g · g−1 = g−1 · g = e.

Definition 1.2. The order of a group (G, ·) is the cardinality (number of elements)

of G as a set, and is denoted |G|.

Definition 1.3. A left group action of the group (G, ·) on a set X is a map

· : G×X → X

such that the following hold:

(a) ∀ g1, g2 ∈ G and x ∈ X

g1 · (g2 · x) = (g1 · g2) · x,

(b) ∀ x ∈ X

e · x = x.

In our example (0.1), we can think of the group as GL2(F2), that is, the set of 2-by-2

invertible matrices. This a group with the binary operation of matrix multiplication.

Note that the invertability criterion is necessary since we require that every element

of the group have an inverse.

Furthermore, we can think of GL2(F2) as acting on our set of cubic forms by left-

multiplication of a matrix with the generators {X, Y } ∈ F2[X, Y ]. For example, if we

2



1.1 Burnside’s Lemma Enumerating Orbits

fix a basis for binary cubics,

B := {e1 = X3, e2 = X2Y, e3 = XY 2, e4 = Y 3}.

Then the matrix 0 1

1 0

 ∈ GL2(F2)

takes the element X to Y and Y to X and thus maps

e1 7→ e4, e2 7→ e3, e3 7→ e2, and e4 7→ e1.

and thus we get an induced matrix on binary cubics with respect to our basis,



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


∈ GL4(F2).

Definition 1.4. For a group (G, ·) acting on a set X via ·, the orbit of x ∈ X is

G · x := {g · x | g ∈ G}.

That is, the elements y ∈ X which can be moved to x via the action of G.

This formalizes our example (0.1) on binary cubic forms, and rephrases our original

question. We have now reduced our problem to answering the question of, how many

distinct orbits are their of GL2(F2) acting on the space of cubic forms? Furthermore,

how can we quickly enumerate orbits of this action?

3



1.1 Burnside’s Lemma Enumerating Orbits

Since all orbit elements are equivalent up to permutation by the group action, we

traditionally pick a representative for each orbit. So in reality our question becomes

that of quickly enumerating orbit representatives since, in the context of cubic forms,

we only need one element of an orbit to understand all of the elements of the orbit.

We consider a related notion to that of an orbit,

Definition 1.5. The stabilizer of an element x ∈ X is

Gx := {g ∈ G | g · x = x}.

That is, elements g ∈ G which do not affect (stabilize) the element x.

To see the relationship between orbits and stabilizers, consider the aptly named orbit-

stabilizer theorem.

Theorem 1.6. (Orbit-Stabilizer Theorem)

For a group (G, ·) acting on a set X via · we have ∀ x ∈ X

|G · x| = |G|
|Gx|

.

A similar notion to that of a stabilizer is the set Xg := {x ∈ X | g ·x = x}. These

are related in the sense that

∑
g∈G

|Xg| = |{(g, x) ∈ G×X | g · x = x}| =
∑
x∈X

|Gx|.

4



1.1 Burnside’s Lemma Enumerating Orbits

It then follows by the Orbit-Stabilizer Theorem

∑
g∈G

|Xg| =
∑
x∈X

|Gx|

=
∑
x∈X

|G|
|G · x|

= |G|
∑
x∈X

1

|G · x|
.

We will ultimately see a connection between this result and the number of orbits.

1.1.2. Burnside’s Lemma

Definition 1.7. The set of orbits is

X/G := {G · x ⊆ X | x ∈ X}.

Lemma 1.8. X is the disjoint union of its orbits, that is X =
⊔
U∈X/G U .

Proof. Clearly every element x ∈ X is in the orbit G · x ∈
⊔
U∈X/G U . We now prove,

these orbits are actually disjoint. If G · x ∩ G · x′ ̸= ∅ then ∃ g1, g2 ∈ G and y ∈ X

such that

g1 · y = x

g2 · y = x′.

Then it follows

(g2 · g−1
1 ) · x = g2 · g−1

1 · g1 · y = g2 · e · y = g2 · y = x′

and thus G · x ⊆ G · x′
. The opposite inclusion follows a similar argument so G · x =

5



1.1 Burnside’s Lemma Enumerating Orbits

G · x′
and all the orbits are disjoint.

From this it follows that any sum over elements in X can be broken into a sum-

mation over elements of each orbit in X/G. Then in our earlier equation we have

∑
g∈G

|Xg| = |G|
∑
x∈X

1

|G · x|

= |G|
∑

U∈X/G

∑
x∈U

1

|G · x| .

We note that for any U ∈ X/G we have that by definition all elements x ∈ U are

part of the same orbit G · x = U . Then this reduces to

∑
g∈G

|Xg| = |G|
∑

U∈X/G

∑
x∈U

1

|U |

= |G|
∑

U∈X/G

|U |
|U |

= |G|
∑

U∈X/G

1

= |G| · |X/G|.

Then to get the total number of orbits we can manipulate the above result.

Lemma 1.9. (Burnside’s Lemma)

For a finite group (G, ·) acting on a set X, we have

|X/G| = 1

|G|
∑
g∈G

|Xg|.

1.1.3. Application of Burnside’s Lemma

We can apply Burnside’s lemma to our motivating example (0.1), but we will develop

some tools first to make the computation easier. Naively, one could apply Burnside’s

6



1.1 Burnside’s Lemma Enumerating Orbits

lemma by looking at each element of the group g ∈ GL2(F2), and consider which

elements in our space our fixed by g. But in general, this require O(|G||X|) steps for

a group G acting on a set X. Instead we would like to find a means to reduce the

number of group elements we need to look at. Furthermore, we would like a quick

means to evaluate |Xg| for a given group element.

Definition 1.10. For a group G, two group elements g, h ∈ G are conjugate pro-

vided that

∃ s ∈ G s.t. g = s−1 · h · s.

Lemma 1.11. If a, b ∈ G are conjugate, then |Xa| = |Xb|.

Proof. Since a and b are conjugate, there is some element c ∈ G such that a = c−1 ·b·c.

Now if a fixes x ∈ X, we have that

x ∈ Xa ⇐⇒ a ·x = x ⇐⇒ c−1 · b · c ·x = x ⇐⇒ b · (c ·x) = (c ·x) ⇐⇒ c · x ∈ Xb.

Then consider the map

ϕ : Xa → Xb

x 7→ c · x

This is well defined by the above argument. To see that these sets have the same

cardinality, it suffices to show ϕ is a bijection.

To see injectivity, suppose ϕ(x) = ϕ(y). Then c · x = c · y. It follows, c−1 · c · x = y,

thus x = y and the map is injective.

7



1.1 Burnside’s Lemma Enumerating Orbits

To see surjectivity, suppose y ∈ Xb. Consider c−1 · y, for this we have

a · (c−1 · y) = c−1 · b · c · c−1 · y = c−1 · b · y = c−1 · y.

Then it follows c−1 · y ∈ Xa. Then note that ϕ(c−1 · y) = c · c−1 · y = y, and thus the

map is surjective. It then follows that |Xa| = |Xb|.

The upshot of Lemma 1.11 is that we need not enumerate every element in G to

do our Burnside computation. Instead we only need one element from each collection

of elements that are conjugate to one another (known as conjugacy classes).

For example, one may have originally thought that to perform a Burnside com-

putation on binary cubic forms would require the fixed points of all 6 elements of

GL2(F2); however, since GL2(F2) has only 3 conjugacy classes, we need only these 3

fixed point counts to complete our computation. These conjugacy classes are given

by representatives:

α1 :=

1 0

0 1

 α2 :=

0 1

1 0

 α3 :=

1 1

1 0

.

If we let Cl(g) denote the elements conjugate to g ∈ G, then we have

|Cl(α1)| = 1 |Cl(α2)| = 3 |Cl(α3)| = 2

This can be seen via the equivalence of GL2(F2) and the symmetric group on 3

elements (S3) - this is left as an exercise to the reader. Then by Lemma 1.11 it

follows that in our case

|X/G| = 1

|G|
∑
g∈G

|Xg| = 1

|G|

3∑
i=1

∑
g∈Cl(αi)

|Xg| = 1

|G|

3∑
i=1

∑
g∈Cl(αi)

|Xαi| = 1

|G|

3∑
i=1

|Cl(αi)||Xαi|.

So we need only calculate the number of fixed points for each conjugacy class rep-

resentative. We could enumerate over all points and check whether or not they are

8



1.1 Burnside’s Lemma Enumerating Orbits

fixed, but we will use some tools from linear algebra to make our computation more

scalable.

Lemma 1.12. For a representation (see def. 1.16) of V a Fp-vector space

ρ : G→ GL(V ),

we denote that vector subspace of null-solutions to M ∈ GL(V ) as

Null(M) := {x ∈ V | M · v = 0}

and we will denote the identity in GL(V ) by I. Then we have that ∀ g ∈ G

|Xg| = pdimFp (Null(I−ρ(g))).

Proof. Fix g ∈ G. We note that vectors which are fixed by g have the property that

∀ x ∈ V , x− g · x = 0. We note that this also means e · x− g · x = 0 by the definition

of a group action. Since G acts via the representation ρ, we have

I · x− ρ(g) · x = 0

That is, x ∈ Xg if and only if x ∈ Null(I − ρ(g)). Then these two sets have the same

cardinality. We can quickly calculate the cardinality of Null(I − ρ(g)) by consider-

ing that as a vector-space over a finite characteristic field, we simply get all linear

combinations of basis elements of Null(I − ρ(g)), that is, each basis element can have

p scalars as a coefficient. Then there are pdimFp (Null(I−ρ(g))), total linear combinations

giving the desired result.

Then by the above, to enumerate the orbits in our example we need to find the

9



1.1 Burnside’s Lemma Enumerating Orbits

dimension of the nullspace of I − ρ(αi), where ρ : GL2(F2) → GL4(F2) is given by

ρ(M)(p(X, Y )) = p(M ·X,M ·Y ). We can quickly find the dimension of the nullspace

of a matrix by finding its rank when converted to row-echelon form. We will compute

the example for α2 and the remaining cases are left as an exercise.

Note, α2 acts by taking X 7→ Y and Y 7→ X. We fix an ordered basis for our

vector-space of cubic forms as follows

B = {e1 := X3, e2 := X2Y , e3 := XY 2, e4 := Y 3}.

Then we have that for a general cubic form ae1 + be2 + ce3 + de4 ∈ V

ρ(α2)(ae1 + be2 + ce3 + de4) = ae4 + be3 + ce2 + de1.

and in the chosen basis this transformation is given by the matrix

ρ(α2) =



0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0


.

Then taking I − ρ(α2) and row-reducing, we get the matrix

M =



1 0 0 1

0 1 1 0

0 0 0 0

0 0 0 0


which is of rank 2. Then in this case we have that |Xα2| = 22 = 4 Similarly one can

10



1.2 Efficient Enumeration of Orbits Enumerating Orbits

compute |Xα1| = 1 and |Xα3| = 4. Putting all our results together we have that

|V/G| = 1

|G|

3∑
i=1

|Cl(αi)||Xαi | = 1

6
(1 · 1 + 3 · 4 + 2 · 4) = 36

6
= 6.

This tells us that we have 6 total distinct orbits - a much smaller number than our 16

total cubic forms in our space. In our case, this is a small enough set of orbits to do

a complete manual enumeration; however, a larger space, such as that of cubic forms

in 6 variables, has roughly 3.7 million orbits, a far more daunting task. In the next

section we will examine standard methods of enumeration as well as a new method

which can, in certain cases, perform faster than current enumeration methods.

Section 1.2

Efficient Enumeration of Orbits

1.2.1. Naive Enumeration

Burnside’s Lemma is useful for knowing how many orbits exist under a group action,

but to actually calculate a representative for each orbit we need another method.

Naievely, one could calculate orbits as follows:

Algorithm 1 Naive Enumeration

1: procedure NaiveEnum(G,X)

2: reps← {}

3: for x ∈ X do

4: new rep← true

5: for g ∈ G do

6: if gx ∈ reps then

7: new rep← false

8: end if

11



1.2 Efficient Enumeration of Orbits Enumerating Orbits

9: end for

10: if new rep == true then

11: reps.push(x)

12: end if

13: end for

14: end procedure

This method involves looking over every element of the acted upon set X, and

seeing if any group element permutes the element to an already discovered orbit by

checking if gx is already a found representative ∀ g ∈ G. This implies that we have,

Lemma 1.13. The naive orbit enumeration algorithm has O(|X|·|G|) time complexity

(where O is “Big-O” notation).

1.2.2. Union-Find

However, this algorithm makes no use of new information gained other than the

found representatives. To save steps in our algorithm, we can instead associate every

element with the orbit it is contained in by mapping it to a representative. Thus, if

we are trying to see if x is a new representative, we can see if for any g ∈ G, if gx

has ever been found, thus reducing the number of checks needed. This algorithm is

known as union find and requires that we first create an orbit representation. In

our case, we will represent orbits via an associative array. This will map an element

to a single representative of its orbit. Then, to find the list of representatives of the

group action we need only look at the set of values in key-pairs of this hash map. We

implement the actual enumeration as follows:

Algorithm 2 Union-Find Enumeration

1: procedure UFEnumerate(G,X)

2: reps← {} ▷ create associative array

12



1.2 Efficient Enumeration of Orbits Enumerating Orbits

3: for x ∈ X do ▷ initialize array

4: reps[x]← null

5: end for

6: for x ∈ X do

7: if reps[x] == null then ▷ G · x not yet enumerated

8: for g ∈ G do ▷ enumerate G ·X

9: reps[gx]← x

10: end for

11: end if

12: end for

13: return reps ▷ return representatives array

14: end procedure

This algorithm begins by initializing our associative array and marking that no

orbits have been explored via a null value. We then traverse our set, each time we find

an element with an unenumerated orbit (say x), we associate every element gx ∈ G · x

with the representative x. In this way, when we come across another element of G · x

later in our search, we wont enumerate this orbit since it will have been marked as

enumerated (not null).

Lemma 1.14. The union find orbit enumeration algorithm has time-complexity

O(|G| · |X/G|) = O(|X| · Ex∈X |Gx|),

where E denotes the expected value.

Proof. It is clear that the dominant runtime component of UFEnumerate is in lines

6-12. This section loops over elements of X, and for every new orbit, will loop over

elements of G. Since this loop does nothing when x ∈ X is not in a new orbit, we are

13



1.2 Efficient Enumeration of Orbits Enumerating Orbits

effectively looping over G for each orbit in X/G. This has time-complexity

O(|G| · |X/G|).

Then by Lemma 1.9 we have that |G| · |X/G| =
∑

g∈G |Xg| =
∑

x∈X |Gx|. We then

have ∑
x∈X

|Gx| = |X|
(∑

x∈X |Gx|
|X|

)
= |X|

(∑
x∈X

|Gx|
|X|

)
= |X| · Ex∈X |Gx|

Thus giving our desired result.

We can see that this is significantly faster than naive orbit enumeration in most

cases. In the worst case, where G acts trivially, each stabilizer is the size of the

whole group and Ex∈X |Gx| = |G|, meaning that at worst it is only as bad as naive

enumeration.

There are, however, ways that we can exploit the structure of the group action to

gain even more signicant speed-ups. Lemma 1.14 tells us that if we can restrict either

the size of the group or the set we are enumerating then we will have a decrease in

running time. We can use this property to break down our orbit enumeration into

smaller problems, to ultimately reconstruct a full set of orbit representatives in even

smaller time-complexity than union-find.

1.2.3. Linear Group Actions

In our filtration algorithm, we will be using the structure of a vector space and its

subsets which are invariant under the group action to try and gain a speed-up over

the union-find enumeration. However, we must first consider the additional structure

which a vector space provides (addition and scalar multiplication), and how this

interacts with a group action.
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Definition 1.15. A linear group action is a group action which preserves the

additive and scalar structure of a vector space. That is, if (V,+, ·) is a k-vector space

and (G, ·) is a group which acts on V , we say the action is linear provided that

(a) ∀ v, w ∈ V g ∈ G we have g · (v + w) = g · v + g · w

(b) ∀c ∈ k v ∈ V and g ∈ G we have g · (c · v) = c · (g · v)

Definition 1.16. A representation of a group (G, ·) is a group homomorphism

ρ : G→ GL(V )

where (V,+, ·) is a k-vector space, and (GL(V ), ◦) is the general linear group of invert-

ible linear transformations on V . Note that GL(V ) acts linearly on V by evaluation

of a linear transformation.

Lemma 1.17. A representation ρ : G→ GL(V ) induces a linear group action

· : G× V → V

(g, v) 7→ ρ(g)(v)

Furthermore, a linear group action by (G, ·) induces a representation

ρG : G→ GL(V )

g 7→ qg

where

qg : V → V

v 7→ g · v

15
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Proof. These claims follow directly from the definitions. If ρ is a linear representation,

then ρ associates each element of G with a linear transformation on V . Thus it is

clear that ∀ c ∈ k, v, w ∈ V , and g ∈ G, since ρ(g) is a linear transformation

ρ(g)(c · v + w) = c · ρ(g)(v) + ρ(g)(w)

by linearity.

Similarly, if G acts linearly on V , then the map

qg : V → V

v 7→ g · v

is linear by the definition of a linear group action. Furthermore, we have that ∀

r, s ∈ G

ρG(r · s) = qr·s.

But note that ∀ v ∈ V we have

qr·s(v) = (r · s) · v = r · (s · v) = qr(qs(v)) = (qr ◦ qs)(v)

Then qr·s = qr ◦ qs and the map ρG is a group homomorphism and thus a linear

representation.

In this way, linear group actions and representations are really the same since we

can always recover one from the other. That is, all linear group actions really just

act via a subgroup of GL(V ). When we talk about group actions on vector spaces,

we generally restrict to linear group actions (or representations) so for this section

our group action is assumed to be a linear one. We note that this still fits within our
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motivating example since we were already considering our group to be the set of all

invertible linear transformations on F2.

1.2.4. Filtration

We now illustrate a means to reduce the problem of orbit enumeration to smaller

subgroups and subspaces.

Definition 1.18. Let V be a k-vector space and W ⊆ V a vector subspace. Define

the equivalence relation ∼W on V by the condition that ∀ r, s ∈ V

r ∼W s ⇐⇒ r − s ∈ W

Then the quotient space of V and W is V/ ∼W (denoted V/W ).

One can see that V/W is a smaller space than V . In fact, one can show that

dim(V/W ) = dim(V )− dim(W )

thus, if W is a particularly large space, we expect it to be far easier to enumerate

orbits in V/W than V . In fact, However, there is one caveat; if a group action G can

permute an element in w ∈ W to an element g · w /∈ W outside of W , then for the

canonical quotient map

π : V → V/W

v 7→ [v]

we have that π(w) = [0], but π(g · w) ̸= [0]. Since we have that group actions

preserve the identity, it is clear that in this case we cannot recover information about

our original orbits by examining the images of orbits under π. Instead, let us examine

17
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a situation where this can be done.

Definition 1.19. Let G be a group which acts linearly on a k-vector space V . A

vector subspace W ⊆ V is G-invariant provided that

G ·W = {g · w ∈ W | g ∈ G, w ∈ W} = W.

That is to say, G acts as a bijective permutation on the subset W .

We note that when W ⊆ V is a G-invariant subspace, we have that ∀ g ∈ G and

v ∈ V

gπ(v) = g · (v +W ) = g · v + g ·W = g · v +W = π(g · v).

Then we get an induced group action on V/W by

· : G× V/W → V/W

(g, [v]) 7→ [g · v].

and this will be well-defined, unlike in the case where W is not G-invariant.

Lemma 1.20. Let V be a k-vector space, acted upon by a group G. If W ⊆ G is a

G-invariant subspace, then for the canonical quotient map π : V → V/W , we have

V/G =
⊔

O∈(V/W )/G

π−1(O)/G.

That is, we can recover V/G from the inverse image of orbits in (V/W )/G.

Proof. By the definition of the induced G action on V/W it is clear π must take

18
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G-orbits in V to orbits in V/W , so we get an induced map

π̃ : V/G→ (V/W )/G

G · x 7→ G · x

By the surjectivity of π it follows

V/G = π̃−1((V/W )/G) =
⊔

O∈(V/W )/G

π̃−1(O).

But note that ∀ O ∈ V/G

π̃−1(O) = {G · x ∈ V/G | G · x ⊆ O} = {x ∈ V | x ∈ O}/G = π−1(O)/G.

We can see that when W ⊆ V is a G-invariant subspace we actually can find

a correspondence between orbits in V and orbits in V/W (a much simpler space to

enumerate). To provide insight on how this correspondence can actually be used to

enumerate orbits, consider

Lemma 1.21. Let V be a k-vector space, acted upon by a group G. If W ⊆ V is a

G-invariant subspace, then for the canonical quotient map π : V → V/W , we have if

v is a representative for O ∈ (V/W )/G

ψ : (v +W )/Gπ(v) → π−1(O)/G

Gπ(v) · (v + w) 7→ G · (v + w)

is a bijection

Proof. We first show thatG·(v + w) is actually in π−1(O)/G. Consider v+w ∈ v +W .
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Then π(v + w) = π(v) = v ∈ O by supposition. Then G · (v + w) ∈ π−1(O)/G and

the map is well-defined.

To see that ψ is injective, suppose ψ(Gπ(v)(v + w)) = ψ(Gπ(v)(v + w
′
)). Then

G · (v + w) = G · (v + w
′
), so ∃ g ∈ G with g · (v + w) = (v + w

′
). But then it

follows that

g(v +W ) = g(v + w +W ) = g(v + w) +W = v + w
′
+W = v +W

Then g ∈ Gπ(v) so g · (v+w) = (v+w
′
) means that Gπ(v) · (v+w) = Gπ(v) · (v+w

′
).

To see that ψ is surjective, fix G ·s ∈ π−1(O)/G. Then s ∈ π−1(O) means s+W ∈ O.

Then since v+W is a representative for O, we know ∃ g ∈ G with g·(s+W ) = (v+W ).

Then g maps s+W to v +W so we have ∃ v + w ∈ v +W such that g · s = v + w.

This means that ψ(Gπ(v)(v + w)) = G · (v + w) = G · s.

This result shows us that the representatives of orbits in (v +W )/Gπ(v) are the

same as the representatives of orbits in π−1(O)/G

Then in summary we have bijections:

V/G
⊔
O∈(V/W )/G π

−1(O)/G

⊔
G·v∈(V/W )/G(v +W )/Gπ(v)

ψ

This tells us that to enumerate orbits in V/G its actually sufficient to enumerate

orbits in
⊔
G·v∈(V/W )/G(v +W )/Gπ(v). Then we can break up our orbit enumeration

problem into a much smaller one. First we must enumerate orbits in (V/W )/G. Once

we have done this, then for each representative of orbits in (V/W )/G (say G · v), we
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can enumerate the orbits in (v+W )/Gπ(v). Then the total set of orbit representatives

given by each of these enumerations will actually be the full set of orbit representatives

of V/G. For the following algorithm, let W0 = 0, then we have:

Algorithm 3 Filtration Enumeration

1: procedure Filter(G, 0 = W0/W0 ⊆ W1/W0 ⊆ . . .Wn/W0 = V , d = 0)

2: repsV ← {}

3: if d == n− 1 then

4: return UFEnum(G,Wn/Wn−1)

5: else

6: reps(Wn/Wd+1) ← Filter(G,Wd+1/Wd+1 ⊆ Wd+2/Wd+1 ⊆ . . .Wn/Wd+1, d+ 1)

7: end if

8: for x ∈ reps(Wn/Wd+1) do

9: repsV .push(UFEnum(G(x+Wd+1), x+Wd+1))

10: end for

11: return repsV

12: end procedure

There is one caveat that must be addressed. In this algorithm, it is assumed that

we know G(x+Wd+1). However, this is actually not a problem since our original UFEnum

algorithm can be modified to calculate these stabilizers at no additional running time

cost. To do this we simply perform a check when enumerating an orbit to see whether

gx = x for a given fixed x. As we range over G, this will allow us to concatenate

elements of Gx. This will ultimately provide us with all of the stabilizers needed for

our computation as they can be calculated along with the representatives recursively.

Now we consider how this compares to union find.

Lemma 1.22. The filtration orbit enumeration algorithm for a single filtration (W ⊆
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V ) has time-complexity bounded by

O(|V/W/G| · |W/G| · |G|).

Proof. We first note that the dominant runtime steps are in lines 8-10 whereas all

others represent a single orbit enumeration via UFEnum. By Lemma 1.14 we know that

that runtime of line 9 will have runtime O(|Gx| · |(x+W )/Gx|), for each x ∈ repsV/W .

This means that lines 8-10 will have runtime complexity of

O
( ∑
x∈repsV/W

|Gx| · |(x+W )/Gx|
)

Then it suffices to show that

∑
x∈repsV/W

|Gx| · |(x+W )/Gx| ≤
∑

x∈repsV/W

|G| · |W/G|

since then our runtime will be bounded by

O
( ∑
x∈repsV/W

|G| · |W/G|
)

= O(|V/W/G| · |W/G| · |G|)

as desired.

We will show that sufficient condition term-wise. That is, fix x ∈ V/W . We want to

show

|Gx| · |(x+W )/Gx| ≤ |G| · |W/G|

then by Burnside’s lemma, this holds iff

∑
g∈Gx

|(x+W )g| ≤
∑
g∈G

|W g|
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and since
∑

g∈Gx
|W g| ≤

∑
g∈G |W g| it suffices to show

∑
g∈Gx

|(x+W )g| ≤
∑
g∈Gx

|W g|

Again, we will show this term-wise. That is, fix g ∈ Gx and we want to show

|(x+W )g| ≤ |W g|

To do this we will define an injection between these two sets.

In the case |(v +W )g| = 0 it is clearly bounded by |W g| ≥ 0.

Otherwise, we can fix z ∈ (x +W )g, that is g · z = z. Also, note that z = x + w for

some w ∈ W , so we have

|(z +W )g| = |(x+ w +W )g| = |(x+W )g|

So an injection defined on z +W will suffice to show our result. Now let

τz : (z +W )g → W g

(z + w) 7→ (z + w)− z = w.

We note that if g(z + w) = z + w, then we have

g(w)− w = z − z + g(w)− w

= g(z)− z + g(w)− w since g(z) = z

= g(z + w)− (z + w) by linearity

= 0 by assumption.

23



1.2 Efficient Enumeration of Orbits Enumerating Orbits

Then w is, in fact, in W g and the map is well-defined. Also, the map is clearly

injective as it is just translation-by-z. Then we have that |(z +W )g| ≤ |W g|, thus

giving our desired result.

The upshot of Lemma 1.22, is that filtration, at its worst, is just as bad as union

find. As noted in the proof, the actual runtime of filtration is proportional to

∑
x∈repsV/W

|Gx|·|(x+W )/Gx| ≤
∑

x∈repsV/W

|G|·|(x+W )/Gx| = |G|·
∑

x∈repsV/W

|(x+W )/Gx|

Then by Lemma 1.21 we have that this is

|G| · |V/G|

which is the runtime of union find orbit enumeration over V . However, there is also

a more useful interpretation of our runtime bound in Lemma 1.22. A runtime bound

of O(|V/W/G| · |W/G| · |G|) tells us that our algorithm runs like a union find over W

performed |V/W/G| times. This makes sense since our algorithm performs a union

find over the fiber of each orbit representative in V/W/G so this bound seems fitting

for the nature of the algorithm.
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Chapter 2

Calculating Zeta Functions

Section 2.1

Cubic Fourfolds

Now equipped with the powerful tool of filtration, we can begin to enumerate problems

involving group orbits which were once thought intractable (at least on a personal

computer). As mentioned, up to linear isomorphism, all the relevant properties of

algebraic varieties are preserved, thus it makes sense to ask questions of the orbit

representatives of cubic forms under linear isomorphism in order to answer questions

about the behavior of cubic forms in generality.

A particular class of cubic forms which long sat at the outskirts of computable

enumeration was that of the Cubic Fourfold - the zero locus of a cubic form in

six variables. Of prime interest will be understanding the Zeta Functions of these

objects. These zeta functions have a deep connection to the cohomology of their as-

sociated fourfolds and concisely store much of the information about cubic fourfolds

which is of interest to us; however, understanding these zeta functions require a fairly

comprehensive understanding of algebraic geometry, homological algebra, generating

functions, and a number of other topics often not discussed in an undergraduate math
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education. So we begin by providing a brief refresher on the basics of algebraic geom-

etry to help define the nature of Cubic Fourfolds, as well as the scope of the problem

we are discussing.

Remark 2.1. Unlike the chapter on orbit enumeration, this chapter cannot be ex-

plained from the ground up without delving into topics out of the scope of this thesis.

For this reason, the reader is assumed to have an introductory knowledge of (in no

particular ordering of importance):

(a) (Co)Homology (Singular, De Rham, etc.),

(b) Multivariable Calculus,

(c) Abstract Algebra,

(d) Metric Spaces,

(e) Galois Theory,

(f) Linear Algebra.

It is worth noting, however, that although the reader is assumed to have some

knowledge of these topics, to actually enumerate zeta functions of cubic fourfolds

only requires a means to counts points of a variety as well as a bit of linear algebra.

Readers strictly interested in the computation methods and the results of the census

may want to skip this chapter as it is just meant to provide sufficient background

to understand the results. For the sake of brevity, some definitions may be altered

than what you may see in a textbook or course on the various topics discussed.

This is intended to keep the narrative of information as linear as possible without

introducing extraneous concepts. Where definitions differ, they are generally either a
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diluted version of the full definition or an equivalent definition which is more useful

for the concepts presented. The topics discussed here are intended to be roughly

the bare minimum required to understand the cohomology groups of a cubic fourfold

and their importance. For this reason, many topics will be covered in shallow detail

simply to give the reader the impression of the roadmap one might take on their

course to understanding the Weil Conjectures. With this goal of understanding the

Weil conjectures we will need to cover a great deal of mathematical tools and objects.

With this intended purpose, we have:

(a) The first section will cover generating functions and I-adic metrics. This is

intended to give the reader an understanding of the ring in which zeta functions

and cohomology groups are defined.

(b) The next section will cover homological algebra. This is intended to give the

reader an understanding of what we mean when we say a “cohomology group”.

(c) The next section will cover sites. This is intended to give the reader an under-

standing of the cohomology theory used in the Weil Conjectures.

(d) Finally, our last section will use all these tools to formalize and understand the

Weil Conjectures which tells us how we can actually compute something about

these intricately defined cohomology groups.

2.1.1. Projective Varieties

As a general reference for this section, see [7, Chapter 6]. In the interest of keeping our

varieties compact, we will instead consider varieties over projective space, in which

points at infinity collapse into a single point. To create this identification, we define

Definition 2.2. The projective line over the finite field Fq is

P1
q := (F2

q − {(0, 0)})/ ∼
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where a ∼ b if and only if a = λb for some λ ∈ F×
q

In this space, we have that (1 : 1) = (2 : 2) (assuming char(Fq) ̸= 2). Then this

reduces to a one-dimensional space which looks like Fq with a single point added at

infinity. We note that in this space it is no longer well-defined to take the vanishing

locus of an arbitrary polynomial

Example 2.3. In P1
5, we have that

f(X) = X − 1

has that f(1 : 1) = 0 and f(2 : 2) = 1 ̸= 0, yet (1 : 1) = (2 : 2).

To resolve this we, only consider homogenous polynomials. This is because for a

homogenous polynomial of degree d we have

f(λa) = λdf(a)

Then if f(a) = 0, any scalar multiple of a will also be a zero of the polynomial, thus

giving us a well-defined zero locus for this polynomial. Thankfully in the case of cubic

fourfolds, these are all homogenous so we will be considering cubic fourfolds as being

defined over P5
2. This leads us to define,

Definition 2.4. A Cubic Fourfold is the vanishing locus of a projective, homoge-

nous cubic in six variables.

Section 2.2

I-adic Metric Spaces

As a general reference for this section, see [5, Page 55-56]. In order to understand

Zeta functions of a variety, we will need to become comfortable with a number of
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topological spaces that behave quite differently than many classical examples. This

section will consider the ring in which we define zeta functions as well as the base

field of the vector spaces in the cohomology of a cubic fourfold. Consider the I-adic

Metric

Definition 2.5. Let R be a ring. For an ideal I ⊆ R, such that ∩n∈NIn = (0), the

I-adic metric is

µ : R×R→ R≥0

(x, y) 7→ 2− sup{n∈N | x−y ∈ In}

That is, the inverse base two exponentiation of the largest natural number such that

x− y is in the n-th power of the ideal I. We also assert that, in this case, 2−∞ = 0

Lemma 2.6. For a ring R and ideal I ⊆ R such that ∩n∈NIn = (0), the I-adic metric

is an ultrametric.

Proof. (a) Fix x ∈ R. Then since (0) = (x− x) = ∩n∈NIn, it follows that ∀ n ∈ N

that x− x ∈ In. Then

d(x, x) = 2− sup{n∈N | x−x ∈ In} = 2−∞ = 0

(b) Fix x, y ∈ R such that d(x, y) = 0. Then we must have

sup{n ∈ N | x− y ∈ In} =∞

That is, ∀ n ∈ N we have x − y ∈ In. Thus x − y ∈ (0) = ∩n∈NIn. Thus we

conclude x− y = 0 and so x = y.

(c) We note that if x − y ∈ In for some n ∈ N, then so is −1 · (x − y) = y − x so
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symmetry of the metric follows.

(d) Fix x, y, z ∈ R we want to show d(x, z) ≤ max(d(x, y), d(y, z)).

If x− y ∈ In and y− z ∈ In, then since In is an ideal, x− z ∈ In, then we must

have that d(x, z) is always at most d(x, y) or d(y, z), so

d(x, z) ≤ max(d(x, y), d(y, z))

The I-adic metric is particularly useful in the case of principal ideal domains. This

is because every ideal has the form (q) for some q ∈ R and in this metric definition,

successive powers of q vanish. More formally,

Lemma 2.7. In the (q)-adic metric, the sequence qn converges to 0.

Proof. We have that ∀ i ∈ N

d(qi, 0) = 2− sup{n∈N | qi ∈ (qn)} = 2−i

since the largest power of the ideal (q) containing qi is the i-th power. Then clearly

this sequence converges to 0.

2.2.1. Generating Functions

For further discussion of this section, see [10, Chapter 4]. Courses in analysis often

consider convergent sequences of polynomials like Taylor expansions, but generally

this is considered convergent in the standard Euclidean metric where we evaluate the

function pointwise and examine its convergence as a real-number sequence.

Instead, we can think of the set of polynomial functions over a ring R (which we

will assume is a unique factorization domain) more generally as R[X]. That is, the
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free R-module we get by adjoining {1, X,X2, . . . }. In this space, (X) is an ideal;

moreover, we have that

∩n∈N(Xn) = (0)

since polynomials always have finite degree. Then we can define an (X)-adic metric,

as

ν : R[X]×R[X]→ R≥0

(x, y) 7→ 2− sup{n∈N | x−y ∈ (Xn)}

We can think of this as the inverse base two exponentiation of the largest number for

which the polynomials x and y differ. Suppose x, y ∈ R[X] are such that the largest

term up to which they agree is of degree 2, then their distance in this metric would

be ν(x, y) = 2−2 = 1
4
.

As in our previous lemma, we have that in this metric the sequence (Xn)n∈N ∈ R[X]

converges to 0.

Now equipped with a metric, we can consider the metric completion of the space

R[X] which we will denote R[[X]] and is called the ring of formal power series.

In this space it makes sense to consider the convergence of functions which may not

converge in the Euclidean sense, but will converge to some polynomial in our comple-

tion. This is the ring in which the zeta function is defined. This space really consists

of equivalence classes of cauchy sequences in our metric space. In this way, we can

think of an element in R[[X]] as an infinite sequence of polynomials, where elements

take the form
∞∑
i=0

aiX
i ∈ R[[X]]
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Multiplication and addition are defined as multiplication and addition on the

terms of the cauchy sequence.

Example 2.8. Consider the formal power series f(X) = 1+X+X2+. . . , g(X) = 1−X

∈ R[[X]]. We then have

f(X) · g(X) = (1 +X +X2 + . . . ) · (1−X)

= (1 +X +X2 + . . . )− (X +X2 + . . . ) = 1

Then f(X) is invertible with inverse g(X). Then we can denote

1

1−X
= 1 +X +X2 +X3 + . . .

This is to say that the rational polynomials in X, whose denominators are coprime

with X, are actually a subring of our formal power series ring.

Naturally, one might ask when these elements converge to a rational funtion in

R[[X]]. In this space, an element is invertible whenever the constant term a0 is

invertible in R. The question of what form these rational functions take is more

complicated.

Lemma 2.9. Let f(X) = a0+a1X+a2X+ . . . be a formal power series. Then f(X)

is a rational function of X whose denominator has degree at most d (when written in

lowest terms) if and only if the sequence {ai}∞i=0 satisfies a linear recurrence of degree

at most d.

Proof.

⇒) Suppose f(X) = h(X)
g(X)

where gcd(h, g) = 1 and deg(h) = nh and deg(g) = ng ≤ d.

We will write

h(X) =

nh∑
i=0

biX
i and g(X) =

ng∑
i=0

ciX
i
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Then

f(X) · g(X) = h(X)

⇒
∞∑
i=0

aiX
i ·

ng∑
i=0

ciX
i =

nh∑
i=0

biX
i

⇒
∞∑
i=0

diX
i =

nh∑
i=0

biX
i where di =

∑
α+β=i

cαaβ

Then when i ≥ ng, all di’s reduce to

di = aic0 + ai−1c1 + . . . ai−ngcng

Then if i ≥ max(nf , ng), we must have each di equates with a zero term in h(X) so

in particular,

di = aic0 + ai−1c1 + . . . ai−ngcng = 0

Since g(X) is invertible, we know that c0 is a unit. Then

ai = −
c1
c0
ai−1 − · · · −

cng

c0
ai−ng

which is a linear recurrence of degree ng ≤ d and holds for all subsequent terms.

⇐) Suppose an =
∑r

i=0 cian−i with r ≤ d. Then we have that adding together terms

f(X)− c1Xf(X)− c2X2f(X)− · · · − crXrf(X) = a0 + · · ·+ (an −
r∑
i=0

cian−i)X
n + . . .

⇒f(X)(1− c1X − c2X2 − · · · − crXr) = h(X)

for some finite degree n−1 polynomial since the higher order terms are cancelled out
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by the linear recurrence in their coefficients. Then it follows

f(X) =
h(X)

(1− c1X − c2X2 − · · · − crXr)

which has denominator r ≤ d.

Example 2.10. Consider the Fibonacci sequence a0 = 0, a1 = 1, and an = an−1+an−2

for n > 1. This function clearly satisfies a linear recurrence of degree 2. Then we

expect the formal sum f(X) =
∑∞

i=0 anX
n converges to a rational function with

denominator of degree 2 when written in lowest form. The recurrence tells us that as

in our proof of Lemma 2.9 we should consider the polynomial

f(X)−XF (X)−X2f(X) = a0+(a1−a0)X+(a2−(a1+a0))X2 · · ·+(an−(an−1+an−2))X
n+. . .

but by our linear recurrence this tells us

(1−X −X2)f(X) = X

meaning that

f(X) =
X

1−X −X2

a rational function whose denominator is degree 2.

Furthermore, one can use the quadratic formula to calculate the roots of the

denominator:

ϕ =
1 +
√
5

2
and τ =

1−
√
5

2
.

Then we have

X

1−X −X2
=

1

(1− ϕX)(1− τX)
=

A

1− ϕX
+

B

1− τX
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for some A,B ∈ R. We then have

X

1−X −X2
=
A(1− τX) +B(1− ϕX)

1−X −X2
=

(A+B)− (Aτ +Bϕ)X

1−X −X2
.

This means that (A + B) = 0 and (Aτ + Bϕ) = −1, so A = 1√
5
and B = − 1√

5
.

Plugging this into our equation, we gets

f(X) =
1√
5

(
1

1− ϕX
− 1

1− τX

)
.

But each component in this summation is a rational function which some geometric

sequence converges to. That is,

f(X) =
∞∑
i=0

aiX
i =

1√
5

(
∞∑
i=0

(ϕX)i −
∞∑
i=0

(τX)n

)
.

Finally, equating coefficients, we have

an =
1√
5
(ϕn − τn).

In this example, we can see that formal sums which converge to rational functions

have the property that their coefficients can be recovered in a closed-form expression

from their rational function.

This example also provides inside on how one can calculate the rational function

to which a formal sum converges. In particular, note that

Lemma 2.11. If f(X) =
∑∞

i=0 biX
i ∈ R[[X]] is a rational function of the form h(X)

g(X)

with

deg(g) < deg(h) ≤ d, ( gcd)(h, g) = 1 and gcd(g,X) = 1
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then g(X) and h(X) can be determined from, at most, the first 2d coefficients of

f(X).

Proof. Write h(X) = r0+r1X+ . . . rnX
n and g(X) = 1+s1X+ . . . smX

m (we assume

without loss of generality that the denominator has normalized constant coefficient

since it is invertible so we can always divide out by the first term). Then

f(X) · g(X) = h(X)

⇒
∞∑
i=0

diX
i =

m∑
i=0

siX
i where di =

∑
α+β=i

rαbβ

Then

d0 = r0, d1 = r1, . . . , d2d = r2d

This gives us linear equations

b0 = r0,

b0s1 + b1 = r1,

...,

b0sn + b1sn−1 + · · ·+ an = rn, and

dk = 0 ∀ k > n

Since gcd(h,X) = 1, we know that s0 is non-zero, and thus we can divide by

s0 in our first equation and recursively solve for the terms in terms of the knowns

bi. In general, this system of equations need not be solvable, but the criteria that

gcd(g, h) = 1 means that this system is necessarily solvable (CITE?). Since there are

at most 2d unknowns, and we have 2d distinct linear equations, this will give us all

the necessary coefficients to solve for the rational equation.

36



2.2 I-adic Metric Spaces Calculating Zeta Functions

This construction assumed that h and g are of maximally allowed degree, but

in general, we can solve for these rational functions knowing only deg(g) + deg(h)

coefficients of the formal power series. We will later see that since the coefficients of

the zeta function of a fourfold are given by the point counts over various finite fields,

this tells us not only how to compute the numerator and denominator of our zeta

function, but also how many point counts are required to do so.

2.2.2. p-adic Integers

Similar to our construction of generating functions, we will define the space of p-

adic integers and rationals as the metric completion of the (p)-adic metric in Z and Q

respectively. More information on the p-adic rationals, and an alternate construction,

can be found at [11, Example 1.4.3].

Definition 2.12. The p-adic integers (resp. rationals) are the completion of the

space Z (resp. Q) with respect to the (p)-adic metric (and in the case of rationals its

extension to the field of fractions) and it is denoted Zp (resp. Qp).

That is, just like our formal power series, we have that an element of Qp has, for

some k ∈ Z, the form
∞∑
i=k

aip
i with ai < p

Just as in our formal power series ring, addition and multiplication are defined on

points in the sequences.

The p-adic space of integers and rationals will be used in defining the cohomology

groups of a cubic fourfold used in the Weil conjectures.
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Section 2.3

Homological Algebra

As a general reference for this section, see [11, Chapters 2,23] and [6, Chapter 1].

Homology theory is at the heart of many fields of math. Underlying the theory is the

seemingly simple concept of exact-sequence.

Definition 2.13. An exact-sequence in an abelian category C is a sequence of

objects G0, . . . Gn ∈ obj(C) along with morphisms fi : Gi−1 → Gi ∈ hom(C) such that

the diagram

G0 G1 . . . Gn
f1 f2 fn

preserves im(fi) = ker(fi+1) at each arrow.

Exact sequences provide a quick means to talk about the properties of morphisms,

for example, the sequence

0 A B
d1 d2

is exact ⇐⇒ im(d1) = ker(d2), ⇐⇒ 0 = ker(d2), ⇐⇒ d2 is injective. Similarly,

the sequence

A B 0
r1 r2

is exact ⇐⇒ r1 is surjective. Properties like these make exactness a quick means of

identifying isomorphisms or chains of isomorphisms. We would hope that as covariant

functors preserve the shape and commutativity of diagrams, that they would also

preserve exactness, but in general this is not true.

Definition 2.14. Let

0 A B C 0
f1 f2
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be an arbitrary exact-sequence in C an abelian category. A covariant functor F : C →

D to D an abelian category, is said to be

(a) (left-exact) provided that

0 F(A) F(B) F(C)F(f1) F(f2)

is exact in D.

(b) (right-exact) provided that

F(A) F(B) F(C) 0
F(f1) F(f2)

is exact in D.

(c) (exact) provided that

0 F(A) F(B) F(C) 0
F(f1) F(f2)

is exact in D.

These definitions give us a means by which can describe how a functor fails to

be exact. We will see a classic example of a functor which fails to be exact, but in

doing so tells us a great deal of information about the structure of the object we are

examining.

2.3.1. Sheaf Cohomology

Presheaves and Sheaves. For this subsection more information can be found at

[11, Chapter 2].

Definition 2.15. For a topological space X, the category Top(X) is the category
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whose objects are open sets U ⊆ X and whose arrows are inclusions between open

sets V ⊆ U (V
i
↪−→ U).

Definition 2.16. An S-valued presheaf is a contravariant functor on the category

Top(X)

P : Top(X)→ S

we denote resV,U : P(U) → P(V ) := P(V i
↪−→ U). We also call elements in P(U)

sections of the presheaf at U .

Example 2.17. The functor P which takes open sets in U ⊆ R to functions P(U) =

{f : U → R | |f | <∞} and has for V ⊆ U that

resV,U : P(U)→ P(V )

(f : U → R) 7→ (f |V : V → R)

is a presheaf which takes values in the ring of bounded real functions.

Presheaves are essentially just a functor, but we would like more structure to

be able to more deeply relate the topological space we are examining to the value

category of our presheaf.

Definition 2.18. An S-valued sheaf is a presheaf F on (X, τ) such that

(a) (Locality) ∀ U ∈ τ and {Ui}i∈I ⊆ τ an open cover of U , and objects x, y ∈ F(U),

if resUi,U(x) = resUi,U(y) ∀ i ∈ I, then x = y,

(b) (Gluability) ∀ U ∈ τ and {Ui}i∈I ⊆ τ an open cover of U , and sections {xi ∈

F(Ui)}i∈I , if

resUi∩Uj ,U(xi) = resUi∩Uj ,U(xj) ∀ i, j ∈ I,
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then there exists a global section x ∈ F(U) such that

resUi
(x) = xi ∀ i ∈ I.

The locality axiom tells us that if two sections agree on an open cover then they

must be the same section. The gluability axiom, on the other hand, tells us that when

a family of sections defined on each set of an open cover agree on the intersections

of the open cover, then we can “glue” them all together to form one global section

which restricts to each section in the family.

Example 2.19. Consider our earlier example of the presheaf of bounded functions on

R. This is not an actual sheaf since we can find a family of bounded functions which

cannot be glued into a global bounded function. To see this, consider the identity

function defined on (n, n + 2) ⊆ R ∀ n ∈ N. This is a family of bounded functions,

but clearly there is no bounded function which is bounded on all of R but is locally

the identity everywhere.

Example 2.20. On the other hand, we can take the presheaf which has sections that

are continuous functions on R, that is

F : (R, τeuc)→ Ab

U 7→ {f : U → R | f is continuous}

It turns out that this is an actual sheaf. That is, we can always glue a family of

continuous functions together into a global continuous function.

Definition 2.21. The Global Sections Functor is a functor on the category of

sheaves which returns global sections of that sheaf for some set U ⊆ X. It is denoted

Γ(U,F) := F(U)
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Clearly the global sections operation is a functor in the U component, but it is also

a functor in the F component. That is, a functor which takes us from the category

of sheaves to their value categories. Naturally, one asks what the category of sheaves

actually is. In this category, the objects are sheaves, and the morphisms are maps

between sheaves r : F → F ′
, such that ∀ (V i

↪−→ U) with V, U ∈ (X, τ), we have maps

rU : F(U)→ F ′
(U) and rV : F(V )→ F ′

(V ), such that

F(U) F ′
(U)

F(V ) F ′
(V )

rU

F(i) F ′
(i)

rV

commutes.

To define the global sections functor, we also need to stipulate how it acts on mor-

phisms between sheaves. Given a morphism of sheaves r : F → F ′
, we have Γ(X,−)

acts on this morphism via

Γ(X, r) := (rX : F(X)→ F ′
(X))

One means to turn a sheaf into something in its value category is by applying it

to an open set (taking the global sections functor). Alternately, we can consider a

collection

Definition 2.22. For an S-valued sheaf on (X, τ), we have that the stalk at x ∈ X

is

Fx = {(U, s) | x ∈ U ∈ τ and s ∈ F(U)}/ ∼,

where (U, s) ∼ (U
′
, t) ⇐⇒ ∃ U ′′ ⊆ U ∩ U ′

open s.t. x ∈ U ′′
and s|U ′′ = t|U ′′ . The

elements [(U, s)] ∈ Fx are called germs.

42



2.3 Homological Algebra Calculating Zeta Functions

We can think of Fx as an object in S centered around x. For example, if F takes

values in the category of abelian groups, then Fx can be thought of as an abelian

group where the group operation is performed locally around x. This is allowed since

we can compare two germs since we can always restrict to a common open set around

x where both are defined and group operations occur over the same group.

We note that a morphism of sheaves

r : F → F ′

induces a morphism on stalks in the value category for x ∈ X

rx : Fx → F
′

x

[(U, s)] 7→ [U, rU(s)]

We will think of our sheaves from here on out as being valued in the category

of abelian groups, making the definitions of injective and surjective morphisms on

groups clear. This leads us to the following definition:

Definition 2.23. A morphism of sheaves r : F → F ′
is injective (resp. surjective)

provided that the induced map on stalks rx : Fx → F
′
is injective (resp. surjective)

∀ x ∈ X.

Lemma 2.24. A morphism of sheaves r : F → F ′
is injective if and only if for each

U ∈ τ the map rU : F(U)→ F ′
(U) is injective.

Proof.

⇐) Suppose ∀ U ∈ τ , rU : F(U) → F ′
(U) is injective. Fix x ∈ X and consider the
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map

rx : Fx → F
′

x

[U, s] 7→ [U, rU(s)]

Fix [U, s], [V, t] ∈ Fx such that

rx([U, s]) = [U, rU(s)] = [V, rV (t)] = rx([V, t]).

Then there exists a neighborhood of x, Wx ⊂ U ∩ V such that

rWx(s) = rU(s)|Wx = rV (t)|Wx = rWx(t).

Then, by injectivity of rWx we must have [U, s] = [V, t].

⇒) Suppose ∀ x ∈ X that rx : Fx → F
′
x is injective. Fix U ∈ τ , we want to show

that rU : F(U) → F ′
(U) is injective. Then fix s, t ∈ F(U) such that rU(s) = rU(t).

Then clearly,

[U, rU(s)] = [U, rU(t)] in F
′

x

for all x ∈ U . Then by injectivity of rx, we must have [U, s] = [U, t] in Fx. Then ∃

V ⊆ U ∩ U = U open such that x ∈ V and s|V = t|V . Then since this holds for all

x ∈ U , by locality, s = t on U .

Equipped with our understanding of injections and surjections, it makes sense to

talk about how the global sections functor Γ(X,−) acts on exact sequences. That is,

consider a short-exact-sequence of sheaves

0 F ′ F F ′′
0.

d0 d1 d2 d3
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then we get an induced diagram

0 Γ(X,F ′
) Γ(X,F) Γ(X,F ′′

) 0.
d0(X) d1(X) d2(X) d3(X)

We would like to know to what extent is this diagram exact. This question can

be separated into the questions:

(a) (left-exact) Does Γ(X,−) take injective maps to injective maps? Let

0 F ′ F F ′′
0.

d0 d1 d2 d3

be an exact sequence of sheaves. We claim that

0 Γ(X,F ′
) Γ(X,F) Γ(X,F ′′

)
d0(X) d1(X) d2(X)

is exact, that is, im(d1(X)) = ker(d2(X)). By Lemma 2.24 it suffices to ask if

the sequence on stalks

0 F ′
x Fx F ′′

x

d0x d1x d2x

is exact ∀ x ∈ X. But since to be injective is to be injective on stalks, this is

clear.

(b) (right-exact) Does Γ(X,−) take surjective maps to surjective maps? To show

the global sections functor was left-exact, we used the fact that injective sheaf

morphisms are injective on open sets; however, such a property does not hold

for surjections. Consider the sequence of sheaves

Ohol (Ohol)× 0
exp
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where Ohol is the sheaf on C taking an open set to holomorphic functions on

that set, and (Ohol)× is a sheaf on C taking open sets to holomorphic functions

on that set which are invertible (non-zero). Then exponential map for U ∈ τ is

given by

exp(U) : Ohol(U)→ (Ohol)×(U)

(f : U → C) 7→ (ef : U → C)

We note that the exp map is surjective on stalks. That is, for x ∈ C we have

expx : Oholx → (Ohol)×x

[U, f ] 7→ [U, ef ]

is surjective since any exponential around a non-zero complex point can be lifted

locally via the logarithm map. However, exp(x) is certainly not surjective since

no global logarithm exists. To see this we note that 0 ̸= 2πi but e0 = e2πi so we

must have log(0) = log(2πi) and the function is not globally well defined (hence

why we use branch cuts is complex analysis). This tells us that in general we

cannot expect that the global sections functor is right-exact.

In order to reconcile this issue, we will introduce cohomology, a tool for correcting

the inexactness of exact sequences under Γ(X,−).

2.3.2. Cohomology of Γ(X,−)

This section will explain how we can resolve the inexactness of our global sections

functor, more information can be found at [11, Chapter 23], [6, Chapter 1], and [4,

Chapter III Part 1].

Definition 2.25. For an abelian category C an object I ∈ obj(C) is injective pro-
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vided that ∀ injective maps a : X → Y , and maps b : X → I, we have that there

exists a unique map c : Y → I such that

X Y

I

a

b c

commutes.

Definition 2.26. For an abelian category C an injective resolution of X ∈ obj(C)

is an exact-sequence

0 X I1 I2 . . .

where each Ii is injective.

Definition 2.27. An abelian category C has enough injectives provided that ∀

X ∈ obj(C), ∃ an injective I ∈ obj(C) and an injective map f : X → I.

We would hope that with enough injectives, we can always find an injective reso-

lution. To see this, note

Lemma 2.28. An abelian category C with enough injectives always has an injective

resolution for any X ∈ obj(C).

Proof. Fix X ∈ obj(C). We will show inductively that we can always make a sequence

of length n ∈ N of injectives.

(n = 1) This is clear since we have sufficient injectives we get an exact sequence

0 X I1

for some I1 ∈ obj(C).
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(n > 1) We assume by hypothesis that there is a sequence of injectives

0 X I1 . . . In−2 In−1
dn−2

Since C has sufficient injectives, we know that there is an injective In such that the

map gn−1 : In−1/im(dn−2) → In is injective, then pre-composing with the quotient

map qn−1 : In−1 → In−1/im(dn−2), we get a map (qn−1 ◦ gn−1) := dn−1 : In−1 → In

which continues the resolution as desired.

Then for a left-exact functor F : C → D of abelian categories with sufficient

injectives, we have that for any X ∈ obj(C), the sequence

0 X I1 . . .

induces a (not necessarily exact) sequence given by cutting out X from our sequence

and applying F

0 F(I1) F(I2) . . .
F(d0) F(d1) F(d2)

Lemma 2.29. Consider the induced map on sections of F of an injective resolution,

0 F(I1) F(I2) . . .
F(d0) F(d1) F(d2)

Then for i = 0, 1, . . . we have that im(F(di)) ⊆ ker(F(di+1))

Proof. Since our original sequence

0 X I1 . . .

is exact, we have that im(di) = ker(di+1), then anything in the image of di is anni-

hilated by di+1, so di+1 ◦ di = 0. Then after applying F , we get F(di+1 ◦ di) = 0,
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thus

F(di+1) ◦ F(di) = 0,

Thus anything in the image of F(di) is annihilated by F(di+1) so the result follows.

Then we can define our cohomology groups via

Definition 2.30.

H i(F) := ker(di+1)/im(di) for i = 0, 1, . . .

It may seem that there is an issue of well-definedness, that is, it seems like our

definition ofH i(F) depended on the choice of injective resolution, but it turns out that

this definition is independent of choice ([12, Theorem 2.2.6], [4, Theorem III.1.1A])

and so there is a single group which can be used to resolve all failures to be exact for

a particular sheaf. In particular, for our global sections functor, we will denote for

i = 0, 1, . . .

H i(X,−) := H i(Γ(X,−)).

It can be shown that this is exactly the next step in our sequence which failed to

be right-exact that can continue the sequence while preserving exactness. That is,

for our original exact sequence of sheaves

0 F ′ F F ′′
0

we get an induced long exact sequence on cohomology groups

0 H0(X,F ′
) H0(X,F) H0(X,F ′′

) H1(X,F ′
) . . . .
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Note that this construction is not specific to our global sections functor and in gen-

eral, any left-exact functor has derived cohomology groups (provided it has enough

injectives) that allow us to convert short exact sequences in one abelian category into

long exact sequences in the target category of the functor (see [11, Page 52] for more

details).

Example 2.31. Consider H0(X,F) for some sheaf on X. Consider any injective reso-

lution

0 X I1 . . .

which, after applying F a left-exact functor, becomes

0 F(X) F(I1) F(I2) . . . .

which will also be exact. Then we have an identification between im(F(X)→ F(I1))

and ker(F(I1) → F(I2)). Since any injective function is a bijection onto its image,

we have an isomorphism

F(X) ∼= ker(F(I1)→ F(I2))

Then it follows that

F(X) ∼= ker(F(I1)→ F(I2))/0 ∼= ker(F(I1)→ F(I2))/im(0→ F(I1)) = H0(X,F)

That is, the zero-th cohomology given by this derived functor is really just the global

sections functor (up to isomoprhism). This tells us that our long exact sequence

induced by a short exact sequence of sheaves has the first three groups given by the

respective global sections of the sheaves. That is,
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0 Γ(X,F ′
) Γ(X,F) Γ(X,F ′′

) H1(X,F ′
) H1(X,F) . . .

is exact. That is, this is exactly the extension we desired to make this global sections

sequence exact.

Section 2.4

Étale Cohomology

As a general reference for this section, see [6, Chapter 1, Sections 1-10]. In Alge-

braic Geometry, introductory classes will often teach of a new topology known as the

Zariski Topology in which open sets are defined as the complements of vanishing

loci of functions; however, one can see this is a very coarse topology, since most van-

ishing loci are small we would expect open sets to be very large. In a sense, this makes

local properties less useful than spaces where we can get open sets which “close in”

on a point. For this reason, we will consider a wider class than topologies.

Sites. For more details about this section see, [6, Chapter 1, Section 5]. In this

new “topology”, we will transition from thinking of open sets to instead thinking of

coverings, and instead of inclusions between open sets we will think of maps between

coverings.

Just as in a topology, we require relationships hold between subsets, we will want

specific relationships to hold between covers, but first, we must define,

Definition 2.32. Let C be a category and let f : A → C and g : B → C be

morphisms. Then the fibre product of A and B (over f and g) is the unique

object D ∈ obj(C) (provided it exists), together with morphisms π1 : D → A and
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π2 : D → B such that

D B

A C

π1

π2 g

f

commutes, that is π1 ◦ f = π2 ◦ g. We often denote A×C B := A×f,gB := (D, π1, π2).

Equipped with this categorical fiber product, we can now introduce,

Definition 2.33. A site is an ordered pair (C, cov(C)) such that C is a category and

cov(C) is a collection such that

(a) (Isomorphism) if f : V → U is an isomorphism, then

f ∈ cov(C),

(b) (Locality) If U ∈ obj(C) and {ϕi : Ui → U}i∈I ∈ cov(C),

and {ϕij : Uij → Ui}j∈Ii ∈ cov(C), we have that

{ϕij ◦ ϕi : Uij → U}(i,j)∈∏i∈I i×Ii ∈ cov(C)

(c) (Base Change) If {Ui → U}i∈I ∈ cov(C), and we have a morphism f : V → U

in C, we have that Ui ×U V exists, and

{Ui ×U V → V }i∈I ∈ cov(C)

The isomorphism property tells us of the simplest types of coverings, that is,

coverings where these set effectively covers itself (up to isomorphism). The locality

condition tells us that a covering of a covering is a covering. Finally, the base change

criterion tells us that given a morphism V → U we can change our covering from a

covering of U to a covering of V .
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2.4.1. Étale Topology

For this section, definitions can be found in the Stacks Project [9]. For more in-

formation on the subject see, [6, Chapter 1, Sections 2-7,9]. In fact, our homology

construction will be slightly more refined than this, but requires even more tools to

define. Consider,

Definition 2.34. A ring map f : R → S is of finite presentation provided that

for some n ∈ N and {f1, . . . , fm} ∈ R[x1, . . . , xn],

R[x1, . . . , xn]/⟨f1, . . . , fm⟩ ∼= S

as R-algebras where the R-algebra structure of S is given by f .

Definition 2.35. A morphism of schemes (f, f#) : (X,Ox) → (S,Os) is of locally

finite presentation provided that ∀ x ∈ X, there are affine open sets U ⊆ X and

V ⊆ S with f(U) ⊆ V such that induced ring map

f# : OS(V )→ OX(U)

is of finite presentation.

Definition 2.36. For B an A-module, B is said to be flat, provided that

−⊗A B :ModA →ModA

is an exact functor.

Then we say,

Definition 2.37. A map of rings f : A→ B is flat if B is flat as an A-module where

the module structure is induced by f .
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Definition 2.38. A morphism of schemes (f, f#) : (X,OX)→ (S,OS) is said to be

flat provided that ∀ p ∈ X, the induced map on schemes

f#
p : OS,f(p) → OX,p

is flat as a ring map.

Then we have that

Definition 2.39. A morphism of schemes (f, f#) : (X,OX) → (S,OS) is unrami-

fied provided that it is of locally finite presentation and, ∀ x ∈ X and s = f(x), we

have that for mx and ms the maximal ideals of local rings OX,x and OS,s respectively.

(a) The residue field k(x) ∼= OX,x/mx is a separable algebraic extension of k(y) ∼=

OS,s/ms.

(b) ms · OX,x = mx, that is, the extension of the ideal ms is mx.

Finally, we have that

Definition 2.40. A morphism of schemes (f, f#) : (X,OX) → (S,OS) is an étale

morphism provided that it is flat and unramified.

Example 2.41. A map ϕ : An → An for affine spaces over k a field with char(k) = 0

is étale if, ∀ p ∈ An, it satisfies the jacobian condition that

det(
∂ϕi
∂xj

(p)) ̸= 0

This can be found in [11, Definition 12.6.2] and [6, Corollary 2.2]. In the case of

differential geometry, this means that the map is locally invertible at each point by

the inverse function theorem (see [8, Page 35 Theorem 2-11]).
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It is not true in general that étale morphisms are local isomorphims as in the case

of differential geometry; however, étale morphisms capture the idea of being “close”

to a local isomorphism. Formally, an étale morphism in characteristic 0 is a local

homeomorphism after a base change to the algebraic completion of the source and

the target - hence the unramified condition (see [4, Page 275, Exercise 10.4]).

We would like to define a similar notion of sheaves but instead of the sheaf being

defined on the poset of a topological space, instead we will define it on the étale site

with inclusions given by morphisms between étale maps. That is,

Definition 2.42. For two étale morphisms with the same target,

(ϕU , ϕ
#
U ) : (U,OU)→ (X,OX) and (ϕV , ϕ

#
V ) : (V,OV )→ (X,OX),

a mapping between étale morphisms is defined as a morphism of ringed spaced

(f, f#) : (U,OU)→ (V,OV )

such that the diagrams

U X

V

ϕU

f
ϕV

and

ϕU ∗OU OX

ϕV ∗OV

ϕ#U

f#
ϕ#V

commute.

Definition 2.43. The category Xét is the category whose objects are étale morphims

with target (X,OX), and arrows are mappings between étale morphisms.
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Further, consider

Definition 2.44. An étale cover of an étale morphism (ϕ, ϕ#) is a surjective mor-

phism between étale morphisms, with target (ϕ, ϕ#). We denote all étale covers in

Xét as the collection Ét(X).

Putting these together, we have a site,

Definition 2.45. The small Étale site (Étale Topology) of a scheme (X,OX) is

(Xét, Ét(X)).

We claim this is a site, that is

Theorem 2.46. For a scheme (X,OX), we have (Xét, Ét(X)) is a site

Proof. See Milne [6, Proposition 2.11].

The étale site is exactly the space we will be defining our cohomology groups over

for the Weil Conjectures.

2.4.2. ℓ-adic Sheaf

An étale sheaf is really just a sheaf as we had defined it before, but now the objects

are étale morphism with ordering given by the above maps.

Then it makes sense to consider the following étale sheaf,

Definition 2.47. Assume X is an irreducible variety. Then the the constant sheaf

with value Z/ℓZ is the sheaf Z/ℓZ is the sheaf

Z/ℓZ : Xét → Ab

(ϕU : (U,OU)→ (X,OX)) 7→ Z/ℓZ

(f : U
′ → U) 7→ idZ/ℓZ
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Note that we employ a condition of irreducibility since otherwise this need not be

a sheaf. A constant presheaf may have constant values on each component but not

satisfy gluability since we cannot find a global constant function which takes more

than one value.

Our entire homological algebra construction will still hold with étale sheaves since

they functionally satisfy the same conditions, that is, having enough injectives (see

[6, Pages 8,12,61-63]). Similarly, we can construct a derived functor for the global

sections functor of our our étale sites, which we will denote

H i
ét(X,Z/ℓZ) := H i(Xét,Z/ℓZ)

Further,

Definition 2.48. The étale cohomology group of ℓ-adic integers is

H i
ét(X,Zℓ) = lim←−

n

(H i
ét(X,Z/ℓnZ))

This is a colimit of groups in the categorical sense. Keep in mind that this is not

the same thing as the étale cohomology with the constant ℓ-adic sheaf (see [6, Page

123]); however, even though we are not taking the limit with respect to the sheaf, it

does turn out that for projective, smooth varieties (where ℓ ̸= char(k)), we have that

H i
ét(X,Zℓ) = Zmℓ for some m ∈ N (see [6, Theorem 19.2]). This means that the ℓ-adic

cohomology really does take values in the ℓ-adic integers for the case of smooth cubic

fourfolds. Moreover, we can switch to thinking of these groups in the ℓ-adic rationals

by changing scalars via a tensor product over Zℓ. That is, we can define

Definition 2.49. The ℓ-adic étale cohomology group is

H i
ét(X,Qℓ) = H i

ét(X,Zℓ)⊗Zℓ
Q
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For the étale site of a smooth, projective variety (where ℓ ̸= char(k)), this gives

us a collection of groups of the form Qm
ℓ for some m ∈ N that stores deep information

about the algebraic structure of our projective variety.

Section 2.5

Zeta Functions

The zeta function of a variety is a generating function depending on the point counts

of the variety over various finite fields. As we have seen in the case of the Fibonacci

generating function, these generating functions sometimes allow us to recover infor-

mation about the coefficients of the generating series (in our case, the point counts),

but in the case of the zeta function, we will see that it holds much deeper information

about its associated variety than just the point counts.

For this section, we let E be an algebraic variety over the finite field Fq, let Nk be

the number of solutions to the defining equation over the field Fqk .

2.5.1. Zeta Functions

We can construct a generating function:

G(T ) = N1T +
N2

2
T 2 +

N3

3
T 3 + · · · =

∞∑
i=1

Ni

i
T i,

which is simply a generating function in the point counts of the defining equation over

various finite fields Fqk . We note that this has the structure of a logarithmic expan-

sion, that is, it follows the form of the Taylor expansion − log(1−t) = t+ t2

2
+ t3

3
+ . . . .

In general, we have no reason to suspect that this generating function converges

(in the (X)-adic metric) to any rational function; however, by exponentiating this

function we can say a great deal about the shape of its convergent function. Thus
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the actual Zeta function is defined as

Definition 2.50. The Zeta Function of a variety is

Z(E, T ) := exp(G(T )) = exp

( ∞∑
i=1

Ni

i
T i
)
.

Let us examine some simpler examples of Zeta functions.

Example 2.51. When all point counts are trivial, that is Ni = 1 ∀ i ∈ N (e.g. when

the variety is a point), then the generating series converges to G(T ) = − log(1− T ),

thus the Zeta function is

Z(E, T ) = exp(− log(1− T )) = 1

exp(log(1− T ))
=

1

1− T

Example 2.52. Let E = P1
q (the projective line over Fq). In this case, over P1

qi , we

have that there are (qi)2−1 total combinations of coefficients (note that we take off 1

since (0, 0) is not included). However, we must consider that all qi−1 scalar multiples

are equivalent in this space (again, we take off 1 to remove 0 ∈ Fq) This tells us that

Ni =
(qi)2 − 1

qi − 1
=

1∑
j=0

qij = 1 + qi

Plugging this into our Zeta function definition we get

Z(P1
q, T ) = exp

( ∞∑
i=1

Ni

i
T i
)

= exp

( ∞∑
i=1

1 + qi

i
T i
)

= exp

( ∞∑
i=1

1

i
T i
)
· exp

( ∞∑
i=1

qi

i
T i
)
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We have already seen in Example 2.51 that

exp

( ∞∑
i=1

1

i
T i
)

=
1

(1− T )

Similarly, we note that

exp

( ∞∑
i=1

qi

i
T i
)

= exp

( ∞∑
i=1

1

i
(qT )i

)

is really just the logarithmic expansion in the variable qT meaning that this converges

to

exp

( ∞∑
i=1

qi

i
T i
)

=
1

1− qT

Giving the full Zeta function

Z(P1
q, T ) =

1

(1− T )(1− qT )

2.5.2. Frobenius Endomorphism

Crucial to understanding the Weil conjectures is understanding the Frobenius En-

domorphism and its induced action on the cohomology of a cubic fourfold. We will

begin by considering the Frobenius on rings.

Definition 2.53. For a commutative ring A with characteristic p, the map

ϕ : A→ A

a 7→ ap

is called the Frobenius Endomorphism on A.

Lemma 2.54. The Frobenius endomorphism is an endomorphism on A.
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Proof. To show this we must show that ϕ is a ring map on A.

(a) We have that for a, b ∈ A,

ϕ(ab) = (ab)p = apbp = ϕ(a)ϕ(b)

(b) We have that for a, b ∈ A,

ϕ(a+ b) = (a+ b)p =

p∑
k=0

(
p

k

)
ap−kbk =

p∑
k=0

p!

k!(p− k)!
ap−kbk

Then because p| p!
k!(p−k)! for k = 1, 2, . . . , p − 1 all these terms will be zero in a

ring of characteristic p, so we are left with terms

ϕ(a+ b) = (a+ b)p = ap + bp = ϕ(a) + ϕ(b)

(c)

ϕ(1) = 1p = 1

Then ϕ is an endomorphism on A.

We note that this map is an automoprhism whenever it has trivial kernel. This

tells us that rings which have no nonzero elements satisfying ap = 0 are rings in which

the Frobenius is an automoprhism.

On schemes we have

Definition 2.55. For a scheme (X,OX) over Fp is the scheme map

(ϕ, ϕ#) : (X,OX)→ (X,OX)
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where ϕ is the identity on X and ϕ# is the Frobenius endomorphism on each section

OX(U).

Similarly we can define Frobenius for Xét over Fq by considering Frobenius maps

between étale morphisms. Via this Frobenius map on the étale category, we get

induced map which acts on the Qℓ-vector space H i
ét(X,Qℓ) for all i = 0, 1, . . . . We

will call this map the Frobenius acting on the étale cohomology and it will

simply be denoted ϕ∗ : H i
ét(X,Qℓ) → H i

ét(X,Qℓ). We note that as each cohomology

group is a vector space overQℓ of some finite dimension, we can consider the Frobenius

endomorphism as a matrix and compute its characteristic polynomial. As in linear

algebra, this will be

p(x) = det(1− xϕ∗|H i
ét(X,Qℓ))

where ϕ∗|H i
ét(X,Qℓ) denotes the matrix representation of ϕ acting on the i-th étale

cohomology group. For more information on the Frobenius endomorphism, see [6,

Pages 154-155]. With this, we are now equipped to understand and appreciate the

significance of the Weil conjectures.

2.5.3. Weil Conjectures

Theorem 2.56 (Weil Conjectures – posited 1949 [6, Chapter 2, Section 26]).

For a non-singular, n-dimensional, projective variety E:

(a) (Dwork 1960) The Zeta function is a rational function which can be written in

terms of integral polynomials as:

Z(E, T ) =
P1(T ) . . . P2n−1(T )

P0(T ) . . . P2n(T )

where each Pi(T ) = det(1−Tϕ∗|H i
ét(X,Qℓ)) is the characteristic polynomial of

Frobenius acting on the i-th cohomology group.
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(b) (Deligne 1974) The roots of Pi(T ) all lie on the complex circle of radius q−
i
2

(c) (Grothendieck 1965) The Zeta function satisfies a functional equation:

Z(E,
1

T
) = ±q

χ(E)·n
2 · T χ(E) · Z(E, T )

Where χ(E) is the Euler characteristic of the variety.

The Weil conjectures tell us about the shape of the zeta function as an integral

rational function, but it also explains the relationship that emerges between the zeta

function and the étale cohomology of the variety. Because counting points is, in

general, much simpler than computing the cohomology of our variety this allows us

to deduce a great deal about the cohomology groups and how Frobenius acts on them.

2.5.4. Computing Zeta Functions

We will show by example how the Weil conjectures aid in computing zeta functions.

We first note that some of the ranks of the étale cohomology groups of a variety

can be quickly deduced. This is due to the Comparison Theorem for Étale

Cohomology ([6, Chapter 1, Section 21]) which effectively tells us that the étale

cohomology groups are isomoprhic as vector spaces to the ordinary cohomology on a

modified version of the variety (its analytification). In conjunction with other com-

parison theorems on cohomology, we can quickly compute certain cohomology groups

via knowledege of alternate cohomology constructions.

Consider E : y2 = x3 + Ax + B, the general elliptic curve over Fq and its projec-

tivization E. This is a 1-dimensional curve so its largest nonzero cohomology will be

H2
ét(X,Qℓ) (this follows from the comparison theorem). Additionally,

H0
ét(Ē,Qℓ) ∼= H2

ét(Ē,Qℓ) ∼= Qℓ
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since H0
ét(Ē,Qℓ) will have dimension equal to the number of connected components.

Further, étale cohomology has a number of duality theorems that tell us thatH2
ét(Ē,Qℓ)

has the same dimension in this case. Additionally, since the elliptic curve is home-

omorphic to a torus, we know its fundamental group has two generators (see [4,

Theorem IV.4.14B]). Then H1
ét(Ē,Qℓ) will be a 2-dimensional vector space.

Since the characteristic polynomial of Frobenius acting on a cohomology group will

have the same degree as the dimension of that space, we know that in the Weil

conjectures

deg(P0(T )) = 1, deg(P1(T )) = 2, and deg(P2(T )) = 1

Since the roots of Pi(T ) lie on the complex circle of radius q−
i
2 , we know that for the

degree 1 polynomials we must have

P0(T ) = (1− T ) and P2(T ) = (1− qT )

Then we know that our zeta function has the form

Z(E, T ) =
P1(T )

(1− T )(1− qT )
=

(1− αT )(1− βT )
(1− T )(1− qT )

where |α| = |β| = 5. Then we have

P1(T ) = (1− αT )(1− βT )

= (1− (α + β)T + αβT 2)

= (1− γT + qT 2)
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where γ = α + β. Then we need only solve for γ. That is, we have 1 unknown, so

we expect that we need 1 point count to be able to solve for our full zeta function.

Recall G(T ) = N1T + N2

2
T 2 + N3

3
T 3 + . . . , and

Z(E, T ) =
(1− γT + qT 2)

(1− T )(1− qT )
= exp(G(T ))

So by Taylor expansion

(1− γT + qT 2)

(1− (q + 1)T + qT 2)
= (1 +G(T ) +

(G(T ))2

2
+ . . . )

⇒ (1− γT + qT 2) = (1− (q + 1)T + qT 2)(1 +G(T ) +
(G(T ))2

2
+ . . . )

We can see that the term associated with T on the right hand side will be given

by −γ = N1 − (q + 1). and so our Zeta function is

Z(E, T ) =
(1 + (N1 − (q + 1))T + qT 2)

(1− T )(1− qT )

2.5.5. Zeta Function of a Cubic Fourfold

As a cubic fourfold is of dimension 4, it has many more nonzero cohomology groups

than an elliptic curve. However, there are general statements we can make about the

cohomology groups that will help us to reduce the number of point counts needed to

solve for the zeta function. We have that for a cubic fourfold E:

(a) H i
ét(E,Qℓ) ∼= 0 for i = 1, 3, 5, 7,

(b) H i
ét(E,Qℓ) ∼= Qℓ for i = 0, 2, 6, 8,

(c) dim(H4
ét(E,Qℓ)) = 23

(d) (1− 4T ) always divides det(1− Tϕ∗|H4
ét(X,Qℓ))

65



2.5 Zeta Functions Calculating Zeta Functions

For more information on this, see [1, Section 4.1,4.4]. Since all the odd cohomology

groups are trivial, we have that

P1(T ) = · · · = P7(T ) = 1

so the numerator of our zeta function will always be 1. Further, since the even

cohomology (besides 4) are 1-dimensional, and we know their roots lie on a unit

circle of radius 2−
i
2 , we have that

P0(T ) = (1− T ), P2(T ) = (1− 2T ), P6(T ) = (1− 8T ), and P8(T ) = (1− 16T )

Then we are only left to solve for P4(T ), but note that since (1− 4T ) always divides

P4(T ), we can always pull out this factor and we are left with an unknown polynomial

P (T ) with degree 22. With this, the zeta function of our general cubic fourfold looks

like

Z(E, T ) =
1

(1− T )(1− 2T )(1− 4T )(1− 8T )(1− 16T )P (T )
.

For more information, see [1, Section 4.1,4.4]. Then to solve for such a zeta function

we need at most deg(P (T )) = 22 point counts of our cubic fourfold. However, the

functional equation tells us that the point counts will be symmetric (up to a change

of sign), so in most cases, we can compute 11 point counts and deduce the sign of

the functional equation by trying both signs and seeing if one of the signs does not

satisfy the property that the roots of P4(T ) lie along the complex circle of radius 1
4
.

In certain cases, both may satisfy this property, in which case, either 22 point counts

must be performed, or, more efficiently, one can deduce the sign of the functional

equation from the discriminant of the variety (see [1, Theorem 4.1]). To actually

count points one could simply enumerate points over each F2i and check if they

satisfy the defining equation but as i will ultimately reach 11, such a computation
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strategy is infeasible if we desire quick enumeration. Instead we use a faster method

in our actual computation involving the algebraic blowup of the variety on a line - a

topic not discussed in this paper. For our purposes, it is sufficient to note that we

were able to compute these point counts and thus quickly compute zeta functions

for each variety in our census. In this way, we are now equipped to compute and

understand these zeta functions.
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Chapter 3

Results

All results for this section can also be found at [1].

3.0.1. Filtration of Cubic Fourfolds

Using the methods and knowledge of the previous chapters, we can now perform a

census of cubic fourfolds and their zeta functions. Let us first understand the scope

of this enumeration problem.

Let V = F2[x0, . . . , x5]3 be the space of cubic fourfolds over F2. As an F2 vector

space, this has dimension (
5 + 3

3

)
= 56.

Then there are in total 256−1 (or roughly 70 quadrillion) cubic fourfolds. A complete

enumeration of these is intractable so we will instead consider these cubic fourfolds

up to linear isomorphim, that is, mod the action induced by G = GL6(F2). This is

because two cubic fourfolds are isomorphic if and only if they projectively equivalent.

Applying Burnside’s lemma, we find that there are

|V/G| = 3, 718, 649
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cubic fourfolds in distinct, non-zero orbits.

To find and populate these orbits with naive enumeration or union-find would take

unreasonably long on most personal computers. In the case of union-find, our earlier

runtime analysis tells us that computing such a census would have roughly

|V/G||G| = (3718649) · |GL6(F2)| = (3718649) ·
( 5∏
i=0

26 − 2i
)

= (3718649) · (20158709760) = 74963165890314240

steps. Then given the (extremely generous) assumption that each step takes one clock

cycle, then on a 4 GHz processor we can expect that this will take

1

4 ∗ 109
· 74963165890314240 sec = ∼ 18740791 sec = ∼ 216.9 days.

In reality this will likely take hundreds of clock cycles even in well optimized code.

That is to say, on a personal computer such a computation could take years . Instead

we can consider the following sequence of G-invariant subspaces of V :

0 ⊆ W1 ⊆ W2 ⊆ V

where

W1 = span{l3 | l ∈ F2[x0, . . . , x5]1}

W2 = span{l1 · l22 | l1, l2 ∈ F2[x0, . . . , x5]1}.

Here, F2[x0, . . . , x5]1 denotes the space of all linear polynomials of 6 variables over

F2. Using this sequence of inclusions, we were able to apply the filtration method to

compute a list of all representatives of this group action in roughly an hour and a
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half on a personal computer with a 1.1 GHz processor.

3.0.2. Census Results

These results are based on A Census of Cubic Fourfolds over F2 by Asher Auel,

Avinash Kulkarni, Jack Petok, and Jonah Weinbaum [1] - whose theoretical under-

pinnings are explained in this thesis. The github repository of code used for the

project can be found at https://github.com/JonahWeinbaum/cubic-fourfolds. Using

our database of representatives, along with code written in the Magma computer

algebra programming language [2], we were able to compute:

Theorem 3.1. Of the 3, 718, 649 isomorphism classes of cubic fourfolds over F2,

exactly 1, 069, 562 (∼ 29%) are smooth.

Furthermore, we computed all the zeta functions of these smooth cubic fourfolds.

Theorem 3.2. There are 86, 472 distinct zeta functions realized amongst the 1, 069, 562

isomorphism classes of smooth cubic fourfolds over F2.

With our census we can examine some of these zeta functions:

Example 3.3. Let

R(T ) =
1

(1− T )(1− 2T )(1− 4T )(1− 8T )(1− 16T )
.

Then,

(a) Z(V (x30 + · · ·+ x35), T )

= R(T ) · (−17592186044416T 22 + 12094627905536T 20 − 3779571220480T 18 +

708669603840T 16−88583700480T 14+7751073792T 12−484442112T 10+21626880T 8−

675840T 6 + 14080T 4 − 176T 2 + 1)−1

(b) Z(V (x0x
2
5 + x1x

2
4 + x2x

2
3 + x3x

2
2 + x4x

2
1 + x5x

2
0), T )

= R(T ) · ((1− T )15 · (1 + T )7)−1
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In addition to these results, a number of statistics on cubic fourfolds are also

presented in the paper, including:

(a) Counts of linear subspaces contained in each cubic

(b) Ranks of groups of algebraic cycles

(c) Newton polygons

We anticipate that the database will be attached to the Arxiv posting of the paper

[1]. We hope that the reader will find the database, and the methods used to generate

it, of use for further research and future applications.
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