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Abstract

This study investigates the potential of a computational approach to provide moment-

by-moment insights into a student’s comprehension of lecture material through anal-

ysis of their neurophysiological responses during the lecture. In doing so, we present

a solution to two difficult problems. How do we quantify the conceptual content of

a lecture video? And how can we use EEG recordings to compute a knowledge esti-

mate of this conceptual content? First, we used topic modeling to generate moment-

by-moment estimates of the conceptual content of a lecture. Then we used EEG

recordings collected during the lecture to compute an ISFC-derived knowledge esti-

mate of this conceptual content. We found that particularly gamma band activity

may contain a signal indicative of knowledge acquisition.

ii



Acknowledgments

First and foremost, I would like to extend my gratitude to all the members of the

Context Lab, in particular to Dr. Jeremy Manning and Paxton Fitzpatrick who

have continuously supported my research journey throughout my time at Dartmouth.

I would also like to thank Dr. Peter Mucha for his valuable advice and support

throughout this project. I couldn’t have completed this thesis without them.

I also want to thank my friends and family members who have supported me both

academically and emotionally.

iii



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

1 Introduction 1

1.1 Feedback: a Critical Component of Instruction . . . . . . . . . . . . . 1

1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Mapping Brain Activity to Lecture Concepts . . . . . . . . . . . . . . 3

1.4 Notation and Terminology . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Methods 7

2.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Experimental Protocol . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 EEG Recordings . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Joint Text Embeddings of Lectures and Questions . . . . . . . . . . . 9

2.2.1 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Text Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Fitting the Topic Model . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Generating Text Embeddings . . . . . . . . . . . . . . . . . . 11

2.2.5 Relating Lecture and Question Embeddings . . . . . . . . . . 12

2.3 EEG Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Data Cleaning . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



2.3.2 Generation of Neural Features . . . . . . . . . . . . . . . . . . 15

2.4 Inter-Subject Functional Correlations . . . . . . . . . . . . . . . . . . 16

2.4.1 Definition of ISFC . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 ISFC Generation . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.3 ISFC Validation Procedure . . . . . . . . . . . . . . . . . . . . 19

3 Results 21

3.1 Evaluating Lecture and Question Embeddings . . . . . . . . . . . . . 21

3.2 ICA-Based Eye Artifact Removal . . . . . . . . . . . . . . . . . . . . 23

3.3 ISFC Validation Results . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Discussion 27

5 Appendix A 30

5.1 Topic Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.1 Latent Dirichlet Allocation . . . . . . . . . . . . . . . . . . . . 30

5.2 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.1 FIR Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2.2 RANSAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.3 Independent Component Analysis . . . . . . . . . . . . . . . . 33

6 Appendix B 34

6.1 Code and Data Availability . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Identified Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

References 36

v



Chapter 1

Introduction

Section 1.1

Feedback: a Critical Component of Instruction

For most of modern history, education has followed a similar format. An instructor

and a number of students gather in the same place. There, the instructor lectures,

answers questions, and, crucially, provides feedback on each student’s progress. What

has the student understood well and which parts of the lecture should they review?

Naturally, such continuous feedback is critical to the overall learning progress of each

student and has traditionally taken the form of a quiz that tests the students’ knowl-

edge of a certain number of concepts. However, creating high-quality quiz questions

is a time-consuming effort. Even once a quiz is completed, the time needed to provide

fine-scale feedback to each student limits the overall number of students with which

an instructor can work.

In recent years, the explosive growth of widely available pre-recorded lectures on

platforms such as YouTube has highlighted this fundamental educational bottleneck.

Although anyone can now find high-quality lectures on almost any topic online, such

lectures rarely come with a set of quiz questions that tests conceptual understanding
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1.2 Background Introduction

of the presented concepts.

We took a step towards a possible solution to this problem that could allow us to

provide precise feedback to a student after they watched a lecture while eliminating

the need for testing. In particular, we developed a computational approach that, after

further development and testing, could provide instantaneous feedback on a student’s

conceptual understanding of a lecture based on the student’s neurophysiological re-

sponse to watching the lecture.

Section 1.2

Background

Our approach was heavily informed by previous work by Fitzpatrick et al. [2023] who

have developed a computational framework to estimate the conceptual knowledge of

learners during training by using multiple-choice quizzes. Specifically, they parsed

the transcript of a lecture video into overlapping sliding windows and mapped the

text snippet in each window to a high-dimensional topic vector. They showed that

the resulting sequence of topic vectors yields the lecture’s conceptual trajectory over

time within the topic space. They then mapped the questions into the topic space

which allowed them to estimate the relevance of any timepoint in the lecture to a

given question. This result was crucial to the present work as it provided us with a

tool to estimate the conceptual trajectory of a lecture and identify those moments

which are crucial to the understanding of a given question.

To translate neurophysiological recordings into knowledge and learning estimates,

we further needed a computational method that has shown promising results when

applied to a naturalistic learning task. Prior studies by Hasson et al. [2004] and Si-

mony et al. [2016] have used inter-subject correlations (ISC) and inter-subject func-

tional correlations (ISFC) between time-aligned neurophysiological signals recorded
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1.3 Mapping Brain Activity to Lecture Concepts Introduction

from different individuals to differentiate stimulus-driven dynamics from non-stimulus

driven dynamics. Crucially, Poulsen et al. [2017] extended the use of ISC to a class-

room setting in which they collected the EEG signal of multiple participants who

were watching a video clip. They showed that, under the assumption that ISC is a

proxy for attention, stimulus-evoked neural responses can be tracked through EEG

data.

Section 1.3

Mapping Brain Activity to Lecture Concepts

Our main objective was to develop a computational approach that could provide

moment-by-moment knowledge estimates of the content presented in a lecture based

on neurophysiological data recorded while a participant was watching the lecture.

Hence, we needed to solve two problems. First, how do we quantify the conceptual

content that is presented at any given point in a lecture video? Second, how can

we use raw EEG recordings to compute a knowledge estimate of this conceptual

content?

We solved the first problem following the approach of Fitzpatrick et al. [2023].

Using a topic model, we generated moment-by-moment text embeddings of a lecture’s

transcript in the form of topic vectors. These topic vectors served as a quantified

estimate of the conceptual content of any moment in a lecture (see Section 2.2.1).

We solved the second problem by extrapolating earlier work by Hasson et al. [2004],

Poulsen et al. [2017], and Simony et al. [2016]. Instead of using ISFCs as a proxy for

attention, we treated them as estimates of learning. In combination, this allowed us

to use a participant’s ISFC corresponding to a moment in a lecture as an estimate of

the participant’s conceptual understanding of the content presented at that moment

(see Section 2.4).
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1.4 Notation and Terminology Introduction

Section 1.4

Notation and Terminology

We formally define the following terms. To gain a conceptual understanding of each

term and how it relates to the experiment and analysis, see Sections 2.1.1, 2.1.2, 2.2.1,

and 2.3.

• We will use two shorthand notations when referring to the two Khan Academy

lecture videos we selected. We will refer to the lecture Earth Formation as

Lecture 1 in text and as EF in mathematical writing. We will refer to the

lecture Plate Tectonics: Difference between crust and lithosphere as Lecture 2

in text and as PT in mathematical writing.

• We represent the set of all quiz questions as the set

Q = {Q1, Q2, · · · , Q90}.

Further, we define the set of Lecture 1 quiz questions, the set of Lecture 2 quiz

questions, and the set of General Knowledge quiz questions as the subsets

QEF = {Qk : 1 ≤ k ≤ 30} ⊂ Q,

QPT = {Qk : 31 ≤ k ≤ 60} ⊂ Q,

QGeneral = {Qk : 61 ≤ k ≤ 90} ⊂ Q,

respectively.

• We represent the set of all participants by the set

P = {P1, P2, · · · , P42}.
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1.4 Notation and Terminology Introduction

• We represent the topic vector of some document L with k topics as the k-

dimensional row vector

tvL =

(
wL

1 wL
2 · · · wL

k

)
∈ M1×k(R).

• We represent the trajectory of a lecture L of length t embedded in a k-dimensional

topic space as the t× k matrix

TL =



tvL
1

tvL
2

...

tvL
t


=



wL
1,1 wL

1,2 · · · wL
1,k

wL
2,1 wL

2,2 · · · wL
2,k

...
...

. . .
...

wL
t,1 wL

t,2 · · · wL
t,k


∈ Mt×k(R),

where tvL
t is the 22-dimensional topic vector at time t in the corresponding

lecture L.

• We represent the broadband power of a single-channel EEG recording of par-

ticipant Pi ∈ P recorded while they were watching lecture L of length t as the

t-dimensional column vector

cPi,L =

(
cPi,L1 cPi,L2 · · · cPi,Lt

)T

.

To represent the narrowband power of cPi,L for a predefined frequency band η,

we write

cη
Pi,L =

(
cPi,L1;η cPi,L2;η · · · cPi,Lt;η

)T

∈ Mk×1(R).

• We represent the broadband power of a k-channel EEG recording of participant

Pi ∈ P recorded while they were watching lecture L of length t as the t × k

5



1.4 Notation and Terminology Introduction

matrix

EL
Pi =

(
(cPi,L1 )T (cPi,L2 )T · · · (cPi,Lk )T

)

=



cPi,L1,1 cPi,L1,2 · · · cPi,L1,k

cPi,L2,1 cPi,L2,2 · · · cPi,L2,k

...
...

. . .
...

cPi,Lt,1 cPi,Lt,2 · · · cPi,Lt,k


∈ Mt×k(R).

To represent the “concatenation” of the broadband power signal of EL
Pi and m

narrowband power signals extracted from each EEG channel in correspondence

to a set of frequency bands H = {η1, η2, · · · , ηm}, we define the block matrix

EL
Pi,H =

(
(cPi,L1 )T (cPi,L1,η1

)T · · · (cPi,L1,ηm
)T · · · (cPi,Lk )T (cPi,Lk,η1

)T · · · (cPi,Lk,ηm
)T
)

=



cPi,L1,1 cPi,L1,2;η1
· · · cPi,L1,m;ηm

· · · cPi,L1,k(m−1) cPi,L1,k(m−1)+1;η1
· · · cPi,L1,km;ηm

cPi,L2,1 cPi,L2,2;η1
· · · cPi,L2,m;ηm

· · · cPi,L2,k(m−1) cPi,L2,k(m−1)+1;η1
· · · cPi,L2,km;ηm

...
...

. . .
... · · · ...

...
. . .

...

cPi,Lt,1 cPi,Lt,2;η1
· · · cPi,Lt,m;ηm

· · · cPi,Lt,k(m−1) cPi,Lt,k(m−1)+1;η1
· · · cPi,Lt,km;ηm


Note that EL

Pi,H ∈ Mt×(k·m)(R). We call both EL
Pi and EL

Pi,H neural feature

matrices.

6



Chapter 2

Methods

Section 2.1

Experimental Details

2.1.1. Experimental Protocol

We hand-selected two lecture videos from the Khan Academy course “Cosmology

and Astronomy,” namely Earth Formation (Lecture 1, duration: 10:08 min) and

Plate Tectonics: Difference between crust and lithosphere (Lecture 2, duration: 7:59

min). Lecture 1 provides a brief overview of the early geological history of Earth.

Lecture 2 explains the difference between the chemical and mechanical properties

of the different layers of Earth. We selected these particular lectures to satisfy three

general criteria as proposed by Fitzpatrick et al. [2023]. First, we wanted to make both

lectures accessible to a wide audience, minimizing the need for prior knowledge. We

achieved this by selecting lectures designed for students at the outset of their training

in specific content areas. Second, we wanted both lectures to have related content,

as we wanted to test the ability of our approach to differentiate similar conceptual

content. To do so, we selected two videos from the “Cosmology and Astronomy”

course domain on Khan Academy. Third, we intentionally avoided overlap between
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2.1 Experimental Details Methods

the videos to prevent understanding of one from directly influencing comprehension of

the other. To meet this criterion, we chose videos from distinct lecture series: Lecture

1 from the “Life on Earth and in the Universe” series and Lecture 2 from the “Earth

Geological and Climatic History” series.

We also hand-wrote three sets of 30 multiple-choice quiz questions that we hoped

would allow us to evaluate participants’ knowledge of each individual lecture, along

with related knowledge about geology not specifically presented in either video (see

Appendix B, ??). Each question set targets a particular content area, that is, the

Lecture 1 question set tests understanding of the Earth Formation lecture, the Lecture

2 question set tests understanding of the Plate Tectonics lecture, and the General

Knowledge question set tests knowledge of general concepts from geology. During

each experiment session, we created three quizzes by drawing ten questions from

each question set at random without replacement, so that each quiz contained 30

questions in total and each question appeared exactly once. We also randomized the

orders of questions on each quiz and the orders of answer options for each question.

Participants completed Quiz 1 before watching Lecture 1, Quiz 2 after watching

Lecture 1 but before watching Lecture 2, and Quiz 3 after watching Lecture 2. Quiz

1 was intended to assess participants’ “baseline” knowledge before training, Quiz 2

assessed knowledge after watching Lecture 1, and Quiz 3 assessed knowledge after

watching Lecture 2.

Our experimental protocol was approved by the Committee for the Protection of

Human Subjects at Dartmouth College.

2.1.2. EEG Recordings

We used a custom BrainVision actiCAP snap active electrode system coupled with

an actiCHamp amplifier to record 64-channel EEG data in addition to single-channel

HEOG (horizontal electro-oculogram) data at 500 Hz while participants complete the

8



2.2 Joint Text Embeddings of Lectures and Questions Methods

experiment. We collected data from 46 participants, of which we discarded four. In

particular, we discarded one data set since the participant reported that they had

fallen asleep during the experiment. In addition, we discarded another data set since

the participant did not follow the experiment instructions (< 1 s response time on

all questions). Finally, we discarded two data sets due to faulty timestamping which

inhibits the correct alignment of the EEG data with the experiment time line.

Section 2.2

Joint Text Embeddings of Lectures and

Questions

2.2.1. Topic Modeling

We followed the approach taken by Fitzpatrick et al. [2023] to create a joint text em-

bedding space from both lectures and questions. In particular, we used Latent Dirich-

let Allocation (LDA) (Blei et al. [2003]). In short, LDA is a generative probabilistic

technique for uncovering thematic structure in document collections. It assumes that

documents are mixtures of a predefined number of latent topics, each characterized

by a probability distribution over a shared vocabulary. These topics themselves are

probability distributions over words, allowing for vocabulary reuse across topics. The

model employs a Bayesian framework, where documents are generated by first select-

ing a topic distribution and then drawing tokens according to the chosen topic’s word

distribution. By analyzing word co-occurrence patterns, LDA estimates the topic

distributions for each document and each topic, revealing the underlying thematic

landscape of the corpus.

Once fitted to a set of documents with k topics, LDA can generate a topic em-

bedding for any document in the training set, or any new document that contains at

least some of the words in the model’s vocabulary. This embedding is in the form of a

9



2.2 Joint Text Embeddings of Lectures and Questions Methods

k-dimensional vector that describes how much the document (most probably) reflects

each topic. For a more detailed description of LDA see Appendix A, 5.1.1.

2.2.2. Text Preprocessing

To generate a collection of documents that we could use to fit an LDA model, we fol-

lowed the approach taken by Fitzpatrick et al. [2023]. We retrieved the transcript for

each lecture consisting of one timestamped line of text for every few seconds (mean:

2.98 s; standard deviation: 1.29 s) of spoken content in the video (i.e., corresponding

to each individual caption that would appear on screen while watching the lecture,

and when those lines would appear). We then defined a sliding window length of (up

to) w = 10 transcript lines and assigned each window a timestamp corresponding

to the endpoint of its last line’s timestamp. These sliding windows ramped up and

down in length at the very beginning and end of the transcript, respectively. In other

words, the first sliding window covered only the first line of the transcript; the second

sliding window covered the first two lines; and so on. This ensured that each line of

the transcript appeared in the same number (w) of sliding windows.

After performing various standard text preprocessing (e.g., normalizing case, lem-

matizing, removing punctuation and stop words) relying on several functionalities of

the NLTK Python package (Bird et al. [2009]), we treated the text from each slid-

ing window as a single document and combined these documents across the windows

generated from each lecture to create a single training corpus for the topic model.

Overall, this approach yielded 192 windows for Lecture 1 and 181 windows for

Lecture 2 for a total training corpus of 373 documents. To generate a shared vocab-

ulary of all unique tokens in the lecture transcripts, we identified all unique words

after preprocessing. In addition, we used the Phrases class provided by the Gensim

Python package (Řeh̊uřek and Sojka [2010]) to identify common bigrams. We chose

to include bigrams to help LDA capture more specific topics by representing focused
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2.2 Joint Text Embeddings of Lectures and Questions Methods

concepts that single words alone might miss (e.g., “pacific plate”).

2.2.3. Fitting the Topic Model

Since the number of topics that LDA identifies is a tunable hyperparameter, we chose

to employ two heuristics to find a suitable number of topics when training a Gensim

LdaModel. Our first heuristic aimed to find the maximum number of topics such that

each topic had a well-separated content. To achieve this, we evaluated a validation

set of documents (excluded during training) and examined whether each topic had a

within-topic variance of above 1e-4. A variance at or below this threshold indicates

that a topic does not discriminate well between documents. Our second heuristic

aimed to find the number of topics that corresponds to the highest CV coherence score

evaluated by Gensim CoherenceModel on a validation set of documents (excluded

during training). The coherence score measures the similarity of the top 20 words of

each topic. Hence, a higher coherence score implies topics that are more interpretable

by humans.

We used 5-fold cross-validation and took the floored average of the optimal number

of topics found by each heuristic (23 and 22, respectively), yielding an overall number

of 22 topics. The top 10 words from each of the 22 topics discovered can be found in

Appendix B 6.1.

2.2.4. Generating Text Embeddings

Once we had fitted an LDA model, we could generate a 22-dimensional topic vector for

an arbitrary (potentially unseen) document. An advantageous feature of these topic

vectors is that documents sharing comparable topic mixtures (that is, documents

that exhibit similar themes according to the model) will produce similar coordinates

(using measures such as Euclidean distance, correlation, or other spatial metrics).

Generally, comparing the topic vectors from various documents helps in identifying

11



2.2 Joint Text Embeddings of Lectures and Questions Methods

their similarity in conceptual content.

We then transformed the text of each sliding window into a topic vector and

used linear interpolation (independently for each topic dimension) to upsample the

resulting time series to 10 Hz and match the length of its corresponding lecture video

using the method interp1d from the Python package SciPy (Virtanen et al. [2020]).

We also used the fitted model to obtain topic vectors for each question in our pool.

Together, we obtained the trajectory matrices

TEF =

(
tvEF

1 tvEF
2 · · · tvEF

6283

)T

TPT =

(
tvPT

1 tvPT
2 · · · tvPT

5053

)T

and a set of topic vectors {tvQ1, tvQ2, · · · , tvQ90} corresponding to each question in

Q.

2.2.5. Relating Lecture and Question Embeddings

Embedding both videos and all the questions using a common model enabled us to

compare the content from different moments of one lecture, compare the content

across videos, and estimate potential associations between specific questions and spe-

cific moments of video. This allowed us to pursue several approaches to confirm the

validity of our embeddings with respect to their conceptual content.

First, we reduced the dimensionality of our embeddings to a visualizable format.

We did so using PCA to project the embeddings onto their first three principal com-

ponents and plotting the resulting 3-dimensional embeddings (see Fig. 3.1).

Furthermore, we calculated the within-topic mean and within-topic variance of

each topic across each lecture trajectory and across all questions that belonged to

the same question set (see Fig. 3.2a and 3.2c). In particular, given a t × k lecture

12



2.2 Joint Text Embeddings of Lectures and Questions Methods

trajectory TL, we computed the column-wise mean vector

µTL
=

(
w̄L

1 w̄L
2 · · · w̄L

k

)
=

(
1
t

∑t
i=1w

L
i,1

1
t

∑t
i=1w

L
i,2 · · · 1

t

∑t
i=1w

L
i,k

)

and the column-wise standard deviation vector

σTL
=

(
σL
w1

σL
w2

· · · σL
wk

)
=

(√
(
∑t

i=1 w
L
i,1−w̄L

1 )
2

t

√
(
∑t

i=1 w
L
i,2−w̄L

2 )
2

t
· · ·

√
(
∑t

i=1 w
L
i,k−w̄L

k )
2

t

).

Similarly, given a question set QL, we computed the across-question mean vector

µQL
=

(
w̄QL

1 w̄QL
2 · · · w̄QL

k

)
=

(
1

|QL|
∑

Qi∈QL
wQi

1
1

|QL|
∑

Qi∈QL
wQi

2 · · · 1
|QL|

∑
Qi∈QL

wQi
k

)

and the across-question standard deviation vector

σQL
=

(
σQL
w1

σQL
w2

· · · σQL
wk

)
=

(√
(
∑

Qi∈QL
wQi

1 −w̄1)2

|QL|

√
(
∑

Qi∈QL
wQi

2 −w̄2)2

|QL|
· · ·

√
(
∑

Qi∈QL
wQi

k −w̄k)2

|QL|

)
.

In addition, we computed the Pearson correlation coefficient between the within-topic

mean and variance of each lecture and the within-topic mean and variance of each

question set (see Fig. 3.2b and 3.2d).

Finally, we calculated the similarity between each moment in the lectures and each

question in their corresponding question set by computing the distance correlation

between each moment in the lecture trajectory and the topic vector of each question

13



2.3 EEG Preprocessing Methods

using the SciPy method cdist. This yielded a similarity vector

simQi,L =

(
sQi,L
1 sQi,L

2 · · · sQi,L
t

)T

(2.1)

between each question’s topic vector tvQi, Qi ∈ QL, and the corresponding lecture

trajectory TL, for L ∈ {EF, PT}. In particular, for j ∈ {1, 2, · · · , t}

sQi,L
j =

(tvL
j − tv

L
j ) · (tvQi − tv

Qi
)

∥∥(tvL
j − tv

L
j )∥∥2∥∥(tvQi − tv

Qi
)∥∥2

,

where

tv
L
j =

1

k

k∑
l=1

wL
j,l

and

tv
Qi

=
1

k

k∑
l=1

wQi
j,l .

We can use the resulting similarity scores as an estimate of the relevance of the content

presented at a particular moment in the lecture to a specific question (see Fig. 3.3).

Section 2.3

EEG Preprocessing

2.3.1. Data Cleaning

We performed preprocessing of the 42 valid data sets to identify, remove, and inter-

polate bad channels, DC signal noise, and eye movement artifacts. In general, we

followed the approach proposed by Delorme [2023] in keeping preprocessing minimal.

For each data set, we performed the following preprocessing steps.

First, we retrieved the two raw EEG traces corresponding to the window of time

during which the participant was watching each lecture video and bandpass filtered

each trace at 0.5 Hz and 60 Hz to remove low-frequency drifts and high-frequency
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2.3 EEG Preprocessing Methods

muscle-related activity, respectively. To do so, we used a finite input response (FIR)

filter design using the window method implemented in the filter method of the

MNE Python package (Larson et al. [2024]) with default arguments (see Appendix

A, 5.1).

We then identified bad channels. We considered a channel bad if it contained

missing values or if its standard deviation or median absolute deviation was below a

threshold of 1e-15 V. We also identified bad channels using a random sample consen-

sus approach (RANSAC) as proposed by Fischler and Bolles [1987] (see Appendix A,

5.2.2). To do so, we used the PyPREP Python package Appelhoff et al. [2023] meth-

ods find_bad_by_nan_flat with default arguments and find_bad_by_ransac with

a correlation threshold of 0.85. We chose this threshold to mirror the EEGLAB De-

lorme and Makeig [2004] RANSAC implementation clean_channels as proposed by

Delorme [2023]. If we identified bad channels, we interpolated them using spher-

ical spline interpolation (Perrin et al. [1989]) implemented in the MNE method

interpolate_bads with default arguments.

Finally, we performed independent component analysis (ICA) with the Picard

method to identify eye movement artifacts (see Appendix A, 5.2.3). We used the

MNE implementation ica configured to find the smallest number of independent

components to explain at least 99% of the variance. We then identified and removed

components related to horizontal eye movement based on the signal of the HEOG

channel and components related to vertical eye movement and blinks using a hand-

selected template as proposed by Bialas [2024] (see Fig. 3.4).

2.3.2. Generation of Neural Features

After all data sets had been cleaned, we prepared them for further analysis. For each

data set, we split the trace of each channel into five frequency bands corresponding

to the five major types of brain waves (δ: 2-4 Hz, θ: 4-8 Hz, α: 8-12 Hz, β: 12-
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2.4 Inter-Subject Functional Correlations Methods

30 Hz, γ: 30-60 Hz) and calculated the corresponding narrowband power using the

Hilbert transform implemented in the SciPy method hilbert. This produced five

neural features for each channel or 310 features per participant, corresponding to

62 channels, in total. This number differs from the initially reported 64 channels,

since the signal of one electrode (located at the right mastoid) is used as a reference

channel at the time of recording and the signal of a second electrode (located at the

left mastoid) is provided as an additional rereference channel. Notably, we omitted

rereferencing due to its potential negative impact on downstream analyzes found by

Delorme [2023].

Finally, we downsampled the neural features from 500 Hz to 10 Hz using the MNE

method resample to alleviate the computational burden of subsequent analyzes and

resampled the resulting features to exactly match the length of their corresponding

lecture video using the Scipy method resample. The latter step was necessary to

normalize the feature length to the length of the embedded lecture trajectory. This

process yielded one t×310 neural feature matrix EL
Pi,H for a given participant Pi ∈ P

and a given lecture L of length t, where H = {δ, θ, α, β, γ}.

Section 2.4

Inter-Subject Functional Correlations

2.4.1. Definition of ISFC

Suppose that we are given a set of N neural feature matrices F = {F1, F2, · · · , FN},

where some recording Fk ∈ F has m neural features each containing t samples. Let

Fk =

(
ck1 ck2 · · · ckm

)T

.
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2.4 Inter-Subject Functional Correlations Methods

Further, let

F\̄k =

(
c1

\̄k c2
\̄k · · · cm

\̄k

)T

=
1

N − 1

∑
i ̸=k

Fi

be the average signal of the set F\{Fk}. Then, the ISFC matrix of Fk is defined as

ISFCk =



r1,1 r1,2 · · · r1,m

r2,1 r2,2 · · · r2,m
...

...
. . .

...

rm,1 rm,2 · · · rm,m


, (2.2)

where ri,j is the Pearson correlation coefficient between cki and c
\̄k
i .

2.4.2. ISFC Generation

Instead of a global average ISFC matrix, our objective was to generate one ISFC

matrix for each timepoint to serve as an estimate of a participant’s understanding of

the conceptual content presented at that moment in a lecture. Hence, we followed the

sliding-window approach proposed by Simony et al. [2016], which modifies Eq. 2.2 by

considering only a finite window of size w when computing the ISFC matrix at any

given timepoint. In particular, given our preprocessed set of neural feature matrices

E = {EEF
Pi,H,E

PT
Pi,H : 1 ≤ i ≤ 42}

17



2.4 Inter-Subject Functional Correlations Methods

we defined the ISFC matrix of recording EL
Pi,H at timepoint t as

ISFCL
Pi,H;t

=

rPi,L1,1;t rPi,L1,2;t;η1
· · · rPi,L1,m;t;ηm

· · · rPi,L1,k(m−1);t rPi,L1,k(m−1)+1;t;η1
· · · rPi,L1,km;t;ηm

rPi,L2,1;t rPi,L2,2;t;η1
· · · rPi,L2,m;t;ηm

· · · rPi,L2,k(m−1);t rPi,L2,k(m−1)+1;t;η1
· · · rPi,L2,km;t;ηm

...
...

. . .
... · · · ...

...
. . .

...

rPi,Lm,1;t rPi,Lm,2;t;η1
· · · rPi,Lm,m;t;ηm

· · · rPi,Lm,k(m−1) rPi,Lm,k(m−1)+1;t;η1
· · · rPi,Lm,km;t;ηm

...
...

. . .
... · · · ...

...
. . .

...

rPi,Lk(m−1),1;t rPi,Lk(m−1),2;t;η1
· · · rPi,Lk(m−1),m;t;ηm

· · · rPi,Lk(m−1),k(m−1);t rPi,Lk(m−1),k(m−1)+1;t;η1
· · · rPi,Lk(m−1),km;t;ηm

rPi,Lk(m−1)+1,1;t rPi,Lk(m−1)+1,2;t;η1
· · · rPi,Lk(m−1)+1,m;t;ηm

· · · rPi,Lk(m−1)+1,k(m−1);t rPi,Lk(m−1)+1,k(m−1)+1;t;η1
· · · rPi,Lk(m−1)+1,km;t;ηm

...
...

. . .
... · · · ...

...
. . .

...

rPi,Lkm,1;t rPi,Lkm,2;t;η1
· · · rPi,Lkm,m;t;ηm

· · · rPi,Lkm,k(m−1) rPi,Lkm,k(m−1)+1;t;η1
· · · rPi,Lkm,km;t;ηm



where rPi,Li,j;t is the Pearson correlation coefficient between cPi,Li,t:t+w and c
¯\Pi,L

i,t:t+w, and

rPi,Li,j;t;ηj
is the Pearson correlation coefficient between cPi,Li,t:t+w;ηj

and c
¯\Pi,L

i,t:t+w;ηj
, for ηj ∈

H.

Specifically, we used a sliding window of size w = 100 and stride 1, corresponding

to a 10-second EEG window used for the ISFC computation at each timepoint. We

used the left endpoint of the window as the ISFC’s timepoint to account for the

amount of time the brain requires to process the conceptual content that is presented

at timepoint t. Furthermore, we standardized each neural feature prior to computing

ISFCs to account for variations in amplitude between recordings that could otherwise

skew the average signal EL
¯\Pi,H. This procedure yielded one ISFC matrix timeseries

for each lecture per participant.

Since our final objective was to generate a scalar-valued knowledge estimate for

each timepoint, we then computed six averaged ISFC values of each ISFC matrix.

In particular, we computed one average ISFC value of the full ISFC matrix and one

average ISFC value for each of the blocks of the ISFC matrix corresponding to the

five brain wave frequency bands. To account for potential skewness of high absolute
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2.4 Inter-Subject Functional Correlations Methods

correlation values, we performed a Fisher z-transformation (i.e., the inverse hyperbolic

tangent function) before averaging. We then remapped the averages using the inverse

transformation.

Thus, we obtained six scalar-valued knowledge estimate candidates that give an

approximation of the knowledge each participant has of the concepts presented at each

moment in Lecture 1 and Lecture 2. In particular, for a given participant Pi ∈ P , we

generated a set of 12 knowledge estimate vectors

IPi = {isfcLPi, isfc
L

Pi,δ, isfc
L

Pi,θ, isfc
L

Pi,α, isfc
L

Pi,β, isfc
L

Pi,γ : L ∈ {EF,PT}}.

Then, for all isfc
L

Pi,· ∈ IPi, we define

isfc
L

Pi,· =

(
isfcPi,L1,· isfcPi,L2,· · · · isfcPi,Lt,·

)T

∈ Mt×1(R),

where t is the length of lecture L, and · is either empty or in H.

2.4.3. ISFC Validation Procedure

We aimed to validate our six ISFC-derived knowledge estimate candidates by making

use of the participants’ performance on the quizzes. Specifically, given a participant

Pi ∈ P , we used our moment-by-moment knowledge estimate candidates in IPi to

generate six knowledge estimates corresponding to each question they had answered.

In particular, given a question’s topic vector tvQi, where Qi ∈ QL, we retrieved its

similarity vector simQi,L which we derived in Eq. 2.1. We then computed an average

knowledge estimate for Qi weighted by simQi,L:

isfcPi,Qi =

∑t
k=1 s

Qi,L
k · isfcPi,Lk,·∑t
k=1 s

Qi,L
k

.
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2.4 Inter-Subject Functional Correlations Methods

We computed these question knowledge estimates for each question that the par-

ticipant answered after watching its corresponding lecture video. Thus, we obtained

20 question knowledge estimates for Lecture 1 and 10 question knowledge estimates

for Lecture 2 for each of our six knowledge estimate candidates. We then performed

several statistical analyzes to validate these estimates. First, for each participant, we

performed Welch’s t-test to test if the mean of the question knowledge estimates cor-

responding to correctly answered questions was significantly different from the mean

of the question knowledge estimates corresponding to incorrectly answered questions.

This procedure yielded 42 t-statistic p-value pairs for each of our six knowledge esti-

mate candidates.

To control for potential randomness in our results, we also performed this pro-

cedure for the set questions that participants answered before watching the corre-

sponding lecture. Since our knowledge estimation method relies on neurophysiolog-

ical recordings made during lecture viewing, we hypothesize that there should be

no difference in means between the question knowledge estimates corresponding to

correctly answered questions and the question knowledge estimates corresponding to

incorrectly answered questions.
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Chapter 3

Results

Section 3.1

Evaluating Lecture and Question Embeddings

Earth Formation

Plate Tectonics

General Knowledge

Lecture     Questions

Figure 3.1: Lecture trajectories and questions in joint topic space. We used
PCA to project the 22-dimensional embeddings of both the lecture trajectories and
the questions onto their first three principal components for visualization.

We used the results of our methodology in Section 2.2.5 to validate that the questions
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3.1 Evaluating Lecture and Question Embeddings Results

from each question set aligned with their corresponding lecture and were distinct from

the other lecture. First, a visual inspection of the lecture trajectories and question

embeddings in Fig. 3.1 revealed an acceptable degree of separation between each lec-

ture video and a good match between the lectures and their corresponding question

set.

Furthermore, the within-topic means and variances between lecture-question set

21
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(d) Correlation between lecture and question
set within and across lectures.

Figure 3.2: Topic Mean and Variance Analyzes. Both analyzes show a good
match between lectures and their corresponding question set and good distinction
between lectures.
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3.2 ICA-Based Eye Artifact Removal Results

pairs generally agreed for matching pairs and disagreed for mismatched pairs (see

Figs. 3.2a and 3.2c). Additionally, the means and variances of the general knowledge

question set appeared relatively uniformly distributed. We saw a similar pattern for

the correlation analysis: Matching lecture-question set pairs were highly correlated,

whereas mismatched pairs displayed either no correlation or negative correlation (see

Figs. 3.2b and 3.2d). Overall, we observed that the lecture trajectories matched well

with their respective question sets.

On the other hand, the lecture-question similarity scores in Fig. 3.3 revealed a

less clearly separated relationship between individual questions and their respective

lecture trajectory. While questions from question set QEF generally had well differen-

tiated similarity scores, questions from question set QPT did not show similar levels

of distinction with respect to their similarities scores.
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Figure 3.3: Lecture-Question Similarity. We used distance correlation as a mea-
sure of similarity between each moment in the lecture trajectories and each question
in their corresponding question set. Question similarity scores in panel A are gener-
ally better separated than question similarity scores in panel B.

Section 3.2

ICA-Based Eye Artifact Removal

One of the greatest risks in performing ICA on EEG data is loss of information due

to overly aggressive artifact removal. To verify that the independent components
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3.3 ISFC Validation Results Results

selected by our ICA procedure described in Section 2.3.1 are generally associated

with eye artifacts, we plotted the scalp topographies of the selected components and

performed a manual inspection (see Fig. 3.4 for a sample). Overall, we were able to

confirm that our procedure worked correctly.

ICA000
ICA components

(a) Hand-selected ICA tem-
plate for vertical eye move-
ments and blinks.

ICA001 ICA002
ICA components

(b) Sample of identified ICA components related to ver-
tical eye movements and blinks (left) and horizontal eye
movements (right).

Figure 3.4: ICA components related to eye movements. These scalp topogra-
phies show the estimated strength of electrical activity across the scalp corresponding
to components related to eye artifacts.

Section 3.3

ISFC Validation Results

The ISFC-validation procedure described in Section 2.4.3 yielded 42 t-statistic p-value

pairs for each of our six knowledge estimate candidates. This gave us a distribution of

t-statistics for each frequency band. Fig. 3.5 shows that no frequency band displays

unambiguous results that would allow us to reject the null hypothesis.

Nevertheless, we can see that there exists a noticeable difference between the

distribution of t-statistics in panels A and B, which correspond to our knowledge es-

timate, and the distribution of t-statistics in panels C and D, which correspond to our
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Figure 3.5: Distribution of t-statistics by brain wave frequency band. Each
t-statistic measures the difference of means between ISFC values of correctly and in-
correctly answered quiz questions. Panels A and B show the distribution of questions
answered after watching the corresponding lecture. Panels C and D show the distri-
bution of questions answered before watching the corresponding lecture.

control procedure. Specifically, the control distributions appear to be centered more

closely around 0, than the distributions corresponding to our knowledge estimates.

Furthermore, we can see that the mean of the distribution of t-statistics corre-

sponding to gamma band knowledge estimate is shifted towards the left. This is

particularly apparent for Lecture 1 (see Fig. 3.6a). Lastly, we examined the rela-

tionship between the confidence of our knowledge estimates for Lecture 1 for a given

participant Pi ∈ P (measured by the p-value) and their learning progress during
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3.3 ISFC Validation Results Results

Lecture 1 (measured by their improvement in accuracy between Quiz 1 and Quiz 2)

by fitting an OLS model. This revealed a strong linear relationship between greater

learning progress and higher confidence in our knowledge estimates (see Fig. 3.6b).
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(a) Distribution of t-statistics in the gamma
band.
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(b) OLS regression between quiz accuracy im-
provement and p-values

Figure 3.6: Gamma band t-statistic and p-values for Lecture 1. Gamma band
ISFC-derived knowledge estimates may contain an informative signal (left). This
signal appears to become more confident as we consider participants who learned
more as judged by their quiz accuracy improvement (right).
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Chapter 4

Discussion

We developed a computational approach that could provide moment-by-moment

knowledge estimates of the content presented in a lecture based on neurophysiological

data recorded while a participant was watching the lecture. In particular, we aimed to

solve two problems: first, to quantify the conceptual content that is presented at any

given point in a lecture video, and second, to use raw EEG recordings to compute a

knowledge estimate of this conceptual content. To solve the first problem, we followed

a topic modeling-based approach first proposed by Fitzpatrick et al. [2023]. In gen-

eral, we found that this approach can generate moment-by-moment estimates of the

conceptual content of a lecture and match them with the conceptual content probed

by a quiz question. However, we found that the model struggled with differentiating

individual questions corresponding to Lecture 2 (see Fig. 3.3). This could be due to

a number of different reasons. First, a set of 30 questions might have exhausted the

number of distinct concepts presented in Lecture 2, leading to conceptual overlaps

between individual questions. Second, we chose a number of different hyperparame-

ters, such as the window size of the sliding window during text preprocessing or the

number of topics, which could have been ill-suited for Lecture 2.

To solve the second problem, we treated ISFC values, generated from EEG data
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recorded while participants were watching the lecture videos, as estimates of knowl-

edge and learning. Overall, we did not find conclusive results that strongly indicate

the validity or invalidity of this approach. Although none of the ISFC-derived knowl-

edge estimates allowed us to reject the null hypothesis, several of our results indicated

that our knowledge estimates may contain an informative signal. We found that the

distribution of t-statistics corresponding to our knowledge estimates differed from

the control distribution (see Fig. 3.5). Especially gamma band knowledge estimates

showed a possible difference in means between knowledge estimates corresponding to

correctly and incorrectly answered questions (see Fig. 3.6a). Moreover, we found that

our approach performs better (as a measure of observed p-values) for individuals who

displayed greater learning progress during lecture viewing (see Fig. 3.6b).

We surmise that several factors may affect the strength of our methodology. First,

the nature of our validation procedure, which is based on the ISFC responses of a

given participant Pi ∈ P , prevents us from using the collected quiz answers and

corresponding knowledge estimates across all participants in a single statistical test.

That is because we cannot assume that all participants would have the same ISFC

response to a given lecture. Hence, we are constrained to each participant’s individ-

ual responses (20 samples for Lecture 1 and only 10 samples for Lecture 2!) which

may leave our analysis statistically underpowered. Additionally, the extremely small

sample size of 10 for Lecture 2 may help explain the weakness of our findings when

compared to Lecture 1. Furthermore, the presence of participants who did not learn

anything while watching the lectures, for instance, since they already had strong pre-

existing knowledge of the presented concepts, may have introduced a sizeable amount

of noise in the data set. Since our ISFC-based approach relies on the informativity of

an averaged signal (see Eq. 2.2, such noise may have negatively impacted our analy-

sis. This is supported by our findings shown in Fig. 3.6b. We plan to investigate this
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possibility in future work. We also hope to gain a better understanding of the exact

electrode locations that are the most informative and pursue other computational

approaches.

We hope that our analysis has taken us a step closer to establishing a method to

track moment-by-moment learning that can inform models of real-world educational

scenarios and how people behave in them.
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Appendix A

Section 5.1

Topic Modeling

5.1.1. Latent Dirichlet Allocation

Latent Dirichlet allocation (LDA) is a Bayesian hierarchical model proposed by Blei

et al. [2003]. LDA assumes that documents, that is, sequences of words, can be

represented as random mixtures over a fixed number of latent topics, where each

topic is characterized by a distribution over words. More precisely, LDA assumes that,

given a vocabulary of v words and a number of topics k, a corpus of m documents is

generated according to the following process:

(a) For each document i ∈ {1, 2, · · · , m}, choose θi ∼ Dirk(α).

(b) For each topic j ∈ {1, 2, · · · , k}, choose φj ∼ Dirv(β).

(c) We note that θi and φj are Dirichlet random vectors. Thus, they take points in

the (k − 1)-simplex and in the (v − 1)-simplex, respectively. This implies that

we can treat θi and φj as random probability vectors.
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(d) Assuming that document i contains ni words, each word wn in document i is

generated as follows:

• Choose a topic zn ∼ Multinomial(θi).

• Choose a word wn ∼ Multinomial(φzn).

Note that this formulation treats α and β as priors that are determined at the start of

the generation process of a corpus. Thus, when fitting an LDA model to a corpus M ,

we are attempting to find the parameters α and β that maximize the log likelihood of

the observed dataM . Once we have approximated these parameters, we can represent

a topic as a mixture of words and a document as a mixture of topics. Notably, a fitted

LDA model can also represent unseen documents as a mixture of the topics it found

during fitting.

Section 5.2

Signal Processing

5.2.1. FIR Filters

In general terms, a finite impulse response (FIR) filter is a type of discrete-time filter

“based on directly approximating the desired frequency response or impulse response

of the discrete-time system.” Oppenheim and Schafer [2009]. In our case, we applied

an FIR filter using the window method, which is the most straightforward design on

an FIR filter. In particular, given an input signal x[t] at time t and a finite set of

filter coefficients {b0, b1, · · · , bM−1}, we perform the discrete-time convolution

y[t] =
M−1∑
k=0

bkx[t− k] (5.1)
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to calculate our filtered signal y[t]. We can then determine the frequency response of

our filter by examining its impulse response, that is, we let

x[t] = δ[t] =


0 if t ̸= 0

1 if t = 0

.

We also call δ[t] the impulse signal and we can think of it as the discrete equivalent

of the unit impulse function, that is, the Dirac delta function δ(t). In particular,

we make use of two properties of the unit impulse function. First, the unit impulse

function has an infinite frequency bandwidth Weisstein. Second, given an arbitrary

real-valued function f ,

f(t) =

∫ ∞

−∞
f(s)δ(t− s)ds Grami [2016].

Thus, Eq. 5.1 with x[t] = δ[t] yields

y[t] = bt.

We commonly call h[t] = y[t] = bt the impulse response of our FIR filter. Finally,

we can determine the discrete frequency response of our FIR filter by applying the

discrete-time Fourier transform

H[ejω] =
M−1∑
k=0

h[t]e−jωk.

5.2.2. RANSAC

Random sample consensus (RANSAC) is a general approach to fit a statistical model

to experimental data that contains a significant percentage of outliers first proposed
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by Fischler and Bolles [1987]. Bigdely-Shamlo et al. [2015] adopted RANSAC as a

method of detecting corrupt EEG channels. Specifically, RANSAC works by ran-

domly selecting a subset of channels as “inliers.” Data from all channels is then

interpolated using only these inliers. This process is repeated n times to generate n

separate time series for each channel. The correlation between the median of these

n series (calculated at each time point) and the original data is then computed. If

the correlation falls below a set threshold, the sensor is flagged as an outlier and is

considered corrupted.

5.2.3. Independent Component Analysis

Independent component analysis (ICA) is a technique that aims to separate an ob-

served mixed signal into maximally independent additive subcomponents (Langlois

et al. [2010]). In particular, assume that we have an observed random vector of n

linear mixtures

x =

(
x1, x2, · · · , xn

)T

where for all i ∈ {1, 2, · · · , n}, xi is the mixture of n independent elements of a

latent random vector s =

(
s1, s2, · · · , sn

)T

, that is,

xi = ai,1s1 + ai,2s2 + · · ·+ ai,nsn.

Then,

x = As

where A is an n×n mixing matrix. The goal of ICA is to approximate s by approxi-

mating the inverse of the mixing matrix W = A−1. Once we have an approximation

of W, we can easily compute

s = Wx.
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Chapter 6

Appendix B

Section 6.1

Code and Data Availability

The entire code base is available here.

Section 6.2

Identified Topics
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