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Abstract

Nonnesting permutations are the permutations of the multiset {1, 1, 2, 2, . . . , n, n} that avoid
the pattern ijji. They are studied in connection with noncrossing permutations, also known
as quasi-Stirling permutations, which avoid the pattern ijij and generalize the well-known
Stirling permutations. Inspired by the work of Archer et al. on pattern avoidance in noncrossing
permutations, we extend the result to the nonnesting case. Specifically, we enumerate nonnesting
permutations that avoid each set of at least two patterns of length 3, as well as other patterns,
obtaining a closed formula in each enumeration. Most proofs use recurrences.

1 Introduction

Denote by [n]⊔ [n] = {1, 1, 2, 2, ..., n, n} the multiset consisting of two copies of each integer from 1
to n. We denote the set of all permutations on the multiset [n] ⊔ [n] by S2

n.
Let π = π1π2...πn and σ = σ1σ2...σk be permutations over the positive integer N. We say π

contains σ if there is some 1 ≤ i1 < i2 < ... < ik ≤ n such that the subsequence πi1πi2 ...πik and σ
have the same relative order, that is,

• πir = πis if and only if σr = σs, and

• πir < πis if and only if σr < σs

for all 1 ≤ i, j ≤ k. In this case, we call this subsequence an occurrence of σ.
If π does not contain σ, we say that π avoids σ.
A nonnesting permutation π ∈ S2

n is a permutation that avoids the nesting patterns 1221 and
2112, that is, there does not exist indices 1 ≤ i1 < i2 < i3 < i4 ≤ n such that i1 = i4 and i2 = i3.
Similarly, we define a noncrossing permutation as one that avoids the crossing patterns 1212 and
2121. Archer et al. [1] introduced noncrossing permutations, also called quasi-Stirling permutations
in their paper, as a generalization of Stirling permutations [4].

One can understand nonnesting permutations graphically as follows. Given a permutation π ∈
S2
n, connect πi and πj with an arc labeled l if πi = πj = l. Then a nonnesting permutation is a

nonnesting matching with distinct labels from [n]. Similarly, a noncrossing permutation is a labeled
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matching whose arcs do not cross each other. In fact, the nonnesting condition ensures that the
order of the left endpoints of the arc is the same that of the right endpoints. The permutation
obtained from reading the labels of the arcs from left to right is called the underlying permutation.

1 5 2 1 3 5 2 4 3 4 1 3 2 4 1 3 4 2

Figure 1: The permutation 1523415234 is nonnesting, but the permutation 13241342 is not.

Denote Cn the set of nonnesting permutations on the multiset {1, 1, 2, 2, ..., n, n}. Write |Cn| =
sn. It is well-known that the number of nonnesting or noncrossing matchings with n arcs is given by
the nth Catalan number Catn. Since there are n! ways to label the arcs, the number of nonnesting
and the number of noncrossing permtuations are counted by

n! Catn =
(2n)!

(n+ 1)!
[3].

Archer et al. [1] enumerated noncrossing permutations that avoid at least two patterns of length
3. Athanasiadis constructed a bijection between noncrossing partition and nonnesting partition [2],
which can be extended to a bijection between noncrossing permutation and nonnesting permutation.
Motivated by these two papers, we extend Archer et al.’s enumeration to the nonnesting case. In
particular, this research considers the nonnesting permutations that avoid subsets of permutations
of {1, 2, 3}.

Consider π = π1π2...πn ∈ Cn(Λ). We say the reverse of π is πr = πnπn−1...π1, and the comple-
ment of π is πc where πc

i = n+1− πi. Let τ be a pattern over the positive integers. Then π avoids
τ if and only if πr avoids τ r if and only if πc avoids τ c.

2 Result

In this section, we enumerate nonnesting permutations that avoid at least two patterns of length 3.
Under complementation and reversal, Table 1 provides all possible enumeration of Cn(Λ) that are
not trivially equivalent, Λ ⊆ Sn and |Λ| ≥ 2.

3 Proof of the Enumeration Results

First, we provide some notations used in proofs. Denote the Cn(Λ) the set of nonnesting permu-
tations that avoid elements in the set Λ. Let π ∈ Cn(Λ). Let α = πiπi+1...πj , β = πkπk+1...πl be
two subwords of π such that j < k. Denote Set(α) the set of entries in α without multiplicities.
For example, Set(113232) = {1, 2, 3}. We say α < β if and only if a < b for all a ∈ Set(α) and
b ∈ Set(β). This definition holds for other relation, such as >,=,≤, and ≥. However, if α ≤ β,
then max{Set(α)} ≤ min{Set(β)}. In other words, there is at most one a ∈ α and one b ∈ β such
that a = b. Moreover, note that these relations are not transitive or antisymmetric, since the empty
word ε trivially satisfies ε ≤ α and ε ≥ α for any α.
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Λ ⊆ S3 Formula for sn(Λ) Result in the paper OEIS Code
{123, 321} 0, for n ≥ 5 Theorem 3.3 N/A

{123, 231} (n− 1)(n+ 6)

2
, for n ≥ 2 Theorem 3.5 A055999

{132, 213} Fn
2 Theorem 3.6 A007598

{132, 231} 2n, for n ≥ 2 Theorem 3.7 A000079
{132, 312}

4 · 3n−2, for n ≥ 2
Theorem 3.8 A003946{312, 321} Theorem 3.9

{123, 132, 213} g.f.: A(x) =
1− x

1− 2x− 2x2 + 2x3
Theorem 3.10 A052528

{123, 132, 321} 0, for n ≥ 5 Corollary 3.4 N/A
{123, 213, 312}

n+ 2 , for n ≥ 2
Theorem 3.11 N/A{132, 213, 312} Theorem 3.12

{132, 213, 321} n, for n ≥ 3 Theorem 3.13 N/A
{132, 312, 321} 4(n− 1), for n ≥ 2 Theorem 3.14 N/A

{123, 132, 213, 321}
0, for n ≥ 5 Corollary 3.4 N/A{123, 132, 231, 321}

{123, 132, 312, 321}
{123, 132, 213, 231} 4, for n ≥ 2 Theorem 3.15 N/A
{123, 132, 231, 312}

2, for n ≥ 3
Theorem 3.16 N/A{132, 213, 231, 312} Theorem 3.17

{123, 132, 213, 231, 312} 1, for n ≥ 3 Theorem 3.18 N/A
{123, 132, 213, 231, 321} 0, for n ≥ 5 Corollary 3.4 N/A

Table 1: A summary of the enumeration of nonnesting permutations avoiding subsets of S3 of size
at least 2.

3.1 Avoiding One Pattern

The enumeration of noncrossing permutations that avoid a single pattern remains open [1]. Com-
plementation and reversal reduces avoidance of a single pattern in nonnesting permutations to the
enumeration of Cn{123} and Cn{132}, which is also open. The first five entries in the sequence of
s{123} are 1, 4, 17, 82, 406, 2070, and the ones in Cn{132} are 1, 4, 17, 77, 367, 1815. None of these
sequences appear in the Online Encyclopedia of Integer Sequences [6] at the time of writing this
paper.

Although there is no closed formula for nonnesting permutations that avoid a single pattern
of Sn, it is easier to enumerate the ones that avoid a pattern of length 3 with repeated entries.
We disregard the trivial case of 111, avoided by all nonnesting permutations. Then, by applying
complementation and reversal, we again reduce the problem to enumerating Cn{112} and Cn{121}.

Theorem 3.1. sn(112) = Catn.

Proof. View the nonnesting permutations in Cn(112) as labeled nonnesting matchings. For any
1 ≤ i <≤ n, any subsequence consisting of i and j must be either jjii or jiji to avoid 112.
Therefore, the underlying permutations of the nonnesting matchings must be weakly decreasing. It
follows that sn(112) is the number of nonnesting matchings of [2n], known as Catn.

Theorem 3.2. sn(121) = n!.
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Proof. For any 1 ≤ i <≤ n, any subsequence consisting of i and j must be either jjii or iijj to
avoid 121. Therefore, the permutations in Cn(121) are obtained by duplicating each entry in a
permutation of Sn. Hence, there are n! permutations.

3.2 Avoiding Two Patterns

Theorem 3.3. For all n ≥ 5, sn(123, 321) = 0.

Proof. Let Λ = {123, 321}. Since s5 = 0, any permutations of length greater than 5 contains either
123 or 321, or both.

Corollary 3.4. For any Λ that contains {123, 321}, sn(Λ) = 0 for all n ≥ 5.

Theorem 3.5. For n ≥ 2, we have

sn(123, 231) =
(n− 1)(n− 6)

2

.

Proof. Let Λ = {123, 231}. Write π ∈ Cn(Λ) uniquely as π = α1β1γ. Since π avoids 123 and 231,
α, β, and γ are weakly decreasing, and we must have α ≥ β and β ≥ γ. Hence, |Set(α)∩Set(β)| ≤ 1
and |Set(β) ∩ Set(γ)| ≤ 1. Avoidance of nesting forces entries in β to be distinct. Therefore, β has
at most two entries, leaving us four cases:

(1) π = α11γ,

(2) π = α′i1i1γ for some i ∈ {2, 3, . . . , n},

(3) π = α1i1iγ′ for some i ∈ {2, 3, . . . , n},

(4) π = α′(i+ 1)1(i+ 1)i1iγ′ for some i ∈ {2, 3, . . . , n− 1}.

In case (1), avoidance of {231} forces the entries of γ to be consecutive, that is, Set(γ) =
{i + 1, i + 2 . . . , j} for some 1 ≤ i < j ≤ n. Since α and γ are weakly decreasing, and Set(α) =
{2, 3, . . . , n}\Set(γ), the choice of i and j uniquely determines the permutation. Including the case
of γ = ε, we have 1 +

(
n
2

)
permutations in case (1).

In case (2), the requirement β ≥ γ implies that Set(γ) = {2, 3, . . . , i−1}. Since i ∈ {2, 3, . . . , n},
there are n−1 permutations in case (2). A similar argument shows that there are n−1 permutations
in case (3) and n− 2 in case (4).

Summing up the number of permutations in all cases, we have

sn(Λ) = 1 +

(
n

2

)
+ (n− 1) + (n− 1) + (n− 2) =

(n− 1)(n+ 6)

2
.

Theorem 3.6. For all n ≥ 1, sn(132, 213) = Fn
2.

Proof. Let Λ = {132, 213}. Consider the following four cases of π ∈ Cn(Λ):

(1) nnγ,
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(2) nβnγ,

(3) αnnγ,

(4) αn]betanγ,

where α, β ̸= ε in cases (2), (3), and (4).
Denote the size of each case as an, bn, cn, and dn. Clearly, sn(Λ) = an + bn + cn + dn. We

enumerate Cn(Λ) by considering the ways to generate an elements in Cn+1(Λ) by adding two entries
n+ 1 to permutations in each case.

First, notice that n+1 must be inserted before γ. Otherwise, nc(n+1) would be an occurrence
of 213, where c ∈ Set(γ). Hence, an element in case (1) generates one permutation in each of the
four cases: (n+ 1)(n+ 1)nnγ, (n+ 1)n(n+ 1)nγ, nn(n+ 1)(n+ 1)γ, and n(n+ 1)n(n+ 1)γ.

In case (2), the entries n + 1 must be inserted before β to avoid 213. Hence, each element
generates (n+ 1)(n+ 1)nβnγ and (n+ 1)n(n+ 1)βnγ, yielding a permutation in case (1) and (2),
respectively.

In case (3), to avoid 132, n+1 cannot be inserted between the first entry of α and n, leaving us
two permutations (n+ 1)(n+ 1)αnnγ and αnn(n+ 1)(n+ 1)γ in case (1) and (3), respectively.

The insertion in case (4) faces the restrictions in both cases (2) and (3). So, it only generates
(n+ 1)(n+ 1)αnβnγ in case (1).

Adding up the number of permutations generated in each case of Cn+1(Λ), we have

an+1 = an + bn + cn + dn

bn+1 = an + bn

cn+1 = an + cn

dn+1 = an = sn−1(Λ).

Using these relations, we obtain

sn+1(Λ) = an+1 + bn+ 1 + cn+1 + dn+1

= 4an + 2bn + 2cn + dn

= 2(an + bn + cn + dn) + 2an − dn

= 2an+1 + 2an − dn

= 2sn(Λ) + 2sn−1(Λ)− sn−2(Λ)

with the same initial conditions s0(Λ) = s1(Λ) = 1 and recurrence as Fn+1
2:

Fn+1
2 = (Fn + Fn−1)

2

= Fn
2 + 2FnFn−1 + Fn−1

2

= (Fn − Fn−1)
2 + 4FnFn−1

= Fn−2
2 + 4FnFn−1

= Fn−2
2 + 2(Fn+1

2 − Fn
2 − Fn−1

2)

= 2Fn
2 + 2Fn−1

2 − Fn−2
2.
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with the convention F0 = F1 = 1.

Theorem 3.7. For all n ≥ 2, sn(132, 231) = 2n.

Proof. Let Λ = {132, 231}. The claim clearly holds for n = 2 since s2(Λ) = 4. Let n ≥ 3. To
generate an element in Cn(Λ) from π ∈ Cn−1(Λ), both entries of n must be inserted either at the
beginning of end of π to avoid Λ and nestings. Hence,

sn(Λ) = 2sn−1(Λ).

Theorem 3.8. For all n ≥ 2, sn(132, 312) = 4(3n−2).

Proof. Let Λ = {132, 312} and let π ∈ sn(Λ). Assume that n ≥ 3. To avoid both 132 and 312,
π2n ∈ {1, n}, leaving us two cases:

(1) α1β1,

(2) αnβn.

Since complementation respects avoidance of Λ, it gives a bijection between case (1) and (2).
Hence, there are sn(Λ)/2 permutations in each case.

In case (1), avoidance of 312 implies that α ≤ β, and the nonnesting condition forces the entries
in β to be distinct. Hence, either β = ε or β = n. If β = ε, α can be any permutations in Cn−1(Λ),
so there are sn−1(Λ) such permutations. If β = n, removing both entries of 1 results in an arbitrary
permutation in case (2) of Cn−1(Λ). Therefore, sn(Λ)/2 = sn−1(Λ) + sn−1(Λ)/2. With the initial
condition s2(Λ) = 4, we obtain the result.

Theorem 3.9. For all n ≥ 2, sn(312, 321) = 4(3n−2).

Proof. Let Λ = {312, 321}. Write π ∈ Cn(Λ) as π = αnβnγ. To avoid both 312 and 321, |Set(β) ∪
Set(γ)| ≤ 1. This condition, together with the fact that β must have distinct entries, leaves us four
cases:

(1) αnn

(2) αnini for some i ∈ [n− 1]

(3) αnnii for some i ∈ [n− 1]

(4) α1iα2nin for some i ∈ [n− 1].

Denote the number of permutations in each case as an, bn, cn, and dn, so that

sn(Λ) = an + bn + cn + dn. (1)

In case (1), α can be any arbitrary element in Cn−1(Λ), so an = sn− 1(Λ). In case (2), removal
of both entries n results in an arbitrary permutation in Cn−1(Λ) that ends with a double letter, that
is, any permutations from case (1) and (2). Hence, bn = an−1 + cn−1. Similarly, cn = an−1 + cn−1.
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In case (4), after removing both entries n, α1iα2i can be any elements in Cn−1(Λ), so dn = sn−1(Λ).
Therefore, we can see that an+cn = bn+dn. Combined with equation 1, we have sn(Λ) = 2(an+cn).

Now we find the recurrence of sn(Λ):

sn(Λ) = an + bn + cn + dn

= 2sn−1(Λ) + 2(an−1 + cn−1)

= 3sn−1(Λ)

Given the initial condition s2(Λ) = 4, we obtain the results.

Theorem 3.10. Let Λ = {123, 132, 213}. Then

A(x) =
1− x

1− 2x− 2x2 + 2x3
.

Proof. Let Λ = {123, 132, 213}. Write π ∈ Cn(Λ) as π = αnβnγ. To avoid both 123 and 213,
|Set(α) ∪ Set(β)| ≤ 1. If |Set(α) ∪ Set(β)| = 1, avoidance of 132 forces Set(α) ∪ Set(β) = n − 1,
leaving us four cases:

(1) nnγ

(2) (n− 1)(n− 1)nnγ

(3) (n− 1)n(n− 1)nγ

(4) n(n− 1)nγ

In case (1), γ is an arbitrary element in Cn−1, and in each of cases (2) and (3), γ can be any
permutation in Cn−2(Λ). Let Dn represent the set of elements in case (4). Let |Dn| = dn.

In case (4), (n − 1)γ, obtained by removing both entries n, is an arbitrary element in Cn−1(Λ)
that starts with the largest entry, namely, case (1) and (4) in Cn−1(Λ). Since the elements in case
(1) of Cn−1(Λ) are counted by sn−2(Λ), we have

dn = sn−2(Λ) + dn−1 (2)

.
The number of elements in all four cases sums up to

sn(Λ) = sn−1(Λ) + 2sn−2(Λ) + dn. (3)

Solve for dn in equation 3 and shift the index down by one, we obtain expressions for dn and
dn−1. Substitute the expressions into equation 2 and rearrange it, we obtain

sn(Λ) = 2sn−1(Λ) + 2sn−2(Λ)− 2sn−3(Λ)

which gives the generating function in Table 1

Theorem 3.11. For all n ≥ 2, sn(123, 213, 312) = n+ 2.
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Proof. Let Λ = {123, 213, 312}. Write π ∈ sn(Λ) as π = αnβnγ. To avoid both 123 and 213,
|Set(α) ∪ Set(β)| ≤ 1. To avoid 312, γ is weakly decreasing and β ≥ γ. Therefore, we have four
cases:

(1) iinnγ for some i ∈ [n− 1]

(2) n(n− 1)n(n− 1)γ

(3) (n− 1)n(n− 1)nγ

(4) nnγ

Since γ is weakly decreasing, there is only one permutation in each of cases (2), (3), and (4),
and the choice of i uniquely determines the permutation in case (1). Since there are n− 1 choices
of i in case (1), we have

sn(Λ) = (n− 1) + 1 + 1 + 1 = n+ 2

for all n ≥ 2.

Theorem 3.12. For all n ≥ 2, sn(132, 213, 312) = n+ 2.

Proof. Let Λ = {132, 213, 312}. Write π ∈ Cn(Λ) as π = αnβnγ. To avoid 213, α and β are weakly
increasing, and α ≤ β. Moreover, avoidance of 132 forces α ≥ β, β ≥ γ, and α > γ. Together,
these conditions imply two things: (1) |Set(β)| ≤ 1, and (2) Set(α) = Set(β) = n− 1 if Set(β) ̸= ∅.
Lastly, to avoid 312, γ must be weakly decreasing, leaving us four cases:

(1) αnnγ

(2) (n− 1)n(n− 1)nγ

(3) n(n− 1)nγ.

Since γ is weakly decreasing, there is exactly one permutation in each of the cases (2) and (3).
In case (1), the conditions that α weakly increases, γ weakly decreases, and α > γ imply that the
permutation is uniquely determined by the smallest entry i of α, where i ∈ [n]. Therefore, we have
a total of n+ 2 permutations.

Theorem 3.13. For all n ̸= 2, we have sn(132, 213, 321) = n.

Proof. Let Λ = {132, 213, 321}. Write π ∈ sn(Λ) as π = αnβnγ. To avoid 132, α ≥ β, β ≥ γ, and
α > γ. To avoid 213, we must have the words α and β be weakly increasing and α ≤ β. Lastly,
avoidance of 321 forces the word γ to weakly increase and β ≤ γ.

Suppose β = ε. Since α and γ are both weakly increasing, the permutation is uniquely deter-
mined by |Set(α)| ∈ {0, 1, . . . , n−1}. Therefore, there are n permutations. Now assume that β ̸= ε.
Then the nonnesting condition requires that either | Set(α) ∩ Set(β)| > 0 or | Set(β) ∩ Set(γ)| > 0.
In the former case, the conditions α ≤ β and α ≥ β imply that the words α and β must be the
same set of size 1. However, since α > γ and α = β ≤ γ, we must have γ = ε. Hence, the only
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permutation that satisfies these requirements is 2121. By the same argument, if β and γ share a
common entry, then the permutation must be 1212. Therefore, for n ̸= 2,

sn = n.

Theorem 3.14. For all n ≥ 2, sn(132, 312, 321) = 4(n− 1).

Proof. Let Λ = {132, 312, 321}. Write π ∈ Cn(Λ) uniquely as π = α1β1γ. Avoidance of 132 and
321 forces α, β, and γ to all be weakly increasing. To avoid 312, we must have α ≤ β, β ≤ γ,
and α < γ, where the inequality is due to the nonnesting condition. Combining these conditions, it
follows that αβγ = 2233 · · ·nn, and so | Set(β)| ≤ 2. Hence, the positions of the 1 entries uniquely
determine the permutation. We now consider the potential positions of the 1 entries.

If β = ε, the 1 entries are adjacent, and there are n places where they can be. If |Set(β)| = 1,
the 1 entries are one apart from each other. Since there are 2(n− 1) entries in the word αβγ, there
are 2(n−1) permutations. Lastly, if |Set(β)| = 2, then we must have β = ij for some 2 ≤ i < j ≤ n,
since there are n− 1 distinct entries in the word αβγ, there are (n− 1)− 1 permutations.

Summing up all the cases, we have sn(Λ) = 4(n− 1).

3.3 Avoiding four or five patterns

There are three cases of sets Λ ⊆ S3 of size 4 and one case of size 5 that are not covered by
Corollary 3.4. In all of them, the number of nonnesting permutations of [n] ⊔ [n] avoiding Λ is
constant for n ≥ 3.

Theorem 3.15. For all n ≥ 2, we have sn(123, 132, 213, 231) = 4.

Proof. Let Λ = {123, 132, 213, 231}. For n ≥ 3, any π ∈ Cn(Λ) must be of the form nnα, since
the avoidance condition requires that in any subsequence πiπjπk of distinct letters, πi must be the
largest. Therefore, sn(Λ) = sn−1(Λ) for n ≥ 3. Since s2(Λ) = 4, the result follows.

Theorem 3.16. For all n ≥ 3, we have sn(123, 132, 231, 312) = 2.

Proof. Let Λ = {123, 132, 231, 312} and let n ≥ 3. The avoidance of 132 and 231, together with the
nonnesting condition, implies that any π ∈ Cn(Λ) must be of the form αnn or nnγ. Additionally,
avoidance of 123 and 312 forces α and γ must be weakly decreasing. Thus, for n ≥ 3,

Cn(Λ) = {(n− 1)(n− 1)(n− 2)(n− 2) . . . 11nn, nn(n− 1)(n− 1) . . . 11}.

Theorem 3.17. For all n ≥ 3, we have sn(132, 213, 231, 312) = 2.

Proof. Let Λ = {132, 213, 231, 312}. Any subsequence of π ∈ Cn(Λ) of length 3 with distinct entries
must be increasing or decreasing. Hence, for n ≥ 3,

Cn(Λ) = {1122 . . . nn, nn . . . 2211}.

Theorem 3.18. For all n ≥ 3, we have sn(123, 132, 213, 231, 312) = 1.

Proof. Any subsequence of π ∈ Cn({123, 132, 213, 231, 312}) of length 3 with distinct entries must
be weakly decreasing. Hence, for n ≥ 3, the only possibility is π = nn . . . 2211.
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3.4 Avoiding repeated patterns of length 4

In this section we consider nonnesting permutations avoiding some sets of two or more patterns of
length 4, consisting of the symbols 1, 2, 3.

We start this section with the following lemma:

Lemma 3.19. For any distinct entries i, j, k ∈ [n], π ∈ Cn(ijjk) if an only if the underlying
permutation of π avoids ijk.

Proof. The reverse direction is trivial. We prove the forward direction. Suppose the underlying
permutation of π contains ijk, then it must contain ijkk. The second entry of j must occur before
the second entry of k to avoid nesting. It follows that π contains ijjk.

Lemma 3.20. Let π be a nonnesting permutation of [2n], and let i, j, k ∈ [n] be distinct entries.
If π avoids either iijk or ijkk, then π avoids ijjk.

Proof. We prove the contrapositive statement. Let π ∈ Cn such that π contains ijjk. To avoid
nesting, the other entry of i must occur before the second entry of j. This creates an occurrence of
iijk. By symmetry, π also contains ijkk.

The following lemma is a partial converse of lemma 3.20.

Lemma 3.21. Let Λ = {iikj, ikkj, ijkj, ikjj, ikjk} for some distinct entries i, j, k ∈ [n]. For any
π ∈ Cn(ijjk), if π avoids some σ ∈ Λ, then π avoids iijk.

Proof. Again, we prove the contrapositive statement. Let π ∈ Cn(ijjk). Suppose π contains iijk.
Avoidance of ijjk and nestings forces the underlying permutation to be ikj. Therefore, the only
two possible subsequences of π are ikijkj and iikjkj, both of which contain all patterns in Λ.

After applying lemma 3.20 and 3.21, we enumerate the following permutations that are not
trivially isomorphic. Table 2 lists sets Λ for which we have found a formula for sn(Λ). Other sets
for which a formula is conjectured are listed in Table 3.

In the following proofs, it is convenient to consider the permutations in Cn as nonnesting match-
ings with each arc labeled with a distinct number in [n]. Denote the number of underlying permu-
tations that avoid some set Λ as |Sn(Λ)| = an(Λ).

Theorem 3.22. sn(1223) = Cat2n.

Proof. We view the nonnesting permuations as labeled nonnesting matchings. By lemma 3.19,
avoidance of 1223 indicates that the underlying permutations avoid 123. By MacMahon [5], an(σ) =
Catnfor any σ ∈ S3. Since there are Catn matchings, sn(1223) = Cat2n.

Theorem 3.23. sn(1332) = Cat2n.

Proof. The argument is the same as the proof of theorem 3.22.

Theorem 3.24. For all n ≥ 5, sn(1123, 3211) = 0.

Proof. Let Λ = {1123, 3211} and write π ∈ Cn(Λ) uniquely as α1β1γ. Avoidance of 1123 and
3221 forces α to be weakly increasing and γ be weakly decreasing. Therefore, | Set(α)| ≤ 2 and
|Set(γ)| ≤ 2. Otherwise, both entries 1 will be part of the occurrence of either pattern. However, if
n ∈ Set(α), γ must be a word of length 1 or less to avoid 3211. By the same argument, if n ∈ Set(γ),
then | Set(α)| ≤ 1. It follows that sn(Λ) = 0 for all n ≥ 5.
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Λ Formula for sn(Λ) Result in the paper OEIS code
{1223}

Cat2n
Theorem 3.22 A001246{1332} Theorem 3.23

{1123, 3211}
0, for n ≥ 5

Theorem 3.24 NA{1123, 3321} Theorem 3.25
{1123, 1132}

2n−1Catn

Theorem 3.26

A003645{1332, 2113} Theorem 3.27
{1332, 3112} Theorem 3.29
{2113, 3112} Theorem 3.29

{1123, 1132, 2311} n(n− 1)(n+ 10)

6
, for n ≥ 2 Theorem 3.30 A060488

{1132, 2113, 2311} n3 + 6n2 − 7n+ 6

6
Theorem 3.31 A027378

{1132, 3112, 3121} 5 · 3n−2 − 1, for n ≥ 2 Theorem 3.32 A198643
{1231, 1321, 2132, 2312, 3123, 3213} n!Fn+1 Theorem 3.33 A005442

Table 2: A summary of the enumeration of nonnesting permutations avoiding other patterns.

Theorem 3.25. For all n ≥ 5, sn(1123, 3321) = 0.

Proof. The argument is similar to the proof of theorem 3.26. α must be weakly increasing to avoid
3321. It follows that | Set(α)| ≤ 2 to avoid 1123. Similarly, γ must be weakly decreasing and
|Set(γ)| ≤ 2. However, if n ∈ Set(α), then | Set(γ)| ≤ 1 to avoid 3321. By the same logic, if
n ∈ Set(γ), then | Set(α)| ≤ 1. Therefore, |Set(α) ∪ Set(γ)| ≤ 3.

Let σ and τ be a repeated pattern of length 4 that contains 123 and 321 as a subsequence,
respectively. Then by lemma 3.20, complementation, and reversal, it follows from theorems 3.24
and 3.25 that sn(σ, τ) = 0 for all n ≥ 5.

Theorem 3.26. For all n ≥ 1, sn(1123, 1132) = 2n−1Catn.

Proof. Given any nonnesting matchings, we consider the possible labelings of the arcs. Avoidance
of 1123 and 1132 translates into the condition that no arc has two arcs to its right with larger
labels. This is equivalent to counting the underlying permutations that avoid 123 and 132, ie.,
finding a formula for an(123, 132). Therefore, when we label the arcs from left to right, we must
choose from the two biggest values available. Since the label of the last arc is forced, there are 2n−1

ways to label a nonnesting matching with n arcs. Given that there are Catn nonnesting matchings,
sn({1123, 1132}) = 2n−1Catn.

Theorem 3.27. sn(1332, 2113) = 2n−1Catn.

Proof. By lemme 3.19, this is equivalent to showing an(132, 213) = 2n−1. Let Λ = {132, 213}. Write
the underlying permutation π ∈ Sn(Λ) uniquely as αnβ. To avoid 132, α > β, and avoidance of
213 forces α to be strictly increasing. Therefore, we can write π as

π = (i+ 1)(i+ 2) · · ·nβ,

where β can be any permutation in Si(Λ). We can enumerate Sn(Λ) recursively by an(Λ) =
∑n−1

i=0 ai,
with the initial conditions a0 = a1 = 1. This is the same recursion as 2n−1. It follows that
sn(1332, 2113) = anCatn = 2n−1Catn.
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Theorem 3.28. sn(1332, 3112) = 2n−1Catn.

Proof. The argument is similar to the proof above. Let Λ = {132, 312}. Write the underlying
permutation π ∈ Sn(Λ) uniquely as αnβ. Avoidance of Λ implies that α > β and β is weakly
decreasing. Therefore, an(Λ) = 2n−1 and the result follows.

Theorem 3.29. For all n ≥ 1, sn(2113, 3112) = 2n−1Catn.

Proof. Let Λ = {213, 312}. It suffices to show that an(Λ) = 2n−1. First, observe that any underlying
permutation must either start or end with the number 1 to avoid both patterns. Therefore, any
π ∈ Sn(Λ) must be in the form of either 1α or α1, where α is an arbitrary permutation in Sn−1(Λ).
It follows that an(Λ) = 2an−1(Λ). Using the initial condition a1(Λ) = 1, we can see that an = 2n−1.
Since there are Catn matchings, the result follows.

In the remaining proofs, we do not view nonnesting permutations as labeled nonnesting match-
ings.

Theorem 3.30. For all n ≥ 2, we have

sn(1123, 1132, 2311) =
n(n− 1)(n+ 10)

6
.

Proof. Let Λ = {1123, 1132, 2311}. Write π ∈ C(Λ) as π = α1β1γ. To avoid both 1123 and 1132,
we must have |Set(γ)| ≤ 1.

Moreover, avoidance of 2311 forces α to be weakly decreasing, and the nonnesting condition
implies that β has no repeating entry. Therefore, after removing from β the entry in Set(β)∩Set(γ),
if there is any, the remaining entries in β must be decreasing. This is because the entries also occur
in α, and π is nonnesting. Additionally, the weakly decreasing condition of α implies that the
entries that appear in α but not in β must be bigger than those that do. This leaves the following
possibilities:

If γ = ε, the above conditions imply that

π = nn(n− 1)(n− 1) · · · (i+ 1)(i+ 1)i(i− 1) · · · 21i(i− 1) · · · 21,

where i ∈ [n]. Hence there are n permutations in this case.
Suppose γ = cc for some c ∈ {2, . . . n}. If β = ε, each of the n − 1 choices of c determines the

permutation. Now suppose that β ̸= ε, and let b be the first entry in β. If c < b, we need c = b− 1
to avoid 2311, so there are n− 2 permutations. If c > b, there are no restrictions on the value of c.
Since c and b completely determine the permutation, there are

(
n−1
2

)
permutations. Summing up

the cases, the number of permutations when γ = cc for some c is

n2 + n− 4

2
.

Lastly, suppose γ = c for some c ∈ {2, . . . n}, so c ∈ Set(β). If β = c, the n − 1 choices of
c completely determines the permutation. Otherwise, recall the that entries in β after removing
c must be decreasing. Let b be the first of these entries; equivalently, b is the largest element
of Set(β) \ {c}. If b < c, then there are no restrictions on the value of c and its position in β.
Therefore, the values of c and b, and the position of c in β determine the permutation. For each
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c ∈ {3, . . . , n}, b ∈ {2, . . . , c − 1}, and there are b places where c could be in β. Therefore, the
number of permutations in this case is

∑
2≤b<c≤n

b =
n−1∑
b=2

b(n− b) =
n3 − 7n+ 6

6
.

On the other hand, if b > c, consider the two following subcases. If c is the first entry in β,
then any of the

(
n−1
2

)
choices of b and c completely determine the permutation. Otherwise, we need

b = c + 1 to avoid 2311. Hence, π is given by the value of b and the position of c, of which there
are b− 2 choices, giving

n∑
b=3

(b− 2) =
(n− 1)(n− 2)

2
.

By summing up all the cases, we have

sn(Λ) = n+
n2 + n− 4

2
+ n− 1 +

n3 − 7n+ 6

6
+ (n− 1)(n− 2) =

(n− 1)(n)(n+ 10)

6
.

Theorem 3.31. For all n ≥ 1, we have

sn(1132, 2113, 2311) =
n3 + 6n2 − 7n+ 6

6
.

Proof. Let Λ = {1132, 2113, 2311}. We can write π ∈ Cn(Λ) as π = α1β1γ. To avoid 1132, 2311
and 2113, we must have the word γ be weakly increasing, α be weakly decreasing, and α > γ,
respectively. It follows that, after removing from β the entries in Set(α) ∩ Set(β), if there are any,
the remaining entries in β must be strictly increasing, because the entries also appear in γ, and π
is nonnesting. It follows that the nonnesting condition forces any entries in γ that do not appear
in β to be greater than those that appear in both. By the same argument, the remaining entries in
β after removing entries in Set(β)∩ Set(γ), if any, are strictly decreasing. Additionally, entries in α
but not in β are greater than the entries that appear in both. Now, we separate the permutations
into three cases:

(1) | Set(α) ∩ Set(β)| ≥ 2,

(2) Set(α) ∩ Set(β) = {b} for some b ∈ {2, 3, . . . , n},

(3) Set(α) ∩ Set(β) = ∅.

In case (1), the condition that α > γ and avoidance of 2311 force Set(γ) ⊆ Set(β). Moreover,
in the word β, any entry in Set(γ)∩ Set(β) must appear to the left of any entry in Set(α)∩ Set(β).
Therefore, if Set(α) \ Set(β) ̸= ∅, the permutation π must be of the form

π = nn(n− 1)(n− 1) · · · (i+ 1)(i+ 1)i(i− 1) · · · j123 · · · (j − 1)i(i− 1) · · · j123 · · · (j − 1),

where 2 ≤ j < i ≤ n and j + 1 ≤ i. The second inequality results from the assumption that
| Set(α) ∩ Set(β)| ≥ 2. This leaves us

(
n−1
2

)
− (n− 2) permutations. On the other hand, if Set(α) \

Set(β) = ∅, then the permutation π would be in the form of

π = n(n− 1) · · · j1n(n− 1) · · · j23 · · · (j − 1)123 · · · (j − 1),
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for some j ∈ {2, . . . , n − 2}. Adding up all the cases, it follows that there are
(
n−1
2

)
permutations

in case (1).
In case (2), the nonnesting condition forces b to be the smallest entry in the word α, as discussed

above. There are no restrictions on the position of b in β. Let i be the entry in β that precedes b,
and let j be the largest entry in β other than b. Hence, 1 ≤ i ≤ j < b ≤ n. Notice that the case of
Set(β) ∩ Set(γ) = ∅ occurs when 1 = i = j. Hence, the

(
n+1
3

)
choices of i, j, and b determine the

permutations in case (2).
In case (3), the choices of i := min{Set(α)} and j := max{Set(β) ∩ Set(γ)}, with 1 ≤ j < i ≤

n + 1, uniquely determine the permutation. Here, we say i = n + 1 if α = ε and j = 1 if β = ε.
Hence we have

(
n+1
2

)
permutations.

By adding up all the cases, it follows that(
n− 1

2

)
+

(
n+ 1

3

)
+

(
n+ 1

2

)
=

n3 + 6n2 − 7n+ 6

6
.

Theorem 3.32. For all n ≥ 2, sn(1132, 3112, 3121) = 5 · 3n−2 − 1

Proof. Let Λ = {1132, 3112, 3121} and write π ∈ Cn(Λ) as π = α1β1γ. To avoid 1132, γ is weakly
increasing. Together with the nonnesting condition, we need any entries in Set(β)∩Set(γ) be weakly
increasing in β. Also, if c ∈ Set(γ) \ Set(β) and b ∈ Set(β) ∩ Set(γ) then c > b. In order for π to
avoid 3112 and 3121, we need α < γ and α ≤ β, respectively. This implies two restrictions: firstly,
if Set(α) \ Set(β) ̸= ∅, then |Set(β) ∩ Set(γ)| ≤ 1 to avoid 1132. Secondly, |Set(α) ∩ Set(β)| ≤ 1.
The latter condition leaves us two cases:

(a) Set(α) ∩ Set(β) = ∅

(b) Set(α) ∩ Set(β) = {b} for some 2 ≤ b ≤ n.

In case (a), if α ̸= ε, then | Set(β) ∩ Set(γ)| ≤ 1 to avoid 1132, as discussed above. Since γ
is weakly increasing and c > b for any c ∈ Set(γ) \ Set(β) and b ∈ Set(β) ∩ Set(γ), there are two
possibilities π = α11γ and π = α1b1bγ for some 3 ≤ b ≤ n. Let i be the length of α. In these two
possibilities, 1 ≤ i ≤ n− 1 and 1 ≤ i ≤ n− 2, respectively, giving us

∑n−1
i=1 cci(Λ) + sumn−2

i=1 cci(Λ)
permutations. If α = ε, | Set(β) ∩ Set(γ)| uniquely determines the permutation. Since this size
ranges from 0 to n− 1, there are sn−1(Λ) + 2

∑n−2
i=1 cci(Λ) + n permutations in case (a).

In case (b), the requirement α ≤ β forces b = max{Set(α)} and b < γ. We break it down into
two subcases:

(1) Set(α) \ Set(β) = ∅,

(2) Set(α) \ Set(β) ̸= ∅.

In case (2.1), α = b. If | Set(β) ∩ Set(γ)| ̸= 1, then avoidance of 1132 requires that the last
entry of the word β is b. Since |Set(β) ∩ Set(γ)| ∈ {0, 2, 3, . . . , n − 2}, there are n − 2 number
of such words. If |Set(β) ∩ Set(γ)| = 1, the only two possibilites are π = 2123134455 . . . nn and
π = 2132134455 . . . nn. So there are n permutations in case (2.1).

In case (2.2), |Set(β)∩Set(γ)| ≤ 1 since π avoids 1132, leaving us two possibilities: π = α1bc1cγ
and α1b1γ, where {c} = Set(β) ∩ Set(γ) if | Set(β) ∩ Set(γ)| = 1. Let i = | Set(α)|. In both
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possibilities, αb is an arbitrary permutation in Ci(Λ) such that the last entry is the largest entry.
The three requirements that γ is weakly increasing, α < γ, and b < γ imply that αb uniquely
determines the permutation.

Now, rewrite αb as αb = α′1′β′1′γ′, where b is an entry in the word γ′. If b /∈ Set(β′), then
the permutation obtained by removing the entries b is an arbitrary permutation in Ci−1(Λ). If
b ∈ Set(β′), let gi enumerate these permutations. Define

fi = si−1(Λ) + gi. (4)

Then, the number of words in case (2.2) is
∑n−2

i=1 fi +
∑n−1

i=1 fi.
Now to obtain a recurrence of gi, we enumerate π ∈ Cn(Λ) subject to the following conditions:

if we rewrite π as π = α1β1γ, then γ ⊆ β and the π2n = n. We separate them into two cases
(a) and (b) as above. In case (a) where Set(α) ∩ Set(β) = ∅, either π = α1n1n for any α ∈ Cn−2

or π = 12...n12...n. In case (b) where |Set(α) ∩ Set(β)| = 1, either π = α1(n − 1)n1n for any
α(n− 1) ∈ Cn−2(Λ), or π = 2134..(n− 1)n2134...(n− 1)n. Hence

gn = (sn−2 + 1) + (fn−2 + 1). (5)

Combining equations (4) and (5), we have

fi = si−1(Λ) + si−2(Λ) + fi−2 + 2. (6)

Summing up all the cases, we have

sn(Λ) = n+ sn−1(Λ) + 2
n−2∑
i=1

si(Λ) + fn−1 + 2
n−2∑
i=1

fi + n. (7)

Reduce the index in (7) to obtain an expression of sn−1(Λ), then add sn−1(Λ) and subtract its
associated expression on the right hand side of (7), we simplify to

sn(Λ) = 2sn−1(Λ) + 2 + sn−2(Λ) + fn−1 + fn−2

= 2sn−1(Λ) + 2 + sn−2(Λ) + fn−1 + (fn − sn−1(Λ)− sn−2(Λ)− 2)

= sn−1(Λ) + fn + fn−1. (8)

Given equations (4) and (8), we can show that fn = 2fn−1 + 3fn−2 and sn(Λ) = 3sn−1(Λ) + 2
using induction. Using the initial condition s0(Λ) = 1, s1(Λ) = 1, we obtain the result.

Theorem 3.33. For all n ≥ 1, sn(1231, 1321, 2132, 2312, 3123, 3213) = n!Fn+1, where Fn is the
Fibonacci number.

Proof. Let Λ = {1231, 1321, 2132, 2312, 3123, 3213}. To avoid Λ, any π ∈ C(Λ) must avoid ijki
with distinct entries i, j, k, for some 1 ≤ i, j, k ≤ n. Then the associated matchings must end with
either a single arc without crossing or exactly two arcs crossing each other. Viewing the nonnesting
permutations as nonnesting matchings, we see that the number of matchings has the recurrence
an = an−1 + an−2. Given the initial conditions a1 = 1, a2 = 2, it follows that an = Fn+1. Each
matching can be labeled in any way to form a permutation in Cn(Λ). Since there are n! possibly
labeling, sn(Λ) = n!Fn+1.

The table below summarizes the conjecture for other patterns.
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Λ Conjecture for sn(Λ) OEIS code
{1322} 1

n

∑n
k=0

(
3n

n−k−1

)(
n+k−1

k

)
A007292

{1123, 1322} ∑n
k=0

(
n+k−1

n

)(
k

n−k

)
A055834{1132, 3112}

{1322, 2113}
{1132, 2213} 1

2x
((1− x)2 −

√
(1− x)4 − 4x(1− x)2) A006319{1233, 1322}

{1231, 1321}
∑∞

k=0 2
n+1 kn

3k+1
A122704

{1231, 3213} e.g.f.:
1

cos(log(1− x)) + sin(log(1− x))
A184942

{1231, 1321, 2113}
∑n+1

k=0 3
k 1
n

(
n
k

)(
n

k+1

)
A001263

{1231, 3213, 3123} e.g.f.:
1

3 + x− 2 exp(x)
A292932

{1231, 1312, 2231, 3221} g.f.:
1− 3x+ 2x2

(1− 3x)(1− x− x2)
A099159

{1231, 1213, 2132, 2231} 11 · 4n−2 + 1

3
A199210

{1312, 2132, 2213, 3231} g.f.:
1

2x
+ x−

√
1− 4x− 4x2 + 4x4

2x
A259845

{1123, 2113, 2311} ⌈3(n− 1)log(3n− 3)⌉, for n ≥ 2 A212460

Table 3: Conjectures of the enumeration of nonnesting permutations avoiding other patterns.

4 General Nonnesting Permutation

This section enumerates nonnesting permutations of any multiset. Yan et al. [7] shows that the
number of noncrossing permutations of any multiset only depends on the number of distinct elements
and the size of the multiset. Using this knowledge, we show the same statement holds for nonnesting
permutations.

Consider a general multiset M = {1k1 , 2k2 , . . . , nkn} with ki copies of i for each i = 1, 2, . . . , n,
where ki > 0. Let K =

∑n
i=1 ki. We denote the set of all permutations of M by SM. A permutation

π = π1π2 . . . πK ∈ SM is nonnesting if ∄ indices i < j < k < l such that πi = πl, πj = πk, but
πp ̸= πi for each p = j, j + 1, . . . , k − 1, k. For a multiset M, denote CM the set of all nonnesting
permutations of M. A permutation π ∈ SM is noncrossing if ∄ indices i < j < k < l such that
πi = πk, πj = πl, but πi ̸= πj . Let QM be the set of all noncrossing permutations of M.

Theorem 4.1. Let M = {1k1 , 2k2 , . . . , nkn}, and let KM = k1 + k2 + · · · + kn. Then |CM| only
depends on K and n.

Proof. Suppose that ka > 1 for some positive number a ≤ n. Let Mb be the multiset obtained from
M by replacing one element a with b for some 1 ≤ b ̸= a ≤ n. We want to show that |CM| = |CMb

|.
We will prove the theorem by showing that there is a bijection between CM and QM and between

QM and QMb
.

A bijection between noncrossing and nonnesting permutation is deduced from [2]*Theorem 3.1
as follows:

Let π be a nonnesting permutation of M. For each i = 1, 2, . . . , n replace πj = i with a

16



placeholder if πj is not the first occurrence of i. Let mi be the number of times i is replaced by a
placeholder. Then replace the first placeholder by the nearest i on its left such that mi ≥ 1. Note
that mi decreases by one after each time i replaces a placeholder. Repeat the process until mi = 0
for each i. The following example illustrates this process:

Let M = {13, 24, 3, 43, 52, 62, 7}.
1232244554216761→ 123__4_5____67__ → 1232_4_5____67__ → 123224_5____67__

→ . . .→ 1232244554216761
Under this construction, there is a unique way to replace the placeholders by a number. For

a given noncrossing permutation, to reverse the process, replace any number that is not the first
occurrence with a placeholder. Working from left to right, replace the jth placeholder with the
jth leftmost number i such that mi ≥ 1. For example, let M = {14, 23, 3, 43, 52, 62, 7}. Then
12213145665441 is a noncrossing permutation of M.

1222131456765441→ 12___3_4567_____ → 121__3_4567_____ → 12123_4567_____
→ . . .→ 1212132456714564

The bijection below between QM and QMb
is a simplification of the bijective trees in [7]*The-

orem 2.3.
Given π ∈ QM, let i, j, k be the first and the last two indices where πi = πj = πk = a,

respectively. Let p and q be the first and the last indices where πp = πq = b, respectively. Let
B1 = πpπp+1 . . . πq, B2 = πiπi+1 . . . πj , and B3 = πj+1πj+2 . . . πk. If B1 is contained in B3, exchange
the positions of B1 and B2, and then replace πk with b. Otherwise, move B3 to the place right after
B1, and then replace πk with b. See below for examples, where a = 1, b = 2.

55 198991
B2

B3

3 242662
B1

3771 5 → 55 242662
B1

3 198991
B2

B3′

3772 5

55 13

B1

24422 3773191
B2

B3

866881 5 → 55 13

B1

24422

B3′

866882 3773191
B2′

5

One can clearly reverse the procedure. So this map between QM and QMb
is a bijection.

The bijection between CM and CM′ where M′ is an arbitrary multiset satisfying KM = KM′
is constructed by repeating the two algorithms described above until the associated multiset of the
permtuation is CM′.

This completes the proof.

Corollary 4.2. Let M = {1k1 , 2k2 , . . . , nkn} where ki ̸= 0 and K =
∑n

i=1 ki. Then CM = (K −
n+ 2)n−1.

Proof. This is a direct result from Theorem 4.1 by considering the multiset {1K−n+1, 2, 3, ..., n}.

5 Open Questions

Avoid other patterns. It remains open to enumerate nonnesting permutations that avoid only one
pattern of length 3. It may also be interesting to avoid other patterns. While we tried to enumerate
patterns of length 4, we could not obtain any recurrence of closed formula for the permutations,
even when we avoid more than 10 patterns. Therefore, one may consider avoiding some clever
combinations of patterns of length 3 and 4.
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Generalization. This paper exclusively focuses on pattern avoidance within nonnesting per-
mutations of the multiset [n] ⊔ [n]. Exploring pattern avoidance in nonnesting permutations of a
more general multiset could be a captivating avenue for further research.

Direct Proof of Theorem 4.1. The proof of theorem 4.1 utilizes the important property
of noncrossing permutations. It may be interesting to construct an alternative proof with a short
algorithm without using noncrossing permutations.
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