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Abstract

In this thesis, we survey Pearson correlation, Granger causality, and

multivariate autoregressive measures of functional and effective con-

nectivity to explore a novel application of network science—through

the Leiden, CHAMP, and pruning algorithms—to whole-brain func-

tional magnetic resonance imaging (fMRI) scans and to produce

insights on a real data set centered on the task of cognitive regu-

lation during exposure to aversive stimuli. Networks of increased

connectivity during cognitive regulation of aversive stimuli are iden-

tified: intra-connectivity in medial superior frontal gyrus and inter-

connectivity between the basal ganglia and cortex. We also intro-

duce a new measure of functional connectivity, the Pearson corre-

lation of the derivatives of blood-oxygen-level-dependent (BOLD)

signals across regions, and with it identify two additional regions

with increased inter-brain connectivity during regulation: the vagal

nerve nuclei and the left parainsular area.
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Chapter 1

Introduction

In 2022, Tor Wager from the Department of Psychological and Brain

Sciences, Marta Čeko, and three other authors published a paper [7]

in Nature Neuroscience using functional magnetic resonance imag-

ing (fMRI) scans of 55 subject’s brains during a “multimodal aver-

siveness task,” in which a subject is exposed to a sequence of twenty

6–10sec stimuli with pauses between each stimulus for the subject to

rate the preceding stimulus’s aversiveness and recover. Each subject

performed this task in two different sessions, six runs—continuous

periods of scanning during which a subject performs the task—per

session. In 2023, Wager and Čeko granted me access to this data.

I chose to write my thesis on my analysis of this data out of a de-

sire to pursue my interest in the brain, which led me to the Complex

Systems modified major, and performed that analysis with methods

that align with my interest in mathematics, which led me to choose
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to major in the Mathematics Department. I consider the data from

a network approach, in this case according to both the mathemati-

cal and neuroscientific definitions of the word, to evaluate neuronal

connectivity but also assess the validity of applying novel (math-

ematical) network analysis techniques to fMRI data. My aim, in

analyzing real data with this methodology, is to produce insights on

both the data I analyzed and on workflows which could be general-

ized to future datasets.

1.1 Outline

In the following chapters, I will review the concepts of neuronal con-

nectivity and network partitioning that informed my work, cover the

methods I applied to the dataset, and present what I found. My con-

nectivity analysis is limited to functional and effective connectivity

paradigms—anatomical data is not used—and my partition analy-

sis is limited to extensions of modularity-based methods. I employ

machine learning and statistical methods to evaluate the results,

and I conclude with the limitations of the work and avenues for its

continuation in the future.
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Chapter 2

Background

2.1 Neuronal Connectivity

“Functional connectivity” (FC) is the concept of temporal correla-

tions between distinct regions of the brain. “Effective connectivity”

(EC) is the concept of causal relationships between activity in dis-

tinct regions of the brain. Because both are concepts and not strict

measures, there exist multiple methods by which FC and EC may

be evaluated, and these methods are non-trivially different. The

following subsections will detail those methods which I employ in

this thesis.

2.1.1 Pearson Correlation

One of the most common methods in the neuroscience literature

for evaluating functional connectivity between two brain regions is
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the Pearson correlation [4]. For brain regions x and y, the Pearson

correlation estimate of functional connectivity between the regions

is given by:

ρx,y =

∑n
i=1(

Xi−µX

σX
)(Yi−µY

σY
)

n
=

cov(X, Y )

σXσY

where we use the convention of capital letters to denote time series

in brain regions indicated by the corresponding lower-case letter,

e.g. R denotes the time series of the average blood-oxygen-level-

dependent (BOLD) signal across the voxels corresponding to region

r, n is the length of that time series, µR is the mean of R, and

σR is the standard deviation of R [8]. Note that, in fMRI analysis,

the BOLD signal is assumed to be a proxy for neural activity. The

limitations of this assumption are beyond the scope of this thesis.

Typically, Pearson correlation coefficients for fMRI data are ac-

quired as described above; however, this method only represents

certain aspects of the data, even in the domain of temporal corre-

lation. Early in this project, my intuition in this domain was that,

because the brain is a complex system in which many parts interact

with many others simultaneously at every given moment, even re-

gion pairs which are very strongly coupled may appear more weakly

coupled because so many other regions influence each, in a sense

“drowning out” the correlation. More sophisticated methods for ap-

proximating connectivity in spite of this are included in the following
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sections, but I also make a distinction in this thesis between “Type

1” (T1) and “Type 2” (T2) Pearson correlations, as follows.

T1, or “standard,” Pearson correlations are computed as described

above. A T2 Pearson correlation coefficient between any two regions

x and y is the standard Pearson correlation of the derivatives of X

and Y , i.e.:

ρ′x,y =
cov(X ′, Y ′)

σX′σY ′

where ρ′x,y is the T2 Pearson correlation between regions x and y,

and the R′ notation denotes the sequence of differences between

each non-starting entry and its previous entry in the R time series—

simply put, the derivative of R (up to a multiple of the time step).

To properly illustrate both how these correlations differ and to

provide a more refined intuition behind why it might be important to

test both, I will use the following toy example (visualized in Figure

2.1). Let:

x(t) = Xt ∈ X = (0, 0.6, 0.7, 1.1, 1.2, 1.3, 1),

y(t) = Yt ∈ Y = (1, 0.5, 1, 0.5, 1, 0.5, 1),

z(t) = x(t) + y(t).

Simply looking at the plotted sequences, it is clear that both x and y

can be considered to “contribute” to z, with the global changes in the

sum sequence z reflecting those in x but a local pattern of activity

mirroring that in y. However, when the sequences are normalized,
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(a) Sequences Plotted (default) (b) Sequences Plotted (normalized)

Figure 2.1: Visualization of the sequences. The black line indicates the sequence
z, the blue x, and the red y.

(a) Sequence Derivatives Plotted (default) (b) Derivatives Plotted (normalized)

Figure 2.2: Visualization of the derivative sequences. Note that the increased
similarity of the normalized z sequence has flipped from greater resemblance to
x to greater resemblance to y.

z’s adherence to the global pattern of x results in a high value of

ρx,z (R=0.821, p=0.024) and a negligible ρy,z (R=0.272, p=0.555).

Compare this to the derivative sequences in Figure 2.2. The

derivative sequence of z more closely captures the alternating pat-

tern of y, and thus the correlation coefficients “switch,” with ρ′x,z

being low, and negative, (R=-0.209, p=0.691) while ρ′y,z is high

(R=0.836, p=0.038).

Neither is necessarily a “better” measure than another in the a

priori sense; each captures information the other neglects. Addi-

12



tionally, each measure has similar properties as a metric of func-

tional connectivity: both ρx,y and ρ′x,y are coefficients representing

an undirected correlation between activity at region x and activity

at region y. The higher the coefficient, the greater we interpret func-

tional connectivity between those regions to be. Other methods, by

contrast, are directed and attempt to capture a causal relationship.

These are metrics of effective connectivity.

2.1.2 Granger Causality

Any two region time series X and Y may be evaluated for the

Granger causality of X on Y and of Y on X. An assessment of

Granger Causality provides two pieces of information. First, the

binary response to the query: Does X Granger-cause Y ? Second,

to what degree is X informative in predicting Y ? Numerically, the

response to the second question can be presented as the correspond-

ing F-statistic [10] because it corresponds to the improvement in

predicting future values of Y when X is considered vs. when X is

not. The more influential the activity of region x is on the future

activity region y, the more a prediction of region y’s future value

will be improved by including region x’s past values in the predic-

tion. The converse—that the greater the improvement, the greater

the influence—does not necessarily follow, but it can be the case

in practice often enough to provide insight into the relationships

between involved regions.
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2.1.3 Multivariate Autoregression

Multivariate autoregressive (MAR) modeling can be applied to fMRI

data. In this application, we fit the data to a model in which future

values of each region’s time series are a linear combination of all of

the past m values in every region time series. Non-linear dynamics

may be included by including additional time series in the input

to each future-value prediction, eg. via the introduction of bilinear

terms [12].

2.2 CHAMP and Pruning

Each of the above-discussed measures of functional connectivity can

be combined into a network representation. For example, the cor-

relation coefficients ρx,y between regions x and y may be combined

into a weighted network of connections between brain regions, with

the correlation coefficient ρx,y providing the weight (possibly after

additional manipulation such as taking absolute values) of the edge

connecting region x and y. “Networks” here are effectively synony-

mous for our purposes to the mathematical concepts of “graphs” and

their generalizations to, possibly, weighted, directed, and/or multi-

layer situations. Because the language in the network neuroscience

literature aligns more closely with that of network science, we will

use that terminology throughout.
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2.2.1 Leiden Algorithm

A common procedure for analyzing network data is to calculate

the “community structure” of a network. The most commonly used

methods for community detection partition the nodes of the network

into assortative communities with greater connectivity within the

communities compared to that between communities.

The Leiden algorithm [20] for community detection is a modularity-

based method. Modularity, H, is computed for network N and a

given partition on N as:

H =
1

2m

∑
c

(
mc − γ

K2
c

2m

)

where m is the number of edges in N , c is a community in the

given partition, mc is the number of edges in c, Kc is the sum of

the degrees of all nodes in c, and γ is the “resolution parameter.”

Alternately, in a weighted network like those analyzed in this thesis,

m is the sum of the weights of every edge in N , mc is the sum of the

weights of all the edges in c, and Kc is the sum of the strengths of

all nodes in c. A popular algorithm for optimizing the modularity

of a network is the Louvain algorithm.

The Louvain algorithm starts by assigning each node in the net-

work to its own community, then proceeds through the repetition of

two phases. In the first phase, the algorithm iterates through each

node and computes the change in modularity that would result from
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swapping the node from its current community to the community

of each of its neighbors. If one such swap would yield an increase

in modularity, then the option with the greatest gain in modularity

is chosen; otherwise, the node remains. This iteration repeats until

no further increases are possible.

In the second phase, the communities themselves are made into a

new network in which each node i is community ci from the previous

network and each edge eij is weighted as the sum of the weights

of every edge between one node in community ci and another in

community cj. The first phase is then repeated on this new network,

then the second, and so forth until none of the nodes in the most

recent community-network can be merged without a resulting loss

in modularity [3].

The Leiden algorithm is a modification of the Louvain algorithm

that aims to solve the problem of poorly connected communities,

which Louvain may yield. It inserts a refinement phase between

the first, node-moving phase and the final, aggregating phase. The

refinement phase proceeds similarly to the node-moving phase, but

with both more stochasticity and more guidance. Iteration through

the nodes is limited to those in the neighborhoods of nodes which

have been moved. There is an added rule: nodes that did not end

up in the same community after the node-moving phase cannot be

placed in the same community in the refinement phase. Accordingly,

the output of the refinement phase is a partition with no less than the
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number of communities resulting from the node-moving phase, but

potentially more because rather than a node being moved greedily

to the community with the greatest modularity gain, it is moved

probabilistically—the greater the modularity gain, the more likely

the move—to any community which would result in a modularity

gain [20].

2.2.2 CHAMP

One notable feature of both the Louvain and Leiden algorithms is

the stochasticity. Two runs of the Leiden algorithm on a sufficiently

large and well-connected network are almost guaranteed to produce

different results. Additionally, both the Python and R implementa-

tions of the Leiden algorithm retain a property in principle available

to all modularity-based community detection methods: the resolu-

tion parameter γ. Changing γ can drastically alter the results of the

Leiden algorithm. For any fully connected network with n nodes,

the resolution parameter can be varied from low enough to result

in only one community to high enough to result in n communities

every time the algorithm is run. It is clear that a useful value of γ

would fall between these extremes, but within that range of “valid”

values, results can still differ meaningfully.

A method to account for both randomness in the Leiden algo-

rithm and the question of how to select γ is the Convex Hull of

Admissible Modularity Partitions (CHAMP) algorithm [24]. The
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algorithm takes a network and a set of partitions as input, and it de-

termines, across a specified range of γ-values, which of the provided

partitions has the highest modularity at each γ. For example, for

the range 0.0 ≤ γ ≤ 2.0, one partition might be the “best”—highest

in modularity—for 0.0 ≤ γ < 0.97 and another for 0.97 < γ ≤ 2.0.

In this case, we would say there were two “admissible” partitions for

this γ range. This can be computed quickly, as a manipulation of

the modularity function demonstrates:

H =
1

2m

∑
c

(
mc − γ

K2
c

2m

)
=

1

2m

∑
c

(mc)− γ
∑
c

(
K2

c

4m2

)

Thus, for any given partition p, we may compute constants ap =

1
2m

∑
c(mc) and bp =

∑
c(

K2
c

4m2 ), such that:

H(γ) = ap − γbp

Because this is true for every p in the partition set, determining

the partition with the highest modularity at γ = 0 requires only

identifying the partition with the highest ap. Call this partition p0.

Then for every partition pi, we may compute the value of γ where

the modularity of pi equals that of p0 with:

γ(H(pi) = H(p0)) =
ap0 − api
bp0 − bpi
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Partition p0 ceases to be the optimal partition at the minimum of

the positive next γs calculated in this way, and the operation may

be repeated for pi to determine the next γ, and that the next, and

so on until all partitions optimal on a pre-specified range of γ-values

has been found.

Through this process, we obtain a subset of “admissible” parti-

tions from an original set which ranges from tens to thousands of

times smaller than the original [24]. This allows a larger number

of γ-values to be sampled in generating partitions without creat-

ing an unwieldy quantity of data, and without losing high-quality

partitions.

2.2.3 Pruning

The CHAMP algorithm remains subject to “researcher choice” re-

garding the range of values of gamma on which partitions are gen-

erated and, more significantly, evaluated. At γ = 0, for example,

a fully connected graph will always have the highest modularity

when every node is in one community. This one-community par-

tition would thus be the result of the CHAMP algorithm, in spite

of having minimal utility in analysis and relationship to the net-

work’s structure, unless the human individual performing the anal-

ysis chooses a higher value of gamma to start, and which value is

chosen can vary the results. Then, even once the range of γ is se-

lected, the CHAMP results only identify different intervals within
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that range, with each interval corresponding to a single partition

dominant in that interval. While this sometimes makes a preferred

selection of a large interval and its corresponding partition, in many

cases deciding which interval(s) to focus on is another researcher

choice.

“Pruning” the output of the CHAMP algorithm is a way to reduce

the impact of researcher choice in the numerical data analysis. It

derives from Newman’s observation [17] of the equivalence between

the equation for modularity as we have presented it here and that of

the log-likelihood of a planted partition degree-corrected stochastic

block model, i.e. a stochastic block model in which the expected

number of edges between any two nodes is the product of those two

nodes’ degrees, a constant corresponding to one of two values—θin

if the nodes are in the same community, θout otherwise—and the

constant term 1
2m

if γ = θin−θout
ln θin−ln θout

.

The parameters θin and θout can be estimated for a given partition

of a network with:

θin =
2min∑

c K
2
c /(2m)

, θout =
2mout∑

c ̸=g KcKg/(2m)

where min is the number of edges between nodes in the same com-

munity, mout is the number of edges between nodes in different com-

munities [17, 11].

Thus, from each partition a γ-value can be acquired that best
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aligns the modularity maximization with the maximum likelihood

fit of a planted partition degree-corrected stochastic block model,

and furthermore, if CHAMP is run on a suitably broad range of

values, there will be an admissible partition corresponding to that

γ-value. This admissible partition has its own derivable γ-value,

and so on until we reach a partition that either leads to itself with

its γ-value or is part of a loop of partitions that point cyclically to

each other. In this way, pruning—collecting only those partitions

which are stable or periodic under this process—restricts partitions

to a subset implied by the structure of the data (insofar as it is well

matched by the assumed underlying planted partition model), and

not by a researcher’s preference.
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Chapter 3

Methods

3.1 The Data

The fMRI data I worked with came preprocessed in the Neuroimag-

ing Informatics Technology Initiative (NIfTI) file format. It com-

prises a total of 660 scans from 55 individuals, twelve scans per

individual, each scan containing 387 to 950 “slices”—time-points sep-

arated by a repetition time of 0.46 seconds—with 72,017 voxels in

each slice. Before the data could be fit, I had to perform one final

preprocessing step of reslicing it; reslicing was done with SPM12.

To reduce the data’s size, both for the purpose of rendering it more

workable and disregarding voxels outside of the brain, I applied the

CANlab atlas [6] to the data to collapse the 72,017 points in 3D

space into 489 regions of interest (ROIs). The typical scan, once

processed in this manner, could be represented by a 920x489 ma-
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trix.

Of each subject’s twelve scans, six correspond to the “runs”—

approximately seven-minute periods of continuous scan data—that

were performed during the “Experience” session and six correspond

to the runs of the “Regulate” session. The subjects are engaged in

the ‘multimodal aversiveness task’ [7] in both sessions. During the

task, they are presented with one of five types of stimuli: painful

pressure, heat, unpleasant sounds, unpleasant images, or pleasant

images. They are then asked to rate the aversiveness of the stimuli,

time passes, and the next stimulus appears. Each run presents each

type of stimuli a total of four times, with the order of presentation

randomized for each run.

The significance of the “session” signifier is how the subjects were

asked to respond to the task. In the six “Experience” runs, the

subjects were told to simply experience the stimuli without spe-

cial instruction. In the “Regulate” runs, subjects were instructed

to perform a “cognitive self-regulation strategy” [7]. This change in

strategy affected their ratings—the “Regulate” strategy resulted in

lower evaluations of aversiveness—so the question follows: how does

the “Regulate” strategy manifest in the brain? This is the real-data

question I intend to tackle with the methods I describe below.
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3.2 Network Construction

Each network N was constructed from one scan, with 489 nodes

corresponding to the CANlab atlas’s 489 ROIs. Each network N is

undirected, dense, and weighted. The weights of the edges corre-

spond to a measure of connectivity.

3.3 Verifying Utility

Because I compared many methods of assessing connectivity in this

thesis, it was necessary to acquire a metric for their performance. In

the following sections and chapters, I will refer often to this metric

as “predictive quality” or “performance.” Specifically, I assess the

utility of a connectivity measure by its accuracy in a simple machine

learning test. I train a basic multilayer perceptron classifier on the

task of predicting the session signifier of a scan—“Experience” or

“Regulate”—from its neural connectivity measures.

The classifier architecture was kept simple and constant regard-

less of the measure being evaluated. It takes the estimated connec-

tivity between every unique undirected pair of distinct regions as its

input vector, a vector of 119,316 elements, passes the data through

three hidden layers, each of size 16 and activated by ReLu, then

outputs a single float ranging from 0 to 1, with 0 corresponding to

an “Experience” prediction and 1 to “Regulate.” The classifier is

trained on 75% of the data and tested on the remaining 25%, with
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10% of the training data set aside for validation. It trains for a hard

maximum of 100 epochs but stops early if the validation score does

not increase by at least 1e-4 for 10 epochs in a row. In practice, the

classifier never ran for the full 100 epochs. The optimizer used was

Adam with a L2 regularization term of 1e-4.

No preprocessing was performed on the data prior to training

for the sake of improving the classifier’s performance, and I do not

employ any sophisticated machine learning techniques to improve

performance. The purpose of the “predictive quality” test is to de-

termine how readily the cognitive states associated with a session

signifier can be extracted from a measure of connectivity, not to

perfect a machine learning model.

3.4 Measures of Functional Connectivity

Having outlined how connectivity measures were assessed, I proceed

to present the connectivity measures I examined.

3.4.1 Pearson Correlation

“T1” and “T2” Pearson correlation coefficients were computed via

the df.corr() function from the python package pandas. I surveyed

the performance resulting from handling negative coefficients via

setting them to zero, taking their absolute value, or squaring them,

and I found that squared coefficients resulted in the best predic-
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tive quality; therefore I only used squared coefficients in subsequent

analysis.

3.4.2 Granger Causality

F-statistics for Granger Causality were computed via the “Granger

Causality Test” app in MATLAB. Preliminary tests of predictive

quality found that the performance of the measure didn’t improve

with an increase in maximum possible lags. Thus, subsequent anal-

ysis utilizes F-statistics acquired from Granger causality computa-

tions with a lag of one. To create an undirected network using the

directed F-statistics, the weight for each pair of region i and region

j was set to eij =
Fij+Fji

2
where Fij is the F-statistic for the Granger

causality of region i on region j.

3.4.3 MAR

MAR was assessed via linear regression and the Lasso model using

python’s scikit-learn package. The Lasso model—a linear model

regularized with the L1 prior—was run with an L1 regularization

term of 5e-5 for a maximum of 1,000 iterations.

3.5 CHAMP & Pruning Parameters

For each measure, I ran the CHAMP algorithm on the correspond-

ing network representation for 400 evenly-spaced values of γ ranging
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from 0.5 to 2.5. The choice to start at γ = 0.5 instead of γ = 0 de-

rives from the fact that, in the case of this particularly dense data,

a γ-value of 0.5 was always a sufficiently low value to guarantee

the generated partitions started at the single-community partition,

therefore ensuring no low-γ partitions were excluded by virtue of γ

starting too high. The choice to not generate beyond γ=2.5 similarly

derives from an observed property of this dataset. Many partitions

generated with a higher γ-value than 2.5 comprised predominantly

singleton communities, and all of them pruned to a lower γ-value,

thus ensuring no high-γ partitions were excluded by virtue of γ end-

ing too low. The partitions were generated with the cluster_leiden

function from R-igraph, and CHAMP and pruning were performed

using R code written and refined in Professor Mucha’s lab.1

3.6 T-Tests

A more straightforward method, but important for meaningful anal-

ysis nonetheless, that I employed was the statistical t-test. To search

for differences in connectivity between the cognitive states of “Ex-

perience” and “Regulate,” I ran a two-tailed t-test for each connec-

tivity measure for each (undirected) pair of regions, comparing the

set of coefficients obtained from all “Experience” scans to those from

all “Regulate scans”—across runs and across subjects. Because the
1Additionally, as part of my project work in Mucha’s lab, I developed R code for CHAMP

and pruning of multilayer networks.

27



number of pairs to consider is large (119,316), it would be excep-

tionally improbable to fail to acquire many pairs with a P-value

less than 0.05 for each measure, entirely by pure chance. To ac-

count for this, I only considered pairs whose t-test resulted in a

P-value of 4.25e-7 of lower, the reason for this value being that

1 − (1 − 4.25e − 7)119,316 = 0.0494 < 0.05, ergo the chance of ac-

quiring even one result per connectivity measure with this degree

of significance is less than five percent, thus matching a sufficiently

rigorous test of statistical significance.
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Chapter 4

Results

4.1 The Survey of Connectivity Measures

The “predictive quality” of each of the evaluated measures is dis-

played in Figure 4.1. For each measure, three metrics are displayed:

average train, test, and “restricted test” accuracy. The first two

are typical machine learning classifier measures, the latter being the

more important of the two; train accuracy is the proportion of sam-

ples in the 75% of the set used for training and validation which the

model correctly classifies as either “Experience” or “Regulate.” Test

accuracy is this proportion, but of the 25% of the data not shown

to the classifier during training.

Average restricted test accuracy is the average of test accuracies

only over the iterations where the classifier achieved a train accuracy

above 90%. Thus, this third metric represents the ability of classi-
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fiers that successfully learn a given input to generalize. The met-

ric was employed following a qualitative observation that typically

the worst train and test accuracy scores—those near 50%—co-occur

within iterations, suggesting that the models producing their scores

failed to fit to the data in the first place, and therefore the low test

accuracy of such a model does not provide useful data on the ability

of the model to generalize. Averages for each input set tested were

collected from 100 iterations of randomly-generated train-test splits.

As can be observed from Figures 4.1 and 4.2, the measures of ef-

fective connectivity—Granger causality, linear regression, and Lasso

model regression—fit best to the training data. However, in gener-

alizing to novel input data, the measures that performed best were

T2 Pearson and Granger Causality. The Lasso data performed sim-

ilarly to these two measures in test accuracy, but when comparing

restricted test accuracy, the measure’s performance decreases, im-

plying these data yielded higher test results because the model more

frequently converged, not because they generalize as well as the T2

and Granger measures.

Linear regression in particular exhibited a pattern of over-fitting.

The model reached an average value exceeding 90% on the train-

ing data, but less than 60% on the test set. T2 Pearson, Granger

Causality, and Lasso, by contrast, performed consistently above 80%

on every metric. In contrast to this, the T1 Pearson measure was

less than 80% on every metric. Thus the T2 type of Pearson cor-
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Figure 4.1: Averages of train and test accuracy scores. P-values are denoted as
follows: * for p<0.05, ** for p<0.01, *** for p<0.001, and **** for p<1e-6.

relation out-performed the standard by every metric. This held for

the “raw” data—not processed beyond the coefficients—and when

pruned, as will be discussed in the following section (see Figure

4.3). I further discuss this difference in performance in the subsec-

tion Out-performance of T2 over T1.
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Figure 4.2: Averages of restricted test accuracy scores. P-values are denoted as
follows: * for p<0.05, ** for p<0.01, *** for p<0.001, and **** for p<1e-6.

32



4.1.1 Effect of Pruning on Classifier Performance

Performance of pruning results was assessed, like “raw” results, with

accuracy scores on the classification task. In the case of pruned

data, the “coefficients” used as input to the classifier are computed

as the frequency with which the regions in a pair are placed together

in the pruned partitions. If pruning returned only one partition for

a scan—which occurred for just over one third of all T1 Pearson-

evaluated scans and almost half of all absolute-value T2 Pearson-

evaluated scans—then all the coefficients for that input would be

either 1 or 0: 1 if the regions in the corresponding pair are in the

same community and 0 otherwise. If pruning returned three parti-

tions, then the coefficients could be 0, 1
3
, 2

3
, or 1. This restricted

the number of possible of values more for Pearson correlation data

than Granger causality data as the latter tended to result in greater

numbers of pruned partition per network (µ=4.805) compared to

the former (µ=2.001).

Overall, the classifier fails to converge less often on pruned data,

resulting in higher train accuracy scores, but it also generalizes to

test data more poorly. An explanation for this result may emerge

from the properties of the pruned data when input to a multilayer

perception model. Pruned data can be said to be “cleaner” than raw

data; the values within it range from 0.0 to 1.0, and many are exactly

zero. Because the multilayer perceptron classifier acquires values for
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(a) T1 Pearson

(b) T2 Pearson

Figure 4.3: A comparison of accuracy scores of “raw” to pruned data for the
measures of functional connectivity surveyed. p<0.005 for each with the excep-
tion of the comparison between test accuracies for raw and pruned T2 data.
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(a) 1-lag Granger Causality

(b) Lasso Regression

Figure 4.4: A comparison of accuracy scores of “raw” to pruned data for the
measures of effective connectivity surveyed. p<0.0001 for all test and restricted
test accuracy score comparisons, and p<0.05 for the Granger train accuracy
score comparison.
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each layer via matrix multiplication followed by the ReLu activation

function, entry values of zero have no effect on the next layer. Thus

an input with many entries equal to zero has only a subset of the

model’s weights actively contributing to the prediction. Over-fit

happens more readily in such a case.

In support of this theory is the fact that, typically, the more

entries with a zero value a pruned input set has, the greater the

drop in test accuracy between the raw and pruned data tends to be.

The average number of communities in a pruned partition resulting

from a Pearson correlation is 9.22. Compare this to the average

number of communities from a Granger or Lasso pruned partition,

36.18 and 22.72 respectively. When we match these differences to

Figures 4.3 and 4.4, we can observe how T1 and T2, the data sets

with fewer communities—therefore more region pairs in the same

community, therefore more non-zero values in the pruned input data

deriving from the data set—have an increase in test accuracy when

pruned and a decrease in restricted test accuracy of approximately

5–10%, but the Granger and Lasso have a drop in test accuracy and

decrease in restricted test accuracy by more than 15%.

4.1.2 Out-performance of T2 over T1

The significantly enhanced performance of the T2 Pearson correla-

tion measure over the T1 is clearly illustrated in Figure 4.1. The T2

measure has greater predictive quality than the T1 in training, test-
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ing, and restricted test accuracies, all to a statistically significant

degree.

The reason for this difference in performance is difficult to ex-

trapolate from this single instance. The Pearson correlation of the

the derivatives of two region time series from an fMRI scan may be

a useful measure in a general case, or it might simply correspond to

this specific predictive task for this specific dataset.

Because T2 Pearson correlation is a cheap measure to compute

and performs well on this dataset-task pair, I utilized it as the de-

fault measure of connectivity when extending my analysis. In one

such extension, I created a set of “stimulus-split” networks. These

were created with one network N per scan per stimulus. Each scan

was split into the five types of stimuli presented—aversive pressure,

heat, unpleasant sound, unpleasant image, and pleasant image [7]—

through the use of “annotations.” I processed .mat data I was given

on the structure of the runs to mark, for each slice in each run, the

type of stimulus that the subject either experienced at the time the

slice was taken or, if no stimulus was present at that time, the type

of the most recent prior stimulus. A stimulus-scan network was then

obtained with nodes corresponding to regions, as I described above

for all the networks in Network Construction, and edge weights com-

puted as the squared T2 correlation coefficient of region-pairs only

over the slices annotated as the stimulus of interest. Thus, I acquired

five networks per scan instead of one, but none of the networks were
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derived from overlapping data.

In terms of predictive accuracy, this stimulus-split T2 Pearson

correlation set performed well. For a typical network structure with

hidden layers of size 16, it averaged 93.02%, 91.96%, and 98.64% for

training, testing, and restricted test accuracies, respectively.

4.2 Subject Specificity

Having acquired such high accuracy scores with the stimulus-split

T2 Pearson correlation data, it naturally follows that the result be-

comes suspicious. I considered explanations for the result: either

an increased number of data samples benefited training, given that

splitting each scan according to stimulus type quintupled the sam-

ple number, or it could be the case of data leakage due to the fact

that, although none of the data used in one network was used in

another, generating the stimulus-split networks required using data

from the same file, the same “run,” in different networks. It was the-

oretically possible that each run possessed particular properties that

would enable a machine learning algorithm to fit to those properties,

and not those of the “Experience”/“Regulate” cognitive states. For

example, one might imagine that seeing the “aversive sound” net-

work from Subject 36’s 3rd run in the “Experience” session taught

the classifier what Subject 36’s 3rd run of the “Experience” session

looked like in general, contributing to an accurate classification of
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Figure 4.5: Train, test, and restricted test accuracy scores of the default T2
Pearson correlation data vs. different methods of training on the “Stimulus-
split” T2 data. For this specific test, a classifier with three hidden layers of
size 64, instead of 16, was employed. Training was otherwise the same. The
“Custom Training” is as described in the document. The “Reduced #” randomly
selected a number of samples from the Stimulus-Split set equal to the number
of samples in the default T2 Pearson data.

the heat, pressure, unpleasant, and pleasant image networks of the

same scan.

To determine which hypothesis holds, I subjected the classifica-

tion test to a minor modification. Instead of using train_test_split

from scikit-learn, I wrote a custom function to separate the data

such that if any scan from subject S’s ith run appeared in the train

set, then every scan from subject S’s ith run appeared in the train

set, and vice versa. The results are displayed in Figure 4.5.

Given the minor difference between the performance of the clas-

sifier under the default split vs. the custom split—and the notable

decrease in performance when the number of samples available in
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Figure 4.6: Restricted test accuracy scores vs. train accuracy scores when testing
occurs on subjects held out of the training set.

the stimulus-split set was reduced to that resembling other input

sets—the “increased sample size” hypothesis was more likely; how-

ever, the possibility that the classifier achieves high accuracy with-

out learning features of the “Experience” vs. “Regulate” cognitive

states remained. To test the classifier’s ability to generalize, I modi-

fied the custom split function to write a “subject split” function. The

function guarantees that if any scan of subject S appeared in the

train set, then every scan of subject S appeared in the train set,

and vice versa.

With these distinctions made, I re-ran the classification test on

the data. The results appear in Figure 4.6.

While none of the restricted test accuracy scores collected under

these conditions dropped below 50%, all dropped close to it and

the average scores for Raw Lasso, and Pruned T2 and Granger, fell
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within one standard deviation of 50%.

There are a number of reasons the classifier may fail to generalize

across subjects. A clear risk of an input of size 119,316 is over-

fitting, even if the hidden layers are far smaller.1 We must also

consider the nature of the data’s collection. Each subject came in

for two sessions, with each session separated from the other by over

a day, but every run per subject-session pair was recorded in close

temporal proximity [7]. As a result, a sufficiently powerful machine

learning model might learn to distinguish the connectivity patterns

characterizing the runs in each subject-session pair, regardless of

what led to the patterns. A subject’s brain might look different

during her “Regulate” session because she has a song stuck in her

head, because she is more relaxed at this time of day and therefore

shifting less in the scanner, because that day’s higher temperature

causes the scanner to record slightly differently, etc. It is possible

that the classifier learns cognitive states, but that it learns 80 of

them instead of 2. It is also possible that some of what it learns

is not a cognitive state at all, but various conditions of the fMRI

machine. Most likely, it is a combination of both.
1As a counterpoint, this problem of failure to generalize occurred even for significantly

pared-down versions of the data, including PCA component coefficients in the hundreds in-
stead of hundreds of thousands.
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4.3 Statistical Analysis

A machine learning classifier of “Experience” vs. “Regulate” fMRI

scans generalizes poorly to novel subjects. However, this does not

mean that the input to the classifier lacks meaningful data. The

excellent generalization of the stimulus-split T2 Pearson correlation

input to novel runs demonstrates that the input does contain mean-

ingful data, but the opacity of machine learning models prevents a

human observer from extracting that meaning. A t-test is a simple

and clear way to identify differences between groups. Performing

and comparing t-tests across the measures assessed grants direct

insights into the variable of interest: “Experience” vs. “Regulate.”

As addressed in Methods, I discuss here, for each included con-

nectivity measure, only the pairs of regions whose connectivities

differed between “Experience” and “Regulate” scans with a proba-

bility of 4.25e-7 or lower of the difference being by chance. A brief

overview of the number and qualities of such pairs for each connec-

tivity measure considered is presented in Table 4.1.

Although there is some overlap between the regions that appear

in these significantly different pairs under the metrics tested, they

are by no means equivalent, and the pairs themsleves overlap very

little between measures. Between the two raw Pearson measures,

only connectivity between Bstem_Ponsrd_L (the left rostrodor-

sal pons) and nuc_ambiguus_R (the right nucleus ambiguus) is
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Features of T-Test Pairs

Measure N MFR
T1 (Raw) 13 anterior medial SFG, visceral sensorimotor

cranial nerve nuclei (eg. solitary tract nucleus,
nucleus ambiguus, dorsal motor nucleus)

T1 (Pruned) 0 N/A

T2 (Raw) 44 dorsal motor and solitary tract nuclei,
cerebellum, visual cortex

T2 (Pruned) 138 parainsular area (L), amygdala, raphe nu-
clei, supramarginal gyrus, Brodmann area 6,
brainstem, frontal operculum

Granger (Raw) 174 ventral tegmental area (R), orbitofrontal
complex (L), basal ganglia, cerebellum, brain-
stem, opercular cortex (especially lateral belt
and parietal operculum)

Granger (Pruned) 0 N/A

Lasso (Raw) 0 N/A
Lasso (Pruned) 0 N/A

Table 4.1: N is the number of region pairs that reached the required degree
of statistical significance. MFR, i.e. “Most Frequent Region(s)” is a brief, de-
scriptive list of the brain regions which appeared most in the pairs that were
significant. (L) indicates left side specifically, and (R) indicates right. If applica-
ble, bolded text indicates the one to two regions that appeared the absolute most
often, at least three times more than the second most frequent. (SFG=Superior
Frontal Gyrus)
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significantly different in both, with, for both measures, an aver-

age Pearson connectivity of approximately 0.02 in “Experience” and

0.05 in “Regulate” (p=0.0102 in T1, p=0.0008 in T2, where p is

scaled up to 1− (1−p)119,316 to account for the 119316 pairs consid-

ered). Between raw T2 Pearson and Granger, only two pairs were

shared: Ctx_PEF_L (left premotor eye field) with Bstem_Med_L

(left medulla) and Ctx_PGs_L (the left parietal area G superior)

with dmnx_nts_R (right dorsal motor and solitary nuclei). Both

pairs exhibited greater connectivity in “Regulate” scans. No pairs

that appeared in Granger appear in T1 Pearson, and none of the

pairs found from the pruned T2 Pearson co-occurred in any of sets

collected from the other metrics. Lasso resulted in zero pairs, and

therefore also shared zero pairs with each other measure. This dif-

ference between different measures supports the idea that, although

every measure represents “connectivity,” meaningful distinction can

be made between the data resulting from differents methods of eval-

uating connectivity.

4.3.1 Differences in Connectivity between Cognitive States

One overwhelming trend across all measures is that significantly

different connectivities tended to be higher in the “Regulate” condi-

tion than in “Experience.” Of the total 369 pairs across measures,

in only three was the average “Experience” score higher than the

“Regulate.” From the pairs collected from raw T2 Pearson data,
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Ctx_MIP_L (a section of left intraparietal sulcus involved in arm

movement) with Cblm_Vermis_CrusI (cerebellar vermis and Crus

I) and Ctx_Pir_L with Ctx_AAIC_L (the left piriform cortex

and bordering anterior agranular insular cortex) were more strongly

paired in “Experience” (0.0237 vs. 0.0129, corrected p=0.0257 for the

former, 0.3324 vs. 0.2296, corrected p=0.0029 for the latter). From

the pairs collected from pruned T2 Pearson data, only one pair was

more connected in “Experience”: Ctx_Pir_L and GPi_R (left pir-

iform cortex and right globus pallidus internus)(0.4329 vs. 0.2172,

corrected p=0.0281). We note that the left piriform cortex, a region

heavily involved in olfactory processing and implicated in temporal

lobe epilepsy [22, 19, 9], appears in multiple of these exceedingly rare

examples of greater “Experience” connectivity. Region Ctx_Pir_L

does appear with increased connectivity in “Regulate” in exactly two

pairs collected from the Granger data, partnered with two regions in

the right basal ganglia (STN_R and VTA_R), both with corrected

p<0.0001. Because the right globus pallidus internus is also a right-

side region of the basal ganglia, a universal interpretation regarding

the “general” connectivity of the left piriform cortex between the

“Experience” and “Regulate” is unclear; however, because Granger

causality is a method of assessing effective connectivity and Pearson

correlation a method of functional connectivity, we may conclude

from the data that the piriform cortex is more weakly functionally

paired with the basal ganglia when cognitively regulating aversive
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stimuli compared to simply experiencing them, but more strongly

causally affiliated. Note that the right piriform cortex appears only

in the statistically significant pairs collected from the Granger mea-

sure, where it more strongly connected during “Regulate” with the

subthalamic nucleus, right ventral tegmental area, and lobule IV of

the cerebellar vermis.

Proceeding from this analysis of the rare instances where pairs

were more strongly connected during the “Experience” cognitive

state, I observe another difference between the effective and func-

tional connectivity measures. While pairs from raw T1 and T2 in-

volve left-side regions at slightly more than double the rate they

involve right-side regions, in the Granger pairs, the reverse is true.

Pruned T2 matches neither, with an approximately equal number

of regions from both sides. The differences between measures is sig-

nificant enough that it makes most sense organizationally to discuss

each separately for the rest of this section.

Standard Pearson Pairs

At the smallest number of significantly different pairs, T1 Pearson

is the simplest to analyze. The pairs predominantly involve two

broader areas of the brain: the medial frontal lobe and the brain-

stem. Greater T1 Pearson functional intraconnectivity occurs within

these regions when a person is in the “Regulate” cognitive state com-

pared to “Experience,” particularly amongst regions in the medial
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superior frontal gyrus (mSFG), between regions in the mSFG and

the left anteroinferior insula, and between the left pons and right nu-

cleus ambiguus. The SFG, particularly the left—recall that T1 pairs

are dominated by left-side regions—is involved in working memory

[5] and in semantic processing [15], while the nucleus ambiguus is

involved in the motor function of speech [18]. The pons plays a

significant role in pain signaling [16].

T2 Pearson Pairs

Approximately two thirds of all raw T2 Pearson pairs are between a

cortical region and either the left or right dorsal motor and solitary

nuclei. Many of the remaining third involve either a cerebellar region

or the left orbitofrontal complex. Two involve the right nucleus

ambiguus.

In overview, the results of the t-test selected pairs from the T2

Pearson correlation data indicate that the vagal nerve nuclei—the

dorsal motor nucleus, nucleus ambiguus, and the solitary nucleus—

exhibit higher functional connectivity with many regions of the rest

of the brain while the “Regulate” cognitive strategy is employed.

The vagal nerve nuclei receive and send signals to the heart, stom-

ach, glands, lungs, mouth, throat, and are responsible for cough-

ing, the gag reflex, and slowing heart-rate and breathing during a

parasympathetic nervous response [2]. Intuitively, one could under-

stand how greater coupling between these nuclei and the rest of the
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brain might occur during or aid in maintaining a regulatory cogni-

tive state, where the subject exercises mindfulness and aims to keep

calm while experiencing a stimulus, compared to when the same

subject experiences the stimulus as it comes.

Granger Causality Pairs

The number of pairs yielded from the Granger causality data renders

a concise analysis difficult. To simplify my overview of the insights

provided, I will focus only on the pairs between regions which ap-

pear, between both regions in the pair, at least ten times within the

pair set. This may exclude meaningful pairs between less frequently

appearing regions from the overview, so I will also discuss regions

known to be involved in pain regulation where they appear.

Forty-seven of the seventy-four pairs meeting the first criterion

given contain one of the following three regions, all right-side: the

ventral tegmental area (VTA), parabrachial pigmented area (a sub-

structure of VTA), and subthalamic nucleus (STN). Both VTA and

STN are part of the basal ganglia, and both have been implicated in

responding to aversive stimuli [13, 23]. The VTA is, incidentally, one

of the regions known to be involved in pain regulation which would

be important to check when analyzing these results. In the pairs,

VTA, the parabrachial pigmented area, and STN are more strongly

connected with the lateral parietal lobe and various operculoinsular

regions in the “Regulate” cognitive state. After VTA and STN, the
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orbitofrontal complex also appears frequently.

Focusing on regions known to be involved in pain regulation, I

check pairs containing the anterior cingulate cortex (ACC), amyg-

dala, VTA, nucleus accumbens, periaqueductal gray (PAG), and

dorsal raphe (DR). This is not a comprehensive list of every region

involved in pain regulation, but it is a survey of many key ones.

There are 54 Granger pairs containing one of the listed regions, the

vast majority corresponding to those already discussed in the para-

graph above. Excluding the ventral tegmental area from the search

criteria still results in two pairs containing it, as right VTA has

greater connectivity during “Regulate” with the left nucleus accum-

bens and the basolateral amygdala. Of the remaining six pairs, two

connect the basolateral amygdala with the left and right anterior

precuneus, two connect the superficial amygdala to regions in the

right basal ganglia—the globus pallidus internus and the subthala-

mic nucleus—and the final two connect the PAG with the left ventral

pallidum, another region in the basal ganglia, and with a right-side

medial region in Brodmann area 5. As we saw when considering

the pairs occurring between most frequently appearing regions, the

Granger pairs show that, during cognitive regulation of pain, the

basal ganglia are more effectively connected to many other regions

in the brain, both cortical and basal. This may emerge due to

greater communication happening with these regions in the process

of coordinating a regulative cognitive response.
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4.3.2 Effect of Pruning on Emergence of Differences

An interesting contrast between each included measure of connec-

tivity emerged when the t-tests were run on their pruned versions.

All measures except for T2 yielded no significantly different pairs,

while the number of pairs significantly increased between the raw

and pruned T2 sets. One explanation is that the “sparser” the data,

the fewer significantly different pairs emerge. Lasso, even when raw,

produced zero pairs, and Granger, which produced many when raw,

produced none after pruning and, as observed previously, pruned

Granger data contains far more zeros than pruned data from either

T2 or T1 Pearson. This is not the whole picture—T1 also reduced

in number of pairs, and the high number of pairs from raw Granger

derived from some property of the data other than its sparsity—but

it is likely a contributing factor.

In analyzing the pairs from the pruned T2 data, I employ the

same methods I used for the Granger due to the larger number

of pairs. Every single pair between regions occurring more than

a total of ten times contains the left parainsular area (area PI).

Area PI exhibited greater “Regulate” connectivity to regions in the

operculum and frontal gyri. Both the operculum and frontal lobe of

the brain are involved in a number of complex cognitive processes

[14, 1], while the insula, to which the parainsular area belongs, plays

a role in salience and attention [21].
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Of the fourteen pairs containing regions implicated in pain reg-

ulation, four involve the centromedial amygdala, three the amyg-

dalostriatal area, and one the basolateral amygdala, all generally

connecting to regions, left or right, within the premotor, sensory,

or motor cortices. Of the six remaining pairs, three included the

ventral tegmental area, two the dorsal raphe, and one the PAG with

the right ventral midbrain.

Due to the prominence of the insula and amygdala in these pairs,

a prominence not observed in raw T2, the network of enhanced con-

nectivity suggested by the pruned T2 pairs is distinct from the vagal

nerve nuclei–centric network of enhanced functional connectivity in-

dicated by the non-pruned data. The reason for, and significance

behind, this difference is subject to future study.

4.3.3 Predictive Quality Generalization

I can check the utility of these pairs in the same way I checked the

utility of the connectivity measures on their own: through their pre-

diction quality. Particularly, because these pairs were extracted as

meaningfully different features between “Experience” and “Regulate”

cognitive states, I would expect that they would be useful for gener-

alization. Thus, I tested the sets of pairs by restricting the input of

the machine learning task—using the Stimulus-Split T2 data set as a

base—to only connectivity between pairs collected from the t-tests.

This reduces the size of the input data from 119,316 to a number in
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Accuracy (%)
Pair Source N Train Control Train Test Control Test

T1 13 67.25 57.24 59.23 54.66
T2 (Raw) 44 78.81 66.80 66.65 53.05
Granger 137 89.88 81.87 55.22 51.18

T2 (Pruned) 171 89.92 83.02 58.21 51.35
All 362 95.99 90.46 59.39 52.29

Table 4.2: Average accuracy scores for pair-reduced stimulus-split T2 data on
session classification task, tested on subjects excluded from training data. N
indicates the numbers of region pairs to which the input data was restricted.
The p-values of all comparisons between pair-reduced and control randomly-
reduced accuracies were less than 1e-6.

the hundreds or less. I perform this reduction and train on the re-

sult for each set of pairs acquired and for a “super-set” containing all

pairs acquired across the different measures. For comparison, I also

perform the classification task on the data set randomly reduced to

a number of input features equal to that which the pair reduction

produces. The results are displayed in Table 4.2.

The resulting improvements in performance are modest but sta-

tistically significant. It is also worth noting that, though patterns of

over-fit do occur when subjects are held out for testing, the results

of the predictive task, both in this section and the previous, provide

utility. Patterns that hold between runs capture data pertaining to a

cognitive state even when the complexity of the state’s composition

greatly exceeds the variable of interest. The patterns of connectiv-

ity identified through the t-tests, and the associated improvement

in the predictive task, demonstrate that insight on the variable of

interest may still be, and has still been, extracted.
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Chapter 5

Conclusion, Discussion, and

Future Work

Over the course of this thesis, I surveyed three distinct measures

of functional and effective connectivity, introduced the “T2” vari-

ant of the Pearson correlation measure of functional connectivity,

and built and analyzed networks with each. In exploring the dif-

ferences across these measures, and under the effects of the Leiden,

CHAMP, and pruning algorithms, between two cognitive states—

“Experience” and “Regulate”—I identified four distinct hubs of in-

creased connectivity during cognitive regulation of pain: the medial

superior frontal gyrus, the vagal nerve nuclei, the basal ganglia, and

the left parainsular area.
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5.1 Limitations

The analysis I performed with pruning was constrained to single-

layer networks. This was due to limitations in time and computing

power—with larger multilayer networks running at rates that would

require over eighteen years to reach completion—that could be over-

come with enhanced computing power or with sufficiently expert

alterations to the code. I suspect insights could be drawn from the

data when viewed with a temporal dimension. Each run of fMRI

scanning lasted for approximately seven minutes. An individual’s

mind may operate differently at the beginning of seven minutes of

near-continuous aversive stimuli compared to the end, and this dif-

ference could relate to the cognitive strategy they employed during

the elapsed minutes.

5.2 Future Directions

5.2.1 Modeling

In the domain of time, I performed several tests with modeling near

the end of the spring of 2024. This was unfortunately too late to

synthesize the work into the body of this thesis, but I believe fur-

ther insights could be drawn from future analysis. The model took

advantage of the fundamental differences between functional and ef-

fective connectivity measures with to combine both; for each scan,
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for each pruned partition, I created a representation of the brain

using “macro-regions,” where each macro-region corresponds to a

community of the partition, with an activity time series equal to

the average of those of the community’s constituent regions. I then

used these macro-region time series, the annotations of the stimuli

at each time-point, and noise data extracted during the fMRI scan

preprocessing to train a linear model regularized with the L1 prior,

a Lasso model, on the first 700 slices of the 920-slice scan. The

model’s predictions for neural activity in each macro-region were

then tested on the 220 slices of the scan.

With this procedure, it was possible to generate a “projection”

using the model, where the target macro-region’s activity for the

next hundred seconds is estimated entirely from the stimulus, noise,

and other macro-regions, but no data from the target macro-region

itself. Often, these predictions would be poor. The system of the

mind, which in practice has significantly more nuance in its dynam-

ics than even the 72,017 voxels of the original scan can capture, is

harshly simplified in the model. However, the predictions were not

always poor. For most runs, at least one partition would have at

least one community whose activity could be more than 50% pre-

dicted (R2 > 0.5). Figure 5.1 provides a visual reference of the

projection for one such community.

Further exploration on any insights yielded by the model would

require testing beyond what I completed, which was a comparison
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Figure 5.1: The true activation data is shown in blue, the “default fit” (where
value xt of the sequence is predicted using the true value of xt−1) of the model
in orange, and the projection (where xt is predicted using the previous predicted
value of xt−1) in green. The value of R2 for this projection was 0.627.
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of the predictable macro-regions with the predictability of random

time series generated to rudimentarily resemble the time series of

macro-regions and with the predictability of artificial macro-regions

generated by randomly grouping regions. The former comparison

yielded no sufficiently predictable “macro-regions” while the latter

yielded a 50% increase in the number of macro-regions, the for-

mer validating the significance of the occurrence of such predictable

regions and the latter potentially implying that measures of connec-

tivity may have more in common than the t-tests would imply, if

we assume it becomes more difficult to predict one area when we

cannot use the most similar areas as reference.

Interestingly, the regions that most often belonged to a pre-

dictable macro-region differed between the modeled and second ran-

domized case, with the former including lobule X of the cerebellum,

the spinal trigeminal, locus coeruleus, basal ganglia, and parain-

sular area—most of these being familiar given the results reported

in this thesis, involved in pain regulation, or both—while the lat-

ter was dominated by cortical areas, particularly visual cortex and

the lateral parietal lobe. I would have liked to continue this explo-

ration further—examining the regions most strongly causal to the

predictable macro-regions would have been the next step—but for

the time being, it remains work for the future.
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5.2.2 The T2 Pearson Measure

In addition, the T2 Pearson correlation metric of functional connec-

tivity is an avenue for future work. As far as I have been able to find,

there is no mention of assessing functional connectivity via a Pear-

son correlation of the derivatives of region time series, and given the

measure’s predictive quality here, I wonder if it might be promising

on other data sets. The possibility remains that its performance

in this case derived from a unique property of the multimodality

aversiveness task or another particular feature of this data set, but

verifying the measure’s utility or lack thereof would require tests on

a novel data set, and my work here was restricted to the data to

which I had access. I am hopeful regarding the generalizability of

the T2 measure, as it would not be difficult to apply to a set of

fMRI data collected on scans for a different task, or even resting

state, and it displayed among the highest predictive quality of all

measures surveyed.
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