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1. [8 points]

(a) Find the locations of all local maxima, minima, and saddle points of the function f(x, y) =
(y2 − x2)ey in the plane. (Be sure to state the type of each point found.)

(b) [BONUS] Does the function have an absolute maximum or absolute minimum, and why?



2. [10 points]

Find the locations and values of the absolute minimum and absolute maximum of f(x, y) =
xy − y over the domain x2 + 2y2 ≤ 3. [Hint: in order to solve the equations you will want to
eliminate λ as a first step.]



3. [10 points] Let D be the planar domain bounded by x = 1 and x = 2, y = 0 and xy = 1.

(a) Write down a form for the above double integral
∫∫

D

y sin xy dA using iterated integrals

with only the ordering dx dy (i.e. Type II integral).

(b) Evaluate
∫∫

D

y sin xy dA



4. [12 points] Given below are three solid regions. In each case, analyze the region and write down
a corresponding iterated integral. The function f(x, y, z) is unknown in each case, so you only
need to write down the correct bounds for the iterated integral.

(a) Let E be the solid region bounded by the paraboloid z = (x−1)2 +(y−1)2 and the plane
2x + 2y + z = 6. Write

∫∫∫

E
f(x, y, z)dV as an iterated integral of the form

∫ ...

...

∫ ...

...

∫ ...

...

. . . dz dy dx.

(b) Let E be the tetrahedron (“pyramid”) with four vertices (0, 0, 0), (0, 1, 0), (1, 1, 0) and
(1, 1, 1). Write

∫∫∫

E
f(x, y, z)dV as an iterated integral of the form

∫ ...

...

∫ ...

...

∫ ...

...

. . . dy dx dz.



(c) Let E be the solid region bounded by the surfaces y = x2, the plane 2x + z = 2, the
xz-plane, and the xy-plane. Write

∫∫∫

E
f(x, y, z)dV as an iterated integral of the form

∫ ...

...

∫ ...

...

∫ ...

...

. . . dy dz dx.



5. [10 points] Let E be the solid region above the cone z =
√

3x2 + 3y2 and below the sphere
x2 + y2 + z2 = 4. Evaluate the triple integral

∫∫∫

E
z dV .



6. [10 points] Possibly by converting to an appropriate coordinate system, evaluate the iterated
integral

∫

4

0

∫

√

z

0

∫

√
z−y2

0

√

x2 + y2 dx dy dz.


