For this page, let $f(x) = \frac{3x+7}{x-2}$.

1. What is $\lim_{x\to\infty} f(x)$?

(a) 0

(b) 3

(c) 1

(d) ∞

(e) The limit does not exist.

(a)
$$(-\infty, \infty)$$

(b) $(-\infty, -1) \cup (-1, \infty)$
(c) $(-\infty, -1) \cup (-1, 2) \cup (2, \infty)$
(d) $(-\infty, 2) \cup (2, \infty)$
(e) $(-2, 1) \cup (1, \infty)$

For this page, let $f(x) = \frac{2x}{x^4 - 5x^2 + 6}$.

3. What are the horizontal asymptotes of f?

(a)
$$y = 2/5$$

(b) $y = 3$ and $y = 2$
(c) $y = 0$
(d) $x = \pm \sqrt{3}$

(e) none of the above

4. What are the vertical asymptotes f?

Suppose the graph of the function f(x) looks like

.

.

5. Of the following graphs, which could be the graph of f'(x)?

Again, suppose the graph of the function f(x) looks like

6. Of the following graphs, which is the graph of $f^{-1}(x)$?

For this page, let $f(x) = \frac{1}{2x}$ and $g(x) = \frac{x-1}{x+1}$.

7. What is $f^{-1}(x)$?

(a)
$$f^{-1}(x) = \frac{1}{2x+1}$$

(b) $f^{-1}(x) = \frac{1}{2x} - 1$
(c) $f^{-1}(x) = \frac{2x}{1}$
(d) $f^{-1}(x) = \frac{1}{\frac{1}{2}x}$
(e) $f^{-1}(x) = \frac{1}{2x}$

- 8. What is the domain of f(g(x))?
 - (a) $(-\infty, \infty)$ (b) $(-\infty, 1) \cup (1, \infty)$ (c) $(-\infty, 0) \cup (0, \infty)$ (d) $(-\infty, 0) \cup (0, 1) \cup (1, \infty)$ (e) $(-\infty, -1) \cup (-1, 1) \cup (1, \infty)$
- 9. What is f(g(x)) (on its domain)?

(a)
$$\frac{1}{2x} \cdot \frac{x-1}{x+1}$$

(b) $\frac{x+1}{2x-2}$
(c) $\frac{x}{2(x+1)} - 1$
(d) $\frac{2x+2}{2x-2}$
(e) $2x+1$

For this page, let f(x) be the function graphed below:

- 10. Is the function continuous at x = 2 and why?
 - (a) Yes, because the $\lim_{x\to 2} f(x) = f(2)$.
 - (b) Yes, because f is a continuous function.
 - (c) No, because $\lim_{x\to 2^+} f(x) \neq f(2)$.
 - (d) No, because 2 is a removable discontinuity.
 - (e) None of the above.

11. Is the function differentiable at x = -1 and why?

- (a) Yes, because $\lim_{h \to 0} \frac{f(-1+h) f(-1)}{h} = f(-1).$
- (b) Yes, because f is differentiable at every point of its domain.

(c) No, because
$$\lim_{h \to 0^-} \frac{f(-1+h) - f(-1)}{h} \neq \lim_{h \to 0^+} \frac{f(-1+h) - f(-1)}{h}$$

- (d) No, because $\lim_{x \to -1} f(x)$ does not exist.
- (e) None of the above.

12. What is the range of $f^{-1}(x)$ if $f(x) = \frac{x+5}{2x-3}$?

(a)
$$(-\infty, 3) \cup (3, \infty)$$

(b) $(-\infty, -1/2) \cup (-1/2, \infty)$
(c) $(-\infty, -5) \cup (-5, \infty)$
(d) $(-\infty, 3/2) \cup (3/2, \infty)$
(e) $(-\infty, -5) \cup (-5, 3/2) \cup (3/2, \infty)$

13. For what value of a is f(x) continuous at x = 1 if

$$f(x) = \begin{cases} 3 - ax & x < 1\\ a + x & x \ge 1 \end{cases}$$

٠

(a)
$$a = 0$$

(b) $a = -1$
(c) $a = 1$
(d) $a = -2$

(e) none of the above

Calculate the derivatives of the following functions.

•

14.
$$f(x) = x^2 \sin(x)$$

(a)
$$2x\cos(x)$$

(b)
$$-2x\cos(x)$$

- (c) $2x \sin(x) + x^2 \cos(x)$ (d) $2x \sin(x) x^2 \cos(x)$
- (e) none of these

15.
$$f(x) = \tan(\sqrt{1+x^{-1}})$$

(a) $\sec^2\left(\frac{1}{2\sqrt{-\frac{1}{x^2}}}\right)$
(b) $\frac{1}{2\sqrt{-\frac{1}{x^2}}}\sec^2(\sqrt{1+x^{-1}})$
(c) $\frac{1}{2\sqrt{-\frac{1}{x^2}}}\sec^2(\sqrt{x})$
(d) $-\frac{1}{x^2}\frac{1}{2\sqrt{1+x^{-1}}}\sec^2(\sqrt{1+x^{-1}})$
(e) $-\frac{1}{x^2}\frac{1}{2\sqrt{x}}\sec^2(x)$

16. Let
$$f(x) = \frac{1}{x}$$
.

(a) State the limit definition of the derivative of $\frac{1}{x}$.

$$f'(x) = h \rightarrow 0 \qquad \frac{1}{x+h} - \frac{1}{x}$$

(b) Calculate the derivative of f(x) using the limit definition of the derivative. Show all of your work and explain your steps to receive any credit.

Since, as long as
$$h \neq 0$$
,
common denom.
 $\frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) = \frac{1}{h}\left(\frac{x-(x+h)}{(x+h)(x)}\right)$
 $= \frac{1}{h}\left(-\frac{h}{(x+h)x}\right)$
We have
 $f'(x) = \lim_{h \to 0} \frac{1}{h}\left(\frac{1}{x+h}-\frac{1}{x}\right) = \lim_{h \to 0} \frac{h}{h}\left(\frac{1}{x+h}\right)x$
 $= -\frac{1}{x^2}$.

•

17. Let $f(x) = x^3 - 1$.

- (a) Give a rough sketch, on the same axes, of
 - i. y = f(x), and

(b) Give an equation for the line tangent to f(x) at the point x = 2.

l is tangent @ pt (2, (2)²-1) (2,7) w/ slope

$$F'(2) = 3x^2 \Big|_{X=2} = 12$$

18. Let f(x) be the function graphed below.

(a) For what values of x is the function f(x) discontinuous on its domain?

(b) List the values where f(x) has a removable discontinuity, and give the y-value to which we should redefine f(x) at that point.

(c) List the values where f(x) has a continuous extension, and give the y-value to which we should define f(x) at that point.

continuous
extension
at
$$x = y =$$

-1 0.5
7
notice,
this point had better
hot be one of your answerd
to part (a).