MATH 8: Practice Midterm II November 10, 2004

Show all your work. Full credit may not be given for correct answers if they are not adequately justified. Good luck!

- 1. Find a power series that converges to each of the following functions and give the radius and interval of convergence. (Do this by manipulating geometric series, **not** by Taylor's formula.)
 - (a) $\ln(1+x)$.
 - (b) $\frac{3}{27-x^3}$.
- 2. Suppose you have a function f(x) such that f(x)'s third Taylor polynomial at x = 1 is $P_3(x) = 1 (1/2)(x-1) + (x-1)^2 + (2/3)(x-1)^3$, and assume that **all** of f(x)'s derivatives satisfy $\left|\frac{d^n f}{dx^n}\right| \leq 5$ on the interval (0, 2).
 - (a) Given the above data, approximate f(1.5).
 - (b) Bound the difference $|f(1.5) P_3(1.5)|$ using the above data, and justify your answer.
 - (c) Given the above data, can you determine f(x)'s second derivative at x = 1? If so find it, if not why.
- 3. Find the distance between the point P = (-25, -13, 8) and the plane with equation 3x + y z = 3.
- 4. Find the line of intersection of the planes x + y + z = 3 and x + 2y + 3z = 6.
- 5. Suppose \vec{u} and \vec{v} are in the plane containing the origin determined by 3x + 2y + z = 0 and that that \vec{u} , \vec{v} , and \vec{w} satisfy $\vec{v} \cdot (\vec{w} \times \vec{u}) = 0$. What is the equation of a plane through the origin that contians \vec{u} and \vec{w} ? Why?
- 6. Suppose $\vec{u}(3) = \langle 1, 1, 2 \rangle$, $\vec{v}(3) = \langle 3, 1, -1 \rangle$, $\frac{d\vec{u}}{dt}(3) = \langle -1, 0, 2 \rangle$ and $\frac{d\vec{v}}{dt}(3) = \langle 0, -2, 3 \rangle$.
 - (a) Compute $\frac{d}{dt}[\vec{u} \cdot \vec{v}]$ at t = 3.
 - (b) Compute $\frac{d}{dt}[\vec{u} \times \vec{v}]$ at t = 3.
 - (c) Compute $\frac{d}{dt}[e^t \vec{u}]$ at t = 3.
- 7. Let $\vec{r}(t) = <\sin(t) + t, \cos(t), 3 >$.
 - (a) Find the tangent line to the curve given by $\vec{r}(t)$ at $t = \frac{\pi}{4}$.
 - (b) Find the legath of this curve for $0 \le t \le 1$. (Hint: $1 + \cos(2\theta) = 2\cos(\theta)^2$).

- (c) Sketch the curve (Challenging).
- 8. Find the third degree Taylor polynomial for $\tan(x)$ about $a = \frac{\pi}{4}$.
- 9. Suppose we have a plane containing the points $(1,1,0),\,(2,1,3)$ and (1,0,5), and a line determined by $\frac{x-2}{2}=\frac{y-3}{5}=z-1$.
 - (a) Find an equation for the plane.
 - (b) Do the plane and line intersect? If so find the points of intersection.
- 10. Find the vector projection and the scalar projection (i.e., component) of \vec{b} on \vec{a} where $\vec{b} = <2, 1, 4 >$ and $\vec{a} = <1, 2, 3 >$.