MATH 8: Practice Exam I

1. Evaluate:

(a.)
$$\int \tan^{-1}(x)dx$$

(b.) $\int \frac{(4x+3)dx}{(x^2+1)(x+2)}$
(c.) $\int \frac{dx}{(9+x^2)^{5/2}}$

2. Find the volume of the solid generated by revolving the region bounded by $y = \frac{\ln(x)}{\sqrt{x}}$, the x-axis and the line x = e about the x-axis.

3. Find the area bounded by the curves $y = 1 - \sqrt{x}$ and $y = 1 - x^2$.

4. Test the following improper integrals for convergence or divergence.

(a.)
$$\int_0^{\pi} \sec^2(x) dx$$

(b.)
$$\int_1^{\infty} \frac{dx}{e^x + e^{-x}}$$

5. Find $\lim_{n \to \infty} \sin(n) \ln(1 + \frac{2}{n})$ or show that the sequence diverges.

6. Determine whether the following series converge or diverge. Explain your answer and indicate which test you use.

(a.)
$$\sum_{n=1}^{\infty} \frac{n^2 - n}{n^3 + 4n + 1}$$

(b.) $\sum_{n=2}^{\infty} \frac{1}{n(1 + (\ln n)^2)}$

7. Determine whether the following series diverge, converge conditionally, or converge absolutely. Explain your answer and indicate which tests you use.

(a.)
$$\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{n^2}$$

(b.) $\sum_{n=1}^{\infty} (-1)^n \frac{n^2 - 5n}{3n^2 + 1}$.

8. Determine an upper bound on the size of the error in using S_9 , the ninth partial sum, to approximate the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$.

9. Suppose $\sum_{n=1}^{\infty} a_n$ converges, and for each $n, a_n \neq 0$. What can be said about $\sum_{n=1}^{\infty} \frac{1}{a_n}$?

10. A ball is dropped from a height of one meter, and on each bounce it goes twothirds as high as before. Find the total distance traveled by the ball in coming to rest.