MATH 8: Practice Exam I

1. Evaluate:
(a.) $\int \tan ^{-1}(x) d x$
(b.) $\int \frac{(4 x+3) d x}{\left(x^{2}+1\right)(x+2)}$
(c.) $\int \frac{d x}{\left(9+x^{2}\right)^{5 / 2}}$
2. Find the volume of the solid generated by revolving the region bounded by $y=\frac{\ln (x)}{\sqrt{x}}$, the x-axis and the line $x=e$ about the x-axis.
3. Find the area bounded by the curves $y=1-\sqrt{x}$ and $y=1-x^{2}$.
4. Test the following improper integrals for convergence or divergence.
(a.) $\int_{0}^{\pi} \sec ^{2}(x) d x$
(b.) $\int_{1}^{\infty} \frac{d x}{e^{x}+e^{-x}}$
5. Find $\lim _{n \rightarrow \infty} \sin (n) \ln \left(1+\frac{2}{n}\right)$ or show that the sequence diverges.
6. Determine whether the following series converge or diverge.

Explain your answer and indicate which test you use.
(a.) $\sum_{n=1}^{\infty} \frac{n^{2}-n}{n^{3}+4 n+1}$
(b.) $\sum_{n=2}^{\infty} \frac{1}{n\left(1+(\ln n)^{2}\right)}$
7. Determine whether the following series diverge, converge conditionally, or converge absolutely. Explain your answer and indicate which tests you use.
(a.) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n+1}{n^{2}}$
(b.) $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}-5 n}{3 n^{2}+1}$.
8. Determine an upper bound on the size of the error in using S_{9}, the ninth partial sum, to approximate the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$.
9. Suppose $\sum_{n=1}^{\infty} a_{n}$ converges, and for each $n, a_{n} \neq 0$. What can be said about $\sum_{n=1}^{\infty} \frac{1}{a_{n}}$?
10. A ball is dropped from a height of one meter, and on each bounce it goes twothirds as high as before. Find the total distance traveled by the ball in coming to rest.

