Daniele Venturi

Mathematics, University of California, Santa Cruz.

In this talk I will address the problem of constructing data-driven closures for reduced-order kinetic equations. Such equations arise, e.g., when we coarse-grain high-dimensional systems of stochastic ODEs and PDEs. I will first review the basic theory that allows us to transform such systems into conservation laws for probability density functions (PDFs). Subsequently, I will introduce coarse-grained PDF models, and describe how we can use data, e.g., sample trajectories of the ODE/PDE system, to estimate the unclosed terms in the reduced-order PDF equation. I will also discuss a new paradigm to measure the information content of data which, in particular, allows us to infer whether a certain data set is sufficient to compute accurate closure approximations or not. Throughout the lecture I will provide numerical examples and applications to prototype stochastic systems such as Lorenz-96, Kraichnan-Orszag and Kuramoto-Sivashinsky equations. |

Back to ACMS schedule