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1 Introduction

Numerical mathematics is at the intersection of analysis (devising and proving
theorems), computation (devising algorithms, coding efficiently), and addressing
application areas (e.g. PDE problems in engineering, science, technology).

This course will focus on the first two: analysis, and coding/testing computer
algorithms. What is numerical analysis? Trefethen [1] gives an inspiring answer:
it is not merely the study of rounding errors in computations, rather, it is the
study of algorithms for the problems of continuous mathematics. We should also
remind ourselves that carelessness over rounding errors, and over convergence
issues, in numerical algorithms has caused loss of life and equipment destruction
with losses of $108 (see Arnold disasters website). Our goal is to understand
the mathematics behind our algorithms, and be able to code them reliably and
invent new ones.

Our topic is the solution of PDEs via integral equations (IEs). Along the
way we touch upon rounding error, quadrature, numerical linear algegra, con-
vergence, etc.

Paradigm PDE: Let Ω ⊂ R
2 be an open connected domain. (All of this

works in higher dimensions too.) The interior BVP for Laplace’s equation is

∆u = 0 in Ω (1)

u = f on ∂Ω (2)

where ∂Ω denotes the boundary of the set Ω, i.e. the set of points that are both
limit points of sequences in Ω and in R

2

Omega. The ‘boundary data’ is the given function f on ∂Ω. Applications
include electrostatics (u represents electric potential), steady-state heat distri-
bution (u is temperature), complex analysis (u is the real part of an analytic
function), and Brownian motion or diffusion (u is probability density).

Paradigm IE: Let [0, 1] be an interval, and we are given f ∈ C([0, 1]), and
k ∈ C([0, 1]2) i.e. a continuous function on the unit square. Then find a function
u satistfying the integral equation

u(t) +

∫
1

0

k(t, s)u(s)ds = f(t) for all t ∈ (0, 1) (3)
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This is a Fredholm equation, and since u itself is present on the LHS, is called
‘2nd kind’.

To give an idea of the intimate connection between the above BVP and
IE, consider that uniqueness for the BVP is easy to prove: Let u and v be
solutions, then w = u − v satisfies ∆w = 0 in Ω, and w = 0 on ∂Ω. But by the
maximum principle, the maximum of w over Ω cannot exceed the maximum on
∂Ω, which is zero. The same holds for −w, so w ≡ 0, and we have uniqueness.
In contrast, existence of a solution to the BVP is much harder. It was first
proved by transformation of the BVP to an IE, in 1900 by Fredholm, and, along
with Hilbert’s work that decade, became the foundation of modern functional
analysis. Here the identification is made between the 1D sets ∂Ω and [0, 1].
Thus the IE becomes a boundary integral equation or BIE.

The beautiful thing is that this method of proof leads to an efficient numer-
ical method for solving the BVP. Crudely speaking, the efficiency stems from
the reduction in dimensionality from u being an unknown function in 2D in the
BVP to only in 1D in the IE.

Waves: As well as Laplace, we will also study the Helmholtz equation

(∆ + ω2)u = 0 (4)

where ω > 0 is a frequency. What do solutions of this look like? The 1D analog
is the ODE u′′ + ω2u = 0 which has solutions such as sinωx or eiωx which
oscillate with wavelength 2π/ω. Similar things happen in higher dimensions,
except that waves may travel in all directions. See picture

Notice that Laplace and Helmholtz are both elliptic PDE since the signs of
the 2nd derivatives are the same. The contrasts with the wave equation,

ũxx + ũyy − ũtt = 0 (5)

for the time-dependent field ũ(x, y, t), which could represent acoustic pressure,
for example. The wave equation is hyperbolic since its has mixed signs of 2nd
derivatives. The mnemonic is to convert derivatives to powers of the coordinate
(this is actually called the ‘symbol’ of a differential operator; see pseudodiffer-
ential operators):

uxx + uyy = 0 ↔ x2 + y2 = const ↔ ellipse (here happens to be a circle)

uxx − uyy = 0 ↔ x2
− y2 = const ↔ hyperbola

Equations such as the heat equation have no 2nd-derivative in one of the vari-
ables, and are thus parabolic. Given even rough boundary data, elliptic PDEs
lead to very smooth (even sometimes analytic) solutions; on the other hand, with
hyperbolic PDEs rough initial data is carried along characteristics and remains
nonsmooth. The picture for the wave equation is of the light cone disturbance
produced by point-like initial data at the origin at t = 0.

The Helmholtz equation follows from the wave equation when the assump-
tion of motion in time at a single frequency is made, e.g. if I were to sing in this
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room with a pure tone at a single frequency, the pressure field would settle into
one with ‘harmonic’ time-dependence

ũ(x, y, t) = u(x, y)e−iωt

Substitution of this into (5) and canceling exponential factors gives (4).
When waves traveling in free space hit an obstacle this is a scattering prob-

lem. One then needs to solve an exterior problem, with (4) holding in the
unbounded domain R Ω, with given boundary data as before, and a so-called
‘radiation condition’.

What BIE methods are good for: Piecewise-homogeneous media, i.e.
the coefficients of the PDE are constant in chunks of space touching on lower-
dimensional boundaries. BIEs are excellent especially for exterior problems,
finite element methods cannot easily handle the infinite extent of the domain.
Also, BIE are excellent for high frequencies ω ≫ 1, since then there are many
wavelengths across the domain, and the lower dimensionality of BIE vs FEM is
a huge advantage.

What BIE methods are not good for: Variable-coefficient PDEs, or
nonlinear PDEs. Note that there are IE methods for some of these, namely,
volume-integral based methods such as Lippman-Schwinger.

2 Numerical Linear Algebra: Stability and Con-

ditioning

Well, now we go over to scanned paper lectures. . .
(One day I will TEX up the whole thing)
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