Math 126 Winter 2012: Rough lecture notes

Alex Barnett, Dartmouth College

March 1, 2012

1 Introduction

Numerical mathematics is at the intersection of analysis (devising and proving theorems), computation (devising algorithms, coding efficiently), and addressing application areas (e.g. PDE problems in engineering, science, technology).

This course will focus on the first two: analysis, and coding/testing computer algorithms. What is numerical analysis? Trefethen [1] gives an inspiring answer: it is not merely the study of rounding errors in computations, rather, it is the study of algorithms for the problems of continuous mathematics. We should also remind ourselves that carelessness over rounding errors, and over convergence issues, in numerical algorithms has caused loss of life and equipment destruction with losses of $\$ 10^{8}$ (see Arnold disasters website). Our goal is to understand the mathematics behind our algorithms, and be able to code them reliably and invent new ones.

Our topic is the solution of PDEs via integral equations (IEs). Along the way we touch upon rounding error, quadrature, numerical linear algegra, convergence, etc.

Paradigm PDE: Let $\Omega \subset \mathbb{R}^{2}$ be an open connected domain. (All of this works in higher dimensions too.) The interior BVP for Laplace's equation is

$$
\begin{align*}
\Delta u & =0 \text { in } \Omega \tag{1}\\
u & =f \text { on } \partial \Omega \tag{2}
\end{align*}
$$

where $\partial \Omega$ denotes the boundary of the set Ω, i.e. the set of points that are both limit points of sequences in Ω and in \mathbb{R}^{2}
Omega. The 'boundary data' is the given function f on $\partial \Omega$. Applications include electrostatics (u represents electric potential), steady-state heat distribution (u is temperature), complex analysis (u is the real part of an analytic function), and Brownian motion or diffusion (u is probability density).

Paradigm IE: Let $[0,1]$ be an interval, and we are given $f \in C([0,1])$, and $k \in C\left([0,1]^{2}\right)$ i.e. a continuous function on the unit square. Then find a function u satistfying the integral equation

$$
\begin{equation*}
u(t)+\int_{0}^{1} k(t, s) u(s) d s=f(t) \quad \text { for all } t \in(0,1) \tag{3}
\end{equation*}
$$

This is a Fredholm equation, and since u itself is present on the LHS, is called '2nd kind'.

To give an idea of the intimate connection between the above BVP and IE, consider that uniqueness for the BVP is easy to prove: Let u and v be solutions, then $w=u-v$ satisfies $\Delta w=0$ in Ω, and $w=0$ on $\partial \Omega$. But by the maximum principle, the maximum of w over Ω cannot exceed the maximum on $\partial \Omega$, which is zero. The same holds for $-w$, so $w \equiv 0$, and we have uniqueness. In contrast, existence of a solution to the BVP is much harder. It was first proved by transformation of the BVP to an IE, in 1900 by Fredholm, and, along with Hilbert's work that decade, became the foundation of modern functional analysis. Here the identification is made between the 1 D sets $\partial \Omega$ and $[0,1]$. Thus the IE becomes a boundary integral equation or BIE.

The beautiful thing is that this method of proof leads to an efficient numerical method for solving the BVP. Crudely speaking, the efficiency stems from the reduction in dimensionality from u being an unknown function in 2D in the BVP to only in 1D in the IE.

Waves: As well as Laplace, we will also study the Helmholtz equation

$$
\begin{equation*}
\left(\Delta+\omega^{2}\right) u=0 \tag{4}
\end{equation*}
$$

where $\omega>0$ is a frequency. What do solutions of this look like? The 1D analog is the ODE $u^{\prime \prime}+\omega^{2} u=0$ which has solutions such as $\sin \omega x$ or $e^{i \omega x}$ which oscillate with wavelength $2 \pi / \omega$. Similar things happen in higher dimensions, except that waves may travel in all directions. See picture

Notice that Laplace and Helmholtz are both elliptic PDE since the signs of the 2 nd derivatives are the same. The contrasts with the wave equation,

$$
\begin{equation*}
\tilde{u}_{x x}+\tilde{u}_{y y}-\tilde{u}_{t t}=0 \tag{5}
\end{equation*}
$$

for the time-dependent field $\tilde{u}(x, y, t)$, which could represent acoustic pressure, for example. The wave equation is hyperbolic since its has mixed signs of 2 nd derivatives. The mnemonic is to convert derivatives to powers of the coordinate (this is actually called the 'symbol' of a differential operator; see pseudodifferential operators):
$u_{x x}+u_{y y}=0 \leftrightarrow x^{2}+y^{2}=$ const $\leftrightarrow \quad$ ellipse (here happens to be a circle)
$u_{x x}-u_{y y}=0 \leftrightarrow x^{2}-y^{2}=$ const \leftrightarrow hyperbola
Equations such as the heat equation have no 2nd-derivative in one of the variables, and are thus parabolic. Given even rough boundary data, elliptic PDEs lead to very smooth (even sometimes analytic) solutions; on the other hand, with hyperbolic PDEs rough initial data is carried along characteristics and remains nonsmooth. The picture for the wave equation is of the light cone disturbance produced by point-like initial data at the origin at $t=0$.

The Helmholtz equation follows from the wave equation when the assumption of motion in time at a single frequency is made, e.g. if I were to sing in this
room with a pure tone at a single frequency, the pressure field would settle into one with 'harmonic' time-dependence

$$
\tilde{u}(x, y, t)=u(x, y) e^{-i \omega t}
$$

Substitution of this into (5) and canceling exponential factors gives (4).
When waves traveling in free space hit an obstacle this is a scattering problem. One then needs to solve an exterior problem, with (4) holding in the unbounded domain $\mathbb{R} \bar{\Omega}$, with given boundary data as before, and a so-called 'radiation condition'

What BIE methods are good for: Piecewise-homogeneous media, i.e. the coefficients of the PDE are constant in chunks of space touching on lowerdimensional boundaries. BIEs are excellent especially for exterior problems, finite element methods cannot easily handle the infinite extent of the domain. Also, BIE are excellent for high frequencies $\omega \gg 1$, since then there are many wavelengths across the domain, and the lower dimensionality of BIE vs FEM is a huge advantage.

What BIE methods are not good for: Variable-coefficient PDEs, or nonlinear PDEs. Note that there are IE methods for some of these, namely, volume-integral based methods such as Lippman-Schwinger.

2 Numerical Linear Algebra: Stability and Conditioning

Well, now we go over to scanned paper lectures...
(One day I will $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ up the whole thing)

References

[1] L. Trefethen. The definition of numerical analysis. SIAM News, November 1992. http://people.maths.ox.ac.uk/trefethen/essays.html.
[ec. welarne info slips.

- CNT articl.
- HW1.

Numenical math:
frem

\Rightarrow your HW is mix of themy $\&$ coding mumarionl fexporiments.
Topicer solution of PDEs. wia integmel equations. (IEs)

APP: electrostities (show wodsiti), heak standy stite, diffosim.
We will develps so the PDE IEtheory a long the wny
Eg unipues of BUP is simple. (t-mex. rroxiple-anyme hand of?)

- but evistance is hard: frot provien wing. IES (lasys ago: Fredhole, fillbert).

We will need other key munerical areas such as rounding errors, quadenture, lin-alap prob, ${ }_{1} \rightarrow$ BIE,

 x-hin - coling. eg. neet Wed $3-3: 50$ do Matlab exercises. (please install
Lauganges-doent har to be methab. l go throyh sitro exdes)
-booko'; we draw form sevenl. Take noted.

Waves? deffermt PDE: $\left(\Delta+\omega^{2}\right) u=\theta$ Helmbolt : acoustics (liyth, ador). $t w=$ freg. of inaves.
solus. oscillate ibt space. Why? 1d varsion $u^{\prime \prime}+\omega^{2} u=0$
ey shav pic on welsite top. is ODE $w /$ solns? $\left\{\begin{array}{l}\sin w x \\ \cos w x \text { repente }\end{array}\right.$
Comes firm wave eque for $\tilde{u}(x, y, t): \quad \widetilde{u}_{x x}+\tilde{u}_{y y}-\tilde{u}_{t f}=0 \quad$ wE. (wave

$$
\omega_{x}=2 \pi
$$

$$
\text { assume const frq. } \left.\tilde{u}(x, y, t)=u(x, y) e^{-i \omega t} \text { sub into wt: } \tilde{t_{0}} \text { specd }=1\right)
$$

$$
\begin{aligned}
& \omega_{x}=2 \pi \\
& \text { ie } x=\frac{2 \pi}{\omega} \\
& \text { waveleantu }
\end{aligned}
$$ wavelength. cancel $e^{-i \omega t}$ since holds $\dot{f \forall t} \Rightarrow(-i \omega)^{2} \tilde{u}$

sotre exterior BUP $\quad\left(\Delta+\omega^{2}\right) u=0$ in $\mathbb{R}^{2} \backslash \bar{\Omega}$
? who's seen? $\underline{n}=$ open set $\bar{\Omega}=$ closure.
so $\mathbb{R}^{2} \backslash \bar{S}$ exchides 2Ω.
50 mins. brak?
Num. Lin. Alg.
solve $A \vec{x}=\vec{b}$
Revier.
mat-vecomedt: $A \vec{x}$ is
(TrefaBan book). $u=f$ on 2Ω.
'radiation condition'.

ie $\left\{\begin{array}{c}c_{0}+c_{1} x_{1}+\cdots c_{n-1} x_{1}^{n-1}=y_{1} \\ \vdots \\ c_{0}+c_{1} x_{n} \cdots c_{n-1} x_{n}^{m-1}=y_{n}\end{array}\right.$
supp $\vec{c} \neq \vec{c}^{-1}$ were toro such soluse.

Tha, $P_{-1}^{-1}(x)-P_{-1}(x)$ is watior. degrem (awi) poly vanishay at ead x_{j}, ie have n distinct van \Rightarrow imposville. $\Rightarrow \not \approx$ unipuc $\Rightarrow A$ All ramk. \square :

A * vander $\mid x)^{\prime} ; \quad A=A(:$, cud:- $: 1) \longleftarrow$ resarize order of cols.

$\sin k(A)=40$ is Then says.
ok Fyy $a=30,40,100=\operatorname{sulk}(A)$ nowey >36. whly? plot (A) graposead.

$$
\begin{aligned}
& \begin{array}{lc}
n=10 ; & \text { sian of } \quad i \log x \sim\left(0^{2}\right. \\
n=20 & 1,
\end{array} \\
& \text { musurionl rank of theror, met }
\end{aligned}
$$

n.A. 1.2 $\rightarrow \frac{\text { grows! }}{10^{16} \text { when sire } 40!}$ need simgutar woshurs of A. $\rightarrow 10^{16}$ whem sies 40 same phace!

Orthogomality (reviev lon alg.)
A matix, A^{*} heomition franopose. : $\quad\left(A^{*}\right)_{i j}=\overline{A_{j i}} \leftrightarrows$ c.c.
$A=A^{*}$ symim!.
Ex. prove $(A B)^{\psi^{*}}=B^{*} A^{*}, \quad\left(A^{-1}\right)^{*}=\left(A^{*}\right)^{-1}$
x colivee, x^{*} par ree.
$x, y \in \mathbb{E}^{m}, \quad x^{*} y=?$ inner prod $\stackrel{x}{-\rightarrow}\left[{ }_{H}^{y}=\sum_{i=1}^{m} \overline{x_{i}} y_{i}\right.$
2-nom $\|x\|_{2}=\sqrt{x^{6} x}$
Dafin oranem?
i) $\|\alpha x\|=|\alpha|\|x\| \quad \alpha \operatorname{sen} l a r$
ii) $\|x\|=0 \Rightarrow x=0 \leftarrow$ vector
ii) $\|r x y\| \leq\|x\|+\|y\|$ tri vector

2 -nome also has. $\left|x^{*} y\right| \leq\|x\|\|y\| \quad$ canchy-scharz
$x^{*} y=0$? x, y orthoy.
Thun: mestually orthoy. set of vestos are lme indey. (pf: Ex)
$\Rightarrow m$ orthog. vees in \mathbb{G}^{m} form basis; if cunit leugth, $D, n_{0} b$.
Siy $\vec{q}_{1}, \ldots, \bar{q}_{m}^{\prime} \in \mathbb{C}^{m}$ oub., can stack ints cols. of Q, than $\left(Q^{+} Q\right)_{i j}=i f \rightarrow\left[q=q_{i}^{*} j\right.$

$$
\begin{equation*}
\text { so } Q^{x} Q=I \text { ie } Q^{-1}=Q_{\text {cols o.n.b. } \Leftrightarrow \text { unitary }}^{\text {i, itentar. }} \tag{ij}
\end{equation*}
$$

so $Q^{*} b$ is coefle of expansion of b m o.n.b $\left\{q_{i}\right\}$
$\left\|Q_{x}\right\|=\sqrt{\left(Q_{x}\right)^{*} Q_{x}} \stackrel{?}{=} \sqrt{x^{*} Q^{*} Q_{x}}=\|x\| \quad$. preserves lengits. (rotatom / poss w/reftel)
Mabthix 2-womm: $\|A\| \sum_{\text {2implice }} \operatorname{smallat} \# c$ st. $\|A \times\| \leq c\|x\| \quad \forall x \in \mathbb{C}^{m}$
ir $\|A\|:=\sup _{x \neq 0} \frac{\|A x\|}{\|x\|}=\operatorname{sum}_{\|x\|} \sup _{\|}\|A \times\|$ grouth fuctor"
$E g$ 立 2 -nom of diag matix? Ifs largat-magnitude entay.
ii) 2-mann of $A=u v^{*}$? (rauk-1). $\|u \underbrace{u v^{*} \|}_{\text {sular }}\| \underbrace{\left|v^{*} x\right|}_{c-s}\|u\| \leqslant \underbrace{\|v\|\| \|\|x\|}_{=\|A\|}$

2-nom submutliplicitive: $\|A B \times\| \leq\|A\|\|B \times\| \leq\|A\|\|B\|\|x\|$ $=\|A\|$.
Ex. show $Q A \& A Q$ have same 2-uom as A. So $\| A$
$[\mathrm{lec} 2]$
Simpular Vake Decomposition (SVD) - as ingportait as spectal decomp.
Geom fact: everg $A \in C^{u \times n}$ mups unit ball inter hyper ellipsoite
($C^{\prime \prime}$ harrlests p los!)
shon. ellipseom.
'tall'case $u \geqslant n$ \& frill ande. $(n n)$: left sing. vecs $u_{1} \cdots u_{n}$ unith orthey.

$$
2 \times 2 \text { case }
$$

sing. vals. $\sigma_{1} \geqslant \sigma_{2} \geqslant \ldots \sigma_{n}>0$ semiaxes.
so whent is $\|A\| ?=\sigma_{1}$
righte sing, vees $V_{j} j \neq 1 \cdots$, anirimuge of $\sigma_{j} u_{j}$ also
rank $r<n$ then $\sigma_{1} \ldots \sigma_{r}>0$ while $\sigma_{r+1}=\cdots \sigma_{n}=0$.
so $\quad A v_{j}=\sigma_{j} u_{j} \quad j=1 \ldots n$.
(postruall by V^{*})

$$
\begin{aligned}
& \text { reduced mixn }{ }^{\text {mann}} \text {. }
\end{aligned}
$$

$$
\text { \& pad } \sum_{n \times n}^{M_{a y}} \text { to complete } \underbrace{}_{m \times n} \text { to } \bigcup_{m \times m} \text { on.b. for }
$$

 If A squar invartible, $A^{-1}=\left(U \Sigma V^{*}\right)^{-1}=? V \sum^{-1} U^{*}$ is the SVD of A^{-1} (if reoder) $\sum=1$ $\operatorname{diag}\left\{\sigma_{5}^{-1}=1 \quad\right.$ what is $\left\|A^{-1}\right\| ?$ lengeot simg vala $\|^{-1} A^{-1}$
\rightarrow WS (PTO) -
boanh
meded for ws.

$$
\begin{aligned}
& \sigma_{T \text { nuillat singul }} \\
& \text { of } A \text {. }
\end{aligned}
$$

or - $A^{*} A$ bas eiguals $\left\{\sigma_{j}^{2}\right\}$ \& complete) why? $A^{*} A$ symm.
 eigrats $\lambda_{j} \geqslant 0$ \& then deftre $\sigma_{j}=\sqrt{\lambda}_{j}$.

$$
\begin{aligned}
& \mathrm{S}^{v_{1}} \stackrel{A}{A} \\
& S \subset \mathbb{R}^{n} \\
& A S \subset \mathbb{R}^{m}
\end{aligned}
$$

Anntow: SUD \& Espreas:

rank $r:=\#\left\{j: \sigma_{j}>0\right\}$
numesical rauk $r_{\varepsilon}:=\#\left\{j: \sigma_{j}>\varepsilon\right\}$
$\varepsilon \sim \sigma_{1}$ smach $^{\text {(machine precision. }} \sim 10^{? *-16 .}$
Qu: whet do thinh σ_{j} s of vandermonde did? Shot dom to ε when $m \sim \Delta O$.
Conditaning. ($\$ 12 \mathrm{NL} A)$: property of a mith problecn (vs. Shability: procefy of alg. wed to soher it 5 .
 eg. $f(x)$ could retum $\begin{cases}2 x & \text { "thellllasy prob", } \\ \text { vector of ronts of poly }\end{cases}$
f well-cond if infinitestual pert $\underbrace{\delta x}$ a x canses sumall' pedt
 given $x=$ vec. of poly collh.
Abs. cond. \# $\tilde{k}=\tilde{k}(x):=\lim$ sup $\|\delta f\|$ abbras

$$
T_{2 \text {-noms }}
$$

if $\underset{\substack{x \\ \mathbb{H}^{n}}}{T_{\mathbb{C}^{m}}}$ vectors, $\quad \frac{\partial f_{i}}{\partial x_{j}}=J_{i j}(x)$ is Jacolican. mitixx $J \in \mathbb{Q}^{m \times n}$

$$
\text { As }\|\delta y\|, 0 \text { have } \delta f \approx J(x) \delta x \text { so } \hat{K}(x)=\|J(x)\| \text { wintix. }
$$

more usful is:
Rel. cond $\# K:=\sup _{\delta_{x}} \frac{\|\delta f\| /\|f\|}{\|\delta x\| /\|x\|}=\frac{\|J(x)\|_{2}}{\|f\| /\|x\|}$
$7<10^{3} \quad$ well rand '
impertant since conyute brings in relatiae crors.

Basic aps: $f(x)=x / 2 \quad(m=n=1) J=f^{\prime}=1 / 2$ so $\nless=\frac{|1 / 2|}{1 / 2}=1$

- $f(x)=x^{*} \quad J=f^{\prime}=\alpha x^{\alpha-1} \quad \neq=\frac{\left|\alpha x^{\alpha-1}\right|}{x^{\alpha} \mid x}=|\alpha| \quad \lll Q^{3}$. watcond for
wasmable puwes
- $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$ subtraction $(n=2, n=1) . \quad J=\left[\begin{array}{ll}1 & -1\end{array}\right] \quad\|J\|=\sqrt{2}$ reasonable pawes.

$$
x=\frac{\sqrt{2} \sqrt{x_{1}^{2}+x_{2}^{2}}}{\left|x_{1}-x_{2}\right|} \rightarrow \text { as } x_{1} \rightarrow x_{2} \neq 0 . \quad \text { can be ill-conk. }
$$

- $f(x)=\sin x$, for $x \geqslant 10^{100}$ say : $\|J\| \leq 1$ but $k=\frac{\|J\||x|}{|\sin x|} \geqslant|x|=$ luge. .
- firding poly sorts ill-cond
 bat syin,$\hat{k} \approx 1$.

$$
\left.\because c_{\lambda=1}, 1\right\rangle \quad r_{\lambda=\{0,2\} \quad\|\delta f\| \sim 1}
$$ $\hat{K} \sim 10^{3}, k \sim 10^{6}$.

Anatory: SUD \& \&spaces: r ramk. \quad Gj00,j>r.

rank $r:=\#\left\{j: \sigma_{j}>0\right\}$
numerial rank $r_{\varepsilon}:=\#\left\{j: \sigma_{j}>\varepsilon\right\} \quad \varepsilon \sim \sigma_{i} \varepsilon_{\text {mach }}^{\text {(machine precision). }} \sim 10^{? *-16} \sigma^{0}$.
 Conditining. $(\xi 12$ NL.A): proferty of a mith problen (vs. Shbilitit: procecty of alg. wed
 - vecter of matro of poly
givan $x=$ vec. of given $x=$ vee.
poly colf.

$$
T_{2-\text { noms }}
$$

$$
\begin{aligned}
\pi & <10^{3} \text { wall rond } d^{\prime} \\
& \Rightarrow 10^{3} \text { ill } \text { cond }
\end{aligned}
$$

Basic ops: $f(x)=x / 2{ }^{(m=n=1)} J=f^{\prime}=1 / 2$ so $k=\frac{|1 / 2|}{1 / 2}=1$

- finding poly soti ill-cond
 $\leq 1)$. but symes, $\hat{k} \approx 1$.
$T_{\lambda}=\{0,23:\|\delta f\| \sim 1$ $\hat{\mathcal{K}} \sim 10^{3}, \mathrm{~K} \sim 10^{6}$.

Mat-vae wulth?

$$
\text { so } \quad k \leqslant\|A\|\left\|A^{-1}\right\|
$$ w/ equality if $b=u_{1}$

call $\|A\|\left\|A^{-1}\right\|=: \mathcal{X}(A)$ cond A of metoix $A=\frac{\sigma_{1}}{\sigma_{m}}=$ eccaitroity of hyperellipse. $\overline{E E x}^{1}$: chate. What it A perterbed insteed, insolving lins sys? ixputs is A, outzat x (6 held consto).
cansider infinitesinect clanages:

$$
\begin{array}{ll}
\text { so } \frac{A x}{}+\delta A x+A \delta x \\
\text { so } \delta x=0 . A^{-1} \delta A x, & \|\delta x\| \\
\text { cond }\|:\| x \|
\end{array}\left\|A^{-1}\right\|\|\delta A\|
$$

$$
\begin{aligned}
& (A+\delta A)(x+\delta x)=b \\
& \text { so } A x+\delta A x+A \delta x+\delta A \delta x=\text { ignoce to } 1 \text { Ir ordur } \\
& \text { Costab b }
\end{aligned}
$$

$$
\Rightarrow \text { Thu: }^{(12 \cdot 2)} \frac{\|\delta x\| /\|x\|}{\|\delta A\| /\|A\|} \leq\left\|A^{\wedge}\right\|\|A\|=K(A) \text { again. }
$$

Floating Point

- since A,b stred to 16 digits, eypect to lact x to 16 - $\log _{10} x$ dizik acc.
$x \in \mathbb{R}$ digited ry: finite \# bits \Rightarrow finite subset F of $\mathbb{R} \Rightarrow$ must be $\left\{\begin{array}{l}\text { lowort highat } \pm 10^{308} \\ \text { gaps! }\end{array}\right.$
eg $[1,2]$ ige by sct $\left\{1,1+2^{-52}, 1+2 \cdot 2^{-52}, \cdots 2\right\}$
$[2,4]$ is twice these $($ loger gaps 1$)$ relation gap 2.2×10^{-16} never exceeded. 'dondleprec
in leEE
(but a yoor algaithm can canse this to dominate).
Formally, base $=\beta=2$, pracisin$=t=53$
set is $F=\left\{0, \pm \frac{m}{\left.\beta^{t} \beta^{e}, \pm \operatorname{Inf}, N a N\right\}}\right.$ specinl cods, rather than menbers of \mathbb{R}. $\begin{aligned} \beta^{t-1} & \leq m\end{aligned} \leqslant \beta^{t}+\begin{aligned} & \text { so } \frac{m}{\beta^{t}} \in\left[\frac{1}{\beta}, 1\right]\end{aligned}$
$e \in \mathbb{Z}$ exponent (we igoore overfunderflow, thet thero is in fact a lagaot iel).
Note $\beta F=F$, self-similes.
$\sum_{\text {mach }}=\frac{1}{2} \underbrace{1-t}$ is langolt relative esor : ie $\forall x \in R, \exists x^{\prime} \in F$ s.t. $\left|x^{\prime}-x\right| \leq \varepsilon_{\text {muel }}|x|$ bugest ral. gap.
G letsuch on x^{\prime} be called $f(x)$
Then $\forall x \in \mathbb{R}, \exists \varepsilon,|\varepsilon| \leq \varepsilon$ much st. $f(x)=(1+\varepsilon) x$ bounded rel. er.
IEEE douther precision $\varepsilon_{\text {much }}=2^{-53} \times 1.1 \times 10^{-16}$

$$
\begin{aligned}
& f(x)=A_{\substack{ \\
m \times m .}}^{\substack{I=? A}} \xrightarrow{\|A\|}\left(\frac{\|x\|}{\left\|A_{x}\right\|}\right) \rightarrow \text { if } A \text { wensing., } \leq\left\|A^{-1}\right\| \text {, why? } \\
& \|x\|=\left\|A^{-1} A x\right\| \leqslant\left\|A^{-1}\right\|\|A x\| .
\end{aligned}
$$

Arithmetir let $\theta \theta \otimes \theta$ be anelogs of $+-x \div$ excopt done by mohme.
let © be ang of 4 : Conld require $x * y=f^{\prime}(x * y)$, ie given the unique prunding of answer. Bet ouly reed wenter: Fund Axiom of Flonting Pt:

$$
\forall x, y \in F \quad \exists \varepsilon \quad \text { w }|\varepsilon| \leqslant \varepsilon_{\text {mach }} \quad \text { s.t. } x \otimes y=(1+\varepsilon)(x * y)
$$

i.e rel. err bufed by Emach

For \mathbb{C} irstad of \mathbb{R}, turns ont to be $2^{3 / 2} \varepsilon_{\text {mach }}$, similar.

Stalitigy ($\$ 14 \mathrm{NL}-\mathrm{A})$ dy getting nall ans. evon if not acact.

Formally: $O\left(\varepsilon_{\text {wath }}\right)$ means $\leqslant C$ Emach as $\varepsilon_{\text {madd }} \rightarrow 0$ ie a fanily of floatiny pt sys, for some const C, uniformly over all deta $x \in X$.
Prectically: $<10^{3}$ Emach ok, $>10^{8} \varepsilon_{\text {meach }}$ not ok.
But if prollan f illcond, curreasomatle to leneasid this! Why? rounding on input changes $x \rightarrow f(x)$ \& if k v. high, change geto blam up by K so even if alg. exach, conust have $O\left(\varepsilon_{\text {mach }}\right)$ rel.cers in output.
Insteod: defin
$A \lg$ stable if $\forall x \in X, \frac{\|\hat{f}(x)-f(\tilde{x})\|}{\|f(\tilde{x})\|}=O\left(\varepsilon_{\text {mach }}\right)$ for some $\tilde{x} \quad$ s. $\left(. \frac{\|\bar{x}-x\|}{\|y\|}=O\left(\varepsilon_{\text {mach }}\right)\right.$ "nearly vighr anower to neanly right question"
strongur: Bachwanl stable : $\forall x \in X, \quad \tilde{f}(x)=f(\tilde{x})$ for some \tilde{x}^{2} s.t. $\frac{\left\|x^{2}-x\right\|}{\|x\|}=O\left(\varepsilon_{\text {unach }}\right)$ "exadly right ans. to narly oight queotion".
Eg is θ blew stible? porb is $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$
[א|S]
$A \operatorname{cg}$ is $\tilde{f}^{\prime}\left(x_{1}, x_{2}\right)=f\left(x_{1}\right) \Theta f^{\prime}\left(x_{2}\right)$

$$
\begin{array}{cl}
=\left[x_{1}\left(1+\varepsilon_{1}\right)-x_{2}\left(1+\varepsilon_{2}\right)\right]\left(1+\varepsilon_{3}\right) & \stackrel{\text { set. }}{1} \quad \\
x_{1}\left(1+\varepsilon_{4}\right)-x_{2}\left(1+\varepsilon_{9}\right)
\end{array}=f\left(\tilde{x}_{1}, \tilde{x}_{2}\right) \quad \text { exait for }
$$

[tec4. cont]
Is $f(x)=x \theta 1$ blew st?

$$
\hat{f}(x)=\left[x\left(1+\varepsilon_{1}\right)-1\right]\left(1+\varepsilon_{2}\right) \stackrel{\text { set. }}{=} x\left(1+\varepsilon_{3}\right)-1=
$$

how bi) is ε_{3} ? $\quad x \varepsilon_{3}=x\left(\varepsilon_{1}+\varepsilon_{2}+O\left(\varepsilon^{2}\right)\right)-\varepsilon_{2}$

$$
=f^{\prime}\left(x^{\prime}\right)^{\prime}
$$

$$
\text { So } \quad \varepsilon_{3}=\varepsilon_{1}+\varepsilon_{2}-\frac{\varepsilon_{2}}{x}=O\left(\varepsilon_{\text {mul }}\right)+\frac{1}{x} O\left(\varepsilon_{\text {naxd }}\right)
$$

So as $x \rightarrow 0$, not bkw stalle. But, is stible.
Some algs unst! (ey poly roots)
meanivy: compurted soln \tilde{y} sat. $(A+\delta A) \tilde{y}=b$ exacly for some δA rith $\left\|_{0} A\right\| /\|A\|^{=}=O\left(E_{\text {mat }}\right)$
 $Q R$ is (thm $16.2 \mathrm{~N}(\mathrm{H})$
Gansiancelim. Wf partial pirotiong is ch. 22 . (if avoid incretibly sare pathologina
matrixices)
is bke stath vix SVD (Thm 19.4)
Hour do? A\b midivide decs it.
or, explicitly, $A=O \Sigma V^{*}$ so $x=V^{*} \sum^{-1} U b=: A^{+} b$
Reminder: $\frac{\|\tilde{y}-y\|}{\|y\|}$ may not be small, ie y itself inaccumte! What is ally cuuse of this in Lkw.-stalle aly? of v. targe.
But in this case, such is bkew st: as poord as one conll lipe fer!
How uccurate is \tilde{y}, ieg (x) ? For any bkw-stalle alg: $x \rightarrow f(x)$
Than (15.1): if cond (is $2<(x)$ for problem $f(x)$, aly is bkew ot, and compotar obeys floathy pt axious, then rel. err. satrisfics

$$
\frac{\| \tilde{f} x)-f(x) \|}{\|f(x)\|}=O\left(\nless(x) \Sigma_{\text {mad }}\right)
$$

- Ie, enor is \nless कimas worse. If $火>10^{16}$ you lese all digits of $f(x)$ or of y. Bat it still holds thal
- Pferig: by $\left.d_{0} f_{1} . \quad f f_{x}\right)=f\left(x^{x}\right)$ (a) for sime $\frac{\left\|x_{x}-x\right\|}{\|x\|}=O\left(\varepsilon_{\text {man }}\right)$ (b)
Defn. of $k: \quad\|f(x)-f(x)\|$ $(A+O($ nuda $a)) \tilde{y}=b$
exactly!
$\|f(x)\| \|(k+o(1)) \frac{\left\|\tilde{x}^{2}-x\right\|}{\|x\|} \quad x \sin$ in (a) $\ell(b)$. QED. since not infinitesinal.
Shability a monlong done

Lec 4 part 2.
Interpolation [fimn Kroo. NA 88.1]
Arproxe fuse f on $[a, b)$ by degrec-an poly. $p(x)=\sum_{k=0}^{n} a k x^{k}$

$$
p\left(x_{j}\right)=y_{j} \quad \therefore j=0, \cdots n
$$

why gord ide?
Weiedstuog: for ead

$$
\text { so } \underbrace{\left[\begin{array}{llll}
1 & x_{0} & x_{0}^{2} & \cdots \\
1 & x_{1} & x_{1}^{2} \\
1 & \dot{x}_{n} & & \\
x_{n} &
\end{array}\right]}_{M}\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{n}
\end{array}\right]=\left[\begin{array}{c}
f\left(x_{0}\right) \\
\vdots \\
f\left(x_{n}\right)
\end{array}\right]
$$

pared $\operatorname{det} M \neq 0$ is lec $1 \Rightarrow$ solu existy, unijue.
Let $\ell_{k}(x)=\prod_{\substack{j=0 \\ j \neq j k}}^{n} \frac{x-x_{i}}{x_{k}-x_{j}} \quad k=0, \cdots n \quad$ alled Lagrange Lois (1794)

Note. n large (>30 may cavore stability probe since $\sup _{x \in[a, b)}\left|l_{k}(x)\right|$ exp. larme

- Narton 1676 realised mare practial method Clividad differinces a we lont naed.
 for any $p \in \mathbb{P}_{n}, L_{n} p=p$ so what linat of op. is L_{n} ? prjectin : $L_{n}^{2}=L_{n}$.
Error of Nterp. Lnf-f is a fane.
a pecall $C^{k}[a, b]$ space of k-tikes cont difflle funcs, ie $k^{\text {m }}$ deno is cont.
Thom ($\delta \cdot(0)$ Let $f \in C^{n+1}[a, b)$, hen for each $x \in[a, b]$ there exits $\zeta \in[a, 1]$ st.

$$
f(x)-\ln f(x)=\frac{f^{(n+1)}(\xi)}{(n+()!} \prod_{0^{-\infty}}^{n}\left(x-x_{j}\right)
$$

- So if you know $\left|f^{(n+1)}(x)\right| \leqslant C$ in $x \in[a, l]$ you get on enor a, timate a in math 'a, fimater' neans sigorms
p: \quad trinal if $x=x_{j}$

$y=x: \quad g(x)=0$ two! (that wat why costwated), so g las $n+2$ zerrs. in $[a, b]$ By Polles thm. g^{\prime} has \geqslant ayl zans.

$$
\text { etz.... } g^{(n+1)} \text { has } \geqslant 1 \text { zero, call it } \xi
$$

Set $y=\left\{\quad \& \operatorname{eva}\left(g^{(n+1)}(\xi): \quad 0=f^{(n+1)}(\xi)-0^{r^{\text {singe depree }}(n+1)!\frac{f(x)-L_{n} f(x)}{\pi_{j=0}^{n}\left(x-x_{j}\right)}}\right.\right.$ QED sueaky!.

1e0.5. 1126.
Write top of ws on boand.?
w's on $n=1$ lognange.

- danasi chages-potatiat, ela

Equiprieal wodles Semo diptr $S^{C^{\infty}}$, ic all deniss. cont.

But if cluster pto near ends, as $n \rightarrow \infty$ wil?
 why?
If assume nothing about nodo, product $\left|\prod_{T=1}\left(x-x_{n}\right)\right| \leq(6-a)^{n+1}=: H^{n+1}$
\& then $\| f$-Luf $\|_{\infty} \leqslant \frac{\| f^{(n+1)} \sum_{\infty}}{(n+1)!} \cdot \mathcal{L}^{n+1}$ - Iengt of interal.

How bigne lightaylor coffls of a func?
 for $\mid=\rho-\varepsilon$, $\forall \varepsilon>0$ ie $\left|a_{n}\right| \leqslant \frac{C}{(\rho-\varepsilon)^{n}}$

much stronger thans menely C°
But if f analytic in neighborhord of $[a, b]$, but singulaition are Hor closer, may fail te-cowroge.
F Heave for you to say where pollo of $\frac{1}{1+25 x^{2}}$ are! (Ramg).

Ihe badnerr): if constract sq. of intup. opecateas $\left(L_{n}\right)$ each with $\left\{x_{j}^{(n)}\right\}_{j=0}^{n}$ nodo, Thm $(8,17)($ Faber $)$: for each suchsq. $\exists f \in C[a, b]$ st. Laf $\nrightarrow f$ anit on $[a, b]$.

Why best to chustw nodes at euds of $[-1,1]$?
[skip]?
(Trefethen, Spec. Meth §5)

$$
\begin{aligned}
& \frac{1}{n+1} \ln \left|\prod_{j=0}^{n}\left(x_{2}-x_{j}\right)\right|=-\frac{1}{n+1} \sum_{j=0}^{n} \ln \frac{1}{\left|z-x_{j}\right|}=\text { electiostatio potentiol in } \mathbb{R}^{2}=\mathbb{C} \\
& =: q_{n+1}(2) \\
& \text { due to } n+1 \text { charges stranth } \frac{-1}{n+1} \text { at } \\
& \text { nodes. } \\
& =1=e^{(n-1) \phi(2)}\left|q_{n+1}(2)\right| \quad \text { modes. } \quad=\phi_{n+1}(z)
\end{aligned}
$$

Say as $n \rightarrow \infty$, noder tend to fixal density func $\rho(x)>0$ on $[-1,1]$, then $\phi_{n+1} \rightarrow \rho$

$$
\text { stamatized } \int_{-1}^{1} p(x) d x=1 \quad \quad \phi(2)=-\int_{-1}^{1} \rho(x) \ln \frac{1}{|2-x|} d x
$$

Ouiform ase $\beta=1 / 2$ so $\phi(2)=\frac{1}{2} \int_{-1}^{1} \ln |z \cdots x| d y: \rightarrow$ yon can eval.
\& chech $\phi(0)=-1$ but $\phi(\pm 1)=-1+\ln 2$ laver at
so $\left|q_{n+1}\right|$ is $\approx e^{(n+1) \ln 2}=2^{n+1}$ time bijper at cado

- Show chages-potentivi.m.

Is there a ρ lensity ihat gives. ϕ, hence $\mid q d$, condt on $F 1, J$?

- show chapes requilibusti.m.
\therefore this same applice to $\ln (x)$: for $k x k / 2$ inminde. exp- large ot eads \Rightarrow unstribe.
san shan vir conyler analysis (map pim exterin of dise to line); $\rho(x)=\frac{1}{\pi \sqrt{\left(-x^{2}\right.}}$ chebysher dengity.
This is dursity that $x_{j}=-\cos \frac{\text { If }}{H}$ approach all|l.

Given sinallest poss hax $\quad z \in[-1,1] \emptyset(2)$ hase smallest $\left|q_{n+1}\right|$, beit interp. converuace.
can shom sigulastion of, f can be arb. Close to $[a, b]$ a still git exponcution conv. (andylytic on $[a, b])$
L spectial ancthod).
Sq. 1 Quadvature.

Givan nody, what are gand wright? Piek st. $Q_{n}(f)=\int_{a}^{b}\left(L_{n} f\right)(x) d x$ ie intignte the interpolith. polyexally, quad.
That (I.2) given disknet woth $\left\{x_{j}\right\}_{j=0}^{n}$, the above

$$
=\sum_{k=0}^{n} \underbrace{\int_{A}^{b} l_{k}(x) d x}_{\text {fiyev } w_{k}} f\left(x_{k}\right)
$$

\Rightarrow riateparationg quad.
$\left\{w_{j j}\right\}_{j=0}^{n}$ are the uxijue set which itignto all $p \in \mathbb{P}_{n}$ exaclly.
Pf: $Q_{n}(p)=\int_{k}^{b}\left(L_{n} p\right)(x) d x=\int_{a}^{b} p(x) d x$ axact. Unique since $\sum \omega_{k} f\left(x_{k}\right)=\sum \omega_{k}\left(L_{n} f\right)\left(x_{k}\right)=\int_{n}^{\sim}\left(L_{n} f\right)(x) d x$
so intery \Leftrightarrow exat.

$\sqrt{E_{j}} n=1$

$$
w_{0}=\int_{a}^{b} l_{0}(x) d x=\int_{a}^{b} \frac{x-b}{a-b} d x=\frac{1}{2}(b-1)=\frac{\operatorname{mb}_{h}}{2} \quad w_{1}=\operatorname{sanac}
$$

so $Q_{1}(f)=\frac{H}{2}\left(f(x)+f(b)=f_{\text {area }} f(a)\right.$ trapezoid rale.
Error anal? Then 9.4 Let $f \in C^{2}[a, b]$, Hem $\underbrace{\int_{a}^{b} f(x) d x-Q_{1}(f)}_{E_{1}(f)}=-\frac{b^{3}}{(2} f^{\prime \prime}(\xi)$ for some $f \in[a, b]$ pf.

$$
E_{1}(f)=\int_{1}^{\delta} f(x)-L_{1} f(x) d x=\int_{1}^{b} \underbrace{(x-a)(x-b)}_{\leqslant 0} \frac{E_{1}(f)}{\frac{f(x)-L_{1} f(x)}{(x-a)(x-b)}} d x
$$

MVT for setigrts: if $g \geqslant 0, f \in C$, then $\int_{a}^{6} g f d x=g(z) \int_{1}^{b} f d x$ for some \geqslant in (a, b)

$$
\text { so } E_{1}(f)=\underbrace{\frac{f(z)-L \cdot f(2)}{(z-a)(z-6)}}_{b_{y} \text { him } 8 \cdot 10 \text { List tine }} \underbrace{\int_{a}^{b}(x-1)(x-b) d x}=-\frac{1}{6} h^{3}
$$

$=\frac{f^{\prime \prime}(\xi)}{2!}$ sone ξ.

Lee 6. M126

reed Druoln- $Q_{n}(t)=\sum_{j=0}^{n} w_{j} f\left(x_{j}\right) \quad \exists \backslash\left\{\psi_{j}\right\}$ ir. Q_{n} exact $\forall \& P_{n}$.

TM. (19.4): Let $f \in C^{2}[a, b]$, then $\left|S_{a}^{l} f(x) d x-Q(g)\right| \leqslant \frac{1}{12}\|f\|_{\infty} h^{3}$

Mary splt interal into sauller e apl
tapecoril.

"composite trapezoid rule"

$$
\text { ersor } \leq \frac{1}{12}\left\|f^{\prime \prime}\right\|_{a} h^{3} \cdot \frac{b-1}{h} Q_{c a r}(f)=h\left(\frac{1}{2} f\left(\frac{1}{h}\right)+f(n+h)+\cdots \quad{ }^{h} f(b-h)+\frac{1}{2} f(b)\right)
$$

Clow-order.
intral, ey $a=2$ simpsens, (17 as $)$ of nods $(n \times D)$.

Gucides for w_{j} as $n \rightarrow \infty$? wo are $\int_{1}^{b} f_{j}(x) d x$ \Rightarrow exp. large $\&$ oscillham \rightarrow bad for
Another way in cllich negitue weight bad: Convergance.
$(\$ 9.2)$

$$
\begin{aligned}
& \mid P \cdot[\text { Thum } 12 \cdot 1 L E] \text { : Peano } k \text { cand } K(x)=\frac{1}{2}(x-x)(b-x) \geqslant 0 \text { on }[0, b] \text {, } K^{\prime \prime}=-1 \text { on }[a, b]
\end{aligned}
$$

Consider sq. 乘 $\left(Q_{n}\right)_{n=0}^{\infty}$ of othemes. $Q_{n}(f):=\sum_{j=0}^{n} w_{j}^{(n)} f\left(x_{j}^{(n)}\right)$

 Farts 1) $\mathbb{P}=$ =poly's 'danse' in $C[a, b\}$, mani.j): $\forall f \in \subset[1, b] \& \in \varepsilon>0, \exists p \in \mathbb{P}$ st. $\|f p\|_{\infty} \leqslant \varepsilon$ $\tau_{\text {it need intaition: like } \mathbb{Q} \subset \mathbb{R} \text {, but }}$

 pointrize convergence \leftrightharpoons

$$
\forall f \in X_{j \rightarrow \beta}^{\lim _{n \rightarrow 1}}\left\|Q_{n} n^{\top}-Q f\right\|=0
$$

$\left(Q_{n}\right)$ unifiruly buted al convergut onidiunse

$$
\left\|Q_{n}\right\| \leq C_{1} \forall_{n}
$$

$\exists \cup \begin{gathered}\text { dinse subset } \\ \text { st } \\ \text { st }\end{gathered}$ $\lim _{n+\infty}\left\|Q_{n} f-Q f\right\|=0$.

so ler's prove the non-P,U,B, part, the E in the B in $B S S$. func.1nal.
so let's prove the non-P,V,B, part, the E in thme
For ary $\varepsilon>0$,

$$
Q_{n} f-Q f=Q_{n} f-Q_{n p}+Q_{n p}-Q_{p}+Q p-Q f
$$

Tahe abs wal k use tri mey:

$$
\begin{aligned}
& \leq(C+1+b-1) E \quad \operatorname{smac} N \text { sulf lage. } \\
& \text { Cif you like, }\|Q\| \text {. }
\end{aligned}
$$

So for ench $\delta>0$, cheose $\varepsilon=\frac{8}{c+1+b-a}$ ficed contr. $\exists N$ st $\forall_{n}>N,\left|Q_{n} f-Q f\right|<\delta$. QQD. "upt \quad Qng, $y^{\text {Qp }}$

$$
Q_{0 n} \delta \cdots Q_{0} \text { bound by } \leqslant \sin \text { of } 3 \text { dist. }
$$

- Also called "E/3" argument, commenit finc.

Positive wrighls is enongh:
Corallay $(9.11$, Steklor $)$, if $\left(Q_{n}\right)$ conv for all polys, $l^{\prime \prime} w_{j}^{(n)} \geqslant 0$, then $\left(Q_{n}\right)$ conv.

$$
\text { pf: }\left\|Q_{n}\right\|_{0}=\sum_{j=0}^{n}\left|w_{j}^{(n)}\right| \underset{\substack{\text { nonneg. }}}{=} \sum_{j=v}^{n} w_{j}^{(n)}=Q_{n}(1) \xrightarrow[\text { pony }]{\text { inan }_{\text {pon }}} Q(1)=\int_{a}^{b} 1 d x=b-a
$$

so $\exists C$ st. $\left\|Q_{n}\right\|_{0} \leqslant C \forall_{n}$, use Srejö.

- Also minimal ravertoff espar since sies of waitht as small as poss.
- Eg \Rightarrow compesite trop. conv. (teve w's, conv. \forall poly's since each has $\left\|p^{\prime \prime}\right\|_{a}<\infty$)., Butrequispaed Nows inproved quadr. schows on $[a, b\rangle \ldots$ w pesitan wrijtls...
Gaussion Quendratum $(\xi 9.3)$: aptimat chrice of notes \rightarrow quen of quaditures. on $[1,1]]$
\rightarrow wrs. strayght in.
 Let's ghors whey: L, effinge Gausoitian quad iol ned nodes.
- orthogunatity for fimes. $\delta+g \Leftrightarrow D=(f, g)=\int_{a}^{b} f(x) g(x) d x$ Let $x_{0}, \cdots x_{2}$ be kistuctr nodo of a Ganegion quadr.

Lec. 7.
HW2 saboricf:
fruish Grauss $n=2 \quad W \cdot S$.
$2 \beta x^{2}=\int_{-1}^{1} x^{2} d x=2 / 3$
$2 \beta x^{4}=\int_{-1}^{1} x^{4} d x=7 / 5$

$$
\alpha=\sqrt{3 / 5}
$$

\mathbb{P}_{5} exach.

$$
\begin{gathered}
\beta=5 / 9 \\
\omega_{i}=2-2 \beta=8 / q
\end{gathered}
$$

Claim $2 n-1$ is highor pass. lagra for $(n+1)$ node priadr.
Lpf: $p=\prod_{j=0}^{n}\left(x-x_{j}\right)^{2} \in P_{2 n \times L}$ has $Q_{n}(p)=0$ but $Q(p)>0$.
Thu: $\left(9 \cdot(8)\right.$ Ciance weights non-negative if \quad if $l_{k}\left(x_{j}\right)=\delta_{j k}$ so $l_{k}^{2}\left(x_{j}\right)=\delta_{j k}$ so

Cor: Gausion quadr. convergut (lost timin).
gets exp. suall as
There are error buld for Gaws quadr, eg ordir-n nile eir $\leqslant\left\|f^{(2 n+2)}\right\|_{\infty} \int_{0}^{b} a^{2}(x) d x$ May geveraliue to waighted qu.der. $Q(f)=\int_{-1}^{1} F(x) W(x) d x$, has some usce.
Periodic Qualrature $\$ 0.4$.

$$
\begin{aligned}
f(x+2 \pi)=f(x) \forall x . \quad Q(f)= & \int_{0}^{2 \pi} f(x) d x \\
Q_{n}(f)= & \sum_{i}^{\frac{2 \pi}{n}} \sum_{j=1}^{n} f(\underbrace{2 \pi j})
\end{aligned}
$$ PF: $\sec [\mathrm{NA}]$, Euler-Machaninn.

Ie," survather f gives higher-oder algebraic converzace. const inde.
If $f \in C^{\infty}$, then eror $=Q\left(n^{-m}\right)$ for each $m \geqslant 0$, called super-algetoric" convergence.
But if f analylic, do evan bettor: exponential conv.
\rightarrow 2ollo.pdf slideo First review complex: $f(2)$ holomorphie in $D \subset \mathbb{C}$: menns awdytic of
Ey $\frac{1}{1+25 x^{2}}$ helomondite in $\& \backslash\{1 / 5,-1 / 5\}$. exch pt. in (b)
Simple pole $f(2)=b \leftarrow \quad c$ simple poles.
eztea: $f(2)=\frac{b k}{2-a}$ reoidue. generally at siteple pole,

$$
f(z)=\frac{b}{2-4}+\underbrace{c_{0}+c_{1} z+\cdots}_{\text {Taylor. }}
$$

Roidue then: it f Collonerybine is D apsert from finite il poles,

$$
\int_{\partial D} f(z) d z=2 \pi i \sum_{\text {poshe }}(\text { residene of cain pob) })
$$

Of of than (stico).

- May also derive from trigonometro interpolatim, ie Fonnier scries trancild at $\tan \frac{ \pm N}{2}$, is also exp-accupate.
$[$ Lec 7 middle of]
converse of this holds: Learmn 4.14: if $\left\{x_{j}\right\}$ node sat. $q_{n+1} \perp p_{n} y$, it's a Gauss, qued.
$p f$: recull interpolition quad. has $\sum w_{n} f\left(x_{n}\right)=\int_{a}^{b}\left(L_{n} f\right)(x) d y \quad \forall f \in C(a, b]$
claime each $p \in \mathbb{P}_{n+1}$ ran be winten $p=L_{n} p+q_{n+1} q$ for same $q \in \mathbb{P}_{n}$ why? $\quad p-L_{n p}=0$ at $\left\{\times x_{j}\right\}$, so q can have ot most $(2 n+1)-(n+1)=n$ zens.

So, if can find q_{n+1}, a degra-(net) poly, orthog to \mathbb{P}_{n}, with all'sorts in $[, 0, b]$, ned: the orto gire the node!
ORTHOGONAL POLYNOMALS (usefal amyway):
Lemana 9.F: \exists unsique seq. $\left.\left(q_{0}\right)_{0}^{"} \quad w\right) q_{0}=1 \quad k \quad q_{n}(x)=x^{n}+p(x), p \in \mathbb{P}_{n}$ which are mitually orthog. ie $\left(q_{n}, q_{n}\right)=0 \quad \forall m<n$, and $s p p_{n}\left\{q_{0}, q_{n} q^{\prime \prime}\right\}$
Pf: $1, x, x^{2}, \cdots$ are liar indy, an $[a, b]$, so Gram-Schmi at uniguc:

$$
\begin{aligned}
& q_{0}=1 \\
& q_{1}=x-\frac{\left(x, q_{0}\right)}{\left(q_{0}, q_{0}\right)} q_{0} \\
& q_{2}=x^{2}-\frac{\left(x^{2} q_{1}\right)}{\left(q_{1}, q_{1}\right)}-\frac{\left(x^{2}, q_{0}\right)}{\left(q_{0}, q_{0}\right) q_{0}} \\
& \vdots \\
& q_{n}=x^{n}-\sum_{j=0}^{n-1} \frac{\left(x^{n}, q_{j}\right)}{\left(q_{i}, q_{j}\right)} q_{j}
\end{aligned}
$$

$\&$ theo $n+1$ L.I. element of \mathbb{P}_{n} (a.in+1-dim ceitor spaca) mustspan it.

- Legendra' poly's (but abose not std norrantizatim) : iwique seq. of orthog poly's on $[-1,1]$ w/ unveigtted imer product (f, g).
L-emand 9.16 qn his a single zeas ill an $[n, b]$ (…gord, so they give a Gatuse qued..) pt. $\forall_{n} \geqslant 1, q_{n}+q_{0}$ ic $\int q_{n}=0$ So q_{n} has $\geqslant 1$ 3eros $x_{1} \cdots x_{n}$ in $[1, b]$ supp. m<n, then $r_{m}:=\prod_{j=1}^{m}\left(x-x_{j}\right) \in \mathbb{P}_{n-1}$ so is $\left.+q_{n}\right\}$ but $\int r_{m} q_{n} \neq 0$ since $r_{m} q_{n}$ has fived sign, not $\left.\equiv 0.\right\} \stackrel{c o r i t n d i c t i m}{\Rightarrow}$.
In pactice, how compute $\left\{_{x_{j}}\right\}_{300}$? Thay are eiguab of \& $\left\{w_{j}\right\}$ come for cigavciters. "Gdub-Welsh" See code grust: m

$$
\left[\begin{array}{cccc}
0 & \beta_{1} & & \\
\beta_{1} & 0 & \beta_{2} & \\
& \beta_{2} & 0 & \beta_{3} \\
& & \beta_{3} & \ddots
\end{array}\right] \quad \begin{aligned}
& \text { tridirgond mentriy } \\
& \beta_{n}:=\frac{1}{2 \sqrt{1-(2 n)^{-2}}}
\end{aligned}
$$

($n<10^{2}$ ok, otherwise slow)
iden which is $O(n)$: find x_{j+1} from x_{j} by Tayler expionsim, coctp given by Legudre pily recurrance.

Proof

II

$\frac{1}{2 i} f(z) \cot \left(\frac{N}{2} z\right):$
$\frac{2 \pi}{N}$
2π

Residue Thm: $\quad 2 \pi i \sum$ residues
Beautiful cotangent function $\cot (z)$:
Res. Thm in strip:
f analytic
integrand pure Im on \mathbb{R}, so
Re parts antisymmetric \uparrow add
lm parts symmetric \uparrow cancel

1
add Re part of this to previous eqn:
$\frac{2 \pi}{N} \sum_{j=1}^{N} f\left(\frac{2 \pi}{N} j\right)-\int_{\Gamma} f(z) d z$
error of our quadrature
aid

Lec. 8 (M126)
Helas delinef:
Intigat Equs:
§12 [NA]
given intervat $[a, b]$, fanc f on $[a, b], \begin{gathered}\text { kerol } \\ 1 \text { func } \\ k\end{gathered}$ on $\left[a, ~(]^{2}\right.$ solve .. $\int_{a}^{b} k(t, s) u(s) d s=f(t) \quad \forall t \in[a, b]$

Tredbolan, 1 st kind: $\tau_{\text {right hand side. }}$

- What is $\left(K^{2} u\right)(t)$? $=\int K(t, s) \underbrace{(K u)(s)}_{\text {witiont. }} d s=\int k(t, s) \int K(s, r) u(r) d r d s$
when k^{\prime} is heroul of k^{2}

$$
=\int k^{\prime}(t, r) u(r) d r
$$

So $k^{\prime}(t, r)=\int k(t, s) k(s, r) d s$
[like matiok prod. $\left(A B_{i k}=\sum_{j} a_{i j} b_{j k}\right]$

- if $k(t, s)=0$ for $s=t$

Iover triargater,' thend Volledera, not Fredholuy,

Fredholm has stilt on bott sitho of ding.
liagorat.
$t=5$
soln. highly monunique, typ. of fot kind.
K is rank-1 since for any $u,(K u)(t)=$ a miltiple of t^{2}.

 ey. $k \in C^{2}[a, b]$ has $\|K\|_{a} \leq \infty$.

ca, be writton $S_{a}^{t} k(t, s) u(s) d s=f(t)$
has unique soln, , wait concem us.
og $k \equiv 1: \quad \int_{0}^{t} u(s) d s=f(t) \leftrightarrow f_{t>0} \Leftrightarrow(t)=f^{\prime}(t)$

Kend mayy How up on dinganal，eg $k(t, s)=\frac{1}{|t-s|^{\gamma}}$
But if $|k(t, s)| \leq \frac{c}{|t-s| \gamma} \quad \forall s, t, \quad 0<\gamma<1 \quad$ then L_{1} nom of each row bounded，

Numerial solution methed：Nusstion（1930）， $2^{\text {nd }}$ kind．

$$
\begin{aligned}
& u(t)-\frac{\int_{q}^{b} k(t, s) u(s) d s}{q^{\text {undr } Q_{n}} w / \text { wods }}=f(t) \quad \cdots s_{n} \ell \text { wacith } w_{1}, \cdots w_{n} \\
& u_{n} \text { which .oberys }
\end{aligned} \quad \text { in }(I-k)_{\mu}=f \text {. }
$$

appax u by u_{n} which obrens

$$
\begin{align*}
& u_{n}(t)-\sum_{j=1}^{n} w_{j} k\left(t, s_{j}\right) u_{n}\left(s_{j}\right)=f^{n}(t) \tag{x}\\
& \text { ic }\left(I-k_{n}\right) u_{n}=f \tag{t}
\end{align*}
$$

Then values at wordes $u_{i}^{(n)}:=u_{n}\left(s_{i}\right)$ set．The line sys）

$$
\begin{align*}
& \forall i=1, \cdots, u_{i}^{(n)}-\sum_{j=1}^{n} w_{j} k\left(s_{i}, s_{j}\right) u_{j}^{(n)}=f\left(s_{i}\right) \tag{L.S}
\end{align*}
$$

$$
\begin{aligned}
& K_{n} \text { is a rank-njapppridot } K
\end{aligned}
$$

－So govive solued for u at nodos－how get back full func $u_{n}(s)$ ？Lagarge siterp．poss；bectafifs：

\rightarrow Cont 有 k insent（N）intor（x）！ PF：$\quad u_{n}\left(s_{i}\right)=u_{i}^{(n)} \forall_{j}$ ，since sef $t=s_{i}$ in (N) ，giva（Ls）

Ose this to sub for $u_{j}^{(n)}$ in (N) tums it int（ (x) ，Vt．Subttl！
－（＊）exprosor un as $f r \operatorname{span}\{$ column slica of kanel at note $\}$
$K\left(0, s_{j}\right)$ ，form interpolition basio．
－（LS）is equiv．of Vademonde sys．requining sitespolant agrees at notos；（N）is aterpulitio formula．

 ensy trantare．
Bat do have ptwise convertacuce
ie for exid $\& \in($ and $)$

\rightarrow may hare x-dim range but behave like' finite-dim ops (ie, square matrices).
$X=C[a, b]$ topological space, face $f \in X$ is a point' in X. Choose metric nom eg. $\| f l_{l e s}$.
. seq $\left(f_{n}\right)_{u=1,3, \ldots}$ banded if $\left\|F_{n}\right\| \leq C \quad \forall_{n}=1,2, \ldots$ note: seq. goes forconer,

- seq (f_{n}) converges to $f \in X$ if $\forall \varepsilon>0$ wo mitis how sural, $\exists N$ st $\left\|f_{n}-f\right\|_{<\varepsilon} \forall_{n} \geqslant N$.

The (Bolzano-Weierstans.) if $\operatorname{dim}(x)<\infty$, every bud sq. contain a convergent subbed.

$$
f_{4} f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{2}
$$

eg $X=\mathbb{R}$: the only way to arid some limit p is ito escape subs of also gree on format!!
But $\infty \operatorname{dim}$ spaces such as $C[a, b], L^{2}(a, b)$ all funds $f{ }^{\circ}$ st $\int_{1}^{b}|f|^{2} d x<\infty$.

Defoe: linear op. $K: X \rightarrow Y$ bettriea normed lin space X, Y is compact if given any bounded seq. (f_{n}) in X, the seq. $\left(K f_{n}\right)$ contends a convergent subset.
"foes" finite dim.

- Eg. if K has finite-dim range. $\mathbb{R}^{N}: B W \Rightarrow\left(K_{x_{n}}\right)$ has con. subs. $\Rightarrow K$ copt.
- But K $K=I d$ in ∞-dim space $Y=X$: can fed it Fonierseq. \Rightarrow Knot apt

1) Cpt ops have tiscateiganalues w/ zero the only limit: $K \phi=\lambda \phi \quad$ then $^{\operatorname{lom} m} \lambda_{j} j=0$
2) Cut \Rightarrow budded (east to parade).

(4) K opt if: it is the operator nom limit of seq $K_{1}, K_{2} ;$ of ophop, ie $\lim _{n \rightarrow \infty}\left\|K-K_{n}\right\|=0$
 $\rightarrow\|<\|_{\infty}$
3) Thmediden Attemiture). Let $K: X \rightarrow X$ be cot
 so $\left\|K-K_{n}\right\| \rightarrow 0 . \& K$ is p. Then either i) for each $f \in X,(I-K)_{n}=f$ has unique sols $u \in X$
or ii) hemp. equ (I-K) $a=0$ has nontrivial sols
This asserts existace of sole te 2^{n} kind IE from unirrent (is) $\lambda=1$ is aigalght

Lee 9 (M126) part 2: PDEs.

$$
=\text { divgrad. }
$$

$\Delta a=0$ in Ω
$\Leftrightarrow \quad u$ humomicion $\left(\Leftrightarrow u=\operatorname{Re} v\right.$ forsone V analytie $\Omega \mathbb{C} \subset \mathbb{C} \approx \mathbb{R}^{2}$

Check $\ln \frac{1}{|x|}=-\ln |x|$ obegs $\Delta \ln \frac{1}{|x|}=0 \quad \forall x \neq 0$.

$$
\text { eg } \frac{\partial}{\partial x_{1}} \ln |x|=\frac{1}{2} \frac{\partial}{\partial x_{1}} \ln \left(x_{1}^{2}+x_{2}^{2}\right)=\frac{1}{2\left(x_{1}^{2}+x_{2}^{2}\right)} 2 x_{1}=\frac{x_{1}}{|x|^{2}}
$$

$\Rightarrow \quad$ Fundamantal Soln. $\begin{aligned} & \in \mathbb{R}^{2} \in \in \mathbb{R}^{2} \\ & \Phi(x, y):=\frac{1}{2 \pi} \ln \frac{1}{|x-y|} \text { otz. } \text { obeys } \Delta_{x} \Phi(x, y)=0 \quad \forall x \neq y\end{aligned}$ (Note: alculy scem in qudraterestifl in $\mathbb{C}=\mathbb{R}^{2}$) C shift the spike' to sit at loc. y.

$\rightarrow \mathrm{w} / \mathrm{s}$.
(choose $\vec{a}=u \vec{\nabla} v$ wher u, v sularfancs).
\& pord sule $\vec{\nabla} \cdot(u \vec{\nabla} v)=u \Delta v+\vec{\nabla}_{u} \cdot \vec{\nabla} v$ chack.

directional deriv. of Fund. Sol: sey \vec{n}^{2} is a unit vector $?$
deriv of $\Phi(x, y)$ unt moving source pt. y in \vec{n} dircetam: $\frac{\partial \Phi(x, y)}{\partial n_{y}}=\frac{1}{2 \pi} \vec{n} \cdot \vec{\nabla}_{y} \ln \frac{1}{1 x-y}$

$$
\begin{aligned}
\frac{\partial}{\partial y_{1}} \ln \frac{1}{|x-y|} & =-\frac{1}{2} \frac{\partial}{\partial y_{1}} \ln |x-y|^{2} \\
\text { so } \frac{\partial \Phi}{\partial n_{y}} & =\frac{1}{2|x-y|^{2}} \frac{\frac{\partial}{\partial y_{1}} y_{1}\left[\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}\right]}{2 \pi} \frac{\vec{n} \cdot(\vec{x}-\vec{y})}{|x-y|^{2}}
\end{aligned}
$$

is harmonic for $x+y$.

Lec 10 M26
elliptirPDEKPOtentexl Thery.
HWS: Seral Pedtentis of of dipeles, chech "Guuss' Caw".
\{do Nystrmen of kenal from this lec.
(LLE Ch, 6)

Last time

$$
v \equiv 1, \quad \text { a kammonic? }
$$

$$
\sum_{\text {venst }} \swarrow_{\text {ham }} 0=
$$

$$
\text { so } \int_{\partial \Omega} u_{n}=0 \text { jero flux.' (2F) }
$$

Greas Reprosentalion Formila: Let $u \in C^{2}(\Omega)$ be harm. in Ω, thes

$$
\begin{array}{ll}
(G R F) & \int_{\partial \Omega} \Phi(x, y) u_{n}(y)-\frac{\partial \Phi}{\partial n_{y}}(x, y) u(y) d s_{y}=\left\{\begin{array}{ll}
u(x) & x \in \Omega \\
\frac{1}{2} u(x) & x \in \partial \Omega, \\
0 & x \in \mathbb{R}^{d}, \text { inside } \\
\text { Lhm } 6 \cdot 5 \\
\text { parse if: } & \Phi(x, y) \text { Fund sol }=\left\{\frac{1}{2 \pi} \ln \frac{1}{|x-y|}\right.
\end{array} \quad \text { in } d=2\right.
\end{array}
$$

$\Phi(0, y)$ harmonic in $\mathbb{R}^{d} \backslash\{y\} \quad \frac{\kappa_{d}}{|x-y|^{d}-z} \xrightarrow{(0+} x_{1}$ $u_{n}=? \vec{n} \cdot \nabla u$
nomal dirce-deriv. $\begin{array}{lc}\text { normal directional deriv. writ. } y \text { pmam: } & \frac{\partial \overrightarrow{\underline{s}}}{\partial n_{y}}=\vec{n}(y) \cdot \overrightarrow{\nabla_{y}} \Phi(x, y) \stackrel{(d=2)}{=} \frac{1}{2 \pi} \frac{\vec{n} \cdot(\vec{x}-\vec{y})}{|x-y|^{2}} \quad \text { chate } \\ \partial \Phi(;, y) / \partial u_{y} \text { harm. in } \mathbb{R}^{d} \backslash\{y 3 . & \text { nomal @ } y\end{array}$
Soits bdoz data $u l_{\partial \Omega}$, u_{n}, enough to reconstruch u evergathere in Ω via a boundary integral!
pletosx: $-y^{7} n_{y}$ diyole potentinal
$P f_{\left(d=2, \begin{array}{cc}c \operatorname{cose} \\ x \in \Omega \\ d>2\end{array} \partial B(x ; r):=\text { circte radius } r \text { about } x\right.}$ Similar)
in $R:=\Omega \backslash \widetilde{\vec{B}(x ; r)}$ closed ball
$\Phi(x, y)$ harm as func of y (ie how $x=$ param, $y=$ coond.)
$\Rightarrow G 2^{n t I}$ in R for $u, \quad v=\Phi(x, \cdot)$,
$\begin{aligned} 0=\int_{R} u \Delta_{y} \phi(x, y)-\Phi(x, y) \Delta u & =\int_{\partial R=} u(y) \frac{\partial \Phi(x, y)}{\partial n_{y}}-\Phi(x, y) \\ & \leftarrow \text { mave } \partial \Omega \text { bits }\end{aligned}$
So

$$
\begin{aligned}
& \int_{\partial \Omega} \Phi(x, y) u_{n}(y)-\frac{\partial \Phi}{\partial n_{y}}(x, y) u(y)=
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 \pi r} \int_{\partial B} u(y) d s_{y}+\frac{1}{2 \pi} \ln r \int_{\mathcal{L w l y} ? Z F} u_{n}(y) d s_{y} . \quad \text { take }\left.\lim _{r \rightarrow 0} \xrightarrow{ } \lim _{r \rightarrow 0} u(y)\right|_{y \in \partial B}=u(x) \text {. }
\end{aligned}
$$

$$
\text { now } \partial R=\partial \Omega^{\prime}+\partial B^{\prime}
$$

when $\partial B^{\prime}=\partial B(x, r) \cap \Omega$

so in $\lim _{r \rightarrow 0}$, $\partial \Omega$ bally fiat so $\partial B^{\prime} \rightarrow$ half-cirde

$$
\& \frac{1}{2 \pi+r} \int_{\partial B^{\prime}} u(y) d s y \rightarrow \frac{1}{2} u(x)
$$

\& $\partial \Omega^{\prime} \rightarrow \partial \Omega$.

$$
\frac{1}{2 \pi} \ln r \underbrace{\int_{a B^{\prime}} u_{n}(y) d s_{y}}_{C=\pi r} \rightarrow 0 \text { since } u_{n} \text { band, } \& r \ln r \rightarrow 0 .
$$

Useful corollaries
i) since \mathbb{C} \& $\frac{\partial I}{\partial n, y}$ analytic funks. of $1^{\text {st }}$ var, ie $\left(x, y, x_{2}, \cdots\right), u$ is analytic in Ω unteach cord (Thm6.6) regnal l les how noensmath bela dalai
ii) mean, val. the for harm funcs. (UE Tum. $6 \cdot 7$) if a harm, $u(x)=\frac{1}{2 \pi i r)} \int_{\partial B(x ;-)} u(y) d s_{y}$ ie val. at center is mean of surface. Pf: GRF, brig out $\Phi(x, y)$ conch,
\Rightarrow Maximum principle: harm. funces attain their max \& min, on birr
PF: let x be isolted interior max, then. $\exists B(x, r), r>0$ \& mean val. \Rightarrow contandiction.
\Rightarrow Buy $\left\{\begin{array}{ll}\Delta u=0 & \text { in } \Omega \\ u=f & \text { in } 2 \Omega\end{array}\right.$ has at most one sol. Suppose u_{1}, u_{2} solus, then $w=u_{1}-u_{2}$ harm.

$$
\text { Bus } u=f \text { on } 2 \Omega
$$

iii)

$$
\int_{\partial \Omega} \frac{\partial \Phi}{\partial n y}(x, y) d s y=\left\{\begin{array}{cl}
-1 & x \in \Omega \\
-1 / 2 & x \in \partial \Omega \\
0 & x \in \mathbb{R}^{d} \backslash \Omega
\end{array}\right.
$$

$$
p F: G K F w / u \equiv-1\binom{\text { (is ham }}{u_{n}=0}
$$

"Gauss' Law" (OL) Can also parve via ZF \& small balls directly (try it).
portroend.
Layer potentials (wow nothitm)

Often use $\left\{\frac{\sigma_{\tau}}{\operatorname{ton}}\right.$ for density
eg GRF says, in $\Omega, u=S \sigma+D \tau \quad$ where $\sigma=u_{n}, \tau=-\left.u\right|_{2 \mu}$ eg $G L$ says. D1 generates potential -1 in $\Omega, 0$ outside. \leftarrow test in HW5 .

- How eval such integrab in practice? ($(d=2)$ enel) Change vaviable:

ey 2Ω giom by $f(f)$ in polars:

Coding: recommend you set up (intar? funcs $\langle z(s)$

$$
\text { ie } n(s)=\binom{n_{1}(s)}{n_{2}(s)}=\frac{1}{1 z^{\prime}(s)}\binom{z_{2}(s)}{-z_{1}(s)}
$$

$$
\left\{\begin{array}{l}
z(s) \\
z^{\prime}(s) \\
n(s)
\end{array}\right\}
$$

$j_{j=1}$ ie $n(s)=\binom{n,(s)}{n_{(s)}(s)}=\frac{1}{1 Z^{\prime}(s)}\binom{z_{2}(s)}{-z_{1}(s)}$

2) fill $d_{i j}$ untax eds for Nystriom

1) plets a potutatel due to given deasity func hand

Defune (let $x \in 2 r$)

The erpeat $D C P$ has $u^{*}(x)-u^{-}(x)=\tau(x)$, trme:
Thm (JR's) Let $\partial \Omega$ be $C^{2}\left(\right.$ ie $\left.z_{1}, z_{2} \in C^{2}\right), \quad \sigma, \tau \in C(\partial \Omega)$, and $u=S \sigma, v=D \tau$, then for $x \in \partial \Omega$,

$$
\begin{align*}
& u^{ \pm}(x)=\int_{22} \Phi(x, y) \sigma(y) d s, \\
& u_{n}^{ \pm}(x)=\int_{2 r} \frac{\partial \Phi(x, y))}{\partial n_{x}} \sigma(y) d s, \mp \frac{\sigma(x)}{2} \\
& v^{ \pm}(x)=\int_{2 \lambda} \frac{\partial(x, y)}{\partial y_{y}} \tau(y) d s y \pm \frac{\tau(x)}{2} \\
& v_{n}^{ \pm}(x)=\int_{2 \Omega} \frac{\partial^{2}(x, y)}{\partial n_{x} \partial n_{y}} \tau(y) d s y
\end{align*}
$$

$$
\begin{aligned}
& U^{ \pm}(x):=\lim _{h \rightarrow 0^{+}} u\left(\vec{x} \pm h \vec{n}_{x}\right) \text { nomed at } x: \Omega_{x}^{n_{x}} \\
& u_{n}^{ \pm}(x)=\lim _{h \rightarrow 0^{+}} \overrightarrow{n_{x}} \cdot \vec{\nabla} u\left(\vec{x} \pm h \overrightarrow{n_{x}}\right) \\
& \text { linition values on } \partial \Omega \text { from } \\
& \text { each sthe }
\end{aligned}
$$

$\operatorname{Cec} 11$ (M126)
$\left\{\begin{array}{l}\text { finish layer pat defns, IRs. last time. }\end{array}\right.$

Belry integral ops: $\delta: C(\partial \Omega) \rightarrow C(\partial \Omega)$ has kenned $\Phi(x, y)$ - note: wally singular q not 5
$D: C(\partial r) \rightarrow C(2 n) \quad$ kenned $\frac{\partial F(x, y)}{\partial n_{y}}$ $(\operatorname{ding} y=x \rightarrow \infty)$.

So $J R 3$ says, $\quad v^{ \pm}=D \tau \pm \frac{1}{2} \tau$
(if $v=D \tau$)
Sm want v to solve BuD $\left\{\begin{array}{l}\Delta v=0 \text { in } \Omega \\ v=f\end{array}\right.$ on $2 \Omega \in$ already, sat. by rep. $v=D \tau$! $v=f$ on $2 a \leftarrow$ set $v^{-}=f$ \& were done.
$\Rightarrow(D-1 / 2) \tau=f \quad$ FreddIE, (which kind? 2ud duet $1 / 2$), a Bdry IE (BIE). or $(I-2 D) \tau=-2 f$ BE in std. $2^{\text {nl }}$ kind form.
Recipeto soche BVP: i) solve BIE for τ, i) reconstruct $v=D \tau$ in interior of Ω.
$T_{m}=$ let $\partial \Omega$ be c^{2} smooth, in $d=22$. Ahenemel of \mathcal{D} is continuous.
intritionty,
(9) contour of $\frac{\partial(C)(2)}{\partial n_{y}}$ are circles, local curvature of $\partial \Omega$ dictates which contour your on. \Rightarrow curratione needs to be cont. $\Rightarrow C^{2}$.
Pf parametrize by $z: \mathbb{R} \rightarrow \mathbb{R}^{2}, 2 \pi$-periodic. $\partial \Omega \in C^{2}$ means $\tau^{\prime}\left(k \dot{z}(s)=\frac{d z}{d s}\left\{\begin{array}{l}\text { both } \\ \text { cont }\end{array}\right.\right.$
 wit $t, s \in[0,2 \pi), \quad k$ and $k(t, s)=\frac{1}{2 \pi} \frac{n(s) \cdot(z(t)-z(s))}{|z(t)-z(s)|^{2}} z(t) \underbrace{\theta}_{-}$
top $\&$ bot. cont. writ se t, \Rightarrow cont, $\forall s \neq t$.

$$
\text { also } \dot{k}\left(s_{j} t\right)=\frac{1}{2 \pi} \frac{\cos \theta}{r}
$$

$\lim _{t \rightarrow 5} k(t, s)$ tophbot vanish \Rightarrow I'Hôplial: $\frac{d}{d t}$ top $=n(s) \cdot \dot{z}(t) \rightarrow 0$ also! why?

$$
\begin{align*}
& \Rightarrow \frac{d^{2}}{d t^{2}} \text { top }=n(s) \cdot \ddot{z}(t) \xrightarrow{t-s} n(s) \cdot \ddot{z}(s) . \tag{夜多}\\
& \frac{d}{d t} \text { bot }=2 \dot{z}(t) \cdot(z(t)-z(s)), \frac{d^{2}}{d t^{2}} \text { bot }=2|\dot{z}(t)|^{2} \rightarrow 2|\dot{z}(s)|^{2}
\end{align*}
$$

Combine: $\lim _{t \rightarrow 5} k(t, s)=\frac{1}{4 \pi} \frac{n(s) \cdot \ddot{z}(s)}{|z(s)|^{2}}=\frac{-k(s)}{4 \pi}$

$$
\begin{aligned}
* & =\text { Coral cuiratura } \\
& =\text { (Earviradius }
\end{aligned}
$$

- In practice $B \mid E$ all done int $s, t \in[0,2 \pi)$, by changing are length $d s y$ to $\left|z^{\prime}(s)\right| d s$. $\Rightarrow f, \tau$ are funcs on $[0,2 \pi)$, and D has kernel $k(t, s)=\frac{1}{2 \pi} \frac{n(s) \cdot(2(t)-z(s))}{|z(t)-2(s)|} \cdot\left|z^{\prime}(s)\right| \quad t \neq s$,
or on the diagonal, $k(s, s)=\frac{-1}{4 \pi} \underline{\underbrace{\prime}(s) \cdot|z(s)|}$
Solving via $N y s t i o m ~(I-A) \vec{\tau}=-2 \vec{f} \quad$ lin. syst, $\quad \longrightarrow$ in code are $-\frac{n(s) \cdot z^{\prime \prime}(s)}{\left|z^{\prime}(s)\right|^{2}}$
where $N \times N$ mat. A has entries $a_{i j}=1$

$$
\begin{aligned}
& s_{j}=\frac{2 \pi_{j}}{N} \\
& w_{j}=\frac{2 \pi}{N} \quad \forall_{j}
\end{aligned}
$$

coli wee \vec{f} has $f_{j}=f\left(z\left(s_{j}\right)\right)$, the biding data at the nodes.
Solution vector $\vec{\tau}=\left\{\tau_{j}\right\}_{j=1}^{N}$ is density at nodes.
Commonly, $v=\mathcal{D} \tau_{l}$ is then approximated using these same quadrature nodes. interior soln in Ω,
... this invt always accurate! (active research by we!)
Them : above Bur has a soln. Pf: D kemel cont. $\Rightarrow D$ cut
Can show 2D doesnt have 1 as an eigralue. \Rightarrow by Frodholm Altimative, soln. τ exists \Rightarrow soln v exists
pot here.
Proof of JR3 (hard): ned t show $v=D \tau$ can be continuously extended from

$$
\Omega T_{v-} \mathbb{R}^{2}\left|\Omega t_{0} \mathbb{R}^{2}\right| \Omega \quad \text { " } \quad t_{0} \quad v_{+}=(D+1 / 2) \tau
$$

(1) Split into $G L$ e correction: let $x=z+h n_{z} \frac{\frac{n}{x} \frac{1 n_{2}}{z}}{\frac{1}{2}}$

If show $\lim _{h \rightarrow 0} v(3, h)=v(z, 0)$, uniformly in $z \in \partial \Omega$, we are done, since $G L$ accounts Ciecontinuons orth.
(2) Pick radius $r>0 \star$ split y integral into far' $\&$ local parts: for the jump.
 dep.on τ, not z.
$L_{\text {Lemma }}^{1.01)}($ local part $): \exists h>0 \& C($ md dep of $h)$ st. $\quad \int_{l u-2 k r}\left|\frac{\partial \Phi}{\partial m u}\left(z+h n_{z}, y\right)\right| d s, \leq C \quad \forall|h| \leq h_{0}$
(pf of LPL to follow.)
Then $|v(z, h)-v(2,0)| \leqslant C \frac{|h|}{r^{2}}+2 C \underbrace{\substack{\begin{subarray}{c}{z \in 2 \Omega \\|y-2|<r} }}}_{\text {given } \varepsilon>0 \text { can choose } r>0 \text { st. } \leq \frac{\varepsilon}{4 C}}|\tau(y)-\tau(z)|$
then choose $h_{0}=\frac{\varepsilon r^{2}}{2 C}$ since $\tau_{\text {on }}^{\text {cont. }} \overrightarrow{a \Omega}$ (\Leftrightarrow enif. cant.)
$\Rightarrow|v(3, h)-v(3,0)| \leq \varepsilon \quad \forall z \in 2 R \quad l|h| \leq h_{0}$. such an $h_{0}>0$ exist for each $\varepsilon>0$ $\Rightarrow v(\cdot h) \longrightarrow v(; 0)$ uniformly I
(3)

Finally, pf ot LPL:
2 geom. facts i) "Normal lemme" (NL): $\exists L$ st. $n_{y} \cdot(2-y) \leq L|z-y|^{2} \quad \forall z, y \in \partial \Omega$
 in $d=2 \mathrm{pf}$ is simply that donblekyor band is continuous. $d \geqslant 2$: Tagger them wort. s, pram.
ii) "Laver bud on distance" (LBD):

$$
x-y=z-y+x-z
$$

Then

path means $T_{r}:=\{y:|z-y|<r, y \in \partial \Omega\}$. Con paptetionto line variole change $d s_{y} \rightarrow d s$

$$
\text { So } \int_{\Gamma_{r}}\left|\frac{\partial d}{\partial x_{y}}(x, y)\right| x_{s y} \leq 2 C \underbrace{\int_{-r}^{r} 1+\frac{h}{s^{2}+h^{2}} d s}_{2 r+\pi} \leqslant C r+C \underbrace{T_{-\infty}^{2} \underbrace{\frac{1}{2}} \text { variable change dry } \rightarrow d s}
$$

$$
\begin{aligned}
& \left|\frac{\partial \Phi}{\partial n_{y}}(x, y)\right| \leq \frac{\left|n_{y} \cdot(2-y)\right|}{2 \pi|x-y|^{2}}{\underset{\sim}{L B D},}+\frac{\left|n_{y} \cdot(x-2)\right|}{2 \pi|x-y|^{2}}<\underset{C B D}{ } \leqslant h . \\
& \leq \subset+\infty \quad \underbrace{\frac{h}{|z-y|^{2}+h^{2}}}_{h^{L B D}} \\
& \text { Pick path (} \Gamma_{\text {around }} z \text { where } n(z) \cdot n(y) \geqslant 1 / 2, \forall y \in P_{r} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& |x-y|^{2}=\left|z-y+h n_{z}\right|^{2}=|z-y|^{2}+\underbrace{2 h n_{2} \cdot(z-y)}_{\int^{(N L)}}+h^{2} \\
& \geqslant \frac{1}{2}\left(|z-y|^{2}+h^{2}\right) \quad \begin{array}{l}
=L|z-y|^{2} \\
\quad \forall h \mid<h_{0},
\end{array} \text { for some } h_{0}>0
\end{aligned}
$$

M126 $\operatorname{loc} 12$

- Prave JR3 from lec II

OH Th $2-3$.
Discons jporject. txr.
HWS = convergnce rate worse mr. $\partial \Omega$ shan reseanh publ har deterixates!

Other BUPs.
We did interier Divichler: "What temperstion dist dow uniformly conducting boly settle to when bdry values sed to func. f ?"

- Interior Neumann: $\left\{\begin{array}{ll}\Delta u=0 & \text { in } \Omega \\ u_{n}=f & \text { on } \\ 2 \Omega\end{array} \quad\right.$ equilitinum temp. distr, $f=$ specified heat ingnt
flux at each pt on $\partial \Omega$.
What if pumping in more hat then extanctay? How up!
Atrady know u ham. \Rightarrow ZF: $\int_{2 \Omega} u_{n}=0$ ie $\int_{\partial \Omega} f=0$ for existence.
Then if u_{1}, u_{2} are solns, $w=u_{1}-u_{2}$ sat $\left\{\begin{array}{lll}\Delta w=0 & \text { in } \Omega \\ w_{n}=0 & \text { on } & 2 \Omega\end{array}\right\} \begin{aligned} & w=\text { consh a soln. } \\ & \text { [the only sonss. }\end{aligned}$

BE solution? if use $u=D \tau$ as before, $B C$ is $\int_{\partial \Omega} \frac{\partial^{2} \bar{I}}{\partial n_{x} \partial n_{y}}(x, y) \tau(y) d s y=f$

instend ty? $u=S \sigma$ so $\underbrace{\int_{22} \frac{\partial \Phi}{\delta n_{x}}(x, y) \sigma(y) d s y}_{D^{\top} \sigma}+\frac{\sigma(x)}{2}=U_{n}^{J R 2}=f$. kemel $\sim \frac{y}{|x-y|^{2}}$ n-diag not integnabl! cunbunded

IE is $\quad\left(I+2 D^{\top}\right)_{\sigma}=2 f . \quad 2^{\text {nd }}$ kind agmin. $\quad D$ cpt $\Leftrightarrow D^{\top}$ gph
But we know nonunique since BVP is, 1 but on practice, bachundle stadel liu. solver shand give
 Danger: the const will be lage \Rightarrow lass of digit in ${ }^{5}$.
 where $x_{0} \in 2 \Omega$ fixed.
Promes miquely soluable $\forall f \in C(\partial y)$.

- Extenir BUP : eg Diridhleh (ED) $\left\{\begin{array}{l}\Delta u=0 \text { in } k^{2} \backslash \bar{a} ~ \\ u=f \text { an } 2 \Omega\end{array}\right.$

$$
(x)\left\{\begin{array}{l}
\Delta=f \text { in } \quad \text { i } 2 . \\
u=0 \text {. } \\
u(x)=0(1) \text { as }(x \rightarrow \infty)
\end{array}\right.
$$

has unique soln $\forall f \in c$
 Conditiom at so inumed \tilde{u} is hamminis in $\tilde{\Omega}=$ \qquad arthe me \mathbb{R}^{d} (Follomen PDE bookl)
$\operatorname{Lec} 13$

Lest the usolve (u) dataf)
\because int. Dir BUP $\underset{(\text { pmen uniqne) }}{\leftrightarrows}(I-2 D) \tau=-2 F$

- int Nen BUP
(pmenenunipue ap to cust, nedd $\left.\int_{2 \sim}=0\right) \quad \varlimsup_{u=S \sigma}\left(I+2 D^{\top}\right) \sigma=2 F$
inkerits nonuniturearof BUP, ie
$\operatorname{dim}_{\text {sime }} \operatorname{Nu}\left(\left(I+2 D^{T}\right)=1\right.$.
These oe both "indircet" $B 1 E$: pirch a reprosentater for soln. u as cas solve lins sys. fine (irgit). $L P$, so that $B \mid E$ for unknom density cones out $2^{\text {nt }}$ kind
Why not $1^{\text {ot }}$ kind? eg tory $u=S 6$ for int Dir, wat BC

$$
5 \sigma_{\mathrm{JR1}} u^{-}=f
$$

but S ept \Rightarrow *eiguals iccuumulation at zaro, \Rightarrow ill-conditimed in a bad way (for N hange, wse iteratine ather them $O\left(N^{3}\right)$ birect (in solvers; they hate such a matrix),
"Dirat"BE also possible: GRF im intarior, $x \in \Omega$ then $\left(S_{n} u_{n}-D u\left(f_{n}\right)(x)=u(x)\right.$
Take $x \rightarrow \partial \Omega^{-} \&$ we JR1d3, get $S u_{n}^{-}-(D-1 / 2) u^{-}=u^{-}$

$$
\begin{equation*}
\Rightarrow \underbrace{(I+2 D)} u^{-}=S_{u_{n}^{-}} \tag{*}
\end{equation*}
$$

say you wonit to solve int Nea BVP then $u_{n}=f$, so RHS Sf tenown
as hare, dirat give afjoint of indirect.
When $B(E$ solurd, use (*) to reconstruct u in Ω unkuom isnlta density, ruther, the value.
Note: since we know homegy int. Nenisvp has only consts solus, ie $u^{-}=$const, then $N u l(I+2 D)$,
Exterior probs: eg Dirichlet BVP $\left\{\begin{array}{l}\Delta u=0 \text { in } \mathbb{R}^{2} \mid \Omega \\ u==f \text { on } \partial \Omega \\ u \text { uibunded is }|x| \rightarrow \infty\end{array}\right.$ $=\{$ coonst. fumes $\}$

Proof unique solm existo $\forall f \in C(2 n)$:
ϵ exthe condition neaded for aniqueness. (physsially: zerr total charge on body)
Let $\bar{a}(x):=u\left(\frac{x}{|x|^{2}}\right)$ "Kelvin kform of u ", funs outside in, yct \tilde{u} hermanie tor, "ow on condition "buded at ∞ " becomes "annlyte at 0 ". buded domain \Rightarrow existnce h unipuae.

expect BIE unipue? No! just showed op I+2D singular.
 For, suppose "couphementary EVP haunts the adrubility!" Will have
Sinilarston
$L_{\text {is is int Nen for ext Dir. }}$

$$
\text { then inere prod } \begin{align*}
&(\phi,(I+2 D) t)=2(\phi, f \\
&=(\underbrace{\left(I+2 D^{\top} \phi\right.}_{\text {zerr }} \phi, \tau) \\
&\left(\begin{array}{r}
*
\end{array}\right)
\end{align*}
$$

"Ghoos of int New hants BIE the single - layer 6 harnts BIE " which genenat const
forext. D in?"
\Rightarrow contradiction unless $f \perp \operatorname{Nul}\left(I+2 D^{T}\right)$
(easy purt of full version of Fredholm Altarative)
Literature: : various fixes, eg Coltors, replace D kend by $\frac{\partial \bar{\theta}(x, y)}{\partial n_{y}}+1$ Thm 39 , $C h .5$, colton.
canprove:exists, unique $\forall f . ~(c o l t o n s 5-3)$$d$, rather the " 1 kenel"

Helmbolty eqn.
homeg. int. Dir BVP

$$
\left(\Delta+k^{2}\right) u=0
$$

plays rode of Laplace op

$$
\left\{\begin{array}{r}
\left(\Delta+k^{2}\right) u=0 \text { in } \Omega \\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

there exist discrete $k_{1}<k_{2} \leq k_{3} \leqslant \cdots, A \infty$ s.t. has montriv. soln
PF: Δ atny on $\left\{u \in L^{2}(\Omega), u /_{2 n}=0\right\}$ has ept inverse prove since Greens finctrm $\Rightarrow-\Delta u=k^{2} u$ has Δ sett discrete Dirichler eiguals? k_{j}^{2}, accum only at ∞.
integaral kenel of Δ^{-1}, weakly singular.

To solve int. $\operatorname{Dir} B V P\left\{\begin{aligned}\left(\Delta+k^{2}\right)_{u} & =0 \text { in } \Omega \\ u & =f \text { on } \Omega\end{aligned} \quad\right.$ proced as Laplace, but ners kenod; that's it!
kenel: $\Phi(x, y)=\frac{i}{4} H_{0}^{(1)}(k|x-y|) \quad d=2 \quad H_{0}^{(1)}=-H_{1}^{(1)}$
Crontgaing' Hanhel function, a special Pane, -see DLMF.

$$
\frac{\partial I(x, y)}{\partial n_{y}}=-\frac{i k}{4} \underbrace{\frac{n_{y} \cdot(x-y)}{|x-y|}}_{\cos \theta} H_{1}^{(1)}(k|x-y|)
$$

Matleb: besselh $(\nu, z)=H_{\nu}^{(1)}(2)$
show
larity as Laplace \Rightarrow same JRS!

$$
O=\left(\Delta+k^{2}\right) u=\frac{1}{r} \partial_{r}\left(r \partial_{r} u\right)+\frac{1}{r^{2}} \partial_{\theta \theta} u-k^{2} u=\left(k^{2} f^{\prime \prime}+k \frac{f^{\prime}}{r}\right) e^{i v \theta}+(i v) \frac{f}{r^{2}} e^{i \nu \theta}-k^{2} f e^{i v}
$$

gather $k=z: z^{2} f^{\prime \prime}+z f^{\prime}+\left(z^{2}-\nu^{2}\right) f=0 \quad$ Bessd's eqn $\left(\gamma^{\text {th }}\right.$ orded), $H_{\nu}^{(1)}(z)$ is soln to ODE

Ext Dir Buy:
for u^{s}
(ED) $\left\{\begin{array}{c}\left(0+k^{2}\right) u^{5}=0 \quad \text { in } \mathbb{R}^{2} \backslash \Omega \\ u^{\varepsilon}=\int \quad \text { on } 2 \Omega \\ \lim _{r \rightarrow \alpha} r^{\frac{d u}{2}}(\underbrace{\left(\frac{\partial u}{\partial r}-i k u^{5}\right)}_{\text {ie in }}=0\end{array}\right.$
radiation condition: outgoing ($\left.e^{\text {ike }}\right)$ rather then incoming $\left(e^{-i k r}\right)$ as $r \rightarrow \infty$.
has unique sole. $\forall f \in C(2 \Omega)$, Collin- Cores The 3.7 .
Scattering: say incident wame' $u^{i}: \mathbb{R}^{d} \rightarrow \mathbb{C}$, eg. $u^{i}(x)=e^{i k n_{i} \cdot x}$
then it $u^{5} \quad$ sat $\left(\Delta+k^{2}\right) u^{i}=0$ in \mathbb{R}^{d}. phew ave
p have wave $H H \rightarrow n_{i}$
Solve c ((x)) wi $f=-\left.u^{i}\right|_{\partial \Omega,} u^{2}: u^{i}+u^{5}$ solves Helm. eqn in $\mathbb{R}^{d} \mid \bar{\Omega}$ \& vanishes on $\partial \Omega$ why? $u^{s} /=f=-u^{i} / 2 r$ cancelling the inc wave.
Note: u^{i} docents sat. radiation cond, but new woes due to obstack (u^{s}) do.

M126 lee 14
fintsh Melenkelts.

- Mik O'Neil talk $1-2$ pm.
(1) $\operatorname{Th} \cdot 2 / 21 / 12$.
start fast aly. tiflums.
- show $\{d y$-cigralsway.m.
$\left\{\begin{array}{l}\text { Neuwanu cigghes. } \\ \text { (overrath }\end{array}\right.$
lousrath- curverm
- Where de thanthel fanes conce frem? watr $\widehat{\left(\Delta_{x}+k^{2}\right)} \overline{\underline{g}}(x, y)=0$ for $\forall x \neq y$.
$6+2:$ wlog $y=0$. call $u=\Phi(\cdot, 0)$, want sat. Akime. u n.
$u(r, \theta)=f(k f) e^{i v \theta}$ polar sep of var.,$v \in \mathbb{Z}$ so singlevalued, solve for f :

$$
\begin{gathered}
\text { gather } k_{r}=z: \quad z^{2} f^{\prime \prime}+z f^{\prime}+\left(z^{2}-\gamma^{2}\right) f=0 \\
\left.l^{2}\right)
\end{gathered}
$$

Bescet's aqn, order ' (ODE)
$H_{r}^{(1)}(2)$ is soln. w/ \log slingatar $2 \rightarrow 0^{-1}$
large:-argumant: $H_{V=1 i s}^{(1)}(2)=\sqrt{\frac{2}{112}} e^{i\left(2-\frac{v \pi}{2}-t / 4\right)}+O\left(\frac{1}{2}\right)$
Are also solutions raguter at $z=0$: $J_{\nu}(z)$ Bessel fimes.
Fixing nonunipueness in Blt for suattering.

${ }^{\text {ap }}{ }_{2}-\nu$

 $k k^{2}$ its eigencalue.
Then by GRF, \quad S办 - - $\phi_{\partial r}=\phi$ in Ω. of carity" n).
take $x \rightarrow 2 \Omega^{-}$\& use JR3: $-\left.(D-1 / 2) \phi\right|_{\text {an }}=\phi l_{\text {ar }}$ ie $(I+2 D) \phi \phi_{\text {an }}=0$. since ϕ (on wontriv. (otherose $\phi: C$ by $\angle R C$), $\operatorname{dim} \operatorname{Nu}(x+20)>0$, singuleer, not solutle Shew cuoleing eigal of $2 D$ us $k:$ when hit $\left\{\begin{array}{l}-1 \\ +1\end{array} k^{2}=\left\{\begin{array}{l}\text { Nen cignel of } \Omega \\ D_{i}\end{array}\right.\right.$ Fred, Alt. (jass friku sq.matiox)
\angle projuct: use smantl earlition to find sich $k^{2} G$.
 Solved cet Dir BUP if $(x+2 D-2 i y s) r=2 f$

$$
\text { TJR3 as before croti (no jump fir } 5 \text { val.). }
$$

Thim: $I+2 D-2 i y s$ irjeclive $\forall k>0$
[pf: Ket $\tau_{\text {solve }}\left(\frac{1}{2} r, D \cdots\right.$ ins) $r=0$, vish th show $\tau=0$.
!fram τ cocnte polantal $v:=(e D-$ in $S) \tau$, then $v^{+}=0$ by constanctin of $B(E \quad(2 f=0)$.
$\Rightarrow r=0$ in $\mathbb{R}^{2} \mid \bar{\pi}$ by umpucues of exf. Dir. Bup for radiation solns. - a PDE rcall. (colton 56.5)

$$
\Rightarrow v_{n}^{t}=0 \text { on } \partial \Omega
$$

$\Rightarrow J R 1,3 \Rightarrow v^{-}=-q$
JR2,4 $\left.\Rightarrow \begin{array}{r}V=-q \\ V_{n}^{-r}=-i \eta r\end{array}\right\}\left(a_{1}\right.$

Take Im pant: $\tau=0$. $(a 0+b)$

QED.
$\tau_{\text {but conplex } k \text { mases hio up. }}$
Notes:

ii) Quachatier of BEE mow hereder: S has log simgalusity
 smoth $+\log \mid s \mathrm{H}$. smosth to high shes.
Kapur- Rofxlm. 997.
6) find exact wrigitit to intignte \log. suroth globerlly: 'proluct puadrature) Kicos' 91. better but mute anilftion work.
procids, rescarth.
c) other wnys to corrat near singulaity using neas set of ordes Apoct iol.
 exponculial).

Fast Algorithms: hoov payle solve big problems.
eg $N=10^{6}$: cant wen fill Nystom, withix $A\left(10^{12} \times 16\right.$ bytoo $\left.=160006 B\right)$

$$
\begin{aligned}
& \text { daunaded by conglex jem } \\
& \text { or 3d surface. }
\end{aligned}
$$ lef alone do dusse lonear sslue $\left(N^{3}=10^{18}\right.$ flopos)! A $\vec{x}^{3}=b^{1}$

Instend: iterative medheds. eg. 'GMRES' (NLA Ch.35), each itor. involuea $\vec{x} \rightarrow A \vec{x}$ coaverge, stap when residual ertbr $\left\|A_{\ddot{x}}-\mathrm{B}^{\prime}\right\|$ swall enough for y on.
 But $1^{\text {st }}$ kiord terible converagnee nate, nose leas$C_{O(1), \text { ic mine of } N!}$
So nov, whise scheme to solue fo $\vec{\tau}$ is $Q\left(N^{2}\right)$ since $x \rightarrow A x$ is.
Can we apply lease NoN Nystiom nueltix to a voitr \vec{x} faster then $O\left(N^{4}\right)$? Yes!

Toy problem
y_{i}
$\int_{y_{j}, ~}^{T}, j$ norles.
$\left\{\right.$ Let $y_{i} \in \mathbb{R}^{2}$ be set of nodes.
if j

0
$i=j$
this is off-ding put of Nystrom untrix for S operitor (Loplace), withent weigtto w_{j} ran lowrank curve. m w/ $N=$ le 3 numersical small (~10) 5 范 3
loonfraith: $\frac{\operatorname{sid} d}{}$ of N ! \rightarrow also apps to
low rank requires source - taget separation.
 "pritice)
Fix an off-ding block, call it size $N \times N$: someres $y_{\in_{\mathbb{R}^{2}}} j=1 \ldots N$, target $z_{i},{ }_{\mathbb{R}^{2}}=1 \cdots N$.
wish to compute $u_{i}=\sum_{j=1}^{B} x_{i} \left\lvert\, n \frac{1}{\left|z_{i}-y_{j}\right|}=(\vec{A} \vec{x})_{i}\right., \quad i=1 \cdots N$.
'charge stranglh' at each node.
Potatial due to sonress $u(z)=\sum_{j=1}^{N} x_{j} \ln \frac{1}{\left|z-y_{j}\right|}$ hamantic fo $z \neq y_{i} j=1 \ldots N$.
Goat is coval u e target $z_{i} \quad i=1 \cdots w$.
Tha.. (multipole exparsion) ontsibe a desc B caitered at 0 , contaning atl $\left\{y_{j}\right\}$, we can write

$$
(\%)^{r} \cdot z
$$

sums abs. consergat in $\mathbb{K}^{2} \backslash \bar{B}$
or urition z
or in $\mathbb{R}^{2}(\bar{B}$
$<$ Foriver enich circle $r=$ conit
fast algs: (for Luplace kenud in \mathbb{R}^{2}).
 lust fince: want eval potatial $u(z)=\sum_{j=1}^{n} x_{j} x_{j} \ln \frac{1}{\left|z-y_{j}\right|} \quad$ at $z=z_{i}, i=1 \cdots N$. \mathbb{R}^{2} : $y_{1}, \cdots, c_{!}, \quad \mathbb{R}^{2} \quad j=1 \tau_{\text {change stergiths of soniers }}$

- since N somves, N terget. N^{2} internetions (have to coal in dist $N^{2}+$ mios, mively)
- if $u_{i}:=u(2 ;)$ hen $\vec{u}=\vec{A} \vec{x}$, where \vec{A} is

Note: $u(z)$ humionic for $z \neq y_{j}, j=1 \cdots N$. sowe N×N off dirgonal blak of eg Nugstin, meatiox.

Thim (multipoly expasion): Let B be a dise containing all y_{j}, contered at O, radius R,
 sums abs. converzat in $r>R$. Note: selting $c_{0}=0$, trae for aug func u harmanic in $r \geqslant R$ v/ Or consilining $\mathbb{R}^{2} \simeq \mathbb{Q}, \quad u(2)=\operatorname{Re}\left[c_{0} \ln \frac{1}{2}+\sum_{n=1}^{\infty} c_{n} z^{-n}\right]$
Say truncite to p tims, how bad is evror?
Laweat expunsion $\binom{$ "Tayler expi) }{ aboect } Consider singlu unit charge@y: $u(z)=\ln \frac{1}{2-y}$

Let's worle wi/ canplex valued potatial,
take $R e$ at end. talic $R e$ at ene.

$$
\begin{equation*}
=\ln \frac{1}{2}-\ln (1-y / 2) \tag{1-x}
\end{equation*}
$$

$$
\begin{aligned}
& =\ln \frac{1}{2}+y z^{-1}+\frac{y^{2}}{2} z^{-2}+\frac{y^{3}}{3} z^{-3}+\cdots \text { absiconv. } \\
& \text { is munthipole expansion, proves above thm. }|z|>|y|
\end{aligned}
$$

$$
x+\frac{x^{2}}{2}+x^{3} / 3+\cdots
$$

when $|x|<1$.

so $|\operatorname{ep}(2)| \leqslant \sum_{n=p}^{n} \frac{1}{n}\left|\frac{y}{2}\right|^{n}=\left|\frac{y}{2}\right|^{p} \sum_{n=0}^{\infty} \frac{1}{n+1}\left|\frac{y}{2}\right|^{n} \leq\left|\frac{y}{2}\right|^{p}\left(\frac{1}{p}+\ln \frac{1}{1-|y / 2|}\right)$
so $\left|e_{p}(x)\right|=O\left(|y / z|^{p}\right)$ as pros exponential conve in p !
this bud for each charge in dise B get.
$o(1)$ as $p \rightarrow \infty$, for fired $y, z \in \mathbb{C}$.
Use this bud for each change in dise B, get:
Thm (mantlipede coner): potential due to N charges x_{j}, locations y_{j}, indiserad. R ean be rep. by p"coder unlliple expensin in $|z|>b>R \quad$ wl pointwise errer $<C\left(\sum_{j=1}^{n}\left|x_{j}\right|\right)$. ($\left.\frac{R}{b}\right)^{p}$

Use to apply ofldiagonal block $\widetilde{A}:\left|x_{j}\right|>b,\left|y_{j}\right|<R$

 (HaITI)

$$
\left.c_{0}=\sum_{j=1}^{y} x_{j}, \quad c_{n}=\sum_{j=1}^{N} \frac{y_{j}^{n}}{n} x_{j}, n=1, \cdots p-1 \quad\right\} \begin{aligned}
& \operatorname{loges}^{n} \\
& \vec{c}=Q \vec{x}
\end{aligned}
$$

iii) evaluate multipole expmasion at targets:

Complexity:
compare original $O\left(N^{2}\right)$! of $N=10^{6}, \beta=10^{1.5}, ~$ then specking is $10^{4.5} \approx 30000$! Tents Lager H han 1 , eg 2

Unfortunately, applying whole of A, ntencifion uitix beturem $\left\{y y_{3}\right\}_{j: 1}^{\prime \prime} \leftarrow$ ie sonveo $=$ target
is trickier sine not all clumps of points well-sparinted.
 Cover by M square boxes:
box. B_{i}

$$
\text { if uniform, } \approx \frac{N}{M} \text { change per box. }
$$

all these bores are well-scpanited from B_{i}

$$
(\sqrt{2})_{R=}=b=\frac{b}{\sqrt{2}} L\left\{\frac{b}{R}=\frac{3 \sqrt{2}}{2} \approx 2.1\right.
$$

 $z-z_{0}$ replaces z in expansion,

Totw.effor $(i=1, \cdots N)$

$$
=\underset{\substack{\text { geterffe } \\ \text { (chlcip) }}}{p N}+9 \frac{N^{2}}{M}+p M N
$$

optimal here is $\theta\left(p N^{3 / 2}\right)$ where $z_{0}=$ box center.

approx by sum of mollipole expansions from each of M-9 other boxes, effort $\approx p(M-q)=O(p M)$.
\leftarrow how choose M to scale with N so best? $M=N^{\gamma}$, balance $\frac{N^{2}}{N^{\gamma}} \approx N^{\gamma} N$ ie $2-\gamma=\gamma+1, \gamma=1 / 2$.
Fixing p, this is $O\left(\frac{1^{1 / 2}}{p}\right)$ times pritio than naive, eg $N=10^{6}, p=10^{1.5}$, is $10^{1.5} \approx 30 \times$ paste Ok, but not as grate as before.

to veder x_{j} of changes, the
 Assaming? unifombly distritited in rectangle.

Relies on A mutrix coming from elliptir PDE:.
lin sys.
Why is $\vec{x} \mapsto A \vec{x}$ impertaly to mpils fart?

wite nuthods are citter ikwation or divact simulation. Tinestep to evoluen

Bottleneck: eech traget bor has minang $\left(\frac{N}{M}\right)$ tagets at ahich buneug (M) mipole oxps here to be evalied.

\rightarrow (3) 2/23/2 (see next page).
-brak.
Hierarhical (multiluel) versims:

requirese 'quadtince' structive: eaxt box has a leod, a listop chichan (anleas levede, a (rap'bar), a parant. $\mathbb{A} \mathbb{\pi} \mathbb{N} \uparrow$ gotheng up, the get $O(N \ln N)$ effort \leadsto dey t Inar in N.
Adaptivits: 3 (resel.z ripoles.
whet it not uniform? Subdiside ts differoat laod wutit $O(x)$ changeofer box. Itit hader to cooke, but same saling u/ N.
Fast multipole mellod' (PMM): gattiou m'pole cysp
gatiar mipole cups on way up the thee, transhatite local exps on tep-bed bopes, scparte local exps an way down tree
 Bookkeeping. 'tridy! at exad lerd thare are boxes not well-spepfor $M 2 L$, hare to do nsing child boxes: viltistsion. Effort: $O(N)$, Grangmedt-Kothlin's7. Also adoptive version. 3d is newat messier! orceate on and chinge,
© A of Hemen) A Nof themen .
whereas the bollenecte? If could mate smaller box size L, less interactions contd be dore directly. But curacy, mould have wore boxes hence more effort evaluating all their mole expos at the o(N) distatepts!
\Rightarrow Neck a way to combine in'pole exp's so all targets pts in a box can be evaliad prom single star l. expansion... a 'local expansion' $=$ Taylor cexpuassion.

$n^{4 t}$-pole $\left(z-z_{0}\right)^{-1 "}$ has
Consider times in mipole,
eg monopole $\left.\ln \frac{1}{20}=\ln \frac{1}{20}-\ln \left(\frac{2}{20}-1\right) \quad 2 \begin{array}{l}\ln (x-1) \times x-\frac{x^{2}}{2}+\frac{x^{3}}{3} \\ \text { for }\end{array}\right) . .|x| 4$.

$$
=\ln \frac{1}{z_{0}}-\frac{1}{z_{0}} z+\frac{1}{2 z_{0}^{3}} z^{2}-\frac{1}{3 z_{0}^{3}} z^{3}+\cdots
$$

$0^{\text {h }_{1}}$ Taylor coeff $=\left.\left(2 \cdots z_{0}\right)^{-n}\right|_{2=0}=\left(-z_{0}\right)^{-n}=(-1)^{n} 2_{0}^{-n}$

$$
\begin{aligned}
& \left.1^{\text {st }} " \prime \frac{d}{d}\right|_{2=0}\left(z-z_{0}\right)^{-n}=-\left.n\left(z-z_{0}\right)^{-n-1}\right|_{200}=-n\left(-z_{0}\right)^{-n-1}=(-1)^{n} z_{0}^{-n-1} n \\
& \left.m^{\text {th }} \prime \prime \frac{1}{m!} \frac{d_{0}^{n-1}}{d z^{n}}\right|_{2=0}\left(z-z_{0}\right)^{-n}=\frac{1}{m!}(-1)^{n} n(n+1) \cdots(n+m-1) z_{0}^{-n-m}
\end{aligned}
$$

So,

$$
=(-1)^{n}\binom{n+n_{1}-1}{n-1} 2_{0}-\cdots+m
$$

Than (M2L, "menllipditilral('): inderexp. $u(2)=c_{0} \ln \frac{1}{2-z_{0}}+\sum_{n=1}^{\infty} c_{n}\left(2-z_{0}\right)^{-n}$ can be written as Taylor expansion $\sum_{n=0}^{\infty} a_{n} 2^{n}$, abs. convergent in $|2|<\left|z_{0}\right|$, with caffs

$$
\begin{aligned}
& \left\{\begin{array}{l}
a_{0}=c_{0} \ln \frac{1}{z_{0}}+\sum_{n=1}^{\infty}(-1)^{n} z_{0}^{-n} c_{n} \\
a_{m}=c_{0} \frac{(-1)^{m}}{m} z_{0}^{-m}+\sum_{n=1}^{\infty}(-1)^{n}\binom{n+m-1}{n-1} z_{0}^{-n-m} c_{n}, m=1,2, \ldots
\end{array}\right. \\
& \text { error of } \left.M 2 L) \text { : if sources }\{n ;\}^{n}\right]^{n} .
\end{aligned}
$$

Thun (error of M2L): if sources $\left\{y j j_{j}^{\prime \prime}=1\right.$ lie in $\left|z-z_{0}\right|<R,\left|z_{0}\right|>b+R$ for some $b>R$, then error of trumation above sums to p temp is, in $|z|<R$, banded by $c\left(\sum_{j=1}^{N}\left|x_{j}\right|\right)\left(\frac{R}{b}\right)^{p}$ PF: Greanganl-Kotehtin' 87
Same exponential converges rate as before;

Far coal. can now become': for each target box compute a_{m} coff due to each mipole see box c_{n} 's - evaluate local (Taylor exp at all targets in the target box.

Effort is $O\left(p^{2} M^{2}\right)$ since p^{2} to map c_{n} 's to $a_{m}{ }^{\prime} s$, l M^{2} trans latin 20 (mana lure), $\left.\begin{array}{c}\text { actually semen }\end{array}\right)$

+ O(pN) evan. $p^{\text {th -order local exp. at all } N \text { target pts. }}$

Overall sating $0\left(p^{2} N^{t / 3}\right)$
$=O\left(N^{\pi / 3}\right)$ if fixed p. Best yet. Can do wan better w/ heirecratical version: FMM.
$\operatorname{Lec}(7)$ M126.
Haudling quadratum for singular komds.
Recall Helmholty BUP (ey persattering): need Nijatmon for D-in S
cont but $\begin{gathered} \\ \text { urt andylits } \\ \text { log singuler. }\end{gathered}$ urt amelytion periode frap. rule lerrorles. on ding:
Are 'cheap'" ways to correat PTR: Kupur-Rokhlin ' 17 change weights actar ding, seto diag ijjtereo. Not in good. (~ 50 noduo per wovelength needed for high ace.).
Best is (product quedratures) (Kres 191): (~6 nodes yer waseluy th geb yosu 14 digit!) (1) $3 / 1 / 12$
 (rodi), Smerolh)
(ral), may be notysmoll).
T modipied, not all jast $\frac{2 \pi}{N}$

\rightarrow realize it's $(f, g) \quad \& \quad$ use Fowner series $f(s)=\sum_{n \in \mathbb{Z}} f_{n} e^{i n s} \longleftrightarrow\left(\sum_{n} f_{n} e^{i n s}, g_{m} g_{m} e^{i m n}\right)=\sum_{n} \sum_{m} f_{n} g_{m} \int^{2 n} e^{-i n s t i m s} d s$.

In partocular, if $f_{\text {panalytic in }}$ strip $(\operatorname{Im} s) \leqslant \alpha$, then $f_{m}=O\left(e^{-\alpha|m|}\right)$ tx:
Usc/PTR to appror coeff frimb: $f_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n s} f(s) d s \approx \tilde{f}_{n}=\frac{1}{N} \sum_{j=1}^{N} e^{-i n s_{j}} f\left(s_{j}\right)$ Prue

Whygord? sub. Fseries for $f: \tilde{f}_{n}=\frac{1}{N} \sum_{j=1}^{N} e^{-i n s_{j}} \sum_{m \in Z} f_{m} e^{i m s_{j}}=\sum_{m \in \mathbb{Z}} f_{m} \frac{1}{N} \sum_{j=1}^{N} e^{i(m-n) \frac{2 \pi j}{N}}$
 $\{0$ othernise.

$$
\eta_{\pi} \sum_{n \in Z} f_{n} g_{n} \approx 2 \pi \sum_{n}^{\prime} F_{n} g_{n}
$$

$$
\begin{align*}
& \underset{(\nsim)}{\approx} \frac{2 \pi}{N} \sum_{j=1}^{N} f\left(s_{j}\right) \sum_{n}^{\prime} e^{i n s_{j}} g_{n} \tag{B}\\
& \text { nuente? } \\
& \sim \neq: w_{j}
\end{align*}
$$

why triucte?
since \tilde{f}_{n} reperts $@ N:$
$\xrightarrow{\text { Sn: }}=: W_{j}$
So $w_{j}=\frac{2 \pi}{N} \sum_{n} g_{n} e^{i n s_{j}} \quad, e^{\frac{2 \pi i j n}{i n}}$ ic $\left\{w_{j}\right\}=\sin N$ DFT of first N Fonder calfsofg.

for oro gny

$$
w_{j}=\frac{2 n}{N}\left[-\sum_{n=1}^{N / 2-1} \frac{2}{n} \cos n s_{j}-(-1)^{j} \frac{1}{N}\right]
$$

done.
Note: the \approx in ubove me exatr for $f \in \operatorname{Span}\left\{e^{i n s}\right\}_{n=-N / 2}^{N / 2}$., con chack.
Tn 'trijonometric polynamiols'.

ej S has kenel (ont painencter $0 \leq s<2 \pi)$: andyer, since
past practidy

 the \log port prcciels
ranored!
Schave: Nystion mitorix $A_{i j}=$

$$
\frac{2 \pi}{\tau_{p i R}} M_{2}\left(s_{i}, s_{j}\right)+\underbrace{w_{l i-j}}_{\uparrow \text { wightirsired) }} M_{1}\left(s_{i}, s_{j}\right)
$$

Note: imeomptible w/ FMME since weights dep on j andi so $\quad \uparrow \begin{aligned} & \text { whyy this shift singulaity } \\ & \text { to be at } j=i \text { for ron } i \text {. }\end{aligned}$ Other objecto you should see:
chut betrated as fixed chages.
Eirculant martix: each rits is prosions cyclicelly shited 1 to right.
A) Soboler spaces. (Tape of Hibbert space) reall. $L^{2}[0,2 \pi):=\quad\left\{\right.$ functions $f: \int_{\|f\|_{12}^{2}}^{\int_{0}^{2 \pi}}\left[f(x)^{2} d x<\infty\right\}$, , loosely.
Defn:(Soboler space orters) $H^{s}(0,2 n):=\left\{\text { funcs } f: \sum_{n \in \mathbb{Z}}\left(1+n_{1}^{2}\right)^{s}\left|F_{n}\right|^{2}<\infty\right\}^{n}$ $\pi \sum_{n \in \mathbb{Z}}\left|f_{n}\right|^{2}$
$H^{\circ}=L^{2}, \quad s>0$ enfires foster deany of Fonnier cotlp. \Rightarrow smosther than L^{2}.

$$
\text { Eg } g(x)=\ln \left(4 \sin ^{2} \frac{x}{2}\right) \in H^{s}[0,2 \pi] \quad \forall s<1 / 2 \quad \sin 4 e \sum\left(1+n^{2}\right)^{5} \frac{1}{n^{2}}<\infty \text {. }
$$

Thun: Lef $s>1 / 2, f \in H^{5}$, than $f \in C[0,2 n], \leftarrow$ perisdic
Pf: for $\left(\sum|f i n x|\right)^{2}$ cis. $\left.\sum_{1}^{1}\right)^{1}\left(1+n^{2}\right)^{5}| |^{2}$ carverges for $s>1 / 2$

Thm: Let $f \in H^{s}$, then $\frac{d f}{d x} \in H^{s-1} \leftarrow$ dinvative is/leso sumocth:
pf: forvice coffo of f' are info.
So, $H^{2}(a, b)=\left\{f: \int_{a}^{b}|f(x)|^{2} d x+\int_{a}^{b}\left|f^{\prime}(x)\right|^{2} d x<\infty\right\}$
since $2 \pi \sum\left(1+n^{2}\right)|f|^{2}$
$H^{2}\left(\mathbb{R}^{d}\right)$ is. higler edin Amnle, comman fr PDE:

Thm: single-lloger op. S is bnded from H^{s} to H^{s+1} pof sketch: i) singulanity of S is $g(s-t)=\ln \left(4 \sin ^{2} \frac{s-t}{2}\right)$ which his $\left|g_{n}\right| \sim \frac{1}{|n|}$

Li convorution kenel.
, ie S bechroes tike "I order of integration:" (smorthiny, makes caeffes Actity mare)
ii) Applaing confolution op. $h(t)=\int g(t-s) f(g) d s=\left(g \times f f(t)\right.$ is $h_{n}=f_{n} g_{n}$ in Fivier space. (cheot it!).
Then: D: $H^{s} \rightarrow H^{s}$ buded (orter Q) i

Saggots that $T S$ is order 0 . Treae: $T S=-T / 4+\left(D^{*}\right)^{2}$ order 71 Toder-1
Ci) Calderón prijuedios (Hedult ax
 Recall intsion GRF - DD $u^{-}+S_{u_{n}}^{-}= \begin{cases}u & \text { in } \Omega \\ 0 & \text { in } \mathbb{R}^{d} \ \\ \Omega\end{cases}$

 "nisubspuce $\underset{v}{ }$, ot interior bdn dats puivs.

Showing P_{-}is actually a projection:
$\forall \tau, \sigma$, know $D \tau+S \sigma$ is an interior Hekuncolty solution, say u, in which case $\left[\begin{array}{l}1 \\ u_{n}\end{array}\right] \in V$.
\Rightarrow Using $J R_{s}$ as before, $\quad P-\left[\begin{array}{c}-x \\ -\alpha\end{array}\right]=\left[\begin{array}{c}u_{i}^{-} \\ u_{i}^{-}\end{array}\right] \quad$ since $P_{\text {acts }}$ as Id in V -

The (exterior GRF) : let $\left(\Delta+k^{2}\right)_{u}=0$ on $\mathbb{R}^{d} \backslash \bar{A}$ \& u sat radiation condition $Q \infty$, then - Dun $+\mathscr{A}=u_{n}^{+}= \begin{cases}0 & \text { in } \Omega \\ -u & \text { in } \mathbb{R}^{d} \backslash \pi\end{cases}$ This. 2-4]
Proof:

Let B be ball centered at O endorsing Ω, radios r i) We first show $\int_{\partial B} \mid u^{2} d s=O$ (1) as $r \rightarrow a t-$ flue lanes we have the identity, by expander, $\int_{\partial B}\left|\frac{\partial u}{\partial r}-i k_{1}\right|^{2} d s=\int_{\partial B}\left|\frac{\partial u}{\partial r}\right|^{2}+k^{2}|u|^{2}+2 k \operatorname{Im}\left(\frac{\lambda^{\prime \prime}}{\partial r} d s\right.$
Also, in any region R in which a a Heluhtolfy sols, we have "flue balance" $(F B)$:

$$
\begin{align*}
\text { In } \int_{\partial R} u \bar{u}_{n} d s & =I_{m} \int_{R} u \underbrace{u \bar{u}}+k_{u}^{2} \bar{u} \cdot \nabla_{\bar{u}} d x \text { by } G I I . \tag{t}\\
\text { intupat as net flux eating } R & =0 \text { since REs purely real. }
\end{align*}
$$

Apply FB to $R=B \sqrt{\Omega}$ gives $\quad 2 k I_{m} \int_{\partial B} u \frac{\partial \pi}{\partial r} d s=\underbrace{2 k I_{m} \int_{\partial \Omega} u \pi_{n} d s}$
Combine w/ (t) gives $\lim _{r \rightarrow \infty} \int_{1 \mid}\left|\frac{p_{u}}{\partial r}\right|^{2}+\left.\left|k^{2}\right|\right|^{2} d s=-F \quad$ a boused number F, deponct.
ii) Now use this to show surface term in $G R$ on ∂B vanishes as $r \rightarrow \infty$: Let $x \in B \mid \Omega$,

$$
\int_{\partial B}\left[u(y) \frac{\partial \Phi(x, y)}{\partial n_{y}}-u_{n}(y) \phi(x, y)\right] d s_{y}=\underbrace{\int_{\partial B} u\left[\frac{\partial \Phi}{\partial n_{y}}-i k \Phi\right] d s_{y}}_{=: I_{1}}-\underbrace{\int_{\partial B} \Phi\left(u_{n}-i k u\right) d s_{y}}_{=: I_{2}}
$$

clair $I_{1}, I_{2} \rightarrow 0$ as $r \rightarrow \infty$:
$\frac{\partial \Phi(x, y)}{\partial n_{y}}-i k \Phi(x, y)=\circ\left(\frac{1}{r \frac{d T}{2}}\right)$ since $\Phi(x, \cdot)$ radiating sole.
by GS. $I_{-1}^{2} \leqslant \underbrace{\int_{\partial B}|u|^{2} d s}_{O(t)} \cdot \int_{\partial B} \underbrace{}_{O\left(\frac{1}{\left.r^{d-i}\right)}\right.}\left|\frac{\partial \phi((x, y)}{\partial n_{y}}-i k \Phi(x, y)\right|^{2} d s_{y}=o(t)$ as $r \rightarrow \infty$.
for $I_{2}, \Phi(x)=,O\left(\frac{1}{r-\frac{d}{2}}\right)$ \& u radiation, so $I_{2} \rightarrow 0$ as $r \rightarrow \infty$.
iii) We apply interior GRF to $B \mid \bar{S}$ gives,

$$
\int_{\partial \Omega+\partial B} u_{n}(y) \phi(x, y)-u(y) \frac{\partial \bar{\partial}(x, y)) d s_{y}}{\partial n_{y}}= \begin{cases}u(x) & x \in B \mid \bar{\Omega} \\ 0 & x \in \Omega\end{cases}
$$

since $2 A$ nomen
points into B / Ω $\begin{gathered}\text { in ii) we showed } \\ \text { this } \\ \text { term vanishes as nos }\end{gathered}$
True for each r. Finally take $\lim r \rightarrow \infty$. $Q E D$.
May now finish Culdemón Projection:
 (for a any radiative Hehnsolu. in $\mathbb{R}^{R}(\bar{\Omega})$ '

Chads for all $\left[\begin{array}{l}u_{n}^{+} \\ u_{n}^{*}\end{array}\right] \in V_{t}$
by identical proof as P_{-}, we then get P_{+}is a projection.
Lemma: $V_{4} \oplus V_{-}=\left[\begin{array}{l}L^{2}(\lambda 2) \\ L^{2}(\lambda x)\end{array}\right] \quad$ if: $I=1 / 2+H+1 / 2+H=P_{t}+P$
so, $\forall \sigma, r, \quad\left[\begin{array}{c}-\gamma \\ \sigma\end{array}\right]=P_{+}\left[\begin{array}{c}\tau \\ \sigma\end{array}\right]+P\left[\begin{array}{c}-\tau \\ \sigma\end{array}\right]$, is a decomposition into V_{+}\& V_{-}.
Sunny: $P_{+} V_{+}=V_{t}, P_{+} V_{-}=\{0\} \quad$ and $P_{+} P_{-}=P_{-} P_{+}=0$

$$
P_{-} V_{+}=\{0\}, P_{-} V_{-}=V_{-}
$$

Thus P_{+}, P are complementary projectors.
Notes: - Shipman-Verakides papers, eg. 2003, have dear explanation f His.

- coning to statement of Keas in his acoustic notes, $2 H$ is not a projection.
- We haven shown $V_{+} \perp V_{-}$, ie that projections (it is a reflection, since $\left.(2 H)^{2}=I\right)$ are orthogonal. This world require $P_{r}=P_{t}^{*}$, etc; I doit believe holds.

