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1 Installation

Un-tar the file fparamin.tar, and add the resulting created directory to
your Matlab path.

2 Background

We wish to locate all local minima of a positive function f(x) in an interval
x ∈ [a, b], using as small a number of function evaluations as possible. In
practise, we care about functions whose square F (x) := [f(x)]2 locally take
the form of a parabola

F (x) = A + C(x − B)2 + O(x − B)3 + · · · , (1)

where A ≥ 0 is an offset controlling the local minimum value, B ∈ [a, b] is
the location of a minimum, and C is a ‘slope’ which controls how steep the
graph is either side of the minimum. This particular form emerges in the
Method of Particular Solutions (MPS), the designed application; here f is
the ‘tension’, or lowest (generalized) singular value of some operator, and
x is the eigenvalue parameter (frequency, wavenumber, or ‘energy’). The
minima found can be interpreted as eigenvalues of a certain PDE problem,
for instance the drum problem.

Given such a function, we may use the locally parabolic nature to locate
the nearest local minimum as follows: start with three ordinates x1, x2, x3

and their corresponding (squared) function values F1, F2, F3. A parabola
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Figure 1: Model function set {fl(x)}. The minimum function f(x) is the
lowest curve, shown in blue, whose local minima we wish to find in the
interval [1, 10]. Apart from avoided crossings, this is a realistic model of
MPS singular value curves.
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may be uniquely fit to these 3 points, that is, A, B and C may be found
such that F (x) = A + C(x − B)2 holds for the three points. B is the new
approximation to the ordinate of the minimum; the furthest from B of the
three original x values is discarded, and the procedure may now repeat until
a convergence criterion is met. This is similar to Newton’s method. This is
roughly what is done by the function min_parabola.

Now assume we have more information available: let the original function
be the minimum of a set of scalar functions {fl(x)}l=1,2,..., that is,

f(x) = min
l

fl(x), (2)

where each f 2

l (x) := Fl(x) has the same parabolic form as above. Suppose
that at each x it is no more expensive to compute the complete list of function
{Fl(x)} than is is to compute F (x). Can we then use the information about
the higher function values to locate the minima? If each Fl(x) is of known
character, the answer is yes. This is what fparamin does. Fig. 1 gives an
example model function set of the type whose minima we wish to find.

We make the following assumption: each component function Fl is close
to parabolic over the whole interval [a, b]. By ‘close to’, we mean formally

Al + Cmin(x − Bl)
2 ≤ Fl(x) ≤ Al + Cmax(x − Bl)

2 (3)

holds for all x ∈ [a, b], for some A ≥ 0, Bl ∈ [a, b]. In other words, each
Fl may deviate from parabolic, as long as it is bounded by two parabolas of
given curvatures Cmin, Cmax. In the MPS situation, deviations from an exact
parabola are due to: i) avoided crossings, and ii) cubic and higher Taylor
terms in (1). We will also assume that in some neighborhood of Bl, Fl is
closely approximated by a parabola of curvature Cl, with Cmin ≤ Cl ≤ Cmax,
∀l. Of course, Cl for each l is unknown at the outset, and, as shown in Fig. 1,
may vary.

We may now restate our goal as the identification of the complete set of Bl

lying in the interval [a, b], using as few function set evaluations as possible.
Looking at the rightmost ‘V’-shape in Fig. 1, we see that one minimum
swallows another, a degeneracy problem. We would like to identify both,
therefore the Bl are the desired objects, rather than simply the minima of
f . (PUT THIS UP FRONT?) Given the above assumptions, the following
holds.

Proposition 2.1. Fix x, and an interval I = [x − ε, x + ε] for some ε > 0.

Suppose n is the number of values of l satisfying fl(x) < C
1/2

min ε, and N is the
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number satisfying fl(x) < (C ′

max
)1/2ε. Then nI , the number of Bl values lying

in I, satisfies n < nI < N .

Here C ′

max
needs to be chosen slightly larger than Cmax, but this effect

is only important when ε ≈ (Al/Cl)
1/2. (Only if this change is made, can a

rigorous result hold). However we will ignore this difference for now. It is not
known if the assumptions hold in any precise fashion for the MPS, however
they hold extremely well in practise.

fparamin therefore has three phases:

• The code split_interval makes use of Prop. 2.1 to do binary sub-
division of [a, b] into subintervals j which contain between 0 and 1 Bl

values. This subdivision is continued only until f values of opts.ttyp
are reached, therefore it may reach an interval containing between 0
and nj values, where nj > 1.

• In each subinterval, min_parabola locates a single minimum of the
single function F (x) using parabolic iterations as above, or returns
emptyhanded if no such minimum is found. If the fitted C values are
less than Cmin, then this code does binary subdivision to a maximum
recursion depth of opts.recur until valid C values are reached, from
which parabolic iterations are done as above.

• Valid Bj values are gathered together. For each j, identify the degen-
eracy as the number of l such that fl(Bj) < ttyp.

3 Usage

Let
f = fun(x, P1, P2, ...)

be a Matlab function which returns either a scalar or a list.
Then a list of minima x and corresponding function f values f and cur-

vatures C is found via
[x, f, C, info] = fparamin(a, b, cmin, cmax, opts, fun, P1, P2,

...)

which has inputs a, b defining the interval. cmin and cmax are C
1/2

min and
C1/2

max
. opts sets advanced options (see help fparamin and code). The info

output contains total function evaluation count, etc.
The code test_fparamin.m gives example usage.
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Choose ttyp to be the largest minimum values of f(x) you expect to find.
Choose cmin and cmax to enclose the range of slopes you expect. Perfor-

mance when their ratio becomes much larger than 3 is not known.

4 Bugs

The code does not count degeneracies closer than (Al/Cl)
1/2 very reliably,

i.e. in the regime where the minimum values A
1/2

l cause two or more minima
to effectively coelesce. Work needs to be done to make use of the information
about how many are within various intervals to do a consistency check on
this.

No sanity checks are done if all the minima found have Cj < Cmin. Cur-
rently they are all discarded.

About 20 function evaluations per minimum are needed to locate them
to 6 or so digits of accuracy. This counld be improved but not by more than
factor 2.

5 List of codes

fparamin.m user-called driver routine
split_interval.m binary subdivision of interval to isolate minima
min_parabola.m iterative parabolic minimization in subinterval
para_fit.m fit parabola to three (x, F ) pairs
test_paramin.m tests driver routine with random model functions
test_split_interval.m tests split_interval.m with random model functions
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