Robust and efficient computation of two-dimensional photonic crystal band structure using second-kind integral equations

LSU, March 1, 2010

Alex Barnett

Mathematics Department, Dartmouth College
joint with Leslie Greengard (Courant)
Photonic crystals

periodic dielectric structures
period ≈ wavelength of light ≈ 1μm
control optical propagation in ways impossible in homogeneous media

(Joannopoulos group)
Photonic crystals

periodic dielectric structures
period \(\approx \) wavelength of light \(\approx 1\mu m \)
control optical propagation in ways impossible in homogeneous media

e.g. ‘bandgap’ medium: \(\exists \) freqs. s.t.
all waves evanescent (non-propagating)
- ‘insulators’ with embedded waveguides
- unlike dielectric guides, sharp bends ok

2D lattice of cylinders (INFM, U. Pavia)
Photonic crystal examples

- Slab w/ 2D-periodic air holes couples to external dielectric guide
 manipulate guide dispersion to give very slow group velocity \((c/300)\)

Si, \(\lambda = 1.6\mu m\) (Vlasov ’05)
Photonic crystal examples

- Slab w/ 2D-periodic air holes couples to external dielectric guide manipulate guide dispersion to give v slow group velocity ($c/300$)

Si, $\lambda = 1.6\mu m$ (Vlasov ’05)

- Full 3D bandgap (all polarizations)
- ‘Yablonovite’ (cm scale) (Yablonovich ’91)
- ‘woodpile’ $\lambda = 12\mu m$ (Lin et al. ’98)
- ‘inverse opals’ (spherical air ‘bubbles’) stacked slabs (built $\lambda = 1.3\mu m$, Qi et al. ’04)
- complex geometry (not just cylinders!)

‘Yablonovite’ (cm scale) (Yablonovich ’91)

‘woodpile’ $\lambda = 12\mu m$ (Lin et al. ’98)

‘inverse opals’ (spherical air ‘bubbles’) stacked slabs (built $\lambda = 1.3\mu m$, Qi et al. ’04)
Applications

Build low-loss optical signal paths on 1µm scale: integrated optical devices, signal-processing,
Big goal: optical (high speed!) computing
e.g. high-Q resonators, couplers, junctions
channel-drop filter in 2D crystal

(Johnson et al. ’00)
Applications

Build low-loss optical signal paths on 1μm scale: integrated optical devices, signal-processing, Big goal: optical (*high* speed!) computing

e.g. high-Q resonators, couplers, junctions

channel-drop filter in 2D crystal

- Meta-materials e.g. negative refractive index (−1 = ‘perfect’ lens)
- Solar cells and LEDs: control the density of states
 ⇒ spontaneous emission/absorption rates, directions (S. Fan ’97)
Applications

Build low-loss optical signal paths on 1\(\mu\)m scale: integrated optical devices, signal-processing, Big goal: optical (high speed!) computing

e.g. high-Q resonators, couplers, junctions
channel-drop filter in 2D crystal

• Meta-materials e.g. negative refractive index (\(-1 = \text{‘perfect’ lens}\))

• Solar cells and LEDs: control the density of states
 \(\Rightarrow\) spontaneous emission/absorption rates, directions (S. Fan ’97)

Common features

• piecewise-homogeneous dielectric media, wavenumber low
• each medium linear, may be dispersive e.g. metals (plasmons)
• manufacturing costly \(\Rightarrow\) accurate numerical modeling key
Outline

1. Band structure: eigenmodes on a torus
2. Boundary integral equations
3. Periodizing: standard way & new way
4. Interpolation of bands
5. Software environment
2D dielectric crystal (z-invariant Maxwell, TM polarization)

unit cell U smooth inclusion $\Omega \subseteq U$, refractive index n

lattice $\Lambda := \{me_1 + ne_2 : n, m \in \mathbb{Z}\}$

dielectric inclusions $\Omega_\Lambda := \{x : x + d \in \Omega \text{ for some } d \in \Lambda\}$
2D dielectric crystal

(z-invariant Maxwell, TM polarization)

unit cell U smooth inclusion $\Omega \subset U$, refractive index n
lattice $\Lambda := \{ me_1 + ne_2 : n, m \in \mathbb{Z} \}$
dielectric inclusions $\Omega_\Lambda := \{ x : x + d \in \Omega \text{ for some } d \in \Lambda \}$

scalar wave $u : \mathbb{R}^2 \to \mathbb{C}$ obeys

PDE (fixed frequency ω):

$$(\Delta + n^2 \omega^2)u = 0 \text{ in } \Omega_\Lambda$$
$$(\Delta + \omega^2)u = 0 \text{ in } \mathbb{R}^2 \setminus \Omega_\Lambda$$

material matching conditions:

$$u^+ - u^- = 0 \text{ on } \partial \Omega_\Lambda$$
$$u_{n}^+ - u_{n}^- = 0 \text{ on } \partial \Omega_\Lambda$$
Bloch ‘theorem’

Solutions to PDE w/ periodic coeffs have form (or are sum of forms)

\[u(x) = e^{ik \cdot x} \tilde{u}(x), \quad \tilde{u} \text{ is periodic} \]

- called Bloch waves, \(k \in \mathbb{R}^2 \) Bloch wavevector

‘When I started to think about it, I felt that the main problem was to explain how the electrons could sneak by all the ions in a metal... By straight Fourier analysis I found to my delight that the wave differed from the plane wave of free electrons only by a periodic modulation’

(F. Bloch, 1928)

(indep. prediscovered by Hill 1877, Floquet 1883, Lyapunov 1892)
Bloch wave and eigenvalue problem

- Bloch eigenvalues: set of (ω, k) s.t. non-trivial Bloch waves u exist
Bloch wave and eigenvalue problem

- Bloch eigenvalues: set of \((\omega, k)\) s.t. non-trivial Bloch waves \(u\) exist

Example generalized eigenfunction \(u\) of Bloch wave form \(e^{ik \cdot x} \tilde{u}(x)\):

Shown: \(\text{Re}[u]\) for
\(\omega = 5, \ k = (-0.39, 2.08)\)
Bloch wave and eigenvalue problem

- Bloch eigenvalues: set of \((\omega, \mathbf{k})\) s.t. non-trivial Bloch waves \(u\) exist

Example generalized eigenfunction \(u\) of Bloch wave form \(e^{i\mathbf{k} \cdot \mathbf{x}} \tilde{u}(\mathbf{x})\):

Shown: Re\([u]\) for \(\omega = 5, \quad \mathbf{k} = (-0.39, 2.08)\)

\(\mathbf{k}\) equiv. to \(\mathbf{k} + \mathbf{q}, \quad \forall \mathbf{q} \in 2\pi \Lambda^*\)

\(\Lambda^* = \text{dual (reciprocal) lattice}\)

\(\mathbf{k}\) lives on a torus, consider only fundamental domain (FD):
Band structure

For each wavevector $\mathbf{k} \in \text{FD}$, there exist discrete Bloch eigenvalues

$$\omega_1(\mathbf{k}) \leq \omega_2(\mathbf{k}) \leq \cdots \to \infty$$

- form ‘sheets’ above the FD

note: conical at low freq ω

note: bandgap

- is most important property of photonic crystal for applications
Recast problem on compact domain (torus)

- Bloch wave condition equiv. to quasi-periodic BCs on ∂U

Require vanishing unit cell discrepancy:

\[
\begin{align*}
 f & := u|_{L} - \alpha^{-1}u|_{L+e_1} = 0 \\
 f' & := u_n|_{L} - \alpha^{-1}u_n|_{L+e_1} = 0 \\
 g & := u|_{B} - \beta^{-1}u|_{B+e_2} = 0 \\
 g' & := u_n|_{B} - \beta^{-1}u_n|_{B+e_2} = 0
\end{align*}
\]

Bloch phase parameters $\alpha := e^{i k \cdot e_1}$, $\beta := e^{i k \cdot e_2}$, $|\alpha| = |\beta| = 1$

- Task: find Bloch eigenvalue triples (ω, k_x, k_y), i.e. (ω, α, β)
Main numerical approaches

Time domain

a) time-stepping on finite-difference grid (FDTD)
 low order (inaccurate); close freqs → need large t (inefficient)

(e.g. Yee ’66)
Main numerical approaches

Time domain
a) time-stepping on finite-difference grid (FDTD) \((e.g. \ Yee \ '66) \)
 low order (inaccurate); close freqs → need large \(t \) (inefficient)

Freq domain
b) multiple-scattering, KKR, cylinders only \((McPhedran, \ Moroz) \)
c) Plane-wave method: all in Fourier space \((Joannopoulos, \ Johnson, \ Sözüer) \)
 discont. dielectric ⇒ Gibbs phenom, slow \((1/N \ or \ 1/N^2) \) convergence

d) Finite element (FEM) discretization in \(U \) \((Chew, \ Dobson, \ Dossou) \)
 better for discontinuity, \(N \) large, meshing complicated
Main numerical approaches

Time domain
a) time-stepping on finite-difference grid (FDTD) \((e.g. ~Yee ~'66)\)
 low order (inaccurate); close freqs \(\rightarrow\) need large \(t\) (inefficient)

Freq domain
b) multiple-scattering, KKR, cylinders only \((McPhedran, ~Moroz)\)
c) Plane-wave method: all in Fourier space \((Joannopoulos, ~Johnson, ~Sözüer)\)
 discont. dielectric \(\Rightarrow\) Gibbs phenom, slow \((1/N ~or ~1/N^2)\) convergence
d) Finite element (FEM) discretization in \(U\) \((Chew, ~Dobson, ~Dossou)\)
 better for discontinuity, \(N\) large, meshing complicated

e) Integral equations: formulate problem \(on\) the discontinuity \(\partial \Omega\)
 reduced dimensionality (small \(N\))
 high order (quadratures): high accuracy \(w/\) small effort \((\Rightarrow\) sensitivity analysis\) \((Yuan ~'08)\)
Potential theory

‘charge’ (sources of waves) distributed along curve Γ w/ density func.

single-, double-layer potentials, $x \in \mathbb{R}^2$:

$$u(x) = \int_{\Gamma} \Phi_\omega(x, y) \sigma(y) dy := (S\sigma)(x)$$

$$v(x) = \int_{\Gamma} \frac{\partial \Phi_\omega}{\partial n_y}(x, y) \tau(y) dy := (D\tau)(x)$$

$$\Phi_\omega(x, y) := \Phi_\omega(x - y) := \frac{i}{4} H_0^{(1)}(k|x - y|)$$

Helmholtz fundamental soln aka free space Greens func
Potential theory

‘charge’ (sources of waves) distributed along curve Γ w/ density func.

single-, double-layer potentials, $x \in \mathbb{R}^2$:

\[u(x) = \int_{\Gamma} \Phi_\omega(x, y) \sigma(y) \, ds_y := (S\sigma)(x) \]
\[v(x) = \int_{\Gamma} \frac{\partial \Phi_\omega}{\partial n_y}(x, y) \tau(y) \, ds_y := (D\tau)(x) \]

\[\Phi_\omega(x, y) := \Phi_\omega(x - y) := \frac{i}{4} H_0^{(1)}(k|x - y|) \]

Helmholtz fundamental soln aka free space Greens func

Jump relations: limit as $x \to \Gamma$ may depend on which side (\pm):

\[u_{\pm} = S\sigma \]
\[u_{\pm}^n = D^T\sigma \mp \frac{1}{2}\sigma \]
\[v_{\pm} = D\tau \pm \frac{1}{2}\tau \]
\[v_{\pm}^n = T\tau \]

S, D are integral ops with above kernels but defined on $C(\Gamma) \to C(\Gamma)$

T has kernel $\frac{\partial^2 \Phi_\omega}{\partial n_x \partial n_y}(x, y)$
Integral equations for scattering (sketch)

e.g. Dirichlet obstacle: represent $u = u^{\text{inc}} + \mathcal{D} \tau$

DLP on $\partial \Omega$
Integral equations for scattering (sketch)

e.g. Dirichlet obstacle: represent \(u = u^{\text{inc}} + D\tau \)

\[\text{BC: } 0 = u^+ = u^{\text{inc}}|_{\partial \Omega} + (D + \frac{1}{2})\tau \]

integral eqn on \(\partial \Omega \): \((I + 2D)\tau = -2u^{\text{inc}}\)

2nd-kind, \(D \) compact op so \((I + 2D)\) sing. vals. \(\not\to 0 \)

Why important? when scale up...

condition # small, iterative solvers (GMRES) fast
Integral equations for scattering (sketch)

e.g. Dirichlet obstacle: represent \(u = u^{\text{inc}} + D\tau \)

\[BC \quad 0 = u^+ = u^{\text{inc}}|_{\partial \Omega} + (D + \frac{1}{2})\tau \]

integral eqn on \(\partial \Omega \):
\[(I + 2D)\tau = -2u^{\text{inc}} \]

2nd-kind, \(D \) compact op so \((I + 2D) \) sing. vals. \(\not\rightarrow 0 \)

Why important? when scale up... condition # small, iterative solvers (GMRES) fast

Quadrature scheme: choose \(N \) nodes \(y_j \in \partial \Omega \), weights \(w_j \)

Nyström discretization: \(N \)-by-\(N \) linear system for vector \(\{\tau^{(N)}_k\}_{k=1}^N \)
\[
\tau^{(N)}_k + 2\sum_{j=1}^N w_j D(y_k, y_j)\tau^{(N)}_j = -2u^{\text{inc}}(y_k), \quad k = 1, \ldots, N
\]
Integral equations for scattering (sketch)

e.g. Dirichlet obstacle: represent \(u = u^{\text{inc}} + D\tau \)

\[
0 = u^+ = u^{\text{inc}}|_{\partial \Omega} + (D + \frac{1}{2})\tau
\]

BC

integral eqn on \(\partial \Omega \): \((I + 2D)\tau = -2u^{\text{inc}}\)

2nd-kind, \(D \) compact op so \((I + 2D)\) sing. vals. \(\not\to 0 \)

Why important? when scale up...

condition # small, iterative solvers (GMRES) fast

Quadrature scheme: choose \(N \) nodes \(y_j \in \partial \Omega \), weights \(w_j \)

Nyström discretization: \(N \)-by-\(N \) linear system for vector \(\{\tau^{(N)}_k\}_{k=1}^N \)

\[
\tau^{(N)}_k + 2 \sum_{j=1}^N w_j D(y_k, y_j) \tau^{(N)}_j = -2u^{\text{inc}}(y_k), \quad k = 1, \ldots, N
\]

Thm: (Anselone, Kress) \(\|\tau^{(N)} - \tau\|_{\infty} \) converges at same rate as quadrature scheme for the true integrand \(D(y, \cdot)\tau \).

- **Analytic curve & data, periodic trapezoid rule:** spectral convergence
- **e.g.** above: \(N = 60 \) enough for \(10^{-6} \) error, \(N = 100 \) for \(10^{-12} \)
- **error** = \(O(e^{-\gamma N}) \), rate \(\gamma \approx \) distance to nearest singularity of \(\tau \) in \(\mathbb{C} \)
Dielectric (transmission) scattering

Represent $u = u^{\text{inc}} + D\tau + S\sigma$ outside wavenumber ω

$u = D_i\tau + S_i\sigma$ inside wavenumber $n\omega$
Dielectric (transmission) scattering

Represent $u = u^{\text{inc}} + D\tau + S\sigma$ outside wavenumber ω
$u = D_i\tau + S_i\sigma$ inside wavenumber $n\omega$

mismatch on $\partial\Omega$: $h := u^+ - u^-$, $h' := u^+_n - u^-_n$

BCs: mismatch $m := [h; h']$ vanishes, use JRs...

$$
\begin{bmatrix}
0 \\
0
\end{bmatrix} =
\begin{bmatrix}
u^{\text{inc}}|_{\partial\Omega} \\
u^{\text{inc}}_n|_{\partial\Omega}
\end{bmatrix}
+
\begin{pmatrix}
I & 0 \\
0 & I
\end{pmatrix}
+
\begin{pmatrix}
D - D_i & S_i - S \\
T - T_i & D_i^T - D^T
\end{pmatrix}
\begin{bmatrix}
\tau \\
-\sigma
\end{bmatrix}
$$

block 2nd-kind

A maps densities to their effect on mismatch

- hypersingular part of T cancels, so $A = \text{Id} + \text{compact}$ (Rokhlin '83)
- kernel weakly singular, but exists spectral product quadrature
 for $f(s) + \log(4\sin^2\frac{s}{2})g(s)$, f, g analytic 2π-periodic (Kress '91)
The standard way to periodize

replace kernel $\Phi_\omega(x)$ by $\Phi_{\omega,\text{QP}}(x) := \sum_{m,n \in \mathbb{Z}} \alpha^m \beta^n \Phi(x - me_1 - ne_2)$

thus integral operator A becomes A_{QP}
The standard way to periodize

replace kernel $\Phi_\omega(x)$ by $\Phi_{\omega,\text{QP}}(x) := \sum_{m,n \in \mathbb{Z}} \alpha^m \beta^n \Phi(x - me_1 - ne_2)$

thus integral operator A becomes A_{QP}

- is standard approach for scattering from gratings (McPhedran, Otani)
- seems natural for band structure problem . . . not yet used in literature
The standard way to periodize

replace kernel $\Phi_\omega(x)$ by $\Phi_{\omega,\text{QP}}(x) := \sum_{m,n \in \mathbb{Z}} \alpha^m \beta^n \Phi(x - me_1 - ne_2)$

thus integral operator A becomes A_{QP}

- is standard approach for scattering from gratings (McPhedran, Otani)
- seems natural for band structure problem . . . not yet used in literature

Theorem (*integral formulation of band structure*):

\[
\text{If } A_{\text{QP}} \text{ exists, } \text{Nul } A_{\text{QP}} \neq \{0\} \iff (\omega, k_x, k_y) \text{ is eigenvalue}
\]

note: no u^{inc} since eigenvalue problem homogeneous
proof: non-physical fields are a swapped-media transmission BVP
The standard way to periodize

replace kernel $\Phi_\omega(x)$ by $\Phi_{\omega,\text{QP}}(x) := \sum_{m,n \in \mathbb{Z}} \alpha^m \beta^n \Phi(x - me_1 - ne_2)$

thus integral operator A becomes A_{QP}

- is standard approach for scattering from gratings (McPhedran, Otani)
- seems natural for band structure problem . . . not yet used in literature

Theorem (**integral formulation of band structure**):

If A_{QP} exists, $\text{Nul } A_{\text{QP}} \neq \{0\} \iff (\omega, k_x, k_y)$ is eigenvalue

note: no u^{inc} since eigenvalue problem homogeneous
proof: non-physical fields are a swapped-media transmission BVP

Not a robust method: A_{QP} does not exist for certain parameters (ω, k_x, k_y) since there $\Phi_{\omega,\text{QP}}(x) \to \infty, \forall x$

why...?
Failure at spurious resonances

\(\Phi_{\omega,QP}(x) \) is Helmholtz Greens function in empty (index 1) torus

\[
\frac{1}{\text{Vol}(U)} \sum_{\mathbf{q} \in 2\pi\Lambda^*} \frac{e^{i(k+q) \cdot x}}{\omega^2 - |k + q|^2}
\]

spectral representation on torus

has simple pole wherever \((\omega, k_x, k_y)\) is eigenvalue of empty torus... but physical field \(u\) well-behaved here: breakdown is non-physical!
Failure at spurious resonances

\(\Phi_{\omega, QP}(x) \) is Helmholtz Greens function in *empty* (index 1) torus

\[
\frac{1}{\text{Vol}(U)} \sum_{q \in 2\pi \Lambda^*} \frac{e^{i(k+q) \cdot x}}{\omega^2 - |k + q|^2}
\]

has simple pole wherever \((\omega, k_x, k_y)\) is eigenvalue of empty torus... but physical field \(u\) well-behaved here: breakdown is *non-physical*!
Our cure: robust way to periodize

\[u = D\tau + S\sigma + \text{(densities } \xi \text{ on walls of } U) \text{ outside} \]

\[\uparrow \quad \uparrow \]

\[\text{can enforce mismatch } m = 0 \quad \text{can enforce discrepancy } d := [f; f'; g; g'] = 0 \]
Our cure: robust way to periodize

represent \(u = D\tau + S\sigma + (\text{densities } \xi \text{ on walls of } U) \) outside

\[\uparrow \quad \uparrow \]

can enforce mismatch \(m = 0 \) \quad can enforce discrepancy \(d := [f; f'; g; g'] = 0 \)

In block operator form

\[
\begin{bmatrix}
A & B \\
C & Q
\end{bmatrix}
\begin{bmatrix}
\eta \\
\xi
\end{bmatrix}
=
\begin{bmatrix}
m \\
d
\end{bmatrix}
\]

- added extra degrees of freedom (a small #, indep. of complexity of \(\Omega \))
Our cure: robust way to periodize

represent $u = \mathcal{D}\tau + S\sigma + (\text{densities } \xi \text{ on walls of } U)$ outside

\[\uparrow \quad \uparrow \]

\begin{align*}
\text{can enforce mismatch } m &= 0 \\
\text{can enforce discrepancy } d := [f; f'; g; g'] &= 0
\end{align*}

In block operator form

\[
\begin{bmatrix}
A & B \\
C & Q
\end{bmatrix}
\begin{bmatrix}
\eta \\
\xi
\end{bmatrix}
= \begin{bmatrix}
m \\
d
\end{bmatrix}
\]

- added extra degrees of freedom (a small #, indep. of complexity of Ω)
- gain robustness: no matrix element blow-up at spurious resonances

Observe: $\text{Nul } M \neq \{0\} \iff (\omega, k_x, k_y) \text{ Bloch eigenvalue}$

- idea of extra sources of waves not new (e.g. Hafner ’02)
- what is new: $M = \text{Id} + \text{compact}$ ideal for large-scale, iterative, FMM
How choose new densities on unit cell walls?

- to control 4 discrepancies (f, f', g, g')
- need 4 densities $\xi = [\tau_L; \sigma_L; \tau_B; \sigma_B]$

$Q = \frac{1}{2} \text{Id} + \text{(self-interactions)} + \text{(other interactions)}$

\begin{align*}
\text{JRs} & \quad \sigma_L \rightarrow u|_L \\
\tau_L, \sigma_L & \quad \tau_L, \sigma_B \\
\tau_B, \sigma_B &
\end{align*}
How choose new densities on unit cell walls?

- to control 4 discrepancies \((f, f', g, g')\)
 need 4 densities \(\xi = [\tau_L; \sigma_L; \tau_B; \sigma_B]\)
 \[Q = \frac{1}{2} \text{Id} + \text{(self-interactions)} + \text{(other interactions)}\]
 \(\text{JRs} \quad \sigma_L \rightarrow u|_L \quad \sigma_L \rightarrow u|_B\)

- add phased ghost copies on other 2 walls
 recall \(f := u|_L - \alpha^{-1}u|_{L+e_1}\)
 effect of \(\sigma_L\) on \(u_n|_L\)
 effect of \(\alpha \sigma_L\) on \(\alpha^{-1}u_n|_{L+e_1}\) \(\text{cancel}\) apart from Id
How choose new densities on unit cell walls?

- to control 4 discrepancies \((f, f', g, g')\)
 need 4 densities \(\xi = [\tau_L, \sigma_L, \tau_B, \sigma_B]\)

\[
Q = \frac{1}{2} \text{Id} + \text{(self-interactions)} + \text{(other interactions)}
\]

\[
\begin{align*}
\text{JRs} & \quad \sigma_L \to u|_L \\
& \quad \sigma_L \to u|_B
\end{align*}
\]

- add phased ghost copies on other 2 walls

 recall \(f := u|_L - \alpha^{-1} u|_{L+e_1}\)

 effect of \(\sigma_L\) on \(u_n|_L\)
 effect of \(\alpha \sigma_L\) on \(\alpha^{-1} u_n|_{L+e_1}\) } cancel apart from \(\text{Id}\)

- add more ‘sticking-out’ ghost images

 effect of \(\neq\) on \(u_n|_L\)
 effect of \(\neq\) on \(\alpha^{-1} u_n|_{L+e_1}\) } cancel apart from \(\text{Id}\)

 \(\Rightarrow\) all corner interactions vanish!

- result: \(Q = I + (\text{interactions of distance } \geq 1)\)

 \(\Rightarrow\) low rank, rapid convergence: 20-pt Gauss quadr. on \(L, B \Rightarrow 10^{-12}\) error
Full scheme
Finally we add 3x3 phased image copies of densities on $\partial\Omega$, giving:
Full scheme

Finally we add 3x3 phased image copies of densities on $\partial \Omega$, giving:

- Careful cancellations: B, C, Q have only interactions of distance ≥ 1
- Large dist increases convergence rate, i.e. large c in error = $O(e^{-cN})$

Philosophy: sum neighboring image sources directly so fields due to remainder of lattice have distant singularities
Error convergence

$log_{10} \min \text{ sing. val } M$ for known Bloch eigenvalue (should be zero):

Note: is eigenvalue error up to $O(1)$ const

$\omega = 5, \mathbf{k} \approx (-0.39, 2.08)$

- Spectral (exponential) convergence in inclusion & wall # dofs
Crude results: small inclusion

band structure: simply plot log min sing. val. of M vs (ω, k_x, k_y) ...
Crude results: small inclusion

band structure: simply plot log min sing. val. of M vs (ω, k_x, k_y) ...

- 0.1 sec per eval
- pre-store α, β coeffs
- 30 sec per const-ω slice
- 24×24 evals

- errors 10^{-9} for 40 pts on $\partial \Omega$, 20 on each wall (total $N = 160$)
Large inclusion passing through unit cell

As \(\text{dist}(\Omega, \partial U) \rightarrow 0 \) standard quadrature v. poor
- fix via adaptive quadrature of Lagrange interpolant
- faster: project wall densities onto J-expansion using Graf addition thm (needs \(N = 35 \) per wall)
Large inclusion passing through unit cell

As \(\text{dist}(\Omega, \partial U) \to 0 \) standard quadrature v. poor

- fix via adaptive quadrature of Lagrange interpolant
- faster: project wall densities onto J-expansion using Graf addition thm (needs \(N=35 \) per wall)

Amazingly (due to far singularities), J-exp analytically continues the field to outside \(U \):

\[
\omega = 4.47
\]

\[
k \approx (0.17, 2.11)
\]

\(n=1 \) inside

\(n=3.3 \) outside
Large inclusion passing through unit cell

As $\text{dist}(\Omega, \partial U) \to 0$ standard quadrature v. poor
- fix via adaptive quadrature of Lagrange interpolant
- faster: project wall densities onto J-expansion using Graf addition thm (needs $N=35$ per wall)

Amazingly (due to far singularities), J-exp analytically continues the field to outside U:

$$\omega = 4.47$$
$$k \approx (0.17, 2.11)$$
$$n=1 \text{ inside}$$
$$n=3.3 \text{ outside}$$

Sampling fine 3D grid is crude & slow: how find bands to spectral acc?
Interpolation across the Brillouin zone

How find eigenvalue sheets in the volume $S^1 \times S^1 \times (0, \omega_{\text{max}})$?
Interpolation across the Brillouin zone

How find eigenvalue sheets in the volume $S^1 \times S^1 \times (0, \omega_{\text{max}})$?

E.g. iterative rootfinding on min sing. val. of M:

- slow (20 its per root), unreliable (misses nearby roots)
Interpolation across the Brillouin zone

How find eigenvalue sheets in the volume $S^1 \times S^1 \times (0, \omega_{\text{max}})$?

E.g. iterative rootfinding on min sing. val. of M:

- slow (20 its per root), unreliable (misses nearby roots)

Realize: $M = I + \text{(cpt op-valued analytic func of } \omega, k_x \text{ and } k_y)$

$\det M$ is a Fredholm determinant, also analytic

- rootfinding a real-analytic function is nice... (J. Boyd ’02)
Spectral rootfinding of analytic functions

\(f : \mathbb{R} \to \mathbb{R}, \ 2\pi\text{-periodic} \)
Spectral rootfinding of analytic functions

\(f : \mathbb{R} \rightarrow \mathbb{R}, \quad 2\pi\text{-periodic} \)

use trigonometric poly interpolant

\[
f(\theta) \approx \sum_{n=-N}^{N} c_n e^{in\theta}
\]

exponentially convergent in \(N \)
width of strip about \(\mathbb{R} \) in which \(f \) analytic
Spectral rootfinding of analytic functions

\(f : \mathbb{R} \rightarrow \mathbb{R}, \ 2\pi\text{-periodic} \)

use trigonometric poly interpolant

\[
f(\theta) \approx \sum_{n=-N}^{N} c_n e^{in\theta}
\]

exponentially convergent in \(N \)

width of strip about \(\mathbb{R} \) in which \(f \) analytic

- \(c_n \) found by FFT of grid samples \(f(\pi n / N), \ n = 1, \ldots, 2N \)
Spectral rootfinding of analytic functions

(Boyd ’02)

$f : \mathbb{R} \rightarrow \mathbb{R}$, 2π-periodic

use trigonometric poly interpolant

\[f(\theta) \approx \sum_{n=-N}^{N} c_n e^{in\theta} \]

exponentially convergent in N

width of strip about \mathbb{R} in which f analytic

- c_n found by FFT of grid samples $f(\pi n/N), \ n = 1, \ldots, 2N$

map $e^{i\theta} = z \in \mathbb{C}$

\Rightarrow Laurent $q(z) = \sum_{n=-N}^{N} c_n z^n$

roots of f lie on $|z| = 1$

has roots near $|z| = 1$
Spectral rootfinding of analytic functions

\(f : \mathbb{R} \to \mathbb{R}, \ 2\pi\text{-periodic} \)

use trigonometric poly interpolant

\[
f(\theta) \approx \sum_{n=-N}^{N} c_n e^{in\theta}
\]

exponentially convergent in \(N \)

width of strip about \(\mathbb{R} \) in which \(f \) analytic

\(c_n \) found by FFT of grid samples \(f(\pi n/N), \ n = 1, \ldots, 2N \)

map \(e^{i\theta} = z \in \mathbb{C} \)

\(\Rightarrow \) Laurent \(q(z) = \sum_{n=-N}^{N} c_n z^n \)

roots of \(f \) lie on \(|z| = 1 \)

has roots near \(|z| = 1 \)

“Degree doubling”: \(z^N q(z) \) is degree-\(2N \) poly, so…

\(\bullet \) use Matlab \texttt{roots\ QR} for eigvals of companion matrix, \(O(N^3) \) but v. stable

\(\bullet \) extract the angles \(\theta \) of roots near unit circle

(Boyd nonlin EVP; Trefethen-Battles ’06 \texttt{chebfun})
Rootfinding det M in the ω direction

$\det M(\omega, k_x, k_y)$ not periodic in ω: map $\omega = \omega_0 + a \cos \theta$ periodic θ

this is Chebyshev interpolation on interval $[\omega_0 - a, \omega_0 + a]$

Fix k, eval $\det M$ at Cheby pts, get $\omega_j(k)$ in interval

25 evals covers $\omega \in [4, 6]$, i.e. 10-20 evals per root found
Rootfinding \(\det M \) in the \(\omega \) direction

\[\det M(\omega, k_x, k_y) \text{ not periodic in } \omega: \text{ map } \omega = \omega_0 + a \cos \theta \]

periodic \(\theta \)

this is Chebyshev interpolation on interval \([\omega_0 - a, \omega_0 + a]\)

Fix \(k \), eval \(\det M \) at Cheby pts, get \(\omega_j(k) \) in interval

25 evals covers \(\omega \in [4, 6] \), i.e. 10-20 evals per root found

Also analytic in \(k_x, k_y \Rightarrow \) interpolate in 3D!

Robust spectrally-accurate bands via small \# grid evals
e.g. \(25 \times 24 \times 24 \) for \(\omega \in [4, 6] \) and whole Brillouin zone, error \(10^{-8} \)
Band structure to spectral accuracy

\(n = 0.3 \) inside
\(n = 1 \) outside
large inclusion

eval only \(24 \times 24 \) samples in \(k \)
but contains much finer details
\(10^{-8} \) errors, 1 hour on laptop

- Note: eigenvalues \(\omega_j(k) \) are not analytic!
 \(\exists \) conical (diabolical) points ... interpolates poorly
- like level set method: handle smooth func

movie 1
Software environment (teaser)
Software environment (teaser)

MPSpack: object-oriented 2D PDE toolbox in Matlab (B-Betcke ’09)

- implements above & more: Helmholtz, Laplace, scattering
- intuitive interface: curves, domains, basis sets, problems, are objects

E.g.
Software environment (teaser)

MPSpack: object-oriented 2D PDE toolbox in Matlab (B-Betcke ’09)

- implements above & more: Helmholtz, Laplace, scattering
- intuitive interface: curves, domains, basis sets, problems, are objects

E.g.

\[
\begin{align*}
s &= \text{segment.radialfunc}(100, \{ @(q)1 + 0.3\cos(3\pi q), @(q) - 0.9\sin(3\pi q) \})
\end{align*}
\]

test piecewise analytic curves
Software environment (teaser)

MPSpack: object-oriented 2D PDE toolbox in Matlab (B-Betcke '09)

- implements above & more: Helmholtz, Laplace, scattering
- intuitive interface: curves, domains, basis sets, problems, are objects

E.g.

```matlab
s = segment.radialfunc(100, {@(q)1+.3*cos(3*q), @(q)-.9*sin(3*q)});

make exterior domain using segment
```
Software environment (teaser)

MPSpack: object-oriented 2D PDE toolbox in Matlab (B-Betcke ’09)

- implements above & more: Helmholtz, Laplace, scattering
- intuitive interface: curves, domains, basis sets, problems, are objects

E.g.

```matlab
s = segment.radialfunc(100, {
    @(q)1+.3*cos(3*q),
    @(q)-.9*sin(3*q)
};
```

piecewise analytic curves

```matlab
d = domain([], [], s, -1);
```

make exterior domain using segment
Software environment (teaser)

MPSpack: object-oriented 2D PDE toolbox in Matlab (B-Betcke ’09)

- implements above & more: Helmholtz, Laplace, scattering
- intuitive interface: curves, domains, basis sets, problems, are objects

E.g.

s = segment.radialfunc(100, {@(q)1+.3*cos(3*q), @(q)-.9*sin(3*q)}, piecewise analytic curves

d = domain([], [], s, -1);
make exterior domain using segment

d.setbc(1, ’N’, []);
Neumann BCs on exterior
Software environment (teaser)

MPSpack: object-oriented 2D PDE toolbox in Matlab (B-Betcke ’09)

- implements above & more: Helmholtz, Laplace, scattering
- intuitive interface: curves, domains, basis sets, problems, are objects

E.g.

```matlab
s = segment.radialfunc(100, @(q)1+.3*cos(3*q), @(q)-.9*sin(3*q));
```

piecewise analytic curves

```matlab
d = domain([], [], s, -1);
```

make exterior domain using segment

```matlab
d.setbc(1, 'N', []);
```

Neumann BCs on exterior

```matlab
d.addmfsbasis(s, 200, struct('tau', 0.05));
```

choose basis set for solution
Software environment (teaser)

MPSpack: object-oriented 2D PDE toolbox in Matlab

(B-Betcke ’09)
- implements above & more: Helmholtz, Laplace, scattering
- intuitive interface: curves, domains, basis sets, problems, are objects

E.g.

```matlab
s = segment.radialfunc(100, {@(q)1+.3*cos(3*q), @(q)-.9*sin(3*q)});
piecewise analytic curves

d = domain([], [], s, -1);
make exterior domain using segment

d.setbc(1, 'N', []);
Neumann BCs on exterior

d.addmfsbasis(s, 200, struct('tau',0.05));
choose basis set for solution
```

(output of d.plot;

output of d.plot;
d.showbasesgeom;
\(p = \text{scattering}(d, \ [\]) \);
make a scattering problem from domain \(d \)
p = scattering(d, []);

make a scattering problem from domain d

p.setoverallwavenumber(30); p.setincidentwave(pi/6);
p = scattering(d, []);

make a scattering problem from domain d

p.setoverallwavenumber(30); p.setincidentwave(pi/6);

p.solvecoeffs; p.bcresidualnorm

fills matrix, solves in 0.1 sec, L^2 error 6×10^{-9}
p = scattering(d, []);

make a scattering problem from domain d

p.setoverallwavenumber(30); p.setincidentwave(pi/6);

p.solvecoeffs; p.bcresidualnorm

fills matrix, solves in 0.1 sec, L^2 error 6×10^{-9}

p.showfullfield(struct('bb', [-2 2 -2 2]));
p = scattering(d, []);

make a scattering problem from domain d

p.setoverallwavenumber(30); p.setincidentwave(pi/6);

p.solvecoeffs; p.bcresidualnorm

fills matrix, solves in 0.1 sec, L^2 error 6×10^{-9}

p.showfullfield(struct('bb',[-2 2 -2 2]));

- was easy case: 8 lines (could have done in 80 lines of Matlab)
- multiple (sub)domains: basis, quadrature, bookkeeping hidden
e.g. dielectric band structure still only 20 lines of code
- human-readable, rapid to code, sensible defaults (you can change)

To do: automatic meshing, Dirichlet EVP, …
Current work: grating scattering

Quasi-periodize in x-direction only: layer-potentials infinite in y...

- $N = 50$ unknowns on inclusion, $M = 200$ unknowns to periodize
- accuracy 10^{-13}
Conclusions

- efficient 2nd-kind integral equations for photonic crystal EVP
- periodize via small # extra degrees of freedom on cell walls
- more robust and flexible than quasi-periodic Greens function:
 - no spurious blow-up at empty resonances
 - extends simply to 3D (unlike lattice sums)
- interpolate Fredholm det, not Bloch eigenvalues themselves

Future:

- 3D; drop in FMM for inclusion; gratings with substrate . . .

code:
http://code.google.com/p/mpspack

funding:
NSF DMS-0507614
DMS-0811005

Preprints, talks, movies:
http://math.dartmouth.edu/~ahb

made with: Linux, \LaTeX, Prosper
EXTRA SLIDES
Equal-frequency curves

Complexity of const-ω slice across Brillouin zone:

- only 24×24 evaluations of det M, Boyd’s spectral rootfinding
- Apps: Snell’s Law for reflection off semi-∞ crystal