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Abstract

Inverse problems are prevalent in many fields of science and engineering, such as signal

processing and medical imaging. In such problems, indirect data are used to recover

information regarding some unknown parameters of interest. When these problems

fail to be well-posed, the original problems must be modified to include additional

constraints or optimization terms, giving rise to so-called regularization techniques.

Classical methods for solving inverse problems are often deterministic and focus on

finding point estimates for the unknowns. Some newer methods approach the solving

of inverse problems by instead casting them in a statistical framework, allowing for

novel point estimate approaches and for the recovery of uncertainty information. In

this dissertation, we first use a deterministic approach in the context of a medical

imaging application to reconstruct volumetric images of blood vessels while enforc-

ing sparsity in the edge domain. We then propose and investigate methods for the

statistical inference of complex-valued signals as well as techniques for volumetric

reconstruction using complex-valued synthetic aperture radar data.

This work is partially supported by NSF DMS grant #1912685, AFOSR grant #F9550-22-1-
0411, DOE ASCR grant #DE-ACO5-000R22725, DoD ONR MURI grant #N00014-20-1-2595, and
through Autonomy Technology Research Center by AFRL contract #FA 8650-18-2-1645.
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partitioning of the data into Nθ partitions according to the azimuthal

angle sets Θn given by (6.9). . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 Different views at various dB thresholds of the 3D reconstruction of

the synthetic cube data set in the ideal case; ground truth point cloud

is displayed in black. The threshold values chosen to best demonstrate

reconstruction quality. . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.4 Centered cross-sections of the (left) 2D IRB and (middle) 3D SRCI

reconstructions of the cube data set with no additional noise and no

thresholding. (right) MHD values at various cIRB or cSRCI threshold

values (dB) when either technique is used on the cube data set with

no additional noise; the minimum MHD value calculated for the 2D

IRB method is 0.7017cm, and for the 3D SRCI, the minimum MHD is

0.6014cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.5 Different views at various dB thresholds of the 3D reconstruction of

the B747 data set with no added noise; ground truth CAD model is

displayed in black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

xv



6.6 Centered cross-sections of the (left) 2D IRB and (middle) 3D SRCI

reconstructions of the B747 data set with no additional noise and no

thresholding. (right) MHD values at various cIRB or cSRCI threshold

values (dB) when either technique is used on the B747 data set with

no additional noise; the minimum MHD value calculated for the 2D

IRB method is 1.832cm, and for the 3D SRCI, the minimum MHD is

1.440cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.7 Threshold value vs. MHD for the cube (left) and B747 (right) data

sets comparing the 2D IRB and 3D SRCI for both the JHBL and MLE

approximations. (top) SNR ≈ 0 dB; (bottom) SNR ≈ −24 dB. In all

plots, the dashed blue lines are the MLE MHD values, while the solid

red lines are the JHBLMHD values. In all cases, it is straightforward to

infer the rest of the characterization of the MHD values by continuing

the trends in (a)-(h). . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

6.8 Slices of the (left) MLE and (right) JHBL reconstructions of the B747

with SNR of −30 dB using the 3D SRCI approach. . . . . . . . . . . 168

6.9 Slices of the (left) 2D IRB and (right) 3D SRCI reconstructions of the

B747 with SNR of approximately −34 dB. Note that for interpretabil-

ity, the threshold dB scale is different for each figure. . . . . . . . . . 169

6.10 Different views at various dB thresholds of the 3D reconstruction of the

B747 sub-sampled data set using our reconstruction techniques with

no additional noise added; ground truth CAD model is displayed in

black. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6.11 Cross-sections of the (left) 2D IRB and (middle) 3D SRCI reconstruc-

tions of the sub-sampled B747 data set using the parameters in Tables

6.4 and 6.5. (right) MHD values at various dB threshold values. . . . 171

xvi



Chapter 1

Introduction

This dissertation is primarily concerned with deriving meaningful information from

so-called inverse problems. An inverse problem provides data regarding an unknown

quantity; the goal is then to solve for the unknown. In this work we are interested in

solutions to discrete computational and statistical inverse problems and their appli-

cations in science and engineering.

Let F be the field of either the real or complex numbers. In its most general form,

an inverse problem can be described as finding x given

y = f(x, ε), (1.1)

where y ∈ Fm is the known data, x ∈ Fn is the unknown of interest, ε ∈ Fk en-

compasses any unknown nuisance parameters, and f : Fn×k → Fm is the relationship

between the data and the unknown.

We will be considering problems where the forward operator f is a known linear

operator A ∈ Fn×m. Hence we reformulate (1.1) as

y = Ax+ ε, (1.2)
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1.1 Contributions Introduction

We will also assume that x has some known structure, e.g. x may have relatively

few large elements or edges. For additional background regarding discrete inverse

problems, see [60].

Section 1.1

Contributions

This dissertation details a new optical system for photoacoustic imaging and methods

for solving the resulting linear inverse problem. The work then expands on exist-

ing real-valued Bayesian inference techniques by adapting them to complex-valued

unknowns where sparsity is assumed in some transform domain of the magnitude.

Additionally, a new Bayesian method for 3D SAR imaging is implemented.

Section 1.2

Outline of Dissertation

In Chapter 2 we cover several preliminary ideas utilized in our work, including regu-

larization techniques, synthetic aperture radar (SAR) image formation, and Bayesian

inference. Chapter 3 details an optical system for capturing photoacoustic data and

a compressed sensing approach to reconstructing an initial 3D pressure distribution.

Chapter 4 and Chapter 5 present two approaches for generating samples of a complex-

valued posterior distribution given various prior information regarding sparsity. In

Chapter 4 we discuss an approach for dealing with one measurement vector, while

Chapter 5 considers multiple observations of the same scene of interest. Chapter 6

explores a technique for reconstructing 3D SAR images using a Bayesian maximum

a posteriori estimate that enforces two kinds of sparsity. We conclude in Chapter 7

by discussing the work accomplished as well as future work.
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Chapter 2

Preliminaries

The research in this dissertation is motivated by solving inverse problems for synthetic

aperture radar (SAR). This chapter discusses the necessary preliminary information

needed to provide context for our contributions. We begin by discussing several

classical regularization techniques in Section 2.1, followed by an overview of statistical

inversion theory in Section 2.2. We conclude this chapter with an examination of SAR

image formation in Section 2.3. For our discussion of discrete inverse problems and

SAR, we follow the conventions of [60] and [66], respectively. For statistical inversion,

we draw primarily from [73].

Section 2.1

Regularization Techniques

The classic inverse problem (1.1) must meet three criteria to be considered well-posed

[60]. These conditions are:

• A solution to the problem exists.

• The solution is unique.

• The problem is stable.
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2.1 Regularization Techniques Preliminaries

By stability, we mean that any perturbation in the data y leads to a comparable

change in the solution x. When an inverse problem fails to be well-posed, it is often

useful to alter the problem in some way to make it well-posed while still providing an

adequate answer to the original problem. These alterations are called regularization

methods.

2.1.1. Singular Value Decomposition

Consider the forward model given in (1.2). Singular value decomposition (SVD) is a

powerful tool used to extract meaningful information from the matrix A and provides

the foundation for several inversion and regularization techniques [60, 73].

Theorem 2.1. Let A ∈ Cm×n be of rank ℓ. It is possible to decompose A into

A = USV ∗,

where U ∈ Cm×m is unitary, S ∈ Rm×n is rectangular diagonal with nonnegative

entries, and V ∈ Cn×n is unitary.

Proof. By the spectral theorem [9], there exists unitary V ∈ Cn×n such that

V ∗A∗AV = Λ (2.1)

with

Λ =

D 0

0 0

 ,
where D ∈ Rℓ×ℓ is a diagonal matrix with positive entries. Clearly, ℓ ≤ min(m,n).

Consider the block partition V = [V1 V2], where the columns of V1 ∈ Cn×ℓ are the

ℓ eigenvectors with positive eigenvalues and the columns of V2 are the eigenvectors
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2.1 Regularization Techniques Preliminaries

with eigenvalue 0. Then we have from (2.1) that

V ∗
1 A

∗AV1 V ∗
1 A

∗AV2

V ∗
2 A

∗AV1 V ∗
2 A

∗AV2

 =

D 0

0 0

 .
Now, consider U1 = AV1D

−1/2. We have that

U∗
1U1 = D−1/2V ∗

1 A
∗AV1D

−1/2 = D−1/2DD−1/2 = Iℓ.

Thus, the columns of U1 are orthonormal. Hence, if m = ℓ, then U = U1 is unitary.

Otherwise, m > ℓ, and there exists U2 ∈ Cm×(m−ℓ) such that U = [U1 U2] is unitary.

Let S ∈ Rm×n be such that

S =

D1/2 0

0 0

 .
Therefore,

USV ∗ = [U1 U2]

D1/2 0

0 0


V ∗

1

V ∗
2

 = U1D
1/2V ∗

1 = A.

The columns of U are called the left singular vectors, the columns of V are called

the right singular vectors, and the diagonal elements of S are the singular values,

which we denote σi, i = 1, 2, . . . ,min(m,n).

Several comments regarding U , S, and V are in order. First, we order σi such

that σi ≥ σj when i ≤ j, and σi > 0 for i = 1, 2, . . . , ℓ where again ℓ ≤ min(m,n).

We then have σℓ+1, · · · , σmin(m,n) = 0. The columns of U and V are the orthonormal

eigenvectors of AA∗ and A∗A, respectively. Lastly, σ2
i , i = 1, 2, . . . , ℓ, are the first ℓ
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2.1 Regularization Techniques Preliminaries

eigenvalues of AA∗ and A∗A.

Denote by ui and vi the ith column of U and V , respectively. Let us consider the

least squares solution to (1.2) with F = C, which is given by

xLS = argmin
x

∥Ax− y∥22. (2.2)

Using the SVD and the fact that multiplying by unitary matrices preserves norms,

we find that

xLS = argmin
x

∥U∗(USV ∗x− y)∥22

= argmin
x

∥SV ∗x− U∗y∥22

= argmin
x

∥∥∥∥∥∥∥
D1/2 0

0 0


V ∗

1

V ∗
2

x−

U∗
1

U∗
2

y

∥∥∥∥∥∥∥
2

2

= argmin
x

∥∥D1/2V ∗
1 x− U∗

1y
∥∥2
2

(2.3)

Thus we seek x such that (2.3) is minimized, which is true when


v∗
1x

...

v∗
ℓx

 =


u∗

1y/σ1
...

u∗
ℓy/σ2


For each j = 1, . . . , ℓ, we then have v∗

jx = u∗
jy/σj. Since the columns of V1 are

orthonormal, this implies that the least squares solution is given by

xLS =
ℓ∑

j=1

u∗
jy

σj
vj. (2.4)

The formulation in (2.4) offers several key insights. First, x is a linear combination
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2.1 Regularization Techniques Preliminaries

of the vectors vj, i = 1, . . . , ℓ. We also observe that the least squares solution is not

unique when A has a nontrivial null space. This can be seen by adding any multiple

of vj, j = ℓ + 1, . . . , n, to xLS. Lastly, the weight of each vector vj is inversely

proportional to the corresponding singular value. This means that in general the

terms of the summation in (2.4) become more sensitive to noise in y as the index j

increase.

This insight then leads to what are called spectral filtering methods, where (2.4)

is reformulated as

x =
ℓ∑

j=1

φj

uT
j y

σj
vj. (2.5)

Here, φi ∈ [0, 1] are called the filter factors. One such method is the truncated singular

value decomposition (TSVD). In this technique, for some user-specified integer k < ℓ,

φi = 1 for i ≤ k and φi = 0 otherwise. This gives the TSVD solution xTSV D as

xTSV D =
k∑

j=1

uT
j y

σj
vj.

Another regularization method based off of the SVD is the selective singular value

decomposition (SSVD). Similar to TSVD, the SSVD approach discards a portion of

the terms in the summation in (2.4). In SSVD, however, a threshold τ is set for |uT
i y|

where φi = 1 if |uT
i y| > τ and φi = 0 otherwise. Hence, the solution xSSV D is given

as

xSSV D =
∑

|uT
j y|>τ

uT
j y

σj
vj.

Additional information regarding TSVD and SSVD can be found in [60, Chapter

4].
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2.1 Regularization Techniques Preliminaries

2.1.2. Tikhonov Regularization

The condition number of a matrix A is defined as

cond(A) = ∥A∥
∥∥A†∥∥,

where A† is the Moore-Penrose psuedoinverse of A. When the condition number

of A is large, the least squares solution xLS in (2.2) may not be stable, i.e. small

perturbations may have an outsized impact on the solution. One method to mitigate

the effect of noise while still making full use of all singular vectors associated with

nonzero singular values is by using Tikhonov regularization. This approach recasts

the problem in (2.2) as

xλ = argmin
x

∥Ax− y∥22 + λ2∥x∥22, (2.6)

where λ > 0 is called the regularization parameter.

Theorem 2.2. The Tikhonov regularization problem (2.6) has a unique solution xλ

given as

xλ = (A∗A+ λ2In)−1A∗y. (2.7)

Proof. This proof is adapted from the real-valued analogue in [60, Chapter 4]. Let

z ∈ Cn, z ̸= 0. Because A∗A is semi-positive definite, we see that

z∗(A∗A+ λ2In)z = z∗A∗Az + λ2z∗z ≥ λ2z∗z > 0.

Thus, (A∗A+λ2In) is positive definite and its inverse exists. Then xλ is well-defined.
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2.1 Regularization Techniques Preliminaries

Consider the functional

Fλ(x) = ∥Ax− y∥22 + λ2∥x∥22.

Let w ∈ Cn. Using (2.7), we have then that

Fλ(xλ +w) = ∥Axλ + Aw − y∥22 + λ2∥xλ +w∥22

= Fλ(xλ) +w∗((A∗A+ λ2In)xλ − A∗y)

+ ((A∗A+ λ2In)xλ − A∗y)∗w +w∗(A∗A+ λ2I)w

= Fλ(xλ) +w∗(A∗A+ λ2I)w

≥ Fλ(xλ),

with equality being achieved if and only if w = 0. Thus, xλ given by (2.7) exists and

is the unique solution to (2.6).

Now, using the SVD of A in (2.7), we have

xλ = (V S2V ∗ + λ2In)−1V SU∗y

= V (S2 + λ2In)−1SU∗y

=
ℓ∑

j=1

σ2
j

σ2
j + λ2

u∗
jy

σj
vj. (2.8)

Comparing (2.8) with (2.5), we see the solution xλ given by (2.7) is a spectral filtering

method with filter factor

φ
[λ]
j =

σ2
j

σ2
j + λ2

.
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2.1.3. ℓ1-Regularization

Lastly, we turn our attention to ℓ1-regularization problems. Like Tikhonov regulariza-

tion, ℓ1-regularization takes the least squares problem in (2.2) and adds an additional

term weighted by a regularization parameter δ. Now, however, the extra term in-

cludes an ℓ1-norm instead of an ℓ2-norm. Thus we have the ℓ1-regulariation problem

as

xδ = argmin
x

∥Ax− y∥22 + δ∥x∥1, (2.9)

where δ > 0. This use of the ℓ1-norm encourages the solution xδ to be sparse.

Definition 2.1. When a signal v ∈ Fn contains at most s nonzero values, we say

that v is s-sparse.

To get an intuitive sense of why (2.9) promotes sparsity, let us instead consider

the so-called ℓ0-“norm,”1 which for arbitrary vector v ∈ Fn is given as

∥v∥0 =
∣∣{vj : vj ̸= 0, 1 ≤ j ≤ n}

∣∣. (2.10)

If we were to regularize (2.2) using ∥·∥0, it is clear that the resulting problem would

promote sparsity due to the number of nonzero elements in the solution being pe-

nalized. The objective function, however, would be intractable in high dimensions

due to the nonlinearity of (2.10) and is indeed an NP-hard problem. Thus we choose

to use a surrogate in the form of the ℓ1-norm, which has been shown to promote

sparsity similarly to regularization using ∥·∥0. Note that finding the solution of (2.9)

often requires the use of iterative optimization algorithms, and the technique is not

a spectral filtering method since its solution does not follow the form of (2.5).

1We note that the ℓ0-“norm” (2.10) does not meet the definition of a norm and is commonly
referred to as a psuedo-norm.
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Regularization with the ℓ1-norm is used extensively in compressive sensing, an

area of study which assumes x is sparse and m ≪ n. It has been shown that when

these assumptions hold and A obeys what is called the restricted isometry property,

x can be recovered with certain theoretical guarantees [24, 26, 41]. The reader is

referred to [23] for a thorough discussion of this topic.

2.1.4. Regularization in Other Domains

The objective functions given by (2.6) and (2.9) both bias the solution x in (1.2) to

have a small q-norm, where q = 2, 1 respectively. There are situations where this form

of regularization may be undesirable but where x has other structural information

that is known a priori. For example, the gradient of x may be sparse, or x may have

few values that deviate from some known value x0. In these cases, it is often beneficial

to employ a generalized regularization approach where the objective function is

xsol = argmin
x

∥Ax− y∥22 + Φ(x). (2.11)

In (2.11), Φ : Fn → R is called the regularizer, and it is assumed that Φ(x) should

be small. This work deals exclusively with linear regularizers enclosed within the 1-

or 2-norm, i.e.

xsol = argmin
x

∥Ax− y∥22 +
λ

q
∥Lx∥qq, q = 1, 2, (2.12)

where L ∈ Fℓ×n and λ > 0. Such methods promote small values in Lx, and the level

of regularization is determined by the user-specified value λ. When Lx is expected

to be sparse, the 1-norm is often used.
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As an example, consider data y ∈ Rn formed using

y = Ablurx+ ε,

where x ∈ Rn is piecewise-constant, Ablur ∈ Rn×n is a full-rank Gaussian blur matrix,

and ε ∈ Rn is Gaussian white noise. Figure 2.1 (a) shows the ground truth and

resulting data associated with this process. Deblurring is a notoriously ill-posed

inverse problem, so the least squares objective function (2.2) causes high frequency

terms to blow up in the solution. Taking L to be the first order finite difference

operator (also known as discrete total variation, or TV), we can use the objective

function (2.12) with either ℓ1 or ℓ2 norms to solve a well-posed version of the problem.

(a) (b)

Figure 2.1: Example of regularization using both the 1- and 2-norms. (a) details the
ground truth and blurred noisy data. (b) shows solutions obtained using (2.12) with
L as the TV operator.

Figure 2.1 (b) shows that sensible solutions can be recovered using (2.12) with q =

1 or q = 2. The ℓ2 form of (2.12) recovers a smoother solution, while ℓ1 regularization

finds a solution that is truly sparse in the gradient domain. These phenomena are

commonly observed when using these two kinds of regularization, and the choice

of which regularization to use is heavily problem-dependent and relies on a priori

information of the unknown signal.

It is important to note that the choice of λ in (2.12) has a significant impact
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on the fidelity of the resulting reconstruction. We see in Figure 2.2 that changing

the choice of λ by an order of magnitude can have a drastic effect on the recovered

signal. There are several methods for choosing λ, such as using the L-curve criterion

and generalized cross-validation [60, Ch. 5]. Such methods are still prone to over- or

under-regularizing the solution, which is in part what motivates our research.

(a) (b)

Figure 2.2: Example of regularization using both the 1- and 2-norms using the data
in Figure 2.1. Different values of λ are tested in the objective function given by (2.12)
for (a) q = 2 and (b) q = 1.

Section 2.2

Statistical Inversion Theory

The following discussions on probability and Bayesian inference are adapted from

[21, 45, 73].

2.2.1. Probability

Define the probability space as the triplet (Ω, E,P). The abstract set Ω is referred to

as the sample space. The σ-algebra E, called the event space, is a collection of subsets

of Ω with properties

(a) Ω ∈ E,
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(b) If A ∈ E, then Ac ∈ E,

(c) If A1, A2, · · · ∈ E, then ∪∞
i=1Ai ∈ E.

Lastly, P is a probability measure satisfying

(a) 0 ≤ P(A) ≤ 1 for A ∈ E,

(b) P(Ω) = 1,

(c) If A1, A2, · · · ∈ E are disjoint, then P (∪∞
i=1Ai) =

∑∞
i=1 P (Ai) .

We say that two events A,B ∈ E are independent if p(A ∩ B) = p(A)p(B); that

is, the probability of A and B is the product of the probabilities of A and B. The

conditional probability of A given B is p(A|B) = p(A∩B)/p(B). In what follows, we

assume that E is the Borel algebra on Rn, n ∈ N.

A random variable is a function X : Ω → Rn such that for every open set A ⊂ Rn,

X−1(A) ∈ E. This condition is expressed by saying that X is a measurable function.

A realization of X is x = X(ω) for some ω ∈ Ω. Note that although we define

random variables to be real-valued, complex-valued random variables can be defined

such that the real and imaginary components are both real-valued random variables.

Consider the function µX : Rn → [0, 1] given as

µX(A) = P(X−1(A)).

Every random variable induces such a function, which is called the probability distri-

bution of X. The distribution function F of a random variable X is

F (x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn), x = (x1, x2, . . . , xn).
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With every probability distribution µX , there exists probability density π such that2

µX(A) =

∫
A

πX(x)dx, A ⊂ Rn.

Given two random variables X ∈ Rn and Y ∈ Rm, the joint probability density πX,Y

is

µX,Y (A×B) =

∫ ∫
A×B

πX,Y (x,y)dxdy, A ⊂ Rn, B ⊂ Rm,

and the marginal density of X is the probability of X when Y may have any value,

i.e.

πX(x) =

∫
Rm

πX,Y (x,y)dy.

Similarly to how conditional probability was defined for sets in E, the conditional

probability of X given Y = y is

πX|Y (x|y) =
πX,Y (x,y)

πY (y)
. (2.13)

This leads us then to the statement of Bayes’ Theorem, which is the foundation for

our approach to statistical inverse problems.

Theorem 2.3 (Bayes’ Theorem). Let X ∈ Rn and Y ∈ Rm be random variables with

respective realizations x and y. Then, the following statement is true:

πX|Y (x|y) =
πY |X(y|x)πX(x)

πY (y)
. (2.14)

Note that Theorem 2.3 follows directly from the definition of conditional proba-

2Throughout this text, both π and f will be used interchangeably to refer to probability density
functions.
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bility (2.13). In (2.14), πX|Y is the posterior, πY |X is the likelihood, πX is the prior,

and πY is the evidence. In practice, the evidence term πY is commonly ignored, as

it acts as a normalizing constant and is presumed to be nonzero. Thus, we have the

proportional form of Bayes’ Theorem

πX|Y (x|y) ∝ πY |X(y|x)πX(x), (2.15)

which states that the probability of x given y is proportional to the probability of y

given x times the probability of x.

2.2.2. Bayesian Inference for Complex-Valued Variables

Consider the statistical linear forward problem given by

Y = AZ + E (2.16)

with random variables Y , E ∈ Cm and Z ∈ Cn, linear operator A ∈ Cm×n, and where

Y , E, and Z have respective realizations y, ε, and z. In (2.16), Y is the observable

data, Z is the unknown of interest, A defines the relationship between Z and Y , and

E is noise. We will assume that Z and E are mutually independent.

We are interested in finding the probability density of the random variable of

interest Z given the data Y . Using the proportional form of Bayes’ Theorem (2.15),

we have

πZ|Y (z|y) ∝ πY |Z(y|z)πZ(z). (2.17)

Thus to find the posterior density πZ|Y , we must first discuss the likelihood πY |Z and

the prior πZ .

Given the relation in (2.16), we have that πY |Z,E(y|z, ε) = δ(y − Az − ε), where
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the Dirac delta function δ is defined such that for any test function g : Cn → R,

∫
Cn

δ(x)g(x)dx = g(0).

The Dirac delta function can be considered as a probability density that equals zero

everywhere other than at the origin. In other words, if Z = z and E = ε, then

Y = y = Az + ε with probability 1.

Suppose that the probability density function πE for E is known. Then using the

law of total probability, we can rewrite the likelihood function πY |Z(y|z) as

πY |Z(y|z) =
∫
Rm

πY |Z,E(y|z, ε)πE|Z(ε|z)dε

=

∫
Rm

δ(y − Az − ε)πE(ε)dε

= πE(Az − y).

From (2.17), we then have

πZ|Y (z|y) ∝ πE(Az − y)πZ(z). (2.18)

All that we need now is the prior density πZ . This probability distribution encodes

a priori information regarding the unknown Z, which may take many forms. In some

cases, we may wish to promote sparsity in the unknown Z or in some transform of

the unknown ψ(Z). The use of a Laplace prior or a spike-and-slab prior would then

be beneficial [65]. We may also have prior knowledge of the structure of Z, in which

case we may wish to utilize a Gaussian smoothness prior.
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2.2.3. Markov Chain Monte Carlo Methods

When πZ|Y in (2.18) is not a distribution with a known sampling scheme, such as a

Gaussian or Gamma distribution, the question becomes how to explore the posterior

density to obtain useful information, such as point estimates and uncertainty quan-

tification. Markov Chain Monte Carlo (MCMC) methods are a well-known class of

methods for accomplishing this task.

Monte Carlo Integration. Let P denote a probability measure over Rn, and let f

be a vector-valued measurable function over Rn with respect to P, i.e. f ∈ L1(P(dx)).

Now suppose that the objective is to calculate the integral of f with respect to the

measure P. Using numerical quadrature methods, we define a set of support points

xj and corresponding weights wj, j = 1, . . . , N , to get

∫
Rn

f(x)P(dx) ≈
N∑
j=1

f(xj)wj.

In Monte Carlo integration, the support points xj are determined by drawing from

some probability density, and then the weights wj are calculated using that same

distribution.

Suppose xj are drawn from the distribution determined by the measure P itself.

So if X is a P-distributed random variable with random samples x1, . . . ,xN , we could

approximate the integral of f by the ergodic average

∫
Rn

f(x)P(dx) = E[f(X)] ≈ 1

N

N∑
j=1

f(xj). (2.19)

An MCMC method generates a set of samples such that (2.19) holds.
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Probability Transition Kernels. Let B be the Borel sets over Rn. Recall that

these are any sets in Rn that can be formed using the operations of countable union,

countable intersection, and complement. A mapping P : Rn × B → [0, 1] is called a

probability transition kernel if

• for each B ∈ B, the mapping x 7→ P (x, B) is a measurable function, and

• for each x ∈ Rn, the mapping B 7→ P (x, B) is a probability distribution.

An ordered set {Xj}∞j=1 of random variables Xj ∈ Rn is a discrete time stochastic

process. A stochastic process {Xj}∞j=1 with the properties

µXj+1
(Bj+1|x1, . . . ,xj) = µXj+1

(Bj+1|xj) = P (xj, Bj+1) (2.20)

is a time-homogenous Markov chain. The first equality in (2.20) can be understood as

saying that, given all previous states of the Markov chain X1 = x1, . . . , Xj = xj, the

probability that Xj+1 ∈ Bj+1 is the same as if we conditioned only on the immediate

previous state Xj = xj. A common way of stating this property is that “the future

depends on the past only through the present,” [73]. The second equality in (2.20) is

regarding time homogeneity in the sense that the probability distribution of the next

state based on the current state does not vary in time. To this end, notice that P

does not have a dependence on j + 1.

The transition kernel that propagates k steps forward in time is defined inductively

for k ≥ 2 as

P (k)(xj, Bj+k) = µXj+k
(Bj+k|xj) =

∫
Rn

P (xj+k−1, Bj+k)P
(k−1)(xj, dxj+k−1).

Introducing the operator µXj
P , where µXj

denote the probability distribution of Xj,
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the probability distribution of Xj+1 is given as

µXj+1
(Bj+1) = µXj

P (Bj+1) =

∫
Rn

P (xj, Bj+1)µXj
(dxj).

A measure µ is an invariant measure of P (xj, Bj+1) if

µP = µ.

A transition kernel P is irreducible if for each x ∈ Rn and B ∈ B with µ(B) > 0,

there exists k ∈ Z+ such that P (k)(x, B) > 0. In other words, a transition kernel P

is irreducible if every set of positive measure B is visited with positive probability by

the Markov chain generated by P , regardless of starting point x.

An irreducible kernel P is periodic if there is a set of disjoint nonempty sets

{E1, . . . , Em} ⊂ Rn, m ≥ 2, such that for all j = 1, . . . ,m and x ∈ Ej,

P (x, E(j+1) mod m) = 1.

This means that a periodic irreducible kernel is one that generates a Markov chain

that will remain in an infinitely repeating loop. An aperiodic kernel is one that is not

periodic.

The following theorem is directly stated from [73]:

Theorem 2.4. Let µ be a probability measure in Rn and {Xj} a time-homogenous

Markov chain with a transition kernel P . Assume further that µ is an invariant

measure of the transition kernel P , and that P is irreducible and aperiodic. Then for

all x ∈ Rn,

lim
N→∞

P (N)(x, B) = µ(B) for all B ∈ B,
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and for all f ∈ L1(µ(dx),

lim
N→∞

1

N

N∑
j=1

f(Xj) =

∫
Rn

f(x)µ(dx)

almost certainly.

Thus to explore a given probability distribution, we need to (1) construct an

aperiodic, invariant, and irreducible transition kernel P , and (2) draw a sequence of

sample points x1,x2, . . . using P .

In other words, we must derive a realization of the Markov chain. Two common

MCMC methods are the Metropolis-Hastings algorithm and the Gibbs sampler. As

Gibbs sampling is used in this dissertation, we briefly review it below. The reader

is referred to [21, 45, 73] for more information regarding the Metropolis-Hastings

algorithm.

The Gibbs Sampler. Let µ denote the target probability distribution in Rn, and

assume µ is absolutely continuous with respect to the Lebesgue measure such that

µ(dx) = π(x)dx. As a consequence of Theorem 2.4, we require a transition kernel

P (x, B) such that µ is its invariant measure and that the resulting Gibbs Markov

chain is irreducible and aperiodic.

Let P denote a transition kernel given by

P (x, B) =

∫
B

K(x,y)dy. (2.21)

We can think of K(x,y)dy as the probability of the move from x to the infinitesimal

set dy at y. The condition P (x,Rn) = 1 provides

∫
Rn

K(x,y)dy = 1,
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which then implies

∫
Rn

K(y,x)π(y)dx = π(y). (2.22)

In order for π(x)dx to be an invariant measure of P , we must have

µP (B) = µ(B) =

∫
B

π(y)dy.

Since

µP (B) =

∫
Rn

(∫
B

K(x,y)dy

)
π(x)dx =

∫
B

(∫
Rn

K(x,y)π(x)dx

)
dy

for all B, it must be that

∫
Rn

K(x,y)π(x)dx = π(y). (2.23)

Combining (2.22) with (2.23), we have the sufficient condition

∫
Rn

K(x,y)π(x)dx =

∫
Rn

K(y,x)π(y)dx.

This condition is called the balance equation, and it is defined as follows:

Definition 2.2. Given densities K(x,y) and π(x), the balance equation is the con-

dition that

∫
Rn

K(x,y)π(x)dx =

∫
Rn

K(y,x)π(y)dx. (2.24)

We now introduce some notation needed for our discussion of the Gibbs sampler.

Let I = {1, . . . , n} be the index set in Rn, and let Ij, j = 1, . . . ,m be a partitioning
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of the index set into disjoint nonempty subsets with kj = |Ij| such that ∪m
j=1Ij = I.

We then partition Rn as

Rn = Rk1 × · · ·× Rkm .

For any vector x ∈ Rn, we then rearrange the elements of x such that

x =


xI1
...

xIm

 ∈ Rn, where xIj ∈ Rkj , j = 1, . . . ,m.

Hence xi ∈ R is a component of xIj if and only if i ∈ Ij. Note that if kj = 1 for all

j = 1, . . . ,m, then m = n and xIj = xj ∈ R.

We use the negative subindex to indicate that the corresponding elements are

deleted from the vector, i.e.

x−Ij =

[
xT
I1 · · · xT

Ij−1
xT
Ij+1

· · · xT
Im

]T
.

With this notation in place, suppose we have some partitioning of the index set

I of Rn, and let x, y ∈ Rn. We define a kernel K such that

K(x,y) =
m∏
j=1

π(yIj |yI1 , . . . ,yIj−1
,xIj+1

, . . . ,xIm). (2.25)

This leads us to the following theorem:

Theorem 2.5. Consider the probability distribution µ in Rn with probability density

function π(x). If P is the transition kernel in (2.21), where K is given by (2.25),

then P satisfies the balance equation (2.24).

The reader is referred to [73, Chapter 3] for a proof of Theorem 2.5. Since K
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satisfies the balance equation, the transition kernel P (x, B) is an invariant measure

of µ.

To satisfy Theorem 2.4, we still must show that the resulting Gibbs Markov chain

is both irreducible and aperiodic. For the chain to be irreducible, it is sufficient for

the associated probability density π to satisfy the positivity condition.

Definition 2.3. Let (X1, . . . , Xn) be random variables with joint probability density

π(x1, . . . , xn), and let π(i) denote the marginal density of Xi. If π
(i)(xi) > 0 for every

i = 1, . . . , n implies that π(x1, . . . , xn) > 0, then π is said to satisfy the positivity

condition.

In other words, the positivity condition implies that the support of π is the same

as the Cartesian product of the support of each π(i), i = 1, . . . , n. If π(x) satisfies

the positivity condition, then the resulting Gibbs Markov chain is irreducible [106,

Chapters 9 and 10].

To see how the Gibbs Markov chain is aperiodic, consider the state x(t) of the

Markov chain. Since π
(
x(t)
)
> 0, each π

(
x
(t)
Ij

∣∣x(t)
I1 , . . . ,x

(t)
Ij−1

,x
(t)
Ij+1

, . . . ,x
(t)
Im

)
> 0

for j = 1, . . . ,m as well. Thus, the next state x(t+1) may be the same as the current

state x(t) with positive probability, implying that the chain is aperiodic.

A summary of how to perform the Gibbs sampler is given in Algorithm 1.

Algorithm 1 The Gibbs Sampler

Input probability density π(x), index sets Ij for j = 1, . . . ,m, number of iterations
K, and initial value x(0).
Output Markov chain {x(k)}Kk=1.
for k = 1 : K do

Set x = x(k).
for j = 1 : m do

Draw yIj ∈ Rkj from the density π(yIj |yI1 , . . . ,yIj−1
,xIj+1

, . . . ,xIm).
end for
Set x(k+1) = y.

end for
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Section 2.3

Synthetic Aperture Radar Signal Processing

Synthetic aperture radar is a day and night, all-weather imaging modality capable

of providing high resolution images over large areas of interest. This dissertation

is concerned with spotlight-mode synthetic aperture radar, henceforth referred to as

SAR. The following description of the SAR signal processing problem is adapted from

[34, 66, 91, 109].

In SAR imaging, a platform takes a full or partial circular path around a scene of

interest, transmitting and receiving electromagnetic pulses as it does so. Denote by θ

and φ the respective azimuth and depression viewing angles of the imaging platform.

Let the volumetric scene be described with view-independent x, y, z coordinates. De-

fine the view-dependent coordinate system u, v, w to be such that the u-axis contains

the imaging platform and the scene center, the v-axis is orthogonal to the u-axis and

is contained in the xy-plane, and the w-axis is normal to the uv-plane. A graphical

depiction of this setup can be seen in Figure 2.3.

Suppose that the radar attached to the imaging platform launches a linear FM

chirp waveform described by Re(s(t)) [66], where

s(t) =


exp(i(ω0t+ αt2)) |t| ≤ τc/2

0 else

, (2.26)

τc is the pulse duration, 2α is the FM chirp rate, and ω0 is the center frequency.

Figure 2.4 demonstrates an example of a linear FM chirp.

Let g(x) = g(x, y, z) be the scene reflectivity function. Consider the interval

[−u1, u1] along the u-axis, where u1 ∈ R+ is the maximum slant range of any target

illuminated in the scene. Let τp be the patch propagation time, which is the differ-
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Figure 2.3: The geometry of 3D SAR data collection.

Figure 2.4: Linear FM chirp.

ence in two-way propagation delay between a target closest to and farthest from the

imaging platform in the illuminated scene.

We approximate the signal propagation using a planar wavefront. At any given

time, what is transduced by a single received pulse is an integration of the scene
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reflectivity function g over the plane given by slant range u. Thus we define pθ,φ as

the view-dependent projection function given as

pθ,φ(u) =

∫ ∫
g (x(u, v, w), y(u, v, w), z(u, v, w)) dvdw.

The chirp return echo rθ,φ can be seen as a superposition of multiple delayed versions

of the chirp waveform, where the scaling of each version is proportional to the view-

dependent projection function pθ,φ, i.e.

rθ,φ(t) = ARe

(∫ u1

−u1

pθ,φ(u)s

(
t− 2(R + u)

c

)
du

)
, (2.27)

where R is the distance from the origin to the imaging platform, c is the speed of

light, and A is a scaling factor. Note that (2.27) is only valid when

τ0 −
τc
2
+
τp
2

≤ t ≤ τ0 +
τc
2
− τp

2
. (2.28)

The inequalities in (2.28) indicate the time segment during which chirp returns from

all targets in the illumination patch exist simultaneously.

Rewriting (2.27) using (2.26) along with the relations

τ0 =
2R

c
and τ(u) =

2u

c
(2.29)

yields

rθ,φ(t) = ARe

(∫ u1

−u1

pθ,φ(u) exp
(
i
(
ω0(t− τ0 − τ(u)) + α(t− τ0 − τ(u))2

))
du

)
.

(2.30)

Deramp processing is used to deconvolve the chirp signal s(t) from the chirp
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return echo rθ,φ(t). This process begins with quadrature demodulation. The first step

in quadrature demodulation is to mix (multiply) rθ,φ(t) with delayed in-phase (real)

and quadrature (imaginary) versions of s(t). Multiplying rθ,φ(t) with the in-phase

version of s(t− τ0), that is

Re(s(t− τ0)) = Re
(
exp
(
i(ω0(t− τ0) + α(t− τ0)

2)
))

= cos
(
ω0(t− τ0) + α(t− τ0)

2
)
,

produces the in-phase term of the mixer output as

r̃θ,φI =
A

2
Re

(∫ u1

−u1

pθ,φ(u) exp

(
i
(
ω0(2t− τ(u)− 2τ0)

+ α((t− τ0)
2 + (t− τ(u)− τ0)

2)
))

du

)

+
A

2
Re

(∫ u1

−u1

pθ,φ(u) exp

(
i
(
ατ(u)2 − τ(u)(ω0 + 2α(t− τ0))

))
du

)
.

(2.31)

Observe that the first term in (2.31) is centered on the frequency 2ω0. This leads to

the second step of quadrature demodulation, which is to apply a low-pass filter to

r̃θ,φI to remove terms with large frequencies. The output of this filter is then

r̄θ,φI(t) =
A

2
Re

(∫ u1

−u1

pθ,φ(u) exp

(
i
(
ατ(u)2 − τ(u)(ω0 + 2α(t− τ0))

))
du

)
.

(2.32)

We similarly obtain the quadrature term r̄θ,φQ by mixing rθ,φ with the quadrature
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component of s(t− τ0) and filtering with a low-pass filter:

r̄θ,φQ(t) =
A

2
Im

(∫ u1

−u1

pθ,φ(u) exp

(
i
(
ατ(u)2 − τ(u)(ω0 + 2α(t− τ0))

))
du

)
.

(2.33)

Adding together the right-hand-sides of (2.32) and (2.33) yields the resulting signal

Cθ,φ =
A

2

∫ u1

−u1

pθ,φ(u) exp

(
i
(
ατ(u)2 − τ(u)(ω0 + 2α(t− τ0))

))
du. (2.34)

If we ignore the second-order term ατ(u)2 in (2.34) and apply the definition of τ(u)

(2.29), we obtain

C̄θ,φ =
A

2

∫ u1

−u1

pθ,φ(u) exp

(
−iu2(ω0 + 2α(t− τ0))

c

)
du. (2.35)

Notice the presence of the Fourier transform kernel exp(−iuU) in the integrand in

(2.35), where

U =
2(ω0 + 2α(t− τ0))

c
.

Therefore, C̄θ,φ is the Fourier transform of the view-dependent projection function

pθ,φ evaluated over the limited range of spatial frequencies

2(ω0 − α(τc − τp))

c
≤ U ≤ 2(ω0 + α(τc − τp))

c

according to (2.28). We will make extensive use of this equivalence when we discuss

3D SAR imaging techniques in Chapter 6.
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Chapter 3

Sparsity-Based Reconstruction of

3D Photoacoustic Images

This chapter describes work that was published in [55] in the Journal of Imaging.

Section 3.1

Introduction

Photoacoustic (PA) imaging provides a method of in vivo non-invasive and high-

resolution molecular imaging at centimeter depth scales [84, 126, 129, 133]. In PA

imaging, biological tissue is irradiated by a pulsed laser. The absorption of the laser

by endogenous or exogenous chromophores induces a local increase in temperature,

which in turn causes a pressure rise through thermoelastic expansion of the tissue.

Ultrasound receivers placed at the surface of the tissue detect the resulting acoustic

waves. Images of the optical absorption can be reconstructed by solving acoustic

and optical inverse problems [37]. While high-speed data acquisition is possible with

PA imaging, the multichannel data acquisition systems that are available to record

this data are expensive [127]. The detection of PA signals is most commonly accom-
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plished using digital-to-analog converters recording the voltage connected to piezo-

electric transducers, which drastically increase the complexity of the imaging system

[71]. A well-established alternative to this is a method for optical interferometric de-

tection which utilizes a Fabry–Pérot etalon (FPE) [12, 63, 137]. The FPE exploits the

resonant interference of an interrogating continuous wave laser between two reflecting

surfaces to provide both sensitive detection and large acoustic bandwidth.

A major limitation to using a FPE for PA signal detection, however, is that

detection is performed only at a single point on the etalon. In practice, the detection

laser must be raster scanned along the surface of the etalon to acquire a volumetric

image of the tissue. Thus, the PA signal generating laser must be shot for each position

in the raster scan to produce the photoacoustic signal, making the temporal resolution

highly dependent on the pulse repetition rate of the laser. This dependence makes

the imaging system prone to motion artifacts and unable to capture fast dynamic

processes.

In order to improve the temporal resolution of the imaging system, recent work

has been done in which a FPE was imaged onto a scrambled Hadamard pattern over

multiple sequential measurements [62, 77]. Though the main features of imaging

phantoms used were successfully recovered at compression rates as low as 10%, mul-

tiple acquisitions of data were necessary, and thus the total data acquisition time was

still much longer than pulse repetition rate of the laser.

Here, FPE-based PA image detection is combined with compressed ultrafast pho-

tography to further improve the temporal resolution. Compressed ultrafast photog-

raphy applies core compressed sensing principles to acquire a sequence of images at

a high rate using a single exposure of a camera [103]. In the original work, a random

binary mask is applied to the image, and a streak camera is then used to scan the

image quickly across a sensor [46]. The mask in conjunction with the streak camera
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provide enough structure such that the original time-resolved image sequence can be

reconstructed. This has enabled reconstruction of 980-frame videos with framerates

achieving 7 × 1013 frames per second [128]. In applications that do not require such

extreme framerates, the streak camera can be replaced with a low-cost galvanometer

to achieve the spatial shifting of the image [78].

In this work, we design and simulate an optical system that is capable of acquiring

the interference pattern of the entire FPE with a sampling rate of greater than 12

MHz. This optical system utilizes a digital micromirror device to apply a binary mask

to the interference pattern of the FPE. The resulting masked image is then rapidly

swept across an imaging sensor with a galvanometer, thus encoding time information

in the spatial domain. Finally, the PA image is reconstructed using a compressive

sensing approach that iteratively solves a convex optimization problem specifically

designed for problems where data are under-sampled and the true solution has sparse

representation in some related domain (e.g., the gradient domain).

The rest of this chapter is organized as follows: In Section 3.2, we describe the

problem and provide the background in compressed sensing needed in our new ap-

proach. The results of the simulations are presented in Section 3.3, with a discussion

of these findings and some concluding remarks in Section 3.4.

Section 3.2

Methods

3.2.1. Optical Setup

The proposed optical system is depicted in Figure 3.1. A pulsed laser is applied to

the tissue of interest. Optical absorbers in the tissue then convert the optical energy

to heat, inducing a thermoelastic expansion of the surrounding tissue. The expansion

generates broadband ultrasound waves, which are detected at the surface of the tissue
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with a FPE. This interaction of the PA waves with the surface of the FPE results in

modulation of the reflected interrogating continuous-wave (CW) laser beam on the

opposite side of the FPE. The linear polarizer and quarter wave plates allow for the

directed flow of the light through the polarized beam splitters.

The modulated CW laser beam is then imaged onto a digital micromirror device

(DMD) via a 4-f optical system, which consists of two lenses spaced by twice their

focal length. The DMD consists of a two-dimensional array of mirrors that will either

reflect the light along the optical path or deflect it away from it, resulting in a binary

mask on the FPE. A second 4-f optical system then images the DMD directly onto

an imaging sensor array. A galvanometer is placed in the Fourier plane of the second

4-f system, which rapidly sweeps the image of the masked FPE across the camera

during a single exposure.

Figure 3.1: The proposed optical system. SMF = single-mode fiber, OI = optical
isolator, COL = collimator, PBS = polarized beam splitter, λ/4 = quarter wave
plate, L = lens, CAM = camera, DMD = digital micromirror device, LP = linear
polarizer, FPE = Fabry–Pérot etalon.

3.2.2. Continuous Model

We now seek to build a forward model that transforms a given initial pressure distri-

bution (IPD) to a camera image based on the proposed optical system. Let d, τ ∈ R+.
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The function P (x, y, z, t) is defined on [0, d]× [0, d]× [0, d]× [0, τ ] to be the pressure

distribution at (x, y, z) at time t. The IPD is then P0 := P (x, y, z, 0). Acoustic waves

then propagate outwards in a manner determined by the governing equations

∂u⃗

∂t
= − 1

ρ0
∇P

∂ρ

∂t
= −ρ0∇ · u⃗

P = c20ρ.

Here u⃗ is the acoustic particle velocity, ρ is the density, ρ0 is the density in the absence

of acoustic waves, and c0 is the isentropic sound speed [101].

The FPE is placed on the xy-plane and encodes the pressure data P (x, y, 0, t).

We next define the binary mask M ⊂ R2. The interaction of the light from the FPE

with the DMD can be characterized as

PM(x, y, t) =


P (x, y, 0, t) if (x, y) ∈M

0 else.

(3.1)

The data then undergoes a shearing operation from the motion of the galvanometer,

leading to

PS(x, y, t) = PM(x− αt, y, t), (3.2)

where it is assumed that the galvanometer sweeps with a constant speed α > 0, where

α is determined by the physical limitations of the galvanometer and the focal length

of the lenses in the second 4-f system.

Lastly, PS undergoes a temporal integration operation as it is swept across the

camera sensor for an exposure time equal to the acoustic wave propagation time τ ,
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yielding the camera image

E(x, y) =

∫ τ

0

PS(x, y, t)dt =

∫ τ

0

PM(x− αt, y, t)dt, (3.3)

where PM(x, y, t) is given in (3.1). This describes the full continuous forward model.

3.2.3. Discrete Model

We now move to discretize (3.3) to enable solving the inverse problem. First, the IPD

is discretized into a uniform three-dimensional computational grid of size N×N×N

for a given choice ofN ∈ Z. The dimension of each voxel is then h×h×h where h = d
N
.

The grid elements are then rearranged to form a single vector u of length N3. Next,

we model the propagation of the acoustic waves through body tissue over time using

the k-Wave simulation toolbox in MATLAB [122]. The propagation is also temporally

discretized with time steps ∆t determined by the Courant–Friedrichs–Lewy condition,

which is dependent on c0 and h. The total number of time steps T ∈ Z is then

calculated as T = ⌊ τ
∆t
⌋. The acoustic waves are observed by the FPE located at the

base of the computational grid at each time step. This transformation from the IPD

to the sequence of T images of size N ×N detected by the FPE can be modeled by

the N2T×N3 matrix K, which is constructed by simulating the FPE output for each

of the standard basis vectors in RN3
.

The binary mask M used in (3.1) is now discretized to form M′, and is defined as

M′
i,j =


1 if (ih, jh) ∈M

0 else,

, i, j = 1, . . . , N. (3.4)

The diagonal matrix M ∈ RN2T×N2T is subsequently formed by reshaping M′ into an

N2 × 1 vector and inserting it intoM such thatMj+iN2,j+iN2 = M′
j for j = 1, . . . , N2
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and i = 1, . . . , (T − 1).

The shearing operation is then applied, which we write as matrix S, where the

sequence of images is shifted (spatially) along the x-axis as a function of time. Since

the shearing speed has, in practice, a significantly greater magnitude than ∆t, down-

sampling is also performed during this step. This is accomplished by calculating the

downsize factor s =
⌈

α
∆t

⌉
. For every s entries, all but one entry is discarded so that

S is a matrix of size
(⌊

T
s

⌋
+N − 1

)
N
⌊
T
s

⌋
×N2T .

Lastly, the light intensity incident to each pixel is summed over time using a left

Riemann sum by the
(⌊

T
s

⌋
+N − 1

)
N×

(⌊
T
s

⌋
+N − 1

)
N
⌊
T
s

⌋
matrix I, resulting in

the camera image v. Since I, S, M, and K are matrices, the full forward model can

thus be represented as

w = Av + e (3.5)

where A = ISMK, w is a vector of length NL, and e is a vector of additive white

Gaussian noise with mean zero and covariance matrix INLσ
2. Although the matrices

I, S, and K are not analytically constructed, one can explicitly form A, as will be

described in Section 3.2.5. The parameter L is determined by the angular velocity

of the galvanometer, and with a constant angular velocity, we have from above that

L =
⌊
T
s

⌋
+N − 1. Figure 3.2 indicates how each component of A affects the image.
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Figure 3.2: A pictorial representation of the imaging process as individual forward
operations.

3.2.4. Image Reconstruction Via Compressed Sensing

To reconstruct the IPD, we utilize ideas and algorithms from compressed sensing,

which is based on the key notion that a sparse signal can be reconstructed with

relatively few measurements. Following the seminal work in [24, 41], many investi-

gations have centered around compressed sensing algorithms – sometimes with the

goal of generally improving the methodology, e.g., its efficiency, robustness, and ac-

curacy, and in other cases to use the method for a particular application of interest.

For example, compressed sensing has been extensively used in the area of PA image

reconstruction [7, 14, 58, 59].

Compressed sensing requires that the image satisfy certain sparsity and incoher-

ence constraints [75]. They are (i) the image should contain only a few nonzero values

in some domain, known as the sparse domain, and (ii) the image acquisition domain

should not be coherent with the sparse domain, i.e. the rows of the measurement

matrix are not correlated with the columns of the sparsifying matrix. The origi-
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nal image can then be accurately reconstructed from under-sampled data using an

iterative method that utilizes a data fidelity term and includes a sparsity constraint.

As we are attempting to reconstruct a vector of length N3 with one of length

NL, where L < N2, this inverse problem is under-determined. Note that in prac-

tice, L ≪ N2, so the compression ratio is quite high. In this work, we arrive at

the L/N2 ratio of 163/4096 ≈ 25. We will address this issue using a compressive

sensing approach, which, as noted above, requires that the IPD is sparse in some

domain. Since it is anticipated that real-world applications will consider IPDs that

are approximately piecewise-constant, the sparsity-enforcing regularization term Φ is

chosen as the isotropic discrete total variation (TV) operator. This leads us to the

convex optimization problem

v = argmin
ṽ≥0

1

2
∥Aṽ − w∥22 + λΦ(ṽ), (3.6)

where A is described in (3.5), λ is the regularization parameter, and the problem is

augmented by the physical constraint v ≥ 0.

Many algorithms have been developed to numerically solve (3.6), and there have

also been numerous investigations into parameter selection [42]. For the simulations

we employ the Two-Step Iterative Shrinkage/Thresholding (TwIST) algorithm to

recover v in (3.6) [15]. This method brings together the high denoising capabilities

of iterative shrinkage/thresholding (IST) and the efficiency for dealing with ill-posed

problems of iterative reweighted shrinkage (IRS) algorithms. IST has good denoising

properties, while IRS is good at handling ill-posed problems, and TwIST aims at

keeping both these advantages. Since the IPD is expected to be nonnegative, we have

modified TwIST such that after each iteration, all negative values are set to zero.

This modification is not trivial, and further investigation is needed to quantify the

stability and accuracy of this revised method. The unmodified TwIST algorithm is
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commonly used in related applications [77, 114].

To compensate for the finite resolution effects and aliasing arising from discretiza-

tion of the k-Wave simulation, reconstructed IPD is normalized prior to quantitative

comparison. We acknowledge that this is not necessarily the best way to treat the er-

ror, but the approach is effective in our experiments. More extensive study is required

to identify a better mitigating technique. The two main criteria used to quantify the

success of the reconstruction are mean square error (MSE) and multi-scale structural

similarity (MS-SSIM) index. The MS-SSIM index incorporates image details at dif-

ferent resolutions to provide an image quality assessment based on the human visual

system [130]. For MSE, a smaller number indicates less error, while MS-SSIM is

between −1 and 1, with 1 indicating a perfect reconstruction.

3.2.5. Simulation Setup and Analysis

In addition to the parameters defined previously, there are several other important

parameters to discuss for the simulations. The size of the computational grid for the

k-Wave simulation is Nc > N , where we apply a perfectly matched layer absorbing

boundary condition to the edges of the computational grid. The layer occupies a strip

of size NL grid points around the outer perimeter of the computational domain. The

speed of sound in the medium containing the IPD is cs, the length of each voxel is h,

and the center frequency is f .

We now describe how the resulting image is computed from the optical setup

given an IPD. An N3
c computational grid is created on which to run the k-Wave

simulation. The FPE is incorporated as a N2 sensor placed parallel to the xy-plane

in the extended computational grid with corner at (Nc−N
2

+ 1, Nc−N
2

+ 1, Nc−N
2

+ 1).

The speed of sound is defined corresponding to the average speed of sound in human

tissue [83]. The sensor data is stored in a N × N × T array, and we proceed as

described in 3.2.4. The parameters chosen for the simulations are defined in Table
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3.1.

Parameter Description Value

N length of IPD grid [pixels] 64

Nc length of computational grid [pixels] 96

NL width of boundary condition layer [pixels] 15

cs speed of sound in the medium [m/s] 1540

h pixel width [µm] 122

f center frequency [MHz] 5

T total time steps 400

∆t time step size [ns] 24

α [pixels-widths/s] 12

s downsize factor 4

Table 3.1: The parameters used in our simulations and their associated values.

To test our new method we will consider (1) the base case cylinder IPD, (2) the

base case cylinder IPD rotated so that its axis is parallel to the x-axis, and (3) a vessel-

like IPD with ten total vessels. The rotated cylinder is included to analyze how the

orientation of the cylinder relative to the direction of shearing affects reconstruction.

In our simulations, the direction of shearing is parallel to the x-axis. In this analysis,

the probability that a given pixel, m, in the mask is set to one is varied. For this

purpose we define

p = Prob(m = 1). (3.7)

The cylinder is passed through the forward model and then added noise to the final

image before attempting reconstruction. The regularization parameter in (3.6) was

chosen as λ = 2.5×10−3, which was optimized heuristically for the no noise case. The
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reconstruction is performed for various levels of signal-to-noise ratio (SNR), which is

defined as

SNR = 20 log10

(µ
σ

)
dB, (3.8)

where µ is the mean of the signal strength in its area of support and σ is the standard

deviation of the noise present. Note that µ is approximated over the inferred region

of support of the image.

Section 3.3

Numerical Results

3.3.1. Baseline Test

As a baseline test, and to demonstrate that our methods perform as expected, Figure 3.3

displays the reconstruction of an IPD of a single impulse; that is, it contains all zeros

except for a single voxel that is set to a value of one. Since the matrixA is constructed

by passing each basis vector through the forward model, this is a good test to see if

the reconstruction algorithm is working as expected. We see in Figure 3.3 that, as

predicted, the reconstruction of the single impulse is spread across neighboring pixels

with a peak at the true impulse pixel.

3.3.2. Simulated Experiments

Having established our method performs as expected in the simple impulse case,

we now consider two primary types of more realistic IPDs, namely cylindrical IPDs

and vessel-like IPDs, each of which has binary-valued voxels representing either the

presence or lack thereof of an initial acoustic impulse response.

For the base case of the cylindrical IPDs, shown in Figure 3.4a, a solid cylinder

with a radius of six voxels, including the center voxel, and with axis parallel to the y-
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axis and centered on the xz-plane is used. The vessel-like IPDs, an example of which

is displayed in Figure 3.4b, are constructed with a more random behavior meant to

simulate the structure of blood vessels in tissue, including growing and shrinking as

well as branching vessels.

In our experiments, we used Gaussian noise with mean zero and variance depen-

dent on the desired SNR parameter given by (3.8). For each value of SNR examined,

the image reconstruction was performed five times (after adding noise as described in

Section 3.2). The average value of MS-SSIM and MSE over those five trials was then

computed. Shown in Figure 3.5 are the MSE and MS-SSIM results for the recon-

struction of the cylinder IPD parallel to the y-axis, the cylinder IPD parallel to the

x-axis, and the vessel IPD, all for different values of p in (3.7), as well as one using

the normalized time reversal reconstruction included with the k-Wave toolbox. The

k-Wave reconstruction is performed without compression on the data acquired from

the FPE with the appropriate noise added. For SNR greater than 0 dB, we observe

that our method performs consistently better than the k-Wave reconstruction for p

values between 0.2 and 0.9, and the accuracy of the reconstruction tends to increase

faster with our method than with the k-Wave reconstruction as the SNR increases.
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Figure 3.3: (a) A cross-section of the ground truth impulse IPD and (b–d) cross-
sections orthogonal to the y-, x-, and z-axes, respectively, of a no-noise reconstruction
of the impulse IPD. Here we use regularization parameter λ = 2.5× 10−4 in (3.6).

Figure 3.4: (a) The base case cylindrical IPD and (b) an example of a vessel-like
IPD.
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Figure 3.5: Average MS-SSIM (a) and average MSE (b) of a cylinder IPD with a
radius of six perpendicular to the direction of shearing. Average MS-SSIM (c) and
average MSE (d) of a cylinder IPD with a radius of 6 h parallel to the direction of
shearing. Average MS-SSIM (e) and average MSE (f) of a vessel IPD with ten vessels
present. Each point is averaged over five trials for each SNR value considered and is
plotted against the SNR value used to calculate the additive Gaussian noise.

We now examine the effects of varying cylinder size on the reconstruction using

the base case cylindrical IPD. We use SNR ≈ 27 dB and examine the reconstruction

using different values for the radius of the cylinder, including the center voxel, in the

cylindrical IPD. The results displayed in Figure 3.5 show comparable performance

for p values between 0.2 and 0.8 in (3.7). The value of p = 0.3 was selected for all

subsequent analyses. Figure 3.6 displays the MSE and MS-SSIM results.

We next examine the effect of increased complexity on the reconstruction. The

amount of noise is fixed so that SNR ≈ 25 dB. Using the vessel-like IPDs, the recon-

struction is attempted for an increasing number of vessels. These results are displayed

in Figure 3.7.

An important consideration in these reconstructions is the choice of regularization

parameter, λ in (3.6). While the optimal regularization parameter is a function of

the noise present in the system, it is desirable for the method to be robust in terms of
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choice of regularization parameter. Figure 3.8 displays results for the reconstruction

of a cylinder orthogonal to the direction of shearing and of a vessel-like IPD with ten

vessels present for a range of regularization parameters λ in (3.6). Observe that our

method performs consistently for the same choice of regularization parameter across

various noise levels for both the MS-SSIM and MSE metrics. Figure 3.8 (right) also

demonstrates that the method is robust with respect to the choice of regularization

parameter for the vessel-like IPD reconstruction. On the other hand, the large jump

displayed in Figure 3.8 (left) shows that the method is not as robust with respect to

the choice of the regularization parameter for the single-cylinder case. We speculate

that this might be due to the fact that most of the true underlying image has zero

value, making it difficult to tune the regularization parameter. We do not see this

lack of robustness as a practical issue, however, since real-world applications more

closely resemble the multiple vessel case. This issue will be investigated in future

work.
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Figure 3.6: Average MSE (a) and average MS-SSIM (b) of the reconstructed cylinder
IPD with varying radius, averaged over five trials for each radius value considered.
A cross section of the ground truth cylinder with radius of five (c), ten (d) and
fifteen (e) voxel widths and a cross section of the reconstruction of the same cylinder,
respectively, (f–h). Each cylinder considered is orthogonal to the xz-plane.
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Figure 3.7: Average MSE (a) and average MS-SSIM (b) of the reconstructed vessel
IPDs with a varying number of vessels present, averaged over twenty IPDs for each
number of vessels considered. Ground truth projection onto the xy-plane of a four
vessel IPD (c), eight vessel IPD (d), and twelve vessel IPD (e), and the reconstruction
of the same IPDs, respectively, (f–h). In images (c–h), hue represents depth in the
z-dimension, with the colorbar indicating pixel lengths away from the FPE, while
intensity is proportional the value of the voxels after being thresholded at 0.15.
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Figure 3.8: Average MSE (a) and average MS-SSIM (b) of the reconstructed cylinder
IPD as well as average MSE (c) and average MS-SSIM (d) of the reconstructed
vessel-like IPD, averaged over five trials for each value of the regularization parameter
considered. Low, medium, and high values of SNR are considered for comparison.

Section 3.4

Discussion and Conclusions

In this paper, we modeled a new method for compressed single-shot PA image re-

construction using various types of DMDs to encode temporal information, and then

demonstrated through simulated experiments that our approach is capable of accu-

rately reconstructing a variety of IPDs. Moreover, it is robust in the presence of

additive Gaussian white noise. We note that while the IPDs modeled here are piece-

wise constant, the k-Wave toolbox uses methods best-suited for smooth IPDs. We

do not anticipate this presenting issues in real-world applications, since the physical

process will not experience the aliasing that is observed with the k-Wave simulations.

Figure 3.5 demonstrates that for a range of probabilities that a given pixel in the
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binary mask is turned on, i.e., 0.2 ≤ p ≤ 0.8, the performance of our method is

consistently better than the k-Wave reconstruction whenever SNR ≥ 0 dB. This is

a significant improvement given that the k-Wave reconstruction is done with the full

time-series data and that our method experiences approximately 25-fold compression.

While the random construction of the mask was effective in the simulations, there

may be other ways to construct the mask leading to more accurate reconstructions

in some cases. This will be the subject of future work.

Figures 3.6 and 3.7 demonstrate the effectiveness of the reconstruction as the

number of nonzero values increases in the system, and we note that we are able to

achieve accurate reconstructions in the presence of both large and complex vessel

systems.

In future investigations we will assemble the optical system and employ the meth-

ods and techniques discussed here to reconstruct phantoms using images generated by

the physical forward model. In the construction and implementation of the physical

optical system, there are several considerations regarding the continuous wave laser

for which to account. In the simulations considered here, the sample was assumed to

be under uniform illumination by the laser, while the real system will likely experience

a more Gaussian-type illumination. A correction to the forward model would then

be needed for spatially varying beam intensity. In addition, the FPE cavity must be

tuned to match the wavelength of the continuous wave laser. Nanoscopic variations in

cavity thickness could prove detrimental to the sensitivity of the system. Finally, the

imaging sensor must be selected to have adequate sensitivity to the continuous wave

laser wavelength. As the sweeping speed is increased to reach adequate sampling in

time, fewer photons are incident on each camera pixel. Thus, MHz sampling rates

may require a sensitive camera and relatively high-power laser.
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Chapter 4

Complex-Valued Bayesian LASSO

Section 4.1

Introduction

Recovering complex-valued images or signals1 from noisy and/or under-sampled data

is important in coherent imaging applications such as synthetic aperture radar (SAR)

[32, 66], ultrasound [135], and digital holography [134]. The problem is often modeled

as

y = Fz + ε. (4.1)

Here z = g⊙eiϕ ∈ Cn with⊙ indicating componentwise multiplication is the unknown

signal of interest decomposed into magnitude g ∈ (R+)
n
and phase ϕ ∈ [−π, π)n,

y ∈ Cm represents the observable data, F ∈ Cm×n is the known forward linear

operator, and ε ∈ Cm is centered Gaussian noise with covariance σ2Im and probability

1We use the terms image and signal interchangeably throughout this chapter.
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density

fE(ε) =
1

πmσ2m
exp

(
− 1

σ2
∥ε∥22

)
.

Many techniques seek to exclusively recover the magnitude g, that is, without

considering the phase ϕ, and as such are designed to promote sparsity in g or in some

known transformation of g (e.g., its gradient) [81, 107]. However phase information

is also useful for some applications, including coherent change detection [10, 66, 95,

125], high-resolution imaging [121], and interferometry [51, 66]. In this regard, some

methods have been developed to recover point estimates of complex-valued signals

to promote sparsity of g or of some transformation of g to a sparse domain, see

e.g. [30, 56, 104, 110, 136].

More recent approaches have incorporated uncertainty quantification (UQ) into

complex-valued signal recovery methods (see e.g. [35, 36, 43]), thereby providing useful

information for real-time decision making. These methods are generally designed to

incorporate prior sparse knowledge of the magnitude or some linear transform of the

magnitude of the signal into the recovery of the posterior. In the case where sparsity

is in some linear transform of the magnitude, however, these methods do not infer

information regarding the phase. Instead the phase is approximated as part of an

optimization step, limiting the uncertainty information available.

The method developed in this investigation addresses some of these issues and

brings a more comprehensive approach to recovering complex-valued images. Specifi-

cally, we build on the Bayesian LASSO (least absolute shrinkage and selection opera-

tor) technique [99], which was originally designed to recover sparse real-valued signals.

While other inference methods, such as generalized sparse Bayesian learning [53], re-

cover uncertainty information for the signal itself, the Bayesian LASSO method also

provides UQ for hyperparameters that describe the structure and overall sparsity of
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the image. The idea in Bayesian LASSO is to recast the ℓ1-regularized optimiza-

tion problem (commonly employed in compressed sensing applications [28, 41]) in a

Bayesian framework by treating both the data and the unknown signal as random

variables, yielding the linear system

Y = FX + E . (4.2)

The forward operator F ∈ Rm×n is known, and X ∈ Rn, E ,Y ∈ Rm are random

variables with respective realizations x, ε, y = Fx + ε. An estimate of the full

posterior density function of the real-valued signal can then be recovered using Bayes’

theorem, expressed as

fX|Y(x|y) ∝ fY|X (y|x)fX|η(x|η)fη(η). (4.3)

Here fY|X (y|x) is the likelihood density function determined by F and assumptions

on E , fX|η(x|η) is the prior density function that encodes a priori assumptions about

the unknown, and fη(η) is the hyperprior density function on the scale parameter η of

the prior density. For example, for sparsifying transform matrix L ∈ Rk×n, fX|η(x|η)

may be defined as the product of Laplace probability densities yielding

fX|η(x|η) ∝
k∏

i=1

1

2η
exp

(
−1

η
|Lix|

)
, (4.4)

where Li is the ith row of L for i = 1, . . . , k.

Our new method extends the Bayesian LASSO technique to complex-valued sig-

nals whose magnitude is sparse in some domain by treating y, z, and ε in (4.1) as

realizations of respective random variables Y , Z, and E , leading to the probabilistic
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forward model

Y = FZ + E . (4.5)

The corresponding estimate of the full posterior density function of the complex-

valued signal can then be recovered according to

fZ|Y(z|y) ∝ fY|Z(y|z)fZ|η(z|η)fη(η), (4.6)

where similarly fY|Z(y|z) is the likelihood density function determined by F and

assumptions on E , fZ|η(z|η) is the prior density function encoding a priori assumptions

about the unknown, and fη(η) is the hyperprior density function on η, the scale

parameter of the prior density. We call our resulting method the complex-valued

Bayesian LASSO (CVBL). As a primary benefit, the CVBL allows us to fully exploit

the sparsity of the underlying complex-valued signal in the recovery without sacrificing

the phase, all while quantifying the uncertainty regarding the entire complex-valued

signal and the hyperparameters that describe its structure and sparsity.

Our contribution

Given noisy indirect observable data, we introduce a new Bayesian model that uses a

priori assumptions regarding the magnitude of the underlying complex-valued image

of interest to recover its posterior distribution as well as to quantify the uncertainty

for both the magnitude and the phase of the unknown signal. Adapting the Bayesian

LASSO approach allows us to develop efficient sampling techniques to simulate ran-

dom draws from these resulting posterior distributions.
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Chapter organization

The rest of this paper is organized as follows. Section 4.2 details the construction of

the likelihood, prior, and hyperprior densities for our method. Section 4.3 discusses

the real-valued Bayesian LASSO approach for sparse signal recovery, which we then

expand to include recovery of signals that are sparse in some transform domain.

The corresponding complex-valued Bayesian LASSO is then proposed in Section 4.4.

Numerical experiments in Section 4.5 consider different forward operators F in (4.1)

as well as various signal to noise (SNR) values, demonstrating our method’s utility

and robustness to noise. We also compare our results to those obtained using the

more classical LASSO maximum a posteriori (MAP) estimate approach [119]. We

provide some concluding remarks and ideas for future work in Section 4.6.

Section 4.2

Bayesian Formulation

Since (4.1) is easily understood for one-dimensional problems, we develop our method

for z ∈ Cn and note that higher-dimensional signals can be readily vectorized to fit

this form. Section 4.5 includes both one and two-dimensional examples. Below we

collect the ingredients needed for our new method, including a description of the

likelihood density function in Section 4.2.1, the construction of sparsity-promoting

priors in Section 4.2.2, and a review of commonly used sparsifying transform operators

in Section 4.2.3.

4.2.1. The likelihood

The likelihood density function fY|Z(y|z) in (4.6) is determined from the density

function of the noise present in the system. Following [99] and adjusting accordingly

for the complex-valued signal case, here we assume that E follows a central complex
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normal distribution with covariance σ2Im, yielding

fE(ε) = CN (0, σ2Im) =
1

πmσ2m
exp

(
− 1

σ2
∥ε∥22

)
.

The law of total probability provides that

fY|Z(y|z) =
∫
Cm

fY|Z,E(y|z, ε)fE(ε)dε. (4.7)

When conditioned on z = Z and ε = E , (4.5) implies that Y is entirely determined

according to the density function

fY|Z,E(y|z, ε) = δ(y − Fz − ε). (4.8)

Combining (4.7) and (4.8), the likelihood density function is therefore

fY|Z(y|z) =
∫
Cm

δ(y−Fz−ε)fE(ε)dε = fE(y−Fz) =
1

πmσ2m
exp

(
− 1

σ2
∥y − Fz∥22

)
.

(4.9)

Remark 4.1. We note that an improper hyperprior was placed on σ2 in [99]. For

simplicity here we assume that σ2 is either explicitly known or easily estimated. In

general, σ2 may be provided a priori when the errors present in the forward model

are well understood. In other situations, an estimate of σ2 may be acquired when an

area of low intensity in Z is known or when multiple measurement vectors (MMV)

are available, see e.g. [64, 108, 138].

4.2.2. The prior density function

A primary goal for our new method is to ensure that the prior density function used in

(4.6) enables efficient computation for the complex-valued Bayesian LASSO (CVBL).

In this regard we assume that either the magnitude or some linear transform of the
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magnitude of the unknown signal is sparse.

Sparse magnitude. Let Z be decomposed as Z = A + iB, where A ∈ Rn and

B ∈ Rn are mutually independent with respective realizations a and b. When |Z| is

sparse we can simply adapt the approach from [138] used for real-valued signals and

define the conditional prior density function as

fZ|η(z|η) = fA,B|η(a, b|η) =
1

(2η)n
exp

(
−1

η

n∑
j=1

√
a2j + b2j

)
, (4.10)

where η ∈ R+ is a random variable with realization η.

Sparse transform of magnitude. When the magnitude is presumed sparse in a

domain other than the imaging domain, we first reformulate the model as

Y = FZ + E = F
(
G ⊙ eiΦ

)
+ E . (4.11)

Here Z = G ⊙ eiΦ, where G ∈ Rn
+ and Φ ∈ [−π, π)n, with G and Φ assumed to be

mutually independent. The componentwise decomposition of Z allows us to rewrite

the likelihood and prior density functions in (4.9) respectively as

fY|G,Φ(y|g,ϕ) =
1

πnσ2n
exp

(
− 1

σ2

∥∥y − F
(
g ⊙ eiϕ

)∥∥2
2

)
, fZ|η(z|η) = fG|η(g|η)fΦ(ϕ).

Let L ∈ Rk×n be the rank n operator that transforms G to the sparse domain.2

Denoting 1R+ as the indicator function for positive real vectors, the conditional prior

2The rank n requirement is needed for the particular computational implementation in Algorithm
2 and Algorithm 5. A rank deficient sparse transform operator is commonly augmented by imposing
boundary constraints [74].
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probability density for G is then

fG|η(g|η) ∝
1

(2η)k
exp

(
−1

η
∥Lg∥1

)
1Rn

+
(g), (4.12)

where again η ∈ R+ is a random variable with realization η.

As there is often no prior information regarding the phase Φ in coherent imaging

systems, it is reasonable to impose the uniform prior as

fΦ(ϕ) =
1

(2π)n
1[−π,π)n(ϕ), (4.13)

where 1[−π,π)n denotes the indicator function for vectors whose elements are in [−π, π).

The hyperprior. There are, of course, various options for the hyperprior on η in

(4.10) and (4.12). In some cases it may be appropriate to simply use the delta density

function

fη(η) = δ(η − η̂), (4.14)

with point estimate η̂ for η. Such an estimate may be available when considering

signals whose sparsity is known or well-approximated, see e.g. [108, 138]. Here we

follow the original Bayesian LASSO method [99] and place a gamma hyperprior on

η−2 in order to maintain conjugacy, yielding the probability density function3

fη−2(η−2) =
δr

Γ(r)
(η−2)r−1 exp

(
−δη−2

)
, r > 0, δ > 0. (4.15)

Note that choosing shape parameter r ≤ 1 ensures that the mode of fη−2(η−2) is zero

while also encouraging sparsity in the solution. Furthermore, having rate parameter

3See discussion surrounding (4.21) for explanation regarding using η−2 in place of η in (4.3).
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δ ≪ 1 gives fη−2(η−2) a fatter tail, making the hyperprior relatively uninformative.

To encourage sparsity while still allowing for small values of η−2, unless otherwise

noted our numerical experiments use hyperparameters

r = 1, δ = 10−3, (4.16)

with no additional tuning.

4.2.3. The sparsifying transform operator

This investigation assumes that the underlying signal is either sparse or that its mag-

nitude is piecewise constant, in which case the first order differencing (TV) operator

is well suited to suppress variation and noise in smooth regions. The numerical exper-

iment in Subsection 4.5.3 verifies that this assumption is reasonable even when the

true signal has piecewise smooth (but not constant) magnitude. We note, however,

that such an assumption is not an inherent limitation to our new method, which can

be straightforwardly adapted to other sparsifying transform operators, such as higher

order TV (HOTV) [5] or wavelets [3, 79] as appropriate.

Remark 4.2. When using L ∈ Rk×n with k > n as the sparsifying transform, for

instance when L = [LT
1 L

T
2 ]

T is the 2D gradient operator with L1 ∈ Rn×n computing

vertical differences and L2 ∈ Rn×n computing horizontal differences, the posterior

magnitude may become overly smoothed. We conjecture that when k ≫ n, the

resulting posterior density is multimodal and has significant mass concentrated where

η−2 is large and the magnitude is relatively flat. Future investigations will explore

methods to overcome this undesirable result.

Before introducing our approach for complex-valued signal recovery in Section

4.4, Section 4.3 first discusses its real-valued analog. We use what we will call the

real-valued Bayesian LASSO (RVBL) technique [99], which was initially developed to
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sample a posterior consisting of a Gaussian likelihood and Laplace prior on the signal

itself, that is, where L is the identity matrix. The technique was extended to include

the anisotropic TV operator in [70]. We now adapt these ideas to accommodate

any sparsifying rank n linear operator L for real-valued signal recovery, which to our

knowledge has not been previously done.

Section 4.3

Bayesian LASSO for a Real-Valued Signal

The RVBL method is a blocked Gibbs sampling technique. Critical to the approach

is the equivalent representation of each element of the product in (4.4) as a scale

mixture of Gaussians with an exponential mixing density written for each component

Lix, i = 1, . . . , k. In particular,

1

2η
exp

(
−1

η
|Lix|

)
=

∫ ∞

0

1√
2πsi

exp

(
−(Lix)

2

2si

)
1

2η2
exp

(
− si
2η2

)
dsi. (4.17)

Substituting (4.17) into (4.4) and denoting D(s) = diag(s) yields

fX|η(x|η) =
k∏

i=1

∫ ∞

0

1√
2πsi

exp

(
−(Lix)

2

2si

)
1

2η2
exp

(
− si
2η2

)
dsi

=

∫
(R+)k

k∏
i=1

1√
2πsi

exp

(
−(Lix)

2

2si

)
1

2η2
exp

(
− si
2η2

)
ds

=

∫
(R+)k

1

(2π)
k
2 |D(s)| 12

exp

(
−1

2
(Lx)T [D(s)]−1(Lx)

)
× 1

2kη2k
exp

(
−∥s∥1

2η2

)
ds, (4.18)

where we have used Fubini’s theorem [45] to obtain the second equation.

Now consider the marginal density of X over the joint distribution of X and some
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random variable T 2 ∈ Rn, which we refer to as the scale mixture parameter, given by

fX|η(x|η) =
∫
(R+)k

fX ,T 2|η(x, τ
2|η)dτ 2 =

∫
(R+)k

fX|T 2,η(x|τ 2, η)fT 2|η(τ
2|η)dτ 2.

(4.19)

Note that in (4.19) τ 2 ∈ Rk is defined componentwise, with

τ 2 =

[
τ 21 τ 22 · · · τ 2k

]T
. (4.20)

By making the substitution τ 2 for s and directly comparing the integrand terms in

(4.18) to those in (4.19), we obtain the Gaussian density function

fX|T 2,η−2(x|τ 2, η−2) = fX|T 2(x|τ 2) ∝ 1

|D(τ 2)| 12
exp

(
−1

2
(Lx)T [D(τ 2)]−1(Lx)

)
(4.21)

as the prior along with the product of exponential densities

fT 2|η−2(τ 2|η−2) =
k∏

i=1

η−2

2
exp

(
−τ

2
i η

−2

2

)
(4.22)

as the hyperprior in (4.3). Finally with fη−2(η−2) given in (4.15),4 we are now able to

completely characterize the hierarchical model from (4.9), (4.15), (4.21), and (4.22)

4For ease of presentation the rest of this manuscript uses the hyperparameter η−2 in place of the
original hyperparameter η.

60



4.3 Real-Valued Bayesian LASSO CV Bayesian LASSO

as

y|x ∼ N (Fx, σ2I) (4.23a)

x|τ 2 ∼ N (0, (LT [D(τ 2)]−1L)−1) (4.23b)

τ 2|η−2 ∼
k∏

j=1

η−2

2
exp

(
−
τ 2j η

−2

2

)
dτ 2j (4.23c)

η−2 ∼ Γ(r, δ), (4.23d)

which yields the corresponding posterior density function

fX ,T 2,η−2|Y(x, τ
2, η−2|y) ∝ fY|X (y|x)fX|T 2(x|τ 2)fT 2|η(τ

2|η)fη−2(η−2), (4.24)

where

fY|X (y|x) ∝ 1

(σ2)
n
2

exp

(
− 1

2σ2
∥y − Fx∥22

)
fX|T 2(x|τ 2) ∝ 1√

|D(τ 2)|
exp

(
−1

2
(Lx)T [D(τ 2)]−1(Lx)

)

fT 2|η(τ
2|η) ∝

k∏
j=1

η−2 exp

(
−
τ 2j η

−2

2

)
fη−2(η−2) ∝ (η−2)r−1 exp

(
−δη−2

)
.

By isolating the parts of (4.24) that depend on x and defining

G :=
1

σ2
F TF + LT [D(τ 2)]−1L,

x̄ :=
1

σ2
G−1F Ty,

c(y) := exp

(
− 1

2σ2
yTy +

1

2
x̄TGx̄

)
,
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we obtain

fX|Y,T 2(x|y, τ 2) ∝ exp

(
− 1

2σ2
∥y − Fx∥22 −

1

2
xTLT [D(τ 2

1 )]
−1Lx

)
= exp

(
− 1

2σ2

(
yTy − xTF Ty − yTFx

)
− 1

2
xTGx

)
= c(y) exp

(
−1

2
(x− x̄)TG(x− x̄)

)
∝ exp

(
−1

2
(x− x̄)TG(x− x̄)

)
. (4.25)

Conditionals on T 2
j . When conditioned on all other variables including T 2

−j =

{T 2
j′ : j

′ = 1, . . . , k, j′ ̸= j}, (4.24) gives

fT 2
j |T 2

−j ,X ,Y,η−2(τ 2j |τ 2−j,x,y, η
−2) ∝

(
τ 2j
)− 1

2 exp

(
−
[Lx]2j
2τ 2j

−
τ 2j η

−2

2

)
, j = 1, . . . , k.

(4.26)

Making the change of variables ν2j = 1/τ 2j , the conditional can alternatively be ex-

pressed as

fV2
j |T 2

−j ,X ,η−2(ν2j |τ 2−j,x, η
−2) ∝

(
ν2j
)− 3

2 exp

(
−
[Lx]2jν

2
j

2
− η−2

2ν2j

)
. (4.27)

By defining mean parameter µ′ =
√
η−2/[Lx]2j and shape parameter λ′ = η−2, we ob-

serve that (4.27) fits the form of the density function of inverse Gaussian distribution

given by

fµ′,λ′(y) ∝ y−3/2 exp

(
− λ′y

2(µ′)2
− λ′

2y

)
∝ y−3/2 exp

(
−λ

′(y − µ′)2

2(µ′)2y

)
µ′, λ′ > 0.

Thus (4.27) can be directly sampled using a standard routine for sampling the inverse

Gaussian or Wald distribution (e.g., see [86]).
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Remark 4.3. In the case where [Lx]j ≈ 0 (where L could be the identity matrix In),

we can refrain from performing the change of variables to obtain (4.27) and note that

the original conditional (4.26) simplifies to

fT 2
j |T 2

−j ,X ,Y,η−2(τ 2j |τ 2−j,x,y, η
−2) ∝

(
τ 2j
)− 1

2 exp

(
−
τ 2j η

−2

2

)
, (4.28)

corresponding to the Gamma distribution Γ(1/2, η−2/2). Thus whenever |[Lx]j| <

10−8 in our numerical experiments we instead sample the conditional density of each

T 2
j according to (4.28).5

Conditional on η−2. Lastly, to sample the conditional on η−2, we note that

fη−2|X ,Y,T 2(η−2|x,y, τ 2) ∝ (η−2)r+k−1 exp

(
−η−2

(
δ +

1

2

k∑
j=1

τ 2j

))
, (4.29)

which due to conjugacy is the density for the Gamma distribution Γ(r + k, δ +

1
2

∑k
j=1 τ

2
j ). Algorithm 2 outlines the full Gibbs sampling approach.

Algorithm 2 Real-valued Bayesian LASSO (RVBL)

Input Data vector y, parameters σ and η, sparsifying operator L ∈ Rk×n, chain

length NM , and burn-in length B.

Output Samples x(s−B+1) for s = B, . . . , NM .

1 Set x(0) = F Ty and
(
τ 2j
)(0)

= (η−2)
(0)

= 1 for j = 1, . . . , k.

2 For l = 1, . . . , NM do

i. Sample x(l) from X
∣∣∣T 2 = (τ 2)

(l−1)

ii. Sample each
(
τ 2j
)(l)

using T −2
j

∣∣∣X = x(l),η−2 = (η−2)
(l−1)

.

iii. Sample (η−2)
(l)

using η−2|T 2 = (τ 2)
(l−1)

.

5Due to system noise, nearly all values |[Lx]j | are greater than 10−8 with typical values in
[.001, .1].
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We conclude this section with illustrative numerical example in Figure 4.1 of the

RVBL method applied to a signal deblurring problem, where F is a Gaussian blurring

kernel with standard deviation σblur = 5.0 and with a zero boundary condition. We

assume that the data y are generated by y = Fx + ε, where ε is Gaussian white

noise with SNR = 30 dB, where SNR is defined in (4.52) for complex-valued signals.

The problem data and ground truth signal are shown in Figure 4.1 (a). To apply the

RVBL method, we take the sparsifying transformation L to be the discrete gradient

operator (4.51) and adopt the uninformative hyperprior given by (4.15). Figure 4.1

(b)-(c) show the resulting posterior mean estimates for x and τ 2, as well as their 95%

credible intervals.

0 200 400 600 800 1000
index

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Ground truth
Data

(a) Deblurring problem
data

0 200 400 600 800 1000

index

0.0

0.5

1.0

1.5

2.0

2.5
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Posterior mean

95% CI

(b) Estimate of x (c) Estimate of τ 2

Figure 4.1: The RVBL method applied to a signal deblurring problem. The posterior
mean estimate for the parameter η−2 is η̄−2 ≈ 401 and SNR = 30. in (4.52).

Section 4.4

Complex-valued Bayesian LASSO

We now have all of the ingredients needed to compute and sample from the complex-

valued posterior density functions using the likelihood given in (4.9), the priors de-

scribed in (4.10) and (4.12), and the hyperprior (4.15). We will describe the CVBL

for two distinct cases: Subsection 4.4.1 considers the magnitude itself to be sparse,

while Subsection 4.4.2 examines the case for which the magnitude is sparse in the
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some transform domain.

The scale mixture (4.17) used in the RVBL relies on the likelihood being a real-

valued probability density function. As such, for our algorithmic development we will

make use of the equivalency that for given y ∈ Cm, F ∈ Cm×n, and x ∈ Rn, we have

∥y − Fx∥22 =
∥∥∥ỹ − F̃x

∥∥∥2
2
, (4.30)

where ỹ = [Re(y)T Im(y)T ]T and F̃ = [Re(F )T Im(F )T ]T .

To show (4.30), observe that

∥∥∥ỹ − F̃x
∥∥∥2
2
= (ỹT − xT F̃ T )(ỹ − F̃x)

= ỹT ỹ − 2xT F̃ T ỹ + xT F̃ T F̃x

= Re(y)T Re(y) + Im(y)T Im(y)

− 2
(
xT Re(F )T Re(y) + xT Im(F )T Im(y)

)
+ xT Re(F )T Re(F )x+ xT Im(F )T Im(F )x

= yHy − 2xT
(
Re(F )T Re(y) + Im(F )T Im(y)

)
+ xTFHFx, (4.31)

and that furthermore

xTFHy + yHFx = 2Re(xTFHy)

= 2xT Re(FHy)

= 2xT Re
(
((Re(F )− i Im(F ))T (Re(y) + i Im(y))

)
= 2xT Re

(
Re(F )T Re(y)− i Im(F )T Re(y)

+ iRe(F )T Im(y) + Im(F )T Im(y)
)

= 2xT
(
Re(F )T Re(y) + Im(F )T Im(y)

)
.
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Combining the above result with (4.31) yields (4.30) since

∥∥∥ỹ − F̃x
∥∥∥2
2
= yHy − xTFHy − yHFx+ xTFHFx = ∥y − Fx∥22.

4.4.1. CVBL for the Sparse Magnitude Case

We begin by writing Z as

Z = A+ iB,

where Z ∈ Cn and A,B ∈ Rn, with realizations z = a + ib. When |Z| = |A + iB|

is assumed to be sparse, we choose to impose a 1−norm prior on
√
A2 + B2 using

(4.10). We now provide the details for how this is accomplished.

For observations given in (4.1), an analogous derivation that yielded (4.23) results

in the hierarchical model for the complex-valued sparse signal recovery

y|a, b ∼ CN (F (a+ ib), σ2I),

a|τ 2 ∼ N (0, D(τ−2)),

b|τ 2 ∼ N (0, D(τ−2)),

τ 2|η−2 ∼
k∏

j=1

η−2

2
exp

(
−
τ 2j η

−2

2

)
dτ 2j ,

η−2 ∼ Γ(r, δ),

where τ 2 (defined componentwise as in (4.20)) is a realization of the scale mixture

parameter T 2 introduced in (4.19). We can choose hyperparameters r and δ as in

(4.16) to promote sparsity. The posterior is then written as

fZ,T 2,η−2|Y(z, τ
2, η−2|y) = fA,B,T 2,η−2|Y(a, b, τ

2, η−2|y),
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with

fA,B,T 2,η−2|Y(a, b, τ
2, η−2|y) ∝ fY|A,B(y|a, b)fη−2(η−2)

×
k∏

j=1

fAj ,Bj |T 2
j
(aj, bj|τ 2j )fT 2

j |η−2(τ 2j |η−2). (4.32)

Here

fY|A,B(y|a, b) ∝ 1

(σ2)n
exp

(
− 1

σ2
∥y − Fa− iFb∥22

)
,

fη−2(η−2) ∝ (η−2)r−1 exp
(
−δη−2

)
,

fAj ,Bj |T 2
j
(aj, bj|τ 2j ) ∝ 1√

τ 2j

exp

(
−
a2j + b2j
2τ 2j

)
,

fT 2
j |η−2(τ 2j |η−2) ∝ η−2 exp

(
−
τ 2j η

−2

2

)
.

For ease of notation we define

F̃ = [Re(F )T Im(F )T ]T , F̃ ∗ = [− Im(F )T Re(F )T ]T , ỹ = [Re(y)T Im(y)T ]T ,

(4.33)

so that the real and imaginary parts of the observations are respectively

y1 = ỹ − F̃ ∗b and y2 = ỹ − F̃a. (4.34)

Sampling on A and B. Analogous to the procedure resulting in (4.25), we now

sample from the conditionals on A and B by first isolating the parts of (4.32) that

depend on a and b respectively, yielding

fA|Y,B,T 2(a|y, b, τ 2) ∝ exp

(
−1

2
(a− ā)TG(a− ā)

)
, (4.35a)
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fB|Y,A,T 2(b|y,a, τ 2) ∝ exp

(
−1

2
(b− b̄)TG(b− b̄)

)
, (4.35b)

where G = 2
σ2 F̃

T F̃ +[D(τ 2)]−1, ā = 2
σ2G

−1F̃ Ty1 and b̄ = 2
σ2G

−1F̃ ∗T ỹ2. Observe that

both A and B are conditionally Gaussian.

Remark 4.4. If F is unitary, for example when it represents the n × n normalized

discrete Fourier transform, then (4.35a) and (4.35b) can be simplified to multivariate

Gaussian densities with respective means

a =
2

σ2
G−1Re(FH(y − iFb)), b =

2

σ2
G−1 Im(FH(y − Fa)),

where G = 2
σ2 I + [D(τ 2)]−1. The splitting in (4.33) is needed in applications where

the input data are under-sampled, or when portions of the data must be discarded.

Sampling on scale mixing parameter T 2
j . Obtaining the conditional density of

{T 2
j }kj=1 from (4.32) yields

fT 2
j |A,B,T 2

−j ,η
−2(τ 2j |a, b, τ 2−j, η

−2) ∝
(
τ 2j
)− 1

2 exp

(
−
a2j + b2j
2τ 2j

−
τ 2j η

−2

2

)
, j = 1, . . . , k.

(4.36)

By change of variable V2
j = (T 2

j )
−1, with realization ν2j = (τ 2j )

−1, we obtain

fV2
j |A,B,T 2

−j ,η
−2(ν2j |a, b, τ 2−j, η

−2) ∝
(
ν2j
)− 3

2 exp

− 1

2ν2j

(
a2j + b2j

)(
ν2j −

√
η−2

(a2j + b2j)

)2
.

(4.37)

Observe that comparable to (4.27), (4.37) is the probability density function for an

inverse Gaussian distribution with mean parameter µ′ =
√
η−2/(a2j + b2j) and shape

parameter λ′ = η−2. Moreover, since each (T 2
j )

−1 is mutually independent from
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(T 2
−j)

−1, j = 1, . . . , k, we can efficiently sample the conditionals on each (T 2
j )

−1 in

parallel.

Remark 4.5. Similar to the discussion in Remark 4.3, we observe that the density in

(4.37) is not well-defined when aj = bj = 0. Although the probability of sampling

such aj and bj is zero, the probability of sampling aj and bj within machine preci-

sion is not. Thus in the case where aj and bj are sufficiently small, we instead use

T 2
j |A,B, T 2

−j,η
−2 ∼ Γ(1/2, η−2/2) following (4.36).

Sampling on hyperparameter η−2. The conditional posterior of η−2 depends

exclusively on T 2, hence fη−2|A,B,Y,T 2 = fη−2|T 2 . This density then has the form of

(4.29), from which we are able to sample directly.

CVBL algorithm for sparse magnitude signals

The conditional distributions in (4.35a), (4.35b), and (4.37) are now combined to form

the CVBL Gibbs sampling method provided in Algorithm 3. Methods to efficiently

sample a and b in Algorithm 3 are discussed in Subsection 4.5.1.
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Algorithm 3 CVBL for complex-valued signal with sparse magnitude

Input Data vector y, noise variance σ2, hyperparameters r = 1 and δ = 10−3,

chain length NM , and burn-in length B.

Output samples z(s−B+1) = a(s) + ib(s) for s = B, . . . , NM .

1 Set a(0) = Re(AHy), b(0) = Im(AHy), and
(
τ 2j
)(0)

= (η−2)
(0)

= 1 for j = 1, . . . , k.

2 For ℓ = 1, . . . , NM do

i. Sample a(ℓ) from A|Y = y,B = b(ℓ−1), T 2 = (τ 2)
(ℓ−1)

(4.35a).

ii. Sample b(ℓ) from B|Y = y,A = a(ℓ), T 2 = (τ 2)
(ℓ−1)

(4.35b).

iii. Sample
(
τ−2
j

)(ℓ)
from T −2

j |A = a(ℓ),B = b(ℓ),η−2 = (η−2)
(ℓ−1)

(4.37) for j =

1, . . . , n.

iv. Sample (η−2)
(ℓ)

using η−2|T 2 = (τ 2)
(ℓ)

(4.23d).

4.4.2. Sparsity in a Transform Domain of |Z|

We now turn our attention to the case where sparsity is expected in some transform

domain of |Z|. For simplicity we assume the signal magnitude is piecewise constant,

so that there is sparsity in the corresponding gradient domain. Hence we define L in

(4.12) to be the TV operator (see Section 4.2.3 for more discussion).

Starting from (4.11) and assuming fY(y) > 0, Bayes’ Theorem yields

fG,Φ,η|Y(g,ϕ, η|y) =
fY|G,Φ,η(y|g,ϕ, η)fG,Φ,η(g,ϕ, η)

fY(y)

∝ exp

(
− 1

σ2

∥∥y − A
(
g ⊙ eiϕ

)∥∥2
2
− 1

η
∥Lg∥1

)
1Rn

+
(g)1[−π,π)n(ϕ).

(4.38)

Analogously rewriting the prior as a scale mixture of normals as in (4.19) provides
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the posterior density function

fG,Φ,T 2,η−2|Y(g,ϕ, τ
2, η−2|y) ∝ fY|G,Φ(y|g,ϕ)fΦ(ϕ)fG|T 2(g|τ 2)

× fη−2(η−2)
k∏

j=1

fT 2
j |η−2(τ 2

j |η−2), (4.39)

where

fY|G,Φ(y|g,ϕ) ∝ exp

(
− 1

σ2

∥∥y − F (g ⊙ eiϕ)
∥∥2
2

)
1Rn

+
(g),

fΦ(ϕ) ∝ 1[−π,π)n(ϕ),

fG|T 2(g|τ 2) ∝ 1√
|D(τ 2)|

exp

(
−1

2
(Lg)T [D(τ 2)]−1(Lg)

)
,

fη−2(η−2) ∝ (η−2)r−1 exp
(
−δη−2

)
,

fT 2
j |η−2(τ 2

j |η−2) ∝ η−2 exp

(
−
τ 2j η

−2

2

)
.

Below we introduce a four-step Gibbs sampling process to sample from (4.39) that

combines (1) the use of Metropolis-within-Gibbs to sample from G|Y ,Φ, T 2,η−2; (2)

Gibbs steps to sample from T 2|Y ,G,Φ,η−2 and η−2|Y ,G,Φ, T 2; and (3) rejection

sampling to sample from Φ|Y ,G, T 2,η−2.

Sampling on magnitude G. The conditional distribution on G is a nonnegatively-

constrained Gaussian density. For computational efficiency in sampling the magni-

tude, we use as the posterior density the untruncated density f̃G|Y,T 2,Φ(g|y, τ 2,ϕ),

where

fG|Y,Φ,T 2(g|y,ϕ, τ 2) = f̃G|Y,Φ,T 2(g|y,ϕ, τ 2)1Rn
+
(g).
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Thus

f̃G|Y,Φ,T 2(g|y,ϕ, τ 2) ∝ exp

(
−∥y − F1g∥22

σ2
− 1

2
(Lg)T [D(τ 2)]−1(Lg)

)
, (4.40)

where F1 = FD(eiϕ). For consistency with (4.39), we simply reject any proposed

samples of G that contain a negative entry. This technique can be categorized as

acceptance-rejection sampling, and to this end, Theorem 4.1 shows that (4.40) is a

conditional Gaussian distribution, implying that we can directly draw its samples.

Theorem 4.1. Let F1 = FD(eiϕ), F̃1 = [Re(F1)
T Im(F1)

T ]T , and ỹ = [Re(y)T Im(y)T ]T .

Assume that L has rank n. The function f̃G|Y,Φ,T 2(g|y,ϕ, τ 2) in (4.40) defines a

Gaussian density over Rn with center and precision given by

ḡ = Γ−1

(
2

σ2
F̃ T
1 ỹ

)
, (4.41a)

Γ = LT [D(τ 2)]−1L+
2

σ2
F̃ T
1 F̃1. (4.41b)

Proof. Let Γ = LT [D(τ 2)]−1L+ 2
σ2 F̃

T
1 F̃1, and suppose x ∈ Ker(Γ) so that xTΓx = 0.

By (4.41b) we then have

xTΓx = xTLT [D(τ 2)]−1Lx+
2

σ2
xT F̃ T

1 F̃1x = 0,

that is x ∈ Ker(L) ∩ Ker(F̃1). Since Ker(L) = {0}, we have immediately that

Ker(Γ) = {0} so that Γ is invertible. We furthermore observe that Γ is also symmetric

positive definite. To explicitly determine the center and precision as ḡ and Γ in (4.41a)

72



4.4 Complex-valued Bayesian LASSO CV Bayesian LASSO

and (4.41b), consider the following from (4.40):

−∥y − F1g∥22
σ2

− 1

2
(Lg)T [D(τ 2)]−1(Lg) = −

∥∥∥ỹ − F̃1g
∥∥∥2
2

σ2
− 1

2
(Lg)T [D(τ 2)]−1(Lg)

= −1

2
(Lg)T [D(τ 2)]−1(Lg)− 1

σ2
(ỹ − F̃1g)

T (ỹ − F̃1g)

= −1

2
gTLT [D(τ 2)]−1Lg − 1

σ2
ỹT ỹ +

1

σ2
gT F̃ T

1 ỹ

+
1

σ2
ỹT F̃1g − 1

σ2
gT F̃ T

1 F̃1g

= −1

2
gTΓg +

1

σ2
gT F̃ T

1 ỹ +
1

σ2
ỹT F̃1g − 1

σ2
ỹT ỹ

= −1

2
gTΓg +

2

σ2
gT F̃ T

1 ỹ − 1

σ2
ỹT ỹ

= −1

2
gTΓg + gTΓḡ − 1

2
ḡTΓḡ +

1

2
ḡTΓḡ − 1

σ2
ỹT ỹ

= −1

2
(g − ḡ)TΓ(g − ḡ) + c(ỹ),

where c(ỹ) = 1
2
ḡTΓḡ − 1

σ2 ỹ
T ỹ is mutually independent of g. Thus we have mean ḡ

and precision Γ, yielding the desired result.

When F is unitary, the resulting Gaussian density attains a simpler form provided

by Corollary 4.2 which enables faster sampling.

Corollary 4.2. Let F1 = FD(eiϕ) and suppose F is unitary and L has rank n. For

FH
1 y = q ⊙ eiφ where q ∈ (R+)

n
and φ ∈ [−π, π)n, the function f̃G|Y,T 2,Φ(g|y, τ 2,ϕ)

in (4.40) defines a Gaussian density over Rn with center and precision given by

ḡ = Γ−1

(
2

σ2
q ⊙ cos(φ)

)
, (4.42a)

Γ = LT [D(τ 2)]−1L+
2

σ2
In. (4.42b)
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Proof. Since F is unitary, we have in (4.40)

−∥y − F1g∥22
σ2

− 1

2
(Lg)T [D(τ 2)]−1(Lg) = −1

2
gTΓg +

1

σ2
gT
(
q ⊙ eiφ

)
+

1

σ2

(
q ⊙ e−iφ

)T
g − 1

σ2
yHy

= −1

2
gTΓg +

1

σ2

n∑
j=1

gjqj
(
eiφj + e−iφj

)
− 1

σ2
yHy

= −1

2
gTΓg +

2

σ2

n∑
j=1

gjqj cos(φj)−
1

σ2
yHy

= −1

2
gTΓg + gTΓḡ − 1

2
ḡTΓḡ +

1

2
ḡTΓḡ − 1

σ2
yHy

= −1

2
(g − ḡ)TΓ(g − ḡ) + c(y)

where c(y) = 1
2
ḡTΓḡ − 1

σ2y
Hy is mutually independent of g. Thus we have mean ḡ

and precision Γ, yielding the desired result.

A couple of remarks are in order.

Remark 4.6. If the density (4.40) has little mass in the region where g ≥ 0, this

rejection method may become computationally infeasible. Other techniques exist

for sampling from truncated multivariate normal distributions, such as the exact

Hamiltonian Monte Carlo method in [96] or a Gibbs sampling technique that updates

each gi separately for i = 1, . . . , n. These methods are often more computationally

expensive and may become cost-prohibitive for high dimensional problems, however.

Remark 4.7. When ḡ in (4.41a) and (4.42a) has mostly nonnegative entries with a few

negative elements, sampling fG|Y,Φ,T 2 using the rejection technique involving f̃G|Y,Φ,T 2

may become computationally inefficient. In this case the rejection sampling from the

mode (RSM) [82] provides a possible alternative. In short, RSM generates an exact

sample of fG|Y,Φ,T 2 by sampling a shifted truncated Gaussian density followed by an

acceptance-rejection step. In our numerical experiments RSM is implemented when
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the rejection technique involving (4.40) fails to generate a sample after Ns attempts

(in our experiments Ns = 10).

Updating the scale mixture parameter T 2. From (4.39) we have the conditional

posterior

fT 2
j |Y,G,Φ,T 2

−j ,η
−2(τ 2j |y, g,ϕ, τ 2−j, η

−2) ∝
(
τ 2j
)− 1

2 exp

(
−
[Lg]2j
2τ 2j

−
τ 2j η

−2

2

)
, j = 1, . . . , k,

(4.43)

which is equivalent to the density function in the real-valued signal case (4.26) with

X = G. Analogously to what followed there, we recognize (4.43) as an inverse Gaus-

sian distribution with mean parameter
√
η−2/[Lg]2j and shape parameter η−2. The

conditional posterior on η−2 is given by (4.29).

Updating the phase Φ. Lastly from (4.39) we have the phase posterior distribution

fΦ|Y,G,T 2(ϕ|y, g, τ 2) ∝ exp

(
− 1

σ2

∥∥y − F2e
iϕ
∥∥2
2

)
1[−π,π)n(ϕ), (4.44)

where F2 = FD(g). The nature of (4.44) can be better understood by defining

random variable Θ = eiΦ and corresponding realization θ = eiϕ. The posterior is

then expressed as

fΘ|Y,G(θ|y, g) ∝ exp

(
− 1

σ2
∥y − F2θ∥22

)
1CS1(θ), (4.45)

where CS1 is the unit circle in the complex plane. Clearly (4.45), and by extension

(4.44), are probability density functions of complex Gaussian distributions restricted

to the unit circle. For a general forward operator F , each fΦi|Φ−i,Y,G,T 2(ϕi|ϕ−i,y, g, τ
2)

is conditionally von Mises (4.46) for i = 1, . . . , n, which we now state in Theorem 4.3.
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Theorem 4.3. Let F2 = FD(g) as in (4.44) and (4.45) and define A = FH
2 F2

with elements [A]j,k = aj,ke
iαj,k , where aj,k ∈ R and αj,k ∈ [−π, π). Further denote

FH
2 y = q ⊙ eiφ, where q ∈ Rn

+ and φ ∈ [−π, π)n, with

ui =
2qi
σ2

cosφi −
n∑

k=1
k ̸=i

2ai,k
σ2

cos(α̃i,k + ϕk), vi =
2qi
σ2

sinφi −
n∑

k=1
k ̸=i

2ai,k
σ2

sin(α̃i,k + ϕk),

and α̃i,k = sgn(k − i)αi,k for k = 1, . . . , n. Then

fΦi|Φ−i,Y,G,T 2(ϕi|ϕ−i,y, g, τ
2) ∝ fvM

(
ϕi

∣∣∣µi, κi

)
, i = 1, . . . , n,

where fvM(x|µ, κ) is the von Mises probability density function, given as

fvM(x|µ, κ) = exp(κ cos(x− µ))

2πI0(κ)
, (4.46)

with location µ and concentration κ. Here

κi =
√
u2i + v2i , µi =


arctan

(
− vi

ui

)
if ui > 0

π/2 if ui = 0

arctan
(
− vi

ui

)
+ π if ui < 0.

(4.47)

Note that in (4.46), I0 is the zeroth order modified Bessel function of the first kind.
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Proof. By direct calculation using (4.44), we have

fΦi|Φ−i,Y,G,T 2(ϕi|ϕ−i,y, g, τ
2) ∝ exp

(
− 1

σ2

∥∥y − F2e
iϕ
∥∥2
2

)
∝ exp

(
− 1

σ2

(
e−iϕT

Aeiϕ − yHF2e
iϕ − e−iϕT

FH
2 y
))

= exp

(
− 1

σ2

( n∑
j,k=1
k>j

(
aj,ke

i(αj,k−ϕj+ϕk) + aj,ke
−i(αj,k−ϕj+ϕk)

)
− 2qT cos(ϕ−φ)

))

= exp

(
− 1

σ2

( n∑
j,k=1
k>j

2aj,k cos(αj,k − ϕj + ϕk)− 2qT cos(ϕ−φ)

))

∝ exp

(
− 1

σ2

( n∑
k=1
k ̸=i

2ai,k

(
cosϕi cos(ϕk + α̃i,k)

+ sinϕi sin(ϕk + α̃i,k)
)
− 2qi cos(ϕi − φi)

))

= exp

((
2qi
σ2

cosφi −
n∑

k=1
k ̸=i

2ai,k
σ2

cos(ϕk + α̃j,k)

)
cosϕi

+

(
2qi
σ2

sinφi −
n∑

k=1
k ̸=i

2ai,k
σ2

sin(ϕk + α̃i,k)

)
sinϕi

)

= exp(ui cosϕi + vi sinϕi)

= exp(κi cos(ϕi − µi)).

Since the calculation of {κi}ni=1 and {µi}ni=1 in (4.47) require only scalar opera-

tions, our method does not suffer from the curse of dimensionality as n grows large.

Furthermore, when F is unitary, fΦ|Y,G,T 2(ϕ|y, g, τ 2) is precisely a product of von

Mises density functions, as is told in Theorem 4.4.

Theorem 4.4. Suppose F2 = FD(g), where F is unitary. Let FH
2 y = q ⊙ eiφ where
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q ∈ Rn
+ and φ ∈ [−π, π)n. Then

fΦ|Y,G(ϕ|y, g) =
n∏

i=1

fvM

(
ϕi

∣∣∣φi,
2

σ2
qi

)
.

Proof. Consider the following:

fΦ|Y,G(ϕ|y, g) = C exp

(
− 1

σ2

∥∥y − F2e
iϕ
∥∥2
2

)
1[−π,π)n(ϕ)

= C exp

(
− 1

σ2

(
e−iϕFH

2 F2e
iϕ − yHF2e

iϕ − e−iϕFH
2 y + yHy

))
1[−π,π)n(ϕ)

= C exp

(
− 1

σ2

(
gTg − 2qT cos(ϕ−φ) + yHy

))
1[−π,π)n(ϕ),

where C is a normalization constant. To find C, we integrate the above expression

over Rn as follows:

1

C
=

∫
Rn

exp

(
− 1

σ2

(
gTg − 2qT cos(ϕ−φ) + yHy

))
1[−π,π)n(ϕ)dϕ

=

∫
[−π,π)n

exp

(
− 1

σ2

(
gTg − 2qT cos(ϕ−φ) + yHy

))
dϕ

= exp

(
− 1

σ2

(
gTg + yHy

))∫
[−π,π)n

exp

(
2

σ2
qT cos(ϕ−φ)

)
dϕ

= exp

(
− 1

σ2

(
gTg + yHy

)) n∏
i=1

2πI0

(
2

σ2
qi

)
.

Thus, we have

fΦ|Y,G,T 2(ϕ|y, g, τ 2) =
exp
(
− 1

σ2

(
gTg − 2qT cos(ϕ−φ) + yHy

))
1[−π,π)n(ϕ)

exp
(
− 1

σ2 (gTg + yHy)
)∏n

i=1 2πI0
(

2
σ2 qi

)
=

n∏
j=1

exp
(

2
σ2 qj cos(ϕj − φj)

)
2πI0

(
2
σ2 qj

) 1[−π,π)n(ϕj)

=
n∏

j=1

πvM

(
ϕj

∣∣∣φj,
2

σ2
qj

)
,
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which completes the proof.

When F is unitary, the conditional independence shown in Theorem 4.4 allows us

to update each Φj independently of Φ−j, increasing the opportunity for parallelization

in our technique. Even when F is not unitary, Theorem 4.3 allows us to update each

Φi sequentially using a Gibbs sampling scheme, although we do not benefit from the

same parallelization opportunities as when F is unitary.

To sample the von Mises distribution, we use the wrapped Cauchy distribution,

which has probability density function

fWC(θ|µ, γ) =
∞∑

k=−∞

γ

π(γ2 + (θ − µ+ 2πk)2)
, −π < θ < π.

Here γ is the scale factor and µ is the mode of the unwrapped distribution. The

acceptance-rejection method introduced in [13] utilizes a wrapped Cauchy density as

an envelope for sampling from the von Mises distribution (4.46).

Algorithm 4 Sampling the von Mises density using the wrapped Cauchy

Input Location µ and concentration κ of von Mises distribution.
Output Sample θ.

1 Set τ = 1 + (1 + 4κ2)
1
2 , ρ = (τ − (2τ)

1
2 )/(2κ), and r = (1 + ρ2)/(2ρ).

2 Generate u1 ∼ U(0, 1), then set z = cos(πu1), f = (1 + rz)/(r + z), c = κ(r − f).
3 Generate u2 ∼ U(0, 1), then if c(2− c)− u2 > 0, go to step 5.
4 If ln(c/u2) + 1− c < 0, return to step 2.
5 Generate u3 ∼ U(0, 1), then set θ = [sgn(u3 − 0.5)] cos−1(f).
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Algorithm 5 CVBL for a signal with sparsity in the transformed magnitude

Input data y, noise variance σ2, hyperparameters r = 1 and δ = 10−3, sparse

transform operator L, chain length NM , and burn-in length B.

Output samples z(s−B+1) = g(s) ⊙ exp
(
iϕ(s)

)
for s = B, . . . , NM .

1 Set g(0) = |AHy|, (τ 2)(0) = 1, and ϕ(0) = arg(AHy)

2 For ℓ = 1, . . . , NM do

i. Draw a sample g∗ from f̃G|Y,Φ,T 2

(
g
∣∣ȳ,ϕ(ℓ−1), (τ 2)

(ℓ−1)
)
using Theorem 4.1.

ii. If g∗ contains a negative element, return to (i). Otherwise, set g(ℓ) = g∗.

iii. Sample each
(
τ−2
j

)(ℓ)
from T −2

j |G = g(ℓ),η−2 = (η−2)
(ℓ−1)

(4.43) for j =

1, . . . , k.

iv. Sample (η−2)
(ℓ)

from T −2
j = (τ 2)

(ℓ)
(4.23d).

v. For each i = 1, . . . , n, draw a sample ϕ∗
i from Φi|Y = y,G = g(ℓ) (4.44) using

Algorithm 4 and set ϕ
(ℓ)
i = ϕ∗

i .

We are now ready to sample from the joint distribution fG,Φ|Y,η(g,ϕ|y, η) in (4.39).

After initializing our chain, the three-stage Gibbs sampler is implemented, where g

is updated first, followed by the τ 2 update, and concluded by the ϕ update. This is

done for some predetermined number of iterations NM , after which the output chain

is formed using all the samples generated after the burn-in period B. This method is

summarized in Algorithm 5.6

6 Both Algorithm 3 and Algorithm 5 may be easily modified to use hyperprior (4.14) instead of

(4.15) by fixing the value of
(
η−2

)(ℓ)
= η̂−2 for all ℓ = 1, . . . , NM .
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Section 4.5

Numerical Results

We now demonstrate the efficacy of the CVBL algorithm given in Algorithm 3 for the

sparse magnitude case and Algorithm 5 for the sparse transform of the magnitude

case by performing experiments in 1D and 2D using three different forward operators

for F in (4.1):

• FF ∈ Cn×n: The discrete Fourier transform operator with entries (in 1D) given

by

[FF ]j,k =
1√
n
exp

(
−2πi

jk

n

)
, j, k = 0, . . . , n− 1. (4.48)

Observe that FF is unitary, so Theorem 4.4 applies.

• FB ∈ Rn×n: A blurring operator with entries (in 1D) given by

[FB]j,k =


1√
26
(22−|j−k|) if |j − k| ≤ 2

0 else

, j, k = 0, . . . , n− 1. (4.49)

Observe that FB is a banded Toeplitz matrix, and although non-singular, it is

notoriously ill-conditioned.

• FU ∈ Cm×n: A random under-sampled Fourier transform matrix which has

entries (in 1D) given by (4.48) but with randomly zeroed-out rows so that

m = ⌈νn⌉, where 0 < ν ≤ 1. For Mν ⊆ {2, 3, . . . , n} such that |Mν | = m, FU
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is defined as

[FU ]j,k =


[FF ]j,k if j ∈ Mν

0 else

, j, k = 1, . . . , n. (4.50)

Note that the zeroth frequency term is never zeroed-out in the construction of

Mν .

Remark 4.8. The extension to 2D for FF and FU is straightforward. For FB, the 2D

operator is defined such that FBz convolves the image z with the kernel K given by

K =
1

2
√
70



0 0 1 0 0

0 1 2 1 0

1 2 16 2 1

0 1 2 1 0

0 0 1 0 0


,

causing the blurring effect to occur in both dimensions.7

In the numerical examples that follow, L = In in the sparse signal case or the first

order differencing operator in the case of the magnitude having a sparse gradient,

where we enforce zero boundary conditions to ensure that it is of rank n. For 1D

signals this amounts to

[L]i,j =


1 if i = j,

−1 if i = j + 1,

0 else.

(4.51)

7The 1D and 2D forward operators used in our experiments are explicitly stated for reproducibility
purposes.
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Finally we assume that the variance σ2 in our observation model (4.1) is known,

with corresponding signal-to-noise (SNR) given by

SNR = 10 log10

(
∥Fzexact∥22

mσ2

)
, (4.52)

where zexact ∈ Cm is the exact solution to (4.1). The SNR values chosen in our

experiments highlight the effectiveness of the CVBL method in noisy environments.

In all experiments, a total of 5000 samples are drawn with a burn-in period of B =

200. To encourage the sampler to move towards high-mass areas of the probability

density, for ℓ < B we set g(ℓ) = |g∗|, regardless of whether or not g∗ contains negative

elements. Our 1D analysis includes figures showing the means and 90% credibility

intervals (CI) for the marginal magnitude of the posterior distribution. We also

approximate the marginal density function of the phase of random individual pixels

using a kernel density estimation technique [16]. In 2D we provide the magnitude

means and the size of the 90% CIs. Finally, for each choice of F we also compare the

MAP estimate of our CVBL posterior to the corresponding classical LASSO solution

zLASSO:

• sparse signal case: We compute the solution to the objective function

zLASSO = argmin
z

∥Fz − y∥22 + λ∥z∥1 (4.53)

by considering the real and imaginary parts of z, namely a and b, respectively,

giving the objective function as

aLASSO

bLASSO

 = argmin
a,b


∥∥∥∥∥∥∥
FR −FI

FI FR


a
b

−

yR

yI


∥∥∥∥∥∥∥
2

2

+ λ
n∑

j=1

√
aj + bj

 ,

(4.54)

83



4.5 Numerical Results CV Bayesian LASSO

which we solve using the alternating direction method of multipliers (ADMM)

[17].

• sparse transform case: We again employ ADMM to compute the solution in

the sparse transform case to the generalized LASSO problem. Here, however,

since |z| is not differentiable, in order to solve

zLASSO = argmin
z

∥Fz − y∥22 + λ∥L|z|∥1, (4.55)

we follow what was done in [36, 107] and instead use the diagonal matrix Θ(k)

with non-zero entries Θ
(k)
jj = z

(k)
j /|z(k)j | at each iteration k of the algorithm. The

objective function then becomes

zLASSO = argmin
z

∥Fz − y∥22 + λ
∥∥∥L (Θ(k)

)H
z
∥∥∥
1
.

In both cases we test λ = ασ2/η̄, where η̄ is the mean of the samples of η generated

by the CVBL method. In some sense α = 1 represents the “best case” scenario for

selecting suitable parameters, while other values of α allow us to test for robustness.

We use α = 1 in each experiment unless otherwise specified.

4.5.1. Numerical Efficiency

Sampling Gaussians using matrix (e.g. Cholesky) factorization can be prohibitively

expensive in high dimensions. This is because new matrices must be factorized for

each re-sampling of the hyper-parameters τ 2, yielding a general cost O(n3) flops per

sample. The approach detailed in Algorithm 6 provides an efficient way to generate

samples of multivariate Gaussian distributions [97, 124], which we use to sample

A|Y ,B, T 2 and B|Y ,A, T 2 in Algorithm 3 and G|Y ,Φ, T 2 in Algorithm 5. Moreover,

we can efficiently solve the system in Step 3 of Algorithm 6 using the conjugate
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gradient method [61].

Algorithm 6 Gaussian sampling by perturbation-optimization

Input Mean µp ∈ Rn, measurement y ∈ Rm, variances Σp, Σℓ, sparsifying
transform L ∈ Rk×n, and forward model F corresponding to Gaussian prior
fX = N (Lµp,Σp) and likelihood fY|X = N (Fx,Σℓ).
Output Sample xs of the posterior fX|Y .

1 Perturb the prior mean µ̃p ∼ N (µp,Σp).
2 Perturb the data ỹ ∼ N (y,Σℓ).
3 Solve (LTΣ−1

p L+ F TΣ−1
ℓ F )xs = (LTΣ−1

p µ̃p + F TΣ−1
ℓ ỹ) with respect to xs.

Finally we point out that when the forward operator is given by FB (4.49) and the

magnitude sparsity is in the gradient domain, we use a block sampling approach to

generate samples of the phase (4.44), allowing us to takes advantage of the inherent

sparsity in FB and to update portions of the phase in parallel.

4.5.2. Sparsity in Magnitude

For the sparse magnitude case, we perform experiments with Algorithm 3 using 5000

samples and the forward operators in (4.48), (4.49), and (4.50). Figure 4.2 shows

the magnitude means and 90% CIs for the 1D noisy experiments for SNR = 20 dB,

(4.52).

Although the recovered magnitude means are not sparse, we see in Figure 4.3 that

the real and imaginary components of the signal are close to zero outside of the signal

support. Combined with Figure 4.2 our results show that, as expected, the CVBL

provides mean information similar to that of the classical LASSO point-estimate

technique (4.53).

Figure 4.4 displays the phase results for each forward operator at a randomly

selected “on” pixel (where gj > 0).8 In all three experiments, the CVBL method

recovers the support of the signal as well as uncertainty information for both the

8The probability density plots in Figure 4.4, Figure 4.6, and Figure 4.15 are formed using kernel
density estimation techniques [16].
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(a) FF in (4.48) (b) FF in (4.48)

(c) FB in (4.49) (d) FB in (4.49)

(e) FU in (4.50); ν = 0.8 (f) FU in (4.50); ν = 0.8

Figure 4.2: Recovered magnitude values for complex-valued signals with sparse mag-
nitude. (left) The magnitude of the LASSO solution and the mean of the CVBL
output; (right) 90% CI for the magnitude reconstruction. Here SNR = 20 dB.

magnitude and the phase. We emphasize that this phase information is not recover-

able when using RVBL and is one of the primary advantages of using CVBL.

4.5.3. Sparsity in Transform of Magnitude

We now consider the case where sparsity is expected in some linear transform domain

of the magnitude. Here the magnitude g = {gj}200j=1 is given by {f(tj)}200j=1 for the
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(a) FF in (4.48) (b) FF in (4.48)

(c) FB in (4.49) (d) FB in (4.49)

(e) FU in (4.50); ν = 0.8 (f) FU in (4.50); ν = 0.8

Figure 4.3: Means of (left) real and (right) imaginary parts of the signal in the sparse
magnitude case. Shaded regions indicate 90% CIs for the CVBL recovery. SNR
= 20 dB.

function f : [−π, π) → R+ defined as

f(t) =



2, −2.8 ≤ t ≤ −2.1

1.5 −1.6 ≤ t ≤ −1.3

1 + 3
2
exp

((
t−π/2
2/3

)2)
t > 0

1 else

(4.56)
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(a) FF in (4.48) (b) FB in (4.49) (c) FU in (4.50); ν = 0.8

Figure 4.4: Phase estimate in the sparse magnitude case at a randomly selected
“on” pixel (gj = 1). True phase, LASSO phase point estimate, and CVBL marginal
posterior for the phase. SNR = 20 dB.

and tj = −π + jπ
100

. Each pixel of the corresponding phase Φ = {ϕj}200j=1 is randomly

chosen uniformly from [−π, π). Observe that while |f |(t) is sparse in the gradient

domain when t ≤ 0, this is not the case when t > 0. Since our prior is based on

the assumption that the gradient domain is sparse, using (4.56) allows us to test

the effectiveness of the CVBL method in regions where the gradient is nonzero. As

already noted in Section 4.2.3, other choices of sparsifying transform operators such

as HOTV may be more suitable and our method is not inherently limited to using

the identity or TV operators. For simplicity, as well as to emphasize robustness of

our approach, we use the differencing operator in (4.51) and leave other operators for

future investigations.

Figure 4.5 compares results for recovering (4.56) from Algorithm 5 where 5000

samples were generated to the LASSO solution in (4.55) with λ = ασ2/η̄, where η̄ is

again the mean of the samples of η generated by the CVBL method and α = .1, 1, 10.

Each of the three transforms, FF (4.48), FB (4.49), and FU (4.50) with ν = 0.8 were

considered for SNR = 20 dB. The LASSO method is clearly sensitive to the choice of

regularization parameter, and is most accurate for α = 1.

Figure 4.6 demonstrates that the CVBL method recovers marginal posterior den-

sity functions for the phase that are consistent with the estimates calculated by (4.55).

The true phase is also located in the regions of large mass generated by the corre-
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(a) FF in (4.48) (b) FF in (4.48)

(c) FB in (4.49) (d) FB in (4.49)

(e) FU in (4.50); ν = 0.8 (f) FU in (4.50); ν = 0.8

Figure 4.5: Magnitude recovery for g given by (4.56). (left) The CVBL mean along
with the magnitude of LASSO solutions using different regularization parameters;
(right) 90% CI for the magnitude reconstruction. Here SNR = 20 dB.

sponding kernel density estimation. Figure 4.7 shows the mean of the τ 2 samples

(4.43) for each experiment, which as expected is largest in support regions of the

sparse domain.
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(a) FF in (4.48) (b) FB in (4.49) (c) FU in (4.50); ν = 0.8

Figure 4.6: Phase estimate in the sparse transform case of a random pixel. True
phase (black dash), LASSO phase point estimate (red dash-dot), and CVBL marginal
posterior for the phase. SNR = 20 dB.

(a) FF in (4.48) (b) FB in (4.49) (c) FU in (4.50); ν = 0.8

Figure 4.7: Mean of τ 2 (right axis) compared with the true magnitude (left axis).
SNR = 20 dB.

4.5.4. Noise Study

We now analyze the effect of noise on Algorithm 5. To this end for the sparse magni-

tude case and the signal corresponding to (4.56) we consider 10 dB ≤ SNR ≤ 30 dB.

(a) Sparse signal (b) Sparse transform of magnitude, (4.56)

Figure 4.8: Average error in the sample mean generated using Algorithm 5 for in-
creasing SNR (dB). The vertical axes are in a natural logarithmic scale.

Figure 4.8 demonstrates that the average error is similar for all three forward

operators across the range of SNR values, with a greater overall range of errors with
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respect to the forward operator in the sparse transform case. These results are con-

sistent with what is observed in Figure 4.5 as well as what is apparent in Figure 4.5

(b). In particular the approximation in the region [−1.7,−1] is not well resolved.

More insight is provided in Figure 4.7 (b), where it is evident that the support in the

sparse domain in that range is not clearly identified.

(a) FF (b) FB (c) FU ; ν = 0.8 (d) FU ; 0.5 ≤ ν ≤ 1

Figure 4.9: Comparison of the average phase error in mean of samples generated
using CVBL with the LASSO solution (4.55) for the test function (4.56) at (a)-(c)
increasing SNR and (d) increasing sampling rate 0.5 ≤ ν ≤ 1 with SNR = 20 dB.
The vertical axes are in a natural logarithmic scale.

Figure 4.9 (a)-(c) compares the average phase error over a range of SNR values

for the CVBL and generalized LASSO point estimates. While the LASSO method

outperforms Algorithm 5 for each choice of F with increasing SNR, the error difference

is neglible for low SNR values for FB and FU . Hence we see that the optimal point

estimate recovery algorithm essentially depends on the SNR and sampling rate of

the observable data. Uncertainty information, however, is only acquired when using

CVBL, as the generalized LASSO technique does not infer the phase information.

Finally, Figure 4.9 (d) compares the average phase error in the sample mean for

the function with magnitude given by (4.56) using CVBL with the LASSO solution

for the undersampled observable data case. Specifically, the data are obtained using

FU in (4.50) for a range of sampling rates ν while the SNR is held constant at 20 dB.

While consistent with Figure 4.9 (c), this result also suggests that for smaller values

of ν (more undersampling) the CVBL method provides on average a lower average

phase error than the generalized LASSO.
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4.5.5. 2D Experiments

Our 2D experiments consider sparsity in the signal magnitude with SNR = 0dB and

sparsity in the signal magnitude gradient with SNR = 15 dB and SNR = 25 dB.

(a) True magnitude (b) MLE (c) Mean posterior

Figure 4.10: Maximum likelihood and mean posterior point estimates of a sparse
magnitude complex-valued signal for forward operator FF in (4.48). SNR = 0dB.

Figure 4.10 displays point estimates for the magnitude using FF while Figure 4.11

shows the corresponding results for FB and FU . In each case the same 64× 64 sparse

images is used as input and we simulate 5000 samples of the posterior. We observe

that much of the background noise is suppressed while the fidelity of the support of

the signal is maintained when compared to the maximum likelihood point estimate.

We now consider the case of promoting sparsity in the magnitude gradient for

the Shepp-Logan phantom image [115] depicted in Figure 4.12 (a) on a 256 × 256

grid. A random phase is then added to each pixel, so that the resulting image z is

modeled by (4.1). Figure 4.12 and Figure 4.14 compare the posterior means of the

(a) MLE; FB (b) Mean post.; FB (c) MLE; FU (d) Mean post.; FU

Figure 4.11: Maximum likelihood and mean posterior point estimates recoveries of a
sparse magnitude complex-valued signal. Forward operator (a-b) FB in (4.49) (c-d)
FU ν = 0.8 in (4.50). SNR = 0dB.
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(a) Ground truth (b) Gen. LASSO (c) Posterior mean

(d) Horiz. differences (e) Gen. LASSO (f) Posterior mean

Figure 4.12: Magnitude recovery of the complex-valued Shepp Logan phantom using
FF in (4.48). (a) Shepp-Logan phantom; (d) horizontal differences (computed using
L|zexact|) of the ground truth. (b)-(c) and (e)-(f) correspond to SNR values of 15 dB
and 25 dB, respectively. η̂ = 10−2.

CVBL to the generalized LASSO estimates for FF in (4.48) and FB in (4.49).9 To

avoid the issue discussed in Remark 4.2, in the Shepp Logan experiments we fix η to

be η̂ = 10−2, which was chosen heuristically, with λ = σ2/η̂ used for the generalized

LASSO regularization parameter. The hyperprior in turn is given by (4.14) rather

than (4.15).

Figure 4.12, Figure 4.13, and Figure 4.14 indicate that the generalized LASSO

estimate (4.55) is smoother when compared to the CVBL posterior mean. In par-

ticular we observe that the three lower circles of the generalized LASSO estimate of

the phantom are “blurred” together but remain distinct for the CVBL. These results

seem to indicate that when using the CVBL method, a smaller value of η̂, that is,

increasing the reliance on the prior, is needed to match the amount of regularization

9The dense nature of FU in (4.50) makes exact sampling of the phase ϕ impractical for large
signals. Approximate or stochastic techniques may expedite sampling, but is beyond the scope of
the current investigation.
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(a) Gen. LASSO Abs. Error (b) CVBL Abs. Error (c) 90% CI

(d) Gen. LASSO Abs. Error (e) CVBL Abs. Error (f) 90% CI

Figure 4.13: Magnitude recovery of the complex-valued Shepp Logan phantom using
FF in (4.48). (a)-(c) and (d)-(f) correspond to SNR values of 15 dB and 25 dB,
respectively. η̂ = 10−2.

apparent the generalized LASSO approach.

(a) Generalized LASSO (b) Posterior mean (c) 90% CI

(d) Generalized LASSO (e) Posterior mean (f) 90% CI

Figure 4.14: Magnitude recovery of the complex-valued Shepp Logan phantom using
FB in (4.49). (a)-(c) and (d)-(f) correspond to SNR values of 15 dB and 25 dB,
respectively. η̂ = 10−2.
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(a) FF , 15 dB (b) FF , 25 dB (c) FB, 15 dB (d) FB, 25 dB

Figure 4.15: Recovered phase at a randomly chosen pixel of the complex-valued
Shepp Logan image using FF in (4.48) and FB in (4.49) with SNR of 15 dB and
25 dB. η̂ = 10−2.

Finally, Figure 4.15 demonstrates that the true phase of a randomly selected pixel

is within an area of high density of the kernel density estimation of the marginal pos-

terior density of the phase, and that the kernel density estimation mode is consistent

with those obtained using the generalized LASSO technique.

Section 4.6

Concluding remarks and future work

This investigation extends the real-valued Bayesian LASSO (RVBL), which was orig-

inally designed to promote sparsity in a sparse signal, in two ways. We first show

that it can be modified to promote sparsity in a chosen transform (here the gradient)

domain. We then demonstrate that the RVBL can be further expanded to include

complex-valued signals and images. We call our method the complex-valued Bayesian

LASSO (CVBL). Our numerical experiments show that the CVBL can efficiently

recover samples from the entire complex-valued posterior density function, enabling

uncertainty quantification of both the magnitude and phase of the true signal.

The CVBL is practical for coherent imaging problems with unitary or sparse

forward operators, since it is easily parallelizable. Developing surrogates for dense

forward operators will be necessary to efficiently sample large problems, and will be

the focus of future investigations. We will also consider different sparse transform

operators (such at HOTV) along with adaptive empirical hyperparameters to avoid
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the pitfulls of over-regularization. Recent work in [138] may be useful in this regard.
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Chapter 5

Empirical Bayesian Inference for

Complex-Valued Signals Using

Support-Informed Priors

Section 5.1

Introduction

In spotlight synthetic aperture radar (SAR), a moving radar platform is used to send

and receive a complex-valued signal, with multiple data acquisitions often made over

the same scene. The measured SAR phase history data can be modeled as a con-

tinuous (non-uniform) Fourier transform of the complex-valued reflectivity function,

leading to the corresponding discretized SAR recovery problem

ŷj = Fz + ε̂j, j = 1, . . . , J, (5.1)

where ŷj ∈ Cm, j = 1, . . . J , are J noisy independent measurements, z ∈ Cn is

the unobserved variable of interest, F ∈ Cm×n is the (non-uniform) discrete Fourier
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transform matrix, and each ε̂j ∼ CN (0,Σj) is independent, circularly symmetric

complex Gaussian noise in Cm with a symmetric positive definite covariance matrix

Σj. A comprehensive discussion of spotlight SAR from a signal processing perspective

may be found in [66]. Other coherent imaging modalities modeled similarly to (5.1)

include ultrasound [135] and digital holography [134].

In this investigation we develop a new algorithm to solve (5.1) that encodes prior

information regarding z, or more specifically its magnitude, since prior phase infor-

mation is typically unknown. We seek to recover a point estimate solution and to

quantify its uncertainty. To this end we adopt a Bayesian approach by letting the

data ŷj, noise ε̂j, and signal z describe samples of random variables Ŷ , Ê , and Z,

respectively, defined over a common probability space, with each variable admitting

a well-defined probability density. We also assume that Z and Ê are mutually inde-

pendent, yielding the analogous formulation to (5.1)

Ŷ = FZ + Ê . (5.2)

A particular observation ŷj for j = 1, . . . , J then gives (5.1). The posterior distribu-

tion fZ|Ŷ(z|ŷ) of the unknown random variable Z given data Ŷ and prior assumptions

on Z has the corresponding density function characterized by Bayes’ theorem as1

fZ|Ŷ(z|ŷ) ∝ fŶ|Z(ŷ|z)fZ(z). (5.3)

Here fŶ|Z(ŷ|z) is the likelihood density function determined by our forward operator

F and assumptions on ε̂, and fZ(z) is the density of the prior distribution encoding

a priori assumptions about the solution. We note that (5.3) inherently contains the

likelihood and prior conditionals on hyperpriors, along with their respective density

1To avoid cumbersome notation, we drop the superscript j when the dependence on j is not
relevant.
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functions, which will be included in our construction.

In SAR and other coherent imaging problems, accurately recovering both the

magnitude and phase is important for downstream processing tasks such as coherent

change detection and target location [87, 88]. Providing uncertainty quantification

(UQ) is also valuable as it gives practitioners information regarding the reliability of

the recovery.

Current methodology

SAR image recovery from phase history data is a highly studied area of research.

Techniques such as matched-filter and backprojection are capable of creating high-

fidelity reconstructions of the magnitude, and the nonuniform discrete fast Fourier

transform (NUFFT) can map the measurement data directly to the complex-valued

spatial domain [54, 118]. Regularization methods have also been used to leverage prior

information. In particular, since the intensity of the underlying image is presumably

sparse in some (e.g. gradient) domain, the point estimate solution can be obtained

by solving

z∗ = argmin
z

(
1

2

∥∥Fz − ¯̂y
∥∥2
2
− λ

p
∥Lz∥pp

)
, p = 1, 2, (5.4)

where L transforms z to the sparse domain, ¯̂y is the mean of the data observations,

and λ > 0 is a regularization parameter. We note the extensive use of compressive

sensing (CS) algorithms (p = 1) [24, 28, 41] for recovering SAR intensity values

[89, 102, 117].

SAR data can be collected at various elevation and azimuth angles, and here we

refer to these distinct data collections over the same scene as multiple measurement

vectors (MMVs). The joint sparsity assumption, that is, the assumption that the

sparse domain of the underlying signal is similar across all collected measurements of
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that same signal, has been exploited to produce high quality SAR signal recovery in

noisy environments [56, 107].

A spatially-weighted diagonal regularization matrix, W = diag(w1, . . . , wn), re-

placed the constant parameter λ in (5.4) in the so-called Variance Based Joint Sparsity

(VBJS) method developed in [2, 47, 112]. The essential idea behind VBJS is to con-

struct W so that the solution of (5.4) is more heavily penalized in true sparse regions

than in those of support in the sparse domain, i.e. W is support-informed. Moreover,

each wi > 0, i = 1, . . . , n, reflects a relative confidence regarding that support, which

is determined by the variance at each pixel in the sparse domain. Importantly, the

results in [2, 112] demonstrated that W can be directly constructed from the MMV

data, reducing potential information loss due to pre-processing. VBJS is also more

computationally efficient since applying W means that p = 2 is appropriate in (5.4),

as opposed to standard CS algorithms that require p = 1. Finally, VBJS was shown

to effectively suppress SAR speckle in [111].

Using a Bayesian framework for SAR image recovery is also becoming more

widespread. For example, the technique introduced in [40] uses a Bayesian approach

for the full azimuth speckle model to obtain a maximum a posteriori (MAP) esti-

mate of the SAR image (although it does not provide any UQ). The method in [35]

expands on this approach to recover uncertainty information, but is computationally

expensive due to inefficient sampling. It also does not address the anisotropic nature

of scatterers. A follow-up paper [36] uses multiple sub-apertures to help mitigate cost

and alleviate the faulty assumptions about the anisotropic scatterers, but does not

fully exploit the joint MMV information, and in particular does not track the support

locations in the sparse domain. Moreover, obtaining the distribution requires some

strong assumptions regarding the independence of the random variables for the sub-

apertures. These limitations have motivated us to develop a more efficient sampling
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approach that also directly uses the MMV data to provide support information in

the signal magnitude sparse domain, consequently reducing the uncertainty in the

complex-valued image recovery.

Our contribution

We introduce an empirical Bayesian method that uses the given MMV Fourier data

and a priori assumptions regarding the magnitude of the variable of interest to recover

the posterior distribution of a complex-valued signal. Expanding on the support-

informed empirical Bayesian approach developed for real-valued signals from MMV

data in [138], our new method adapts the VBJS approach in [2] to construct a weighted

mask directly from the given data that encodes the relative confidence regarding the

support locations in the signal magnitude gradient domain, which is presumably

sparse.2 This support-informed mask is then incorporated into the prior, thereby

reducing the uncertainty in the posterior recovery. We also develop sampling tech-

niques to simulate random draws from these complex-valued posterior distributions.

We test our method on a 2D sparse signal and piecewise constant images with varying

signal-to-noise ratio (SNR) to demonstrate both reduced uncertainty and efficiency.

We emphasize that while SAR imaging serves as a useful prototype, our goal is

to provide a fundamental framework for recovering the posterior distribution of a

complex-valued signal from MMV data. While for ease of presentation we assume

we are given continuous uniform Fourier measurements, our approach can be readily

adapted to consider modalities leading to other forward operators. The support-

informed mask could still be obtained using the methods described in Section 5.2

(specifically Section 5.2.3) via discrete Fourier transform (DFT). Other methods to

determine local support, such as the method developed in [6], may also be used.

For similar reasons we assume that the magnitude is sparse in the signal or gradi-

2By contrast, the method in [138] applied a binary mask.
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ent domain and again note that our method is generalizable to other sparse prior

assumptions. Finally we point out that since the forward operators in (5.1) and (5.2)

are DFTs, an additional error is incurred in the recovery due to aliasing artifacts.

This error is typically expected to be smaller in magnitude than measurement noise.

Nevertheless, to avoid any potential inverse crime, in our numerical experiments we

simulate highly resolved approximations of the (noisy) continuous Fourier measure-

ments.

Paper organization

The rest of this paper is organized as follows. Section 5.2 provides all of the neces-

sary ingredients for our new method, which is proposed in Section 5.3. Numerical

experiments are provided in Section 5.4, with some concluding remarks in Section

5.5.

Section 5.2

A Bayesian Approach

Since our study is motivated by SAR imaging, we consider F in (5.1) to be the discrete

Fourier transform and z to be a pixelated SAR image. For ease of presentation we

consider only the case m = n in (5.1), although this is not an inherent limitation of

our approach. Also, since (5.1) is readily understood for one-dimensional problems,

we develop our method for z ∈ Cn, and note that higher-dimensional signals can be

easily vectorized to fit this form. In this regard, our examples in Section 5.4 are for

2D images. Finally, the terms signal and image are used interchangeably throughout

our manuscript.

We follow the framework developed in [138] for recovering posterior distributions

of real-valued signals from (5.2). The components of the measured data ŷj ∈ Cn,
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j = 1, . . . , J , in (5.1) are modeled by

ŷk = (Fz)k + ε̂k, k = −n
2
, . . . ,

n

2
− 1, (5.5)

where F ∈ Cn×n is the discrete Fourier transform operator, z ∈ Cn is the unknown

variable of interest, and the noise ε̂ ∈ Cn is circularly-symmetric complex Gaussian

with covariance matrix σ2In. The corresponding probability density function for ε̂ is

then

fÊ(ε̂) ∝ exp

(
−∥ε̂∥22

σ2

)
. (5.6)

Since the magnitude and phase components of the signal can require different

prior densities in (5.3), we also formulate (5.3) by decomposing the underlying signal

as z = g ⊙ eiϕ ∈ Cn, where g ∈ Rn
+ is the magnitude, ϕ ∈ [−π, π)n is the phase, and

⊙ indicates component-wise multiplication. Hence we can rewrite (5.2) as

Ŷ = FZ + Ê = F
(
G ⊙ eiΦ

)
+ Ê , (5.7)

where Z = G ⊙ eiΦ, with G ∈ Rn
+ and Φ ∈ [−π, π)n denoting random variables with

respective realizations g and ϕ. As is standard in coherent imaging problems, we

also assume that G and Φ are mutually independent, yielding the posterior density

function characterized by Bayes’ theorem as

fG,Φ|Ŷ(g,ϕ|ŷ) ∝ fŶ|G,Φ(ŷ|g,ϕ)fG,Φ(g,ϕ) = fŶ|G,Φ(ŷ|g,ϕ)fG(g)fΦ(ϕ), (5.8)

where once again the likelihood and prior density functions are conditioned on hyper-

priors, each with its own respective density function. We now discuss how each term

in (5.8) is determined.
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5.2.1. The likelihood

The likelihood density function is determined by assumptions regarding the noise,

here given by (5.6). Specifically the law of total probability yields the likelihood

density function

fŶ|Z(ŷ|z) ∝
J∏

i=1

exp

(
− 1

σ2
∥ŷ(j) − Fz∥22

)
∝ exp

(
− J

σ2
∥ŷ − Fz∥22

)
, (5.9)

or equivalently

fŶ|G,Φ(ŷ|g,ϕ) ∝ exp

(
− J

σ2

∥∥¯̂y − F
(
g ⊙ eiϕ

)∥∥2
2

)
, (5.10)

if the decomposition in (5.7) is used. Following [138], in our numerical experiments

we approximate σ2 as

σ2 =
1

n(J − 1)

J∑
j=1

∥∥ŷj − ¯̂y
∥∥2
2
, (5.11)

where again ¯̂y is the mean of ŷ1, . . . , ŷJ .

5.2.2. The prior density function

The primary contribution of this work is in the construction of prior and hyperprior

density functions. In our development we assume that the magnitude of the true

image is sparse in the gradient domain, although other sparse domains are easily

accommodated. Because the signal itself being sparse is also a common assumption

in SAR, we include its corresponding prior construction in Section 5.2.2. Importantly,

we seek to recover a posterior density on the entire complex -valued signal Z so that

phase information is preserved.
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Sparse magnitude prior. Assume |Z| in (5.2) is sparse. What distinguishes our

prior from other standard sparsity-promoting priors, such as those typically used in

(empirical) sparse Bayesian learning (SBL) techniques [120, 131], is that rather than

learn sparsity-promoting hyper-parameter distributions, here instead we construct a

weighted mask W = diag(w1, . . . , wn) ∈ Rn×n
+ that encodes the relative confidence

regarding the support of the magnitude of z. This mask is formed by taking advantage

of the support information in the sparse domain empirically provided by the MMV

data, and its construction is discussed in Section 5.2.3.

We adapt the approach from [138] for real-valued signals and define the conditional

prior probability density function

fZ|η(z|η) =
1

(πη2)n
exp

(
− 1

η2
∥Wz∥22

)
, (5.12)

where η ∈ R+ is the prior variance with realization η.

Remark 5.1. We note that using the 2−norm in (5.12) is only reasonable because of

the mask, that is, since the sparsity is promoted locally in regions of smoothness. On

the other hand, if W is the identity matrix (i.e. not support informed), we must use

p = 1 to obtain an accurate MAP estimate (see e.g. [25]), resulting in a more costly

computation of the point estimate solution, and without the benefit of localization.

More details can be found in [47].

Finally, observe that the prior (5.12) does not require decomposing the signal into

its magnitude and phase components. Hence we can use (5.3) directly, which means

we can also use (5.9) as the likelihood function.

Sparsity in the magnitude gradient domain. When the signal magnitude is

assumed to be piecewise constant, the total variation (TV) operator effectively sup-

presses variation and noise in smooth regions. While it is well known that the noise
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in coherent imaging is due to a multitude of factors, including speckle, successful

extraction of important features in SAR imaging using TV has been demonstrated in

[35, 107, 110]. Thus we use it here. To this end, we explicitly define L1D ∈ Rn−1×n

as the difference operator, which for 1D signals is

[L1D]i,j =


1 if i = j − 1,

−1 if i = j,

0 else.

(5.13)

For a 2D N×N image3 we extend (5.13) to construct a composite difference operator

that computes both vertical and horizontal differences. Specifically, we define L2D ∈

R2(N2−N)×N2
as the block matrix L2D = [LT

v LT
h ]

T , where Lv, Lh ∈ RN2−N×N2
denote

vertical and horizontal difference matrices, respectively. We have

Lv =



L1D 0 · · · 0

0 L1D 0

...
. . .

...

0 0 · · · L1D


where L1D ∈ RN−1×N is defined in (5.13), and

[Lh]i,j =


1 if i = j +N,

−1 if i = j,

0 else.

3For simplicity, we define the 2D difference operator only on square images and note that similar
operators can be constructed for non-square images.
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For ease of notation we simply denote the difference operator as L ∈ Rñ×n for ñ ∈ Z+

for both 1D and 2D signals.

The conditional prior probability density for G is then

fG|η(g|η) ∝
1

(2η2π)
n
2

exp

(
− 1

2η2
∥WLg∥22

)
1Rn

+
(g), (5.14)

where 1Rn
+
is the indicator function for positive real vectors. Similar to (5.12), the

weighted mask W uses MMV data to encode the relative confidence regarding the

support locations in the gradient domain.

Remark 5.2 (Higher order TV). Higher order TV (HOTV) priors have been used ef-

fectively to recover SAR images from given MMV phase history data [107, 110], and

although beyond the scope of the current investigation, our method can be straightfor-

wardly adapted to use HOTV or other sparsifying transform operators as appropriate.

Since TV is still the predominant choice, we use it here even when the underlying

image is piecewise-smooth (rather than piecewise-constant). In this way we are also

able to test the effectiveness of our method even when the prior assumptions are not

met.

Prior for the phase. Coherent imaging systems often have no prior information

regarding the phase. It is therefore reasonable to impose the uniform prior as

fΦ(ϕ) =
1

(2π)n
1[−π,π)n(ϕ), (5.15)

where 1[−π,π)n denotes the indicator function for vectors in [−π, π)n.

Finally, since in this case the prior is decomposed into its magnitude and phase

components, we employ likelihood function (5.10) to be used in (5.8).
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The hyperprior. There are a variety of ways to choose the hyperprior on η in

(5.12) and (5.14). By effective application of the MMV data, we observe that it is

both reasonable and simple to adopt the delta distribution fη(η) = δ(η− η̂) and then

use the respective point estimate for η̂. As a preprocessing step, we first compute the

solution to the compressed sensing problem

zCS = argmin
z

∥∥Fz − ¯̂y
∥∥2
2
+

1

η̃
∥R|z|∥1, (5.16)

where R = In in the sparse signal case (5.12) and R = L defined by (5.13) in the

sparse magnitude gradient case (5.14). Following a similar construction in [108], we

calculate the parameter η̃ using

η̃2 :=
1

ñ− 1
E
[
∥Pg∥22

∣∣Ŷ] ≈ 1

ñ− 1

∥∥∥∥∥P
∣∣∣∣∣FH

(
1

J

J∑
j=1

ŷj

)∣∣∣∣∣
∥∥∥∥∥
2

2

. (5.17)

The hyperprior approximation η̂ used in (5.12) and (5.14) is then obtained as

η̂2 :=
1

ñ− 1

∥∥P ∣∣zCS
∣∣∥∥2

2
, (5.18)

where P = W in the sparse signal case (5.12) and P = WL in the sparse magnitude

gradient case (5.14). By first computing the ℓ1 approximation zCS, the parameter η̂

is less sensitive to noise than the one computed in (5.17). It then follows from (5.12)

and (5.14) that

fZ(z) ∝ exp

(
− 1

η̂2
∥Wz∥22

)
, (5.19a)

fG(g) ∝ exp

(
− 1

2η̂2
∥WLg∥22

)
1Rn

+
(g). (5.19b)

Remark 5.3 (The common kernel condition). It is possible that (5.19b) describes an

improper probability density function. We note, however, that when combined with

108



5.2 A Bayesian Approach Support-Informed Priors for CV Signals

their respective likelihood functions, the common kernel condition [73]

Ker(F ) ∩Ker(P ) = {0}, (5.20)

for P = WL, is satisfied since F is full rank. This guarantees that the resulting

posterior distribution is a proper density function. As a result, we do not need to

impose any artificial boundary conditions on the sparsifying transform L.

5.2.3. Weighted mask construction for the prior

We now describe how to construct the empirically-learned weighted mask W used in

each of the prior density functions (5.19a) and (5.19b). As already discussed, the mask

encodes relative confidence regarding the support locations in the signal magnitude

gradient domain, which is expected to be sparse. To this end we note that in [138]

a binary mask was similarly used, but required thresholding to determine support

locations. Importantly, to prevent data loss we will employ the concentration factor

edge detection method [48, 50] as it can be applied directly to the given Fourier data

without requiring an initial approximation for the magnitude of the underlying signal.

Remark 5.4 (Edge domain vs gradient domain). The concentration factor edge detec-

tion method was designed to determine the corresponding edge function of a piecewise

analytic function [48, 49]. Because here we assume that the underlying signals have

piecewise constant magnitude, the magnitude edge and gradient domains are equiva-

lent. Hence the concentration factor method, which is directly applied to the observed

Fourier data, is consistent with Lg, where L is defined in (5.13). We note that it was

shown in [50] that concentration factors can be specifically designed to be consistent

with HOTV operators. In this context (also see Remark 5.2), although beyond the

scope of this current investigation, it is straightforward to adapt the weighted matrix

W to accommodate other sparse domains as appropriate.
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Edge detection from Fourier data. We first review the concentration factor

edge detection method for real-valued signals on [−π, π]. In Section 5.2.3 we describe

how it can be effectively used when the sparsity corresponds to the magnitude of a

complex-valued signal. We also note that the method can be easily modified to any

arbitrary one-dimensional finite interval. Finally, the concentration factor method

(as given in (5.25)) is similarly extended to 2D as the difference operator (5.13), that

is, by using separate constructions in the horizontal and vertical directions.

Let h(x) be a real-valued periodic piecewise-smooth function on [−π, π] for which

we are given Fourier coefficients

ĥ(k) =
1

2π

∫ π

−π

h(x)e−ikxdx, k = −n
2
+ 1, . . . ,

n

2
. (5.21)

We seek to approximate the corresponding jump function defined as

[h](x) := h(x+)− h(x−), (5.22)

where h(x+) and h(x−) denote right-hand and left-hand side limit of h at x, respec-

tively. The concentration factor edge detection method computes the partial sum (in

sequel referred to as either the edge or jump function approximation)

Sσ
n [h](x) = i

n
2∑

k=−n
2
+1

k ̸=0

ĥ(k) sgn(k)σ

(
2|k|
n

)
eikx ≈ [h](x). (5.23)

The function σ(ν), ν ∈ [0, 1], discretized in (5.23) as σ
(

2|k|
n

)
, is known as the concen-

tration factor. It can be described as a band pass filter that amplifies and represses

contributions from different bands of Fourier data. Satisfaction of the so-called ad-

missibility conditions [49] guarantees the convergence of (5.23).
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If the domain is discretized as yj = −π + 2πj
n
, j = 0, . . . , n, then we can approxi-

mate [h] = {[h](xℓ)}nℓ=1 by choosing x = xℓ =
yℓ+yℓ−1

2
in (5.23). This means that an

edge location is resolved up to the distance ∆x = 2π
n
. Since the inverse problem (5.1)

is in the discrete setting, we analogously define the matrix Sσ ∈ Cn×n with entries

Sσ(ℓ, k) = i sgn(k)σ

(
2|k|
n

)
eikxℓ , (5.24)

where ℓ = 1, . . . , n, k = −n
2
+ 1, . . . , n

2
, and Sσ(ℓ, 0) = 0 by construction. It follows

that

Sσĥ ≈ [h], (5.25)

where ĥ = {ĥk}
n
2

k=−n
2
+1 in (5.21).

In our investigation we use the admissible trigonometric concentration factor,

defined as

σ(t) =
π sin(πt)

Si(π)
, Si(π) =

∫ π

0

sin(x)

x
dx. (5.26)

Remark 5.5. The trigonometric concentration factor (5.26) is particularly well-suited

for (real-valued) piecewise constant functions. This is because for equally spaced

points {xµ}nµ=1, we have [50]

Sσ
n [h](xµ) ≈

2π

n

n−1∑
ℓ=0

(h(xℓ+1)−h(xℓ))
n
2∑

k=1

σ(2k/n)

2kπ/n
cos k(xµ − xℓ+1/2) ≈ (Lh)µ, (5.27)

where L is given in (5.13). Other concentration factors are similarly shown to be

consistent with HOTV operators.4 To this end we note that in environments where

some observations are missing or less reliable, such as those considered in [112, 123,

4We note that in [50, Section 3], (5.27) was given as an equality, and was based on discrete
Fourier data, (Fh)k, k = −n

2 , . . .
n
2 , where F is the discrete Fourier transform. Similar equivalencies

for other concentration factors were also derived. The approximation for continuous Fourier data,

{ĥk}
n
2

k=−n
2 +1, still holds.
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132], the concentration factors designed in [123] may provide more accurate and robust

recovery. Finally, we observe that by construction any admissible concentration factor

can be used for sparse signal recovery. Hence we also use (5.26) for our sparse signal

recovery experiments.

2D edge maps. For 2D image H ∈ RN×M with given Fourier data Ĥ ∈ CN×M ,

we adapt the concentration factor method to compute both horizontal and vertical

edges, that is, we use a fixed value in one direction and calculate the edges in the

opposite direction at that value. Following the jump function definition in (5.22),

vertical edges [H ]v are approximated as

SσĤF̄ ≈ [H ]v, (5.28)

where F̄ is the complex conjugate of the M ×M discrete Fourier transform matrix

F and Sσ is the N ×N concentration factor matrix with corresponding entries given

by (5.24). The horizontal edges [H ]h are similarly extracted and are then used in

tandem with the vertical edges to form a composite edge map similar to L2D following

(5.13). We do not explicitly derive this operator since we will see in Section 5.2.3

that for complex-valued images, edge maps are formed for the squared magnitude in

the sparse domain.

In what follows we adapt (5.23) and (5.28) to determine the support locations in

the complex-valued signal magnitude gradient domain, which will in turn be used to

construct the weighted mask W in prior density functions (5.19a) and (5.19b).

The concentration factor edge detection method for complex-valued sig-

nals. We apply (5.23) on |z|2 rather than on magnitude g to remove the added com-

putational complexity of having to extract g, specifically to avoid having to approxi-
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mate the phase ϕ in z = g⊙eiϕ. To this end, let f(x) = g(x)eiϕ(x), where g : R → R+

and ϕ : R → [−π, π), for which the first n Fourier coefficients {f̂(k)}
n
2

k=−n
2
+1 are known

(as in (5.21), but for complex-valued function f). If we denote the corresponding

Fourier transform operator as F , i.e. F(f(x)) = f̂(k), then the convolution theorem

yields

F
(
g2
)
= F

(
|f |2
)
= F (f ∗f) = F (f ∗) ∗ F(f) = f̂ ⋆ f̂ , (5.29)

where f ∗ is the complex conjugate of f and ∗ and ⋆ are the convolution and cross-

correlation operations, respectively. Therefore when considering the discrete model

(5.5), (5.29) suggests employing (5.25) on ŷj ⋆ ŷj, j = 1, . . . , J , to recover J approxi-

mations of Lg. Hence we define s ∈ Rn
+ as

sj := Sσ(ŷj ⋆ ŷj) ≈ [(gj)2], j = 1, . . . , J. (5.30)

Following (5.28), in the 2D case we recover sjh, the horizontal edge map for the sparse

domain magnitude squared, as

sjh := Sσ(Ŷ j ⋆ Ŷ j)F̄ ≈ [(Gj)2], j = 1, . . . , J.

Here we have defined Z ∈ CN×M as the 2D image with magnitude-phase decomposi-

tion Z = G⊙ eiΦ and corresponding Fourier data Ŷ ∈ CN×M as given by (5.1) with

DFT matrix F . The vertical edge map for the sparse domain magnitude squared, sjv,

is similarly defined.
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Sparse signal prior. When using the sparse signal prior (5.19a), the composite

edge map approximation is calculated as

sj := max
(
|sjh|, |s

j
v|
)
, j = 1, . . . , J,

so that the sji indicates whether an edge exists in either the vertical or horizontal

direction at pixel i for image j.

Sparse magnitude gradient prior

For the sparse magnitude gradient prior (5.19b), we instead construct each vector

sj using sjh and sjv such that sji corresponds to the composite form of [Lg]i, i =

1, . . . , n, for L defined in (5.13). The vertical and horizontal edge approximations in

sj therefore correspond pixel-wise to the vertical and horizontal differences computed

using L, i.e. sj = [(sjv)
T (sjh)

T ]T for j = 1, . . . , J .

Remark 5.6. For highly-resolved SAR images, the phase is approximately smooth

except in locations where the scene height is also discontinuous [66]. In this case,

the concentration factor method can be applied directly to the complex-valued data

to approximate edges in the real and imaginary parts of the image instead of in the

magnitude squared. A composite edge map is then formed using the magnitude of

the complex-valued edge approximation. That is, we compute

sj =
∣∣Sσŷj

∣∣ ≈ ∣∣[zj
R] + i[zj

I ]
∣∣, j = 1, · · · , J,

where the subscripts R and I indicate real and imaginary components, respectively.

Construction of the weighting matrix. As already discussed in Section 5.1,

the VBJS method [2, 47, 112] constructs a spatially-weighted diagonal regularization

matrix, W = diag(w1, . . . , wn), to replace the constant penalty parameter λ in (5.4).
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In particular, given multiple measurements of a real-valued signal, W is designed to

reflect the relative confidence regarding the support in the sparse domain, with entries

determined using the variance of the transformed solution in the sparse domain at each

pixel. In [138] the VBJS idea inspired the construction an empirical support-informed

prior that used a binary matrix to “mask out” regions of support in the sparse domain

so that the sparse prior was only employed in regions that were assumed sparse in

the recovery of the posterior distribution. Below we show how VBJS can be adapted

to provide the weighting matrix used in the empirical support-informed prior for

complex-valued signals given by either (5.19a) or (5.19b).

Our construction of W is analogous to what is described (for real-valued signals)

in [2, Section 5]. Its diagonal entries are

wi =
1
J

∑J
j=1 |s

j
i |+ ϵ

vi + ϵ
, i = 1, . . . , n, (5.31)

where sj are the sparse domain vectors defined in (5.30) and vi is the corresponding

component-wise second moment

vi =
1

J

J∑
j=1

(
sji
)2
, i = 1, . . . , n. (5.32)

We choose ϵ = 10−4 to ensure both that wi > 0 and that wi does not become too

large when vi ≪ 1. It then follows that wi ≪ 1 corresponds to support in the signal

magnitude sparse domain at pixel xi (or [Lg]i if a sparse magnitude gradient prior is

employed), which in turn is used to calibrate the sparse prior via (5.19a) or (5.19b).

Remark 5.7. We use (5.32) in (5.31) instead of the variance, as was originally done in

[2], because our numerical experiments indicate that (5.32) scales more weakly with

g than the variance of (5.30) does. Importantly, since the magnitude g has only

positive entries, bias can be potentially introduced in a weight mask that employs

115



5.3 Sampling the Support-Informed Posterior for Complex-Valued
Signals Support-Informed Priors for CV Signals

the variance, a problem that is further exacerbated since (5.30) is applied to |g|2. By

contrast, VBJS was used for real-valued signals in [2], with the non-zero values in

the sparse domain of either sign. We also observe that since vi ∝ s̄2i in (5.32), where

s̄i is the average of (5.30) across the J measurements, then wi ∝ 1/s̄i, which is an

intuitive choice for determining the relative confidence of the support. In this regard,

numerical experiments for recovering point estimates in [2] indicate that directly

defining wi = 1/(s̄i + ϵ) is less effective when the sparse domain has non-zero entries

that span multiple scales. In particular, the large magnitudes dominate the small

ones, and as a consequence, defining the weight in this direct way may be less useful

in providing relative information in the sparse domain.

Section 5.3

Sampling the Support-Informed Posterior for

Complex-Valued Signals

We now have all of the ingredients needed to compute and sample from the posterior

distributions using the likelihoods given in (5.9) and (5.10), and the priors provided

in (5.19a) and (5.19b).

5.3.1. Sparse magnitude prior

As in Section 5.2.2, we first briefly consider the case where |Z| is sparse, with likeli-

hood given by (5.9) and support-informed prior by (5.19a). The posterior is then

fZ|Ŷ,η(z|ŷ, η̂) ∝ exp

(
− J

σ2

∥∥¯̂y − Fz
∥∥2
2
− 1

η̂2
∥Wz∥22

)
. (5.33)
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We can directly sample from (5.33) since it defines a complex Gaussian density over

Cn with mean µ and covariance Γ respectively given by

µ = Γ

(
J

σ2
FH ¯̂y

)
, Γ =

(
J

σ2
In +

1

η̂2
W TW

)−1

. (5.34)

5.3.2. Sparsity in magnitude gradient domain

Following Section 5.2.2, we now assume magnitude sparsity in the gradient domain.

In this case we decompose the signal into its magnitude and phase components to

accommodate their different prior density functions.

Since our goal is to generate samples from a posterior distribution and provide

meaningful results such as mean estimates and credibility intervals, we first want to

characterize the hierarchical model in terms of its distributions. This can be directly

accomplished by combining (5.10), (5.11), (5.15), (5.18), (5.19b), and (5.31), resulting

in

Ŷ|G,Φ ∼ CN
(
F (g ⊙ eiϕ),

σ2

J
In
)

(5.35a)

G|η ∼ N+

(
0, η2

(
(WL)T (WL)

)−1
)

(5.35b)

Φ ∼ U [−π, π)n (5.35c)

η ∼ δ(η − η̂). (5.35d)

Here N+ indicates the nonnegative real-valued multivariate Gaussian distribution.

The probability density for the posterior distribution G,Φ|Ŷ ,η is then

fG,Φ|Ŷ,η(g,ϕ|ŷ, η̂) ∝ exp

(
− J

σ2

∥∥¯̂y − F
(
g ⊙ eiϕ

)∥∥2
2
− 1

2η̂2
∥Pg∥22

)
1Rn

+
(g)1[−π,π)n(ϕ),

(5.36)

where for ease of notation, we have replaced WL with P .
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Upon inspection of (5.36), it is apparent that the corresponding posterior distribu-

tion is not Gaussian. Indeed we are not aware of any studied probability distribution

whose density has the form of (5.36), effectively prohibiting us from directly sam-

pling the posterior in a computationally efficient manner. We thus turn to the class

of Markov Chain Monte Carlo (MCMC) techniques to generate its approximate sam-

ples [18, 80]. We choose to use Gibbs sampling [29, 73] since it has the benefit of

being efficient in high dimensions when large groups (blocks) of random variables can

be updated in parallel.

Sampling the magnitude

When (5.36) is conditioned on Φ, the resulting distribution G|Ŷ ,Φ,η has probability

density

fG|Ŷ,Φ,η(g|ŷ,ϕ, η̂) ∝ exp

(
− J

σ2

∥∥¯̂y − F1g
∥∥2
2
− 1

2η̂2
∥Pg∥22

)
1Rn

+
(g), (5.37)

where F1 = FD(eiϕ) and D(eiϕ) = diag(eiϕ1 , . . . , eiϕn). Notice that (5.37) is the

probability density of a multivariate Gaussian distribution truncated to Rn
+, and as

such sampling from its corresponding distribution can be computationally prohibitive.

To mitigate this expense we instead use the untruncated version of (5.37)

f̃G|Ŷ,Φ,η(g|ŷ,ϕ, η) ∝ exp

(
− J

σ2

∥∥¯̂y − F1g
∥∥2
2
− 1

2η̂2
∥Pg∥22

)
. (5.38)

Observe that (5.38) corresponds to multivariate Gaussian distribution over Rn with

center and covariance given by

ḡ = Γ

(
2J

σ2
q ⊙ cos(φ)

)
, Γ =

(
1

η̂2
P TP +

2J

σ2
In
)−1

, (5.39)
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where q ∈ Rn
+ and φ ∈ [−π, π)n such that q ⊙ eiφ = FH

1
¯̂y. Importantly, we are

now able to sample directly from the distribution characterized by the (modified)

density in (5.38), from which samples with negative elements are rejected to remain

consistent with (5.37).

Remark 5.8. When the mode ḡ in (5.39) contains mostly nonnegative entries with few

negative ones, we instead implement the rejection sampling from the mode technique

to more efficiently generate samples for the distribution corresponding to fG|Ŷ,Φ in

(5.37) [82]. Methods such as the exact Hamiltonian Monte Carlo method [96] can

also be used to generate distribution samples corresponding to (5.37) when (5.38)

has little mass in the region where g ≥ 0, but may become cost-prohibitive for high-

dimensional problems.

Sampling the phase: the von Mises distribution

Conditioning (5.36) on G, the density of the conditional distribution Φ|Ŷ ,G is

fΦ|Ŷ,G(ϕ|ŷ, g) ∝ exp

(
− J

σ2

∥∥¯̂y − F2e
iϕ
∥∥2
2

)
1[−π,π)n(ϕ), (5.40)

where F2 = FD(g) and D(g) = diag(g1, . . . , gn). In [57] it was demonstrated that

(5.40) is equivalent to

fΦ|Ŷ,G(ϕ|ŷ, g) =
n∏

i=1

fvM

(
ϕi

∣∣∣φi,
2J

σ2
qi

)
. (5.41)

Here fvM(x|µ, κ) is the probability density of a von Mises distribution with location

µ and concentration κ, and we have defined FH
2
¯̂y = q ⊙ eiφ, for q ∈ Rn

+ and φ ∈

[−π, π)n. We also observe that that the concentration of the distribution described by

(5.41) is proportional to the magnitude g through q, while the location is independent
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of g. Furthermore, since

fΦ|Ŷ,G(ϕ|ŷ, g) = fΦ1|Ŷ,G(ϕ1|y, g) · · · fΦn|Ŷ,G(ϕn|y, g),

then each Φi is conditionally independent from all other Φ−i, i = 1, . . . , n. Hence we

can update each ϕi independently of ϕ−i, thereby increasing the sampling efficiency.

To generate samples from the von Mises density, we use the density function of

the wrapped Cauchy distribution given as

fWC(θ|µ, γ) =
∞∑

k=−∞

γ

π(γ2 + (θ − µ+ 2πk)2)
, −π < θ < π, (5.42)

where µ is the mode of the unwrapped density and γ is the scale factor. We then

sample each Φi, i = 1, . . . , n, using an acceptance-rejection method for which the

envelope is given by (5.42). Algorithm 7 [13] describes the implementation process.

Algorithm 7 Sampling the von Mises distribution using the Wrapped Cauchy

Input Location µ and concentration κ of von Mises distribution as defined in (5.41).
Output Sample θ.

1. Set τ = 1 + (1 + 4κ2)
1
2 , ρ = (τ − (2τ)

1
2 )/(2κ), and r = (1 + ρ2)/(2ρ).

2. Generate u1 ∼ U(0, 1), then set z = cos(πu1), f = (1 + rz)/(r + z), c = κ(r − f).
3. Generate u2 ∼ U(0, 1), then if c(2− c)− u2 > 0, go to step 5.
4. If ln(c/u2) + 1− c < 0, return to step 2.
5. Generate u3 ∼ U(0, 1), then set θ = [sgn(u3 − 0.5)] cos−1(f).

A block-Gibbs sampling approach

We will use a block-Gibbs approach to generate approximate samples from the joint

distribution G,Φ|Ŷ ,η corresponding to probability density function (5.36). This is

accomplished by drawing exact samples from the conditional distributions G|Ŷ ,Φ,η

and Φ|Ŷ ,G, with respective probability density functions given by (5.37) and (5.40).

We begin by using the measurements ŷj, j = 1, . . . , J , to construct the weighted
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mask W in (5.31), likelihood variance σ2/J in (5.11), and the hyperprior point esti-

mate η̂2 in (5.18). The chain is initialized using the sample mean ¯̂y. To implement

the two-stage Gibbs sampler, we first update g and then ϕ. The process is repeated

for some predetermined number of iterations NM . The output chain consists of all

samples generated after prescribed burn-in period B. Algorithm 8 summarizes the

procedure.

Algorithm 8 Two-Step Gibbs Sampling Method for Sparsity in Magnitude Gradient
Domain

Input Fourier MMV data ŷj, j = 1, . . . , J , chain length NM , and burn-in length
B.
Output samples z(ℓ−B+1) = g(ℓ) ⊙ exp

(
iϕ(ℓ)

)
for ℓ = B, . . . , NM .

1. Construct empirical mask W (5.31) using the concentration factor method (5.30).
2. Estimate σ2 and η̂2 from (5.11) and (5.18), respectively.
3. Set ¯̂y = 1

J

∑J
j=1 ŷ

j, g(0) = |FH ¯̂y|, and ϕ(0) = arg(FH ¯̂y).
4. For k = 1, . . . , NM do

(a). Draw a sample g∗ from f̃G|Ŷ,Φ(g|¯̂y,ϕ(k−1)) in (5.38).

(b). If g∗ contains a negative element, return to (a). Otherwise, set g(k) = g∗.

(c). For each i = 1, . . . , n, draw a sample ϕ∗
i from fΦi|,Ŷ,G(ϕi|¯̂y, g(k)) using (5.40)

with Algorithm 7. Set ϕ
(k)
i = ϕ∗

i .

Remark 5.9. The weighted mask W can also be generated using the iterative alter-

nating sequential (IAS) algorithm, which computes a MAP estimate for posterior

densities similar to (5.33) and (5.36), but instead with a hyperprior placed on each

element of W [19, 22].5 A byproduct of IAS is a diagonal matrix of variances, or

weights, that promote sparsity in the solution. There are two important distinctions

between the IAS approach and the method introduced here. First, IAS requires the

repeated solution of large linear systems to jointly compute both the solution and

the mask, while our construction of the weighted mask W using (5.30) is a one-time

5Although to our knowledge IAS has not been adapted for complex-valued signals, the MAP
estimate for the phase is the same as the MLE when using a unitary forward operator. Thus
the phase can first be extracted as a preprocessing step followed by use of the IAS algorithm for
real-valued signal recovery.
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direct calculation that requires only element-wise multiplication in tandem with the

FFT algorithm, after which the solution is computed with a single linear system solve.

Second, it has been shown that sparsity-promoting priors formed using MMV infor-

mation can outperform IAS and other sparsity-promoting methods that do not take

advantage of joint information [52].

Section 5.4

Numerical Results

We now provide some computational experiments to demonstrate the efficacy of our

new method. In each experiment using synthetic data we generate J = 8 multiple

“continuous” Fourier data measurements, which we simulate using a highly resolved

DFT. We then add centered complex-valued Gaussian white noise to each of the

generated data sets, and finally downsample the result to obtain the data modeled

by (5.1).6 The signal-to-noise ratio (SNR) is computed as

SNR = 10 log10

(
∥Fzexact∥22

mσ2

)
, (5.43)

where zexact is the ground truth solution and SNR is given in decibels (dB). We

compare our results with those obtained using the classical CS method in (5.4) with

p = 1, which we rewrite as follows:

6Specifically, we use a 900 × 900 complex-valued image to generate the “continuous” Fourier
measurements and then downsample by a factor of 3.
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(a) sparse signal case: We split z = a + ib into its real and imaginary parts to

obtain the objective function

aCS

bCS

 = argmin
a,b

1

2

∥∥∥∥∥∥∥
FR −FI

FI FR


a
b

−

ȳR

ȳI


∥∥∥∥∥∥∥
2

2

+ λ

n∑
j=1

√
aj + bj

 .

(5.44)

Here FR and FI respectively refer to the real and imaginary parts of F , and ȳR

and ȳI respectively refer to the real and imaginary part of ¯̂y = 1
J

∑J
j=1 ŷ

j in

(5.1).

(b) sparse magnitude gradient case: Since |z| is not differentiable, in order

to solve (5.4) we follow what was done in [36, 94, 107], which involves first

estimating the phase angles of z and then building a diagonal unitary matrix

Θ, so that Θ∗z ≈ |z|. Here Θj,j = angle(z̃j) and z̃ is some initial approximate

solution, e.g. the MLE solution obtained directly from (5.9). The objective

function in (5.4) then becomes

zCS = argmin
z

(
1

2

∥∥Fz − ¯̂y
∥∥2
2
+ λ∥LΘ∗z∥1

)
. (5.45)

We use the alternating direction method of multipliers (ADMM) [17] to solve (5.44)

and (5.45), and in both cases we choose λ = ασ2/Jη̃, where η̃ is provided in (5.17). In

some sense α = 1 represents the “best case” scenario for selecting suitable parameters,

while other values of α allow us to test for robustness.

We also compare our results to those obtained using a similar deterministic ap-
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proach adapted from the VBJS method [110]. We use either the objective function

aV BJS

bV BJS

 = argmin
a,b

1

2

∥∥∥∥∥∥∥
FR −FI

FI FR


a
b

−

ȳR

ȳI


∥∥∥∥∥∥∥
2

2

+ λ

n∑
j=1

wj

√
aj + bj

 (5.46)

in the sparse signal case or

zV BJS = argmin
z

(
1

2

∥∥Fz − ¯̂y
∥∥2
2
+ λ∥WLΘ∗z∥1

)
, (5.47)

in the sparse magnitude edge case, where W is the same as in (5.31), Θ is the same

as in (5.45), and either L = In in the sparse signal case or L is the difference operator

(5.13) in the sparse magnitude edge case. In this case we choose λ = ασ2/Jη̂,

where η̂ is provided in (5.18).7 We further observe that the ℓ1-norm is used for the

regularization term in (5.46) and (5.47), and note that in our experiments we employ

the ADMM algorithm to determine zV BJS. By contrast, our approach implicitly

uses an ℓ2-norm regularization term through the Gaussian prior. To this end we

note that the VBJS method enables either the ℓ1- or ℓ2-norm to be used in the

regularization term [47]. The use of the ℓ2-norm in VBJS results in a generalized

Tikhonov problem. Moreover, the solution using the ℓ2-norm is identical to the MAP

estimate of our method when using the sparse signal assumption and nearly the same

as the MAP estimate of our approach when promoting sparsity in the magnitude

gradient domain. In the latter case, the primary difference between VBJS using an

ℓ2-norm regularization term and the MAP estimate of our approach is that VBJS

uses a precomputed MLE estimate of the signal phase while our method learns the

phase through Algorithm 8.

7In the original VBJS method, W is calculated using the variance and λ = 1. We define λ =
ασ2/Jη̂ to better reflect the weighting between the data fidelity and regularization terms and to be
consistent with the approach developed in this investigation.
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Sparse signal

We first test our method on a sparse complex-valued signal where gi = 0 or gi =

1, i = 1, . . . , n, with SNR = −20 dB. Small regions of pixel size 3 × 3 (prior to

downsampling) containing “on” pixels are randomly distributed to form the ground

truth image, where each “on” region has approximately smooth phase. Since (5.33)

is a multivariate complex-valued Gaussian density, we immediately have the mean µ

and diagonal covariance Γ through (5.34).

(a) Ground Truth (b) zCS with α = 1 (c) zV BJS (d) µ in (5.34)

Figure 5.1: Sparse signal magnitude. (a) Ground truth; (b) zCS with α = 1; (c)
zV BJS computed via (5.46); and (d) Mean µ in (5.34). Here SNR = −20 dB.

Figure 5.1 displays point estimate solutions of the magnitude. For better visual-

ization we show only a small region of the image. Observe that our method is able

to suppress noise while also while maintaining image fidelity, and is similar to zCS

computed by (5.44) with α = 1 and zV BJS computed using (5.46).

(a) log10(W ) (b) Variance

Figure 5.2: Sparse signal recovery. Here SNR = −20 dB.

Figure 5.2 shows the weighted mask W and the pointwise marginal variance ob-
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tained through (5.34). As an expected consequence of employing W in (5.31), we

observe larger variance in regions of support. In this regard we also note that for this

experiment σ2

J
≈ 5.5× 10−3 for σ2 computed via (5.11). That is, our method indeed

decreases the overall recovery uncertainty, especially in sparse regions.

(a) (b) (c)

Figure 5.3: Sparse signal phase at three randomly chosen “on” pixels. Here SNR
= −20 dB.

Figure 5.3 displays the phase results for three randomly selected “on” pixels, that

is, for gi = 1. The marginal densities for each phase variable are generated using a

kernel density estimation technique [16]. Observe that the phase of zCS computed

by (5.44) is near the mode of the computed marginal density computed in all three

cases, while the true phase value is located in a region of significant probability density.

Since the phase results for zV BJS are nearly identical to zCS in our experiments, we

do not include them here.

Sparse magnitude gradient

In this case we generate NM = 5000 total samples using Algorithm 8 with a burn-in

period of B = 200. We use a smooth, highly varying phase to ensure an accurate

approximation of the continuous Fourier measurements from discrete data (to avoid

the inverse crime). Figure 5.4 displays the (downsampled) magnitude and phase

components along with the true vertical edges (5.28) in the magnitude.

Remark 5.10. We emphasize that Algorithm 8 is not changed when given multiple
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observations of complex-valued discretized image data. Indeed using the DFT in this

case yields less model discrepancy, since the error in (5.1) is strictly due to noise. The

concentration factor edge detection method in Subsection 5.2.3 is also calculated in

exactly the same way. Importantly, the concentration factor edge detection method

filters the noisy Fourier data and enhances the resulting edge maps [123], which is

critical at low SNR values. We demonstrate this at the end of this section where a

complex-valued SAR image is used to generate MMV data.

(a) Magnitude (b) Phase (c) Magnitude Gradient

Figure 5.4: Ground truth of (a) magnitude; (b) phase; and (c) magnitude gradient
(vertical components).

(a) SNR = 15 dB (b) SNR = 10 dB (c) SNR = 15 dB (d) SNR =10dB

Figure 5.5: (a)-(b) Average of (vertical) magnitude gradient, 1
J

∑J
j=1 s

j, computed
via (5.30); (c)-(d) vertical components of log10(W ).

Figures 5.5 – 5.9 illustrate the efficacy of our method for SNR values of 15 dB

and 10 dB, and its ability to reduce the uncertainty in the magnitude recovery. First,

Figure 5.5 displays the (vertical component) average of (5.30), 1
J

∑J
j=1 s

j
v, demon-

strating the accurate approximation for the magnitude gradient sparsity needed to

construct the components of W in (5.31). The vertical component of the mask W
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(a) zCS with α = 1 (b) zV BJS (c) Mean of Algorithm 8

(d) zCS with α = 1 (e) zV BJS (f) Mean of Algorithm 8

Figure 5.6: Magnitude recovery: (top) SNR = 15 dB; (bottom) SNR = 10 dB.

(a) SNR = 15 dB (b) SNR = 10 dB

Figure 5.7: Cross-sections of the magnitude of the true image (black), mean of Algo-
rithm 8 (red), zV BJS (yellow), and zCS with α = 1 (purple).

is also provided to demonstrate the impact of noise on determining gradient domain

support. As is evident in Figure 5.6 and Figure 5.7, our algorithm yields comparable

solutions to zCS calculated via (5.45) with α = 1 and zV BJS computed using (5.47)

in magnitude recovery. Figure 5.8 compares their corresponding phase estimates. As

expected there is little difference in the recovered phase estimates, since no joint phase

information is used in Algorithm 8.
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(a) zCS with α = 1 (b) zV BJS (c) Mean Algorithm 8

(d) zCS with α = 1 (e) zV BJS (f) Mean Algorithm 8

Figure 5.8: Phase recovery: (top) SNR = 15 dB; (bottom) SNR = 10 dB.

Figure 5.9 provides a more illuminating comparison. Here we show the pointwise

error in the magnitude along with the pointwise variances of the magnitude and phase

obtained via Algorithm 8 for SNR = 10 dB. While the overall point estimate solutions

are comparable, it is also clear that the weighted mask works as expected. That is,

the error is smaller in the true sparse gradient regions. The pointwise magnitude

variance, in addition to being larger near the magnitude edges as one would expect,

also scales proportionally with the magnitude (see Remark 5.7). On the other hand,

the pointwise phase variance scales inversely proportional to the magnitude. This

effect is explained by the concentration of the conditional von Mises density in (5.41)

being proportional to the magnitude. The results corresponding to SNR = 15 dB

demonstrate similar behavior (not shown).

Noise study

We now examine robustness of our method with respect to noise, using the previous

example on a range of SNR values from 0 dB to 30 dB. Once again we generate
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(a) zCS with α = 1 (b) zV BJS (c) Mean from Algorithm 8

(d) Magnitude variance (e) (Circ.) phase variance

Figure 5.9: (top) Magnitude pointwise error in (a) zCS with α = 1 computed via
(5.45), (b) mean from Algorithm 8, (c) zV BJS computed via (5.47); (bottom) Point-
wise variance computed from Algorithm 8 of (c) magnitude and (d) phase (in loga-
rithmic scale). Here SNR = 10 dB.

Figure 5.10: Mean squared error of zCS in (5.45) for α = 0.1, 1, 10 and the mean of
the samples generated using Algorithm 8 plotted against SNR values. The vertical
axis is in logarithmic scale.
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NM = 5000 samples with a burn-in period of B = 200. Figure 5.10 demonstrates

that our new method yields solutions that are comparable to zV BJS and to zCS when

α = 1, 10. Our method outperforms (5.45) for α = 0.1 at low SNR. Importantly,

while the CS solutions require tuning of the α parameter, with the optimal value of α

changing at different SNR, neither the VBJS nor the empirical Bayes method require

any parameter tuning.

Remark 5.11. We note that Algorithm 8 cannot efficiently generate samples of the

magnitude for SNR < 0 dB, (see Remark 5.8). It is not clear that SNR is the sole

contributing factor to this failure, however. Indeed it could be that the sampling

algorithm would not encounter such difficulties for signals with overall larger signal

strength (not near zero). This will be the subject of future investigations.

Real-world example

As a final example, we consider SAR single-look complex (SLC) data from [1] of part

of a traffic circle in Paris, France. Figure 5.11 shows the reflectivity of the full SLC

image as well as the portion of the image used to generate data for our experiments.

Specifically, we generate J = 8 measurement vectors following (5.1) where F is the 2D

discrete Fourier transform matrix and complex-valued Gaussian white noise is added

to the Fourier data. The edges are computed via the concentration factor method

(5.25) from the formed Fourier measurements in the real and imaginary components

of the image (see Remark 5.6). We display each reflectivity image on a dB scale

according to

20 log10

(
|z|

max |z|

)

with a minimum of −60 dB and maximum of 0 dB. Lesser or greater values are

assigned the minimum or maximum accordingly.
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Figure 5.11: Reflectivity of full SLC image. Scale is −65 dB to 0 dB.

Figure 5.12 shows the results obtained from (5.34) and (5.44) using the sparse

magnitude assumption with SNR= 0dB. In addition to recovering pointwise variance

estimates, our new method yields a solution that better suppresses the noise outside

of the signal support when compared with the zCS solution. This is particularly

apparent when considering the region around the traffic circle. Figure 5.13 displays

the phase variance estimated using 1000 samples of (5.33). As expected, the phase

variance is inversely proportional to the image magnitude and decreases as SNR

increases. We also observe that the marginal density of the phase (calculated using

a circular kernel density estimation technique [90]) concentrates closer to the true

value with increasing SNR. Moreover, when either zCS or zV BJS contains a 0 entry,

as is common in ℓ1-regularized solutions, the phase information for the corresponding
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(a) Ground truth (b) zCS with α = 1 (c) zV BJS

(d) Mean µ from (5.34) (e) D(Γ) (5.34)

Figure 5.12: (a) Ground truth reflectivity; (b) zCS with α = 1 computed via (5.44);
(c) zV BJS computed via (5.46); (d) mean µ computed using (5.34); and (e) pointwise
variance computed using (5.34). Here SNR = 0dB.

Figure 5.13: (top) Pointwise (circular) phase variance, (bottom) phase results at a
randomly chosen pixel. (left) SNR = −5 dB, (middle) SNR = 0dB, (right) SNR
= 5dB.
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pixel is lost. By contrast, our method does not cause this loss of phase information.

Finally, Figure 5.14 provides magnitude results for SNR = 5 and −5. Observe our

(a) zCS with α = 1 (b) zV BJS (c) Mean µ from (5.34)

(d) zCS with α = 1 (e) zV BJS (f) Mean µ from (5.34)

Figure 5.14: (top) SNR = 5dB; (bottom) SNR = −5 dB.

method continues to outperform the compressed sensing and VBJS approaches by

suppressing noise in regions with true reflectivity at or below −60 dB.

Section 5.5

Concluding remarks

We introduced a new sampling algorithm to recover complex-valued images from mul-

tiple Fourier observations. In addition to point estimates, our method provides uncer-

tainty information. Our approach utilizes a support-informed prior by constructing a

weighted mask directly from the measurement vectors, allowing for efficient sampling

without losing valuable phase information. By design, and as our results demonstrate,

uncertainty is reduced in sparse regions of the magnitude gradient domain. Moreover,

while optimization algorithms such as ADMM are required to compute zCS in (5.44)
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and zV BJS in (5.46) in the sparse signal case, our approach only requires the compu-

tation of W in (5.31) and of µ and Γ in (5.34). Although our investigation focused

on sparsity in either the signal or magnitude gradient domain, this is not an inherent

limitation of our method. Indeed the concentration factor edge detection method can

readily accommodate sparse transform domains constructed using HOTV operators.

While SAR imaging provided our initial motivation, our new methodology is appli-

cable to other coherent imaging modalities, such as ultrasound and digital holography.

In some cases prior phase information may be available, and this can also be incor-

porated into our sampling method. This will be the focus of future work. Finally,

other edge detection methods, such as the polynomial annihilation method in [6], can

be used to construct the weight mask when the data are provided in image domain.

These types of techniques methods will also be included into future adaptations of

our approach.
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Chapter 6

Leveraging Joint Sparsity in 3D

Synthetic Aperture Radar Imaging

This chapter describes work published in [56] in Applied Mathematics for Modern

Challenges.

Section 6.1

Introduction

Spotlight-mode synthetic aperture radar (SAR) is an all-weather sensing modality

capable of imaging through all illumination conditions. SAR data are ubiquitous in

several applications, such as sea ice monitoring and military reconnaissance. The

current state of the art for the reconstruction of two-dimensional (2D) SAR images

includes the matched filter, filtered backprojection, polar format, and compressive

sensing methods, along with sampling-based SAR image formation [34, 54, 93, 105].

These techniques all enable reconstructions of large scenes with high resolution and

fidelity.

DISTRIBUTION A. Approved for public release; distribution unlimited.
PA Approval #:[ARFL-2023-3703]
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While 2D SAR imaging is already a mature field of study, 3D SAR reconstruc-

tion is becoming increasingly important. Specifically, 3D SAR is capable of providing

practitioners with a more complete representation of a target of interest by providing

height resolution as well as relative scaling of the object’s three spatial dimensions.

Novel techniques and powerful computational capabilities are driving the push for ef-

ficient and accurate reconstructions of 3D landscapes and objects. These approaches

hold the promise of enhanced target recognition and identification, detailed topo-

graphic maps, and improved change detection [4, 8, 31, 116].

In this work we build on two particular methods of 3D SAR image reconstruction,

namely backprojection and sparsity-promoting recovery [68, 113]. In both of these,

2D images centered at the origin are recovered and then used to form the volumetric

image. Our methods seek to extend the sparsity-promoting inversion approach, first

by leveraging sequential information from neighboring apertures, and then by utiliz-

ing techniques from hierarchical Bayesian modeling [20, 72]. This serves not only to

extend the dynamic range of the recovered volumetric image and to lower the depen-

dency on user input when compared to the previous sparsity-based method [113], but

also has the potential to quantify the uncertainty regarding the reconstruction, which

is not generally possible with point-estimate methods.

The rest of this chapter is organized as follows. In Section 6.2 we provide a brief

overview of the data collection process as well as details of the data set used in

our experiments. In Section 6.3 we discuss how to leverage sequential joint sparsity

information in point estimate image recovery. We extend these ideas to a Bayesian

framework in Section 6.4. Section 6.5 contains some numerical experiments, and we

provide concluding remarks in Section 6.6.
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Section 6.2

SAR data collection

Spotlight SAR data are acquired as the imaging platform revolves circularly around a

scene of interest. A chirp signal is transmitted by the radar, and backscattered signal

is then detected by the antenna [91]. In a SAR system that emits linear frequency

modulated chirps (2.26), the frequency function ω(t) is given by

ω(t) =
2

c
[ω0 + 2α(t− τ0)], |ω(t)| ≤ 2

c
(ω0 + αTt), (6.1)

where c is the speed of light, ω0 is the carrier frequency of the chirp, 2α is the chirp

rate, Tt is the pulse duration, τ0 is the round trip time of the chirp to the scene center,

and t is the fast time variable. Other measurement parameters include azimuth angle

θ(τ) and elevation angle φ(τ), where τ is the slow time parameter. The spatial

frequency locations k⃗ are related to the temporal frequency function (6.1) by

k⃗ = [kx, ky, kz]
T = ω(t)[cos(θ(τ)) cos(φ(τ)), sin(θ(τ)) cos(φ(τ)), sin(φ(τ))]T . (6.2)

More specifically, each value k⃗ where data may be acquired is governed by the flight

path of the imaging platform, which provides θ(τ) and φ(τ), along with the band

where the radar operates, which determines the range of ω(t).

Following demodulation, the spotlight SAR data collection process can be modeled

as the 3D Fourier transform (2.35) of the true underlying scene, g : R3 → C, and is

given by

ĝ(k⃗) = F3[g](k⃗) =

∫
R3

g(x⃗) exp
{
−i
[
x⃗T k⃗

]}
dx⃗, x⃗ = [x, y, z]T . (6.3)
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A more thorough introduction to SAR from a mathematical perspective can be found

in [32, 33].

6.2.1. The Fourier Slice Theorem

The Fourier Slice Theorem [92] provides a convenient way to model the collected data.

Let f : R3 → C. We are interested in a specific 2D slice of f , where the slice operator

is defined by

S3
2 [h](µ, ν) = h(µ, ν, 0). (6.4)

Observe that S3
2 reduces the dimensionality of f to R2.

Remark 6.1. Our use of generic variables in (6.4) is intentional. Theorem 6.1 (Fourier

Slice Theorem), which is foundational to many SAR image recovery algorithms, con-

siders the slice operator in the Fourier domain (with h := ĝ in the theorem). We later

apply (6.4) in the physical domain for the volumetric SAR reconstruction using 2D

filtered backprojection (see Section 6.3.2).

We will also make use of the following definition:

Definition 6.1. Let B be a rotational change of basis. The function g = fB is a

rotation of f about the origin so that S3
2 [g] = S3

2 [fB] is the 2D slice of interest. The

corresponding inverse rotation B−1 is defined such that if g = fB, then gB−1 = f .

Finally, we define the integral projection operator that projects f onto R2 by

integrating out the third dimension as

P 3
2 [h](µ, ν) =

∫ ∞

−∞
h(µ, ν, ξ)dξ. (6.5)

Theorem 6.1 relates (6.3), (6.5), and (6.4) in the context of the rotational change

of basis B and provides the foundation for the filtered backprojection algorithm.
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Theorem 6.1 (The Fourier Slice Theorem). Suppose we are given k⃗ and x⃗ in (6.2),

ĝ(k⃗) in (6.3), P 3
2 in (6.5), and S3

2 in (6.4). Let B be an arbitrary rotational change

of basis given in Definition 6.1. Then the slice S3
2 of ĝB is the 2D Fourier transform,

F2, of the projection P 3
2 of gB, i.e.

S3
2 [ĝB] = F2 ◦ P 3

2 [gB]. (6.6)

Proof. Due to the rotation property of Fourier transforms [66, Appendix A], without

loss of generality we can let B be the identity. In this case g = gB and ĝ = ĝB. From

(6.3) we then have

S3
2 [ĝ](kx, ky) = ĝ(kx, ky, 0)

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x, y, z) exp {−i(xkx + yky)} dxdydz

=

∫ ∞

−∞

∫ ∞

−∞

[∫ ∞

−∞
g(x, y, z)dz

]
exp {−i(xkx + yky)} dxdy

=

∫ ∞

−∞

∫ ∞

−∞
P 3
2 [g](x, y) exp {−i(xkx + yky)} dxdy

=
(
F2 ◦ P 3

2 [g]
)
(kx, ky)

Figure 6.1 summarizes the implications of Theorem 6.1, which is well-known and

is used in many SAR image recovery algorithms [54, 68, 113]. We use it here in the

development of our own algorithm by treating 2D slices of frequency domain data as

the Fourier transform of the 2D projections of the 3D spatial scene.

6.2.2. Data used in experiments

We use one synthetic data set (see Figure 6.3) and one measured SAR data collect

(see Figure 6.5) to evaluate our new methods and compare their performance to

140



6.2 SAR data collection JS in 3D SAR

Figure 6.1: A graphical depiction of Theorem 6.1.

established techniques. The synthetic data set consists of a cube centered at the

origin, while the measured data set is the same model B747 data set used in [68, 113].

The B747 data set is created with an asymptotic prediction code that simulates

data collections taken over multiple passes around a target of interest in a circular

flight path. All data were collected in the Ka band where a total of 13 passes are

made over the full azimuth range with elevation −3◦ to 3◦ with 0.5◦ spacing. Table

6.1 summarizes these parameters.

6.2.3. SAR image recovery

Our technique builds on methodology used in SAR image formation and hierarchical

Bayesian inference. In particular, our forward problem is discretized from (6.3) and
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Parameter
Dataset
Value

Elevation Range [−3o, 3o]
Elevation Sampling 0.5o

Frequency Range [27, 39]GHz
Frequency Sampling 50MHz
Bandwidth 12GHz
Center Frequency 33GHz
Azimuth Range [0o, 359.9o]
Azimuth Sampling 0.1o

Table 6.1: Parameters of synthetic and measured data sets used for experimentation.

then modeled as

ĝ = Fg + ε, (6.7)

where ĝ ∈ CM is the SAR phase history data (PHD), ε ∈ CM is complex-valued cir-

cularly symmetric Gaussian noise with covariance matrix σ2IM , g ∈ CN is the image

we seek to recover, and F is the (discrete) nonuniform Fourier transform (NUFT)

matrix. The d-dimensional NUFT matrix Fd ∈ CM×N is given by

[Fd]m,n = exp(−ipm · qn), pm, qn ∈ Rd,

where pm are the nonuniform frequencies and qn are the nonuniform sources. Note

that g and ĝ may be 2D or 3D, but we are able to vectorize g and ĝ and then formulate

F accordingly. All numerical experiments in this investigation are implemented using

the nonuniform fast Fourier transform library FINUFFT developed in [11]. In (6.7)

we assume errors corresponding to aliasing and gridding are insignificant compared

to inherent system noise.
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Section 6.3

SAR imaging leveraging sequential information

The data considered in the SAR image formation process are in general determined

by the flight path of the SAR imaging platform along with the frequency band over

which data are collected. From (6.7), the SAR PHD measurements ĝ in 3D k-space

at the respective equispaced azimuth angles, elevation angles, and frequencies, are

given by

(fm cos θp cosφr, fm sin θp cosφr, fm sinφr), {θp}Pp=1, {φr}Rr=1, {fm}Nk
m=1. (6.8)

We will denote the spacing between azimuth angles, elevation angles, and frequencies

as ∆θ, ∆φ, and ∆f . We also have that the data are collected by a total of Np = PR

pulses and that each of these pulses occurs at slow time τp,r, p = 1, . . . , P, r = 1, . . . , R.

In several of the techniques that follow, it may become necessary to further partition

the azimuth angles.1 In such cases we consider the azimuth angles θ1, . . . , θP to be

partitioned into Nθ sets Θ1, . . . ,ΘNθ

Θn =

{
θp :

P

Nθ

(n− 1) + 1 ≤ p ≤ P

Nθ

n

}
, n = 1, . . . , Nθ. (6.9)

An example of SAR PHD collected at three elevation angles over all azimuth angles

is given in Figure 6.2.

Due to SAR’s specular scattering physics, the level of backscatter detected is not

only dependent on the imaging platform position, but also on the geometry of the

imaging scene. Hence the measured return from a point in the scene may have a

strong dependence on the angle from which it is viewed, i.e. the scattering is not

1Consistent with standard SAR imaging practices, it is always assumed that the data acquisition
is sufficient for such partitions.
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Figure 6.2: A graphical depiction of SAR PHD ĝ (6.3) in k-space as well as the
partitioning of the data into Nθ partitions according to the azimuthal angle sets Θn

given by (6.9).

isotropic as suggested in the model given by (6.7). This issue has been addressed

using composite imaging, which mitigates the effects of this incorrect assumption by

using some weighted average, or maximum, of image approximations recovered from

different subapertures, see e.g. [36, 100, 107].

In Section 6.3.1 we review a composite 2D SAR imaging technique which lever-

ages the assumption that neighboring subapertures have similar support in their

sparse domain [107]. In Section 6.3.2 we review a volumetric approach using a three-

dimensional analogue of the classic backprojection algorithm [113]. These two ideas

are then fused in Section 6.3.3 to construct an algorithm that compares the spatial

information in neighboring imaging planes and penalizes the differences.

6.3.1. 2D SAR imaging leveraging sequential information

We first explore the sequential imaging approach introduced in [107]. This method

seeks to recover a 2D scene from SAR PHD gathered at a single (fixed) elevation

angle φr. We will use all data ĝ(r), gathered at elevation angle φr to reconstruct the

2D scene of interest g̃ = g̃(r), for any r ∈ [1, R].

To begin the image formation process, we first partition the SAR PHD data (6.3)
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into Nθ sequential subaperture bins ĝ
(r)
1 , . . . , ĝ

(r)
Nθ

so that the forward model (6.7)

becomes

ĝ(r)
n = Fng̃n + εn, n = 1, . . . , Nθ,

where g̃n are the optimized 2D images we seek to recover, Fn is the corresponding

NUFT for subaperture Θn, and εn is complex-valued circularly-symmetric Gaussian

noise with covariance matrix σ2I. We note that the partitioning of the SAR PHD is

based on (6.9).

Though the strength of the backscatter may change as the azimuth changes, it

tends to do so continuously as a function of the viewing angle. We can therefore expect

images formed from sequential subapertures to contain similarities. It is important

to keep in mind that g̃ is complex-valued. In this regard, when we are discussing

sparsity, it is the magnitude of g̃ that is sparse, not the signal itself. Hence when

computing terms involving sparsity, the magnitude must first be extracted. This can

be accomplished by decomposing g̃n = |g̃n|Ψn. We then approximate the phase of the

pixels of each image using Ψn = D (exp(i ang(g̃n))), where D(·) = diag(·), yielding

the estimate |g̃n| ≈ ΨH
n g̃n. Using this reasoning as well as the assumption that the

images themselves are sparse, we obtain the objective function ([107])

G̃ = argmin
(q1,...,qNθ

)

{
Nθ∑
n=1

(µ
2

∥∥Fnqn − ĝ(r)
n

∥∥2
2
+ ∥qn∥1

)
+ γ

Nθ−1∑
n=1

∥∥ΨH
n+1qn+1 −ΨH

n qn

∥∥2
2

}
.

(6.10)

Here G̃ = (g̃1, . . . , g̃Nθ
)T , µ and γ are regularization parameters and Ψn are diagonal

matrices containing the estimated phase at each pixel of qn. Observe that (6.10) de-

scribes a compressive sensing (CS) approach [27] coupled with a term that leverages

neighboring (sequential) information, which is designed to promote solutions that are
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sequentially structurally similar. In particular, the assumption here is that two se-

quential images, g̃n, g̃n+1, should have the same sparse magnitude structure. We solve

(6.10) using the well-known alternating direction method of multipliers (ADMM) al-

gorithm [17]. Once all g̃1, . . . , g̃Nθ
are recovered, a final composite vectorized image

g̃ is formed where

g̃i = argmax
n∈[1,Nθ]

∣∣g̃i
n

∣∣ (6.11)

for each pixel i = 1, . . . , N .

Remark 6.2. We note that leveraging sequential information in the sparse domain in

(6.10) does not require use of the ℓ1 norm. This is because it is not the sparsity prop-

erty that is being utilized in this term, but rather the idea that the difference should

be small. This is in contrast to the ℓ1 norm used in the first term, which is designed

to promote sparsity in the underlying scene. There is an advantage to considering se-

quential sparse domain information, however, as opposed to sequential measurement

information. This is because most entries in the sparse domain will contribute (close

to) zero value, and the overall difference between neighboring apertures can be better

captured this way.

6.3.2. Volumetric SAR using backprojection

Now denote the SAR PHD collected by Np = PR pulses over a range ofNk frequencies

as

S(fm, τp,r), m = 1, . . . , Nk, p = 1, . . . , P, r = 1, . . . , R, (6.12)

where τp,r represent slow time pulses along azimuth θp and elevation φr.

In SAR imaging, the signal returns are sorted into bins corresponding to different
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ranges in the spatial domain based on time of arrival. In what follows, each discrete

range bin is indexed by ℓ = 1, . . . , L, while x denotes the vector of pixel locations in

the recovered image. Here L is inversely proportional to the range resolution δ [54],

which is given by

δ =
c

2(Nk − 1)∆f
,

and c is again the speed of light.

2D filtered backprojection. Filtered backprojection (FBP) is a common technique

used to recover 2D SAR images [54]. Due to the polar formatting of the data, lower

frequencies are sampled at a greater rate than higher frequencies. To account for this,

the FBP method applies a filter (e.g. a ramp function) to the PHD before the data are

processed to accentuate the higher frequency terms. The inverse Fourier transform

is then performed on the (filtered) data collected at each time τp,r. The resulting 1D

function is then backprojected over the whole 2D domain. In the last step these 2D

images are summed together to form the final image. Algorithm 9 summarizes the

standard FBP algorithm for 2D SAR. A thorough analysis of FBP for SAR imaging

can be found in [39].

Algorithm 9 FBP for 2D SAR PHD

Input SAR PHD S(fm, τp,r), m = 1, . . . , Nk, p = 1, . . . , P , and r = 1, . . . , R in
(6.12), and L range bins.
Output Image g̃.
Apply filter to PHD.
for n = 1 : P do

Set s(ℓ, τp,r) =
∑Nk

m=1 S(fm, τp,r) exp
(

2πifm(ℓ−1)
Nk∆f

)
, ℓ = 1, . . . , L.

Interpolate values of s(ℓ, τp,r) to a rectangular grid as sint(x, τp,r).
2

end for
g̃ =

∑R
r=1

∑P
p=1 sint(x, τp,r).
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Volumetric SAR. With the 2D FBP now in hand, we proceed to incorporate

information from multiple elevation angles to obtain a volumetric SAR image. We

begin by considering an arbitrary set of azimuth and elevation angle pairs {(θs, φs}Ss=1.

As we will see, these pairs of angles each define a plane onto which we will use

Algorithm 9 to construct 2D slices of the 3D scene of interest g.

Let Bs, s = 1, . . . , S, be the 3D rotational change of basis operator (see Definition

6.1) from (x, y, z) to (x′s, y
′
s, z

′
s) such that the z′s-axis has azimuth angle θs ∈ [0, 2π)

and elevation angle φs ∈ (−π
2
, π
2
] from the (x, y, z) coordinate system. Our goal is

to recover gs = S3
2 [gBs ], which is accomplished by performing Algorithm 9 for each

imaging plane using the full data set ĝ in (6.3) [113]. The resulting S images are then

fused together to form the volumetric image by constructing a radial point cloud,

with the ability to interpolate this point cloud onto a Cartesian grid as desired. As

shown previously in [68, 113], this technique can consider any combination of azimuth

and elevation angles. Algorithm 10 summarizes this process.

Algorithm 10 Volumetric SAR using 2D FBP

Input SAR PHD ĝ (6.3) and threshhold value cthresh.
Output Binary volumetric image g.
Generate azimuth and elevation angle pairs θs, φs for s = 1, . . . , S.
Initialize volumetric image g.
for s = 1 : S do

Derive filtered backprojection gs on imaging plane with angles θs and φs using
Algorithm 9.

Create ḡs by thresholding gs with ḡs =

{
1 if |gs| ≥ cthresh

0 else
.

For each i = 1, . . . , N such that pixel
[
(ḡs)B−1

s

]i
= 1, set gi = 1.

end for

Remark 6.3. Since the data can be backprojected onto as many planes we choose,

S is in some sense arbitrary. The resolution of the image is tied to the amount of

2Since the range bins indexed by l = 1, . . . , L typically do not align with Cartesian grid points
x, interpolation is needed to form a final pixelated image. A review of the interpolation methods
commonly used in signal processing can be found in [38].
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data given in (6.8), however. For the B747 data set (see Table 6.1), replaced with .1

degree spacing in elevation, the experiment used in [68] set S = 180 (corresponding

to R = 61 and P = 3600). The emphasis there was to fix the elevation to be 90◦ for

the purpose of height extraction.

6.3.3. Volumetric SAR leveraging sequential information

The objective function (6.10) considers inter- and intra-image information, but only

for data collected at a single elevation angle. By contrast, Algorithm 10 considers the

full SAR PHD ĝ for azimuth angles θ1 < · · · < θP and elevation angles φ1 < · · · < φR,

as given in (6.8), but depends exclusively on information given by the acquired data.

That is, it does not infer any assumptions regarding the underlying volumetric image,

such as intra-image and sequential sparsity. The method in [68, 113] extends (6.10) to

three dimensions to include this a priori information. Since this leveraging of a priori

inter-image and sequential information in the the 3D setting inspires our hierarchical

Bayesian approach to the 3D SAR image formation problem, we include it here.

In the first step, an arbitrary set of azimuth and elevation angles, given respectively

as ϑ1, . . . , ϑU and ϕ1, . . . , ϕV , is established. The goal is then to recover slices of

the volumetric image g defined by every possible combination of these azimuth and

elevation angles, i.e.

gu,v = S3
2 [gBu,v ], u = 1, . . . , U, v = 1, . . . , V, (6.13)

where Bu,v is the rotational change of basis corresponding to azimuth rotation ϑu and

elevation rotation ϕv.

Letting Au,v be the forward operator from each corresponding slice to the full SAR
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PHD ĝ in (6.3), the objective function solved in [68, 113] is then given by

gu,v = argmin
qu,v

{
∥Au,vqu,v − ĝ∥22 + λ1∥qu,v∥1 +

λ2
2

u+1∑
i=u−1

v+1∑
k=v−1

∥∥ΨH
u,vqu,v −ΨH

i,kqi,k

∥∥2
2

}
,

(6.14)

where λ1 and λ2 are regularization parameters and Ψu,v are diagonal matrices con-

taining the estimated phase at each pixel of qu,v. As is the case in (6.10), the first term

in (6.14) enforces data fidelity, the second term promotes intra-image sparsity, and

the third term encourages inter-image sparsity. The minimization problem given by

(6.14) is then solved in [68, 113] using ADMM. Once the set {gu,v}U,Vu=1,v=1 is recovered,

the resulting slices are fused together to form the volumetric image g.3

Section 6.4

Bayesian approach to 3D SAR image formation

To make use of statistical inversion methods as well as to quantify the uncertainty of

the signal recovery, we now cast the inverse imaging problem in a Bayesian setting.

Consider the linear inverse problem

Ĝj = FjGj + Êj, j = 1, . . . , J, (6.15)

where Gj, Ĝj, and Êj are random variables defined over a common probability space,

and Gj and Êj are assumed to be independent. In this framework Gj represents the

unknown we seek to recover, Ĝj are the data, Fj is a known linear operator, and

Êj ∼ CN (0, [D(α)]−1) where again we have D(·) = diag(·). with some noise precision

vector α. In our technique, Fj takes the form of the 2D or 3D NUFT.

3We note that (6.14) is modified from the point estimate derived in [68, 113] in two ways: (1)
Here we include phase extraction in the sequential difference regularization term, and (2) there ĝ
was rotated and projected (according to u, v) before incorporating it into the objective function.
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By treating the data and the unknown image as random variables, we are able

to leverage hierarchical Bayesian learning methods by creating appropriate likelihood

and prior distributions to describe our data and assumptions. As such, we extend the

techniques used in Sections 6.3.2 and 6.3.3 to a Bayesian framework. Algorithms that

utilize joint sparsity given multiple measurements in an empirical Bayesian setting

were introduced in [138] and [132] for real-valued images. In [138] multiple data

acquisitions at a single time are assumed, while [132] considered a temporal sequence

of data acquisitions. Here we modify the technique coined the Joint Hierarchical

Bayesian Learning (JHBL) method in [132] to consider a spatial sequence of image

reconstructions. Analogous to the volumetric point estimate in (6.14), in which the

second term incorporates intra-signal information and the final term leverages the

sequential inter-signal similarities, in our JHBL approach we construct the priors to

leverage intra- and inter-image information for a more accurate point estimate SAR

image recovery. The priors are furthermore designed to be conjugate to the likelihood,

enabling a closed form for the posterior from which we can efficiently sample.

We derive the general formulation for our approach in Section 6.4.1. In Section

6.4.2 we consider sequential data acquisitions along azimuth angles θp, p = 1, . . . , P ,

while in Section 6.4.3 we incorporate the idea that in the volumetric image recon-

struction, data from neighboring subapertures should contain similar information.

6.4.1. Hierarchical Bayesian model

Following the Bayesian model in (6.15), let G = {Gj ∈ CN : j = 1, . . . , J} be the

collection of signals we seek to recover, where N is the number of pixels in each of

the sequential images, Ĝ = {Ĝj ∈ CM : j = 1, . . . , J} is the collection of J observable

measurements in the frequency (PHD) domain, and Ê is circularly symmetric additive

151



6.4 Bayesian approach to 3D SAR image formation JS in 3D SAR

Gaussian white noise, i.e.

π(ε) =
1

πN |[D(α)]−1|
exp
(
−εHD(α)ε

)
,

where ε is a realization of Ê . Samples of signals G and data Ĝ are correspondingly

denoted as G = {gj ∈ CN : j = 1, . . . , J} and Ĝ = {ĝj ∈ CM : j = 1, . . . , J}. While

we have not yet specified how the set G relates to the volumetric image g we are

seeking to recover, we assume for now that the sequential sparsity assumption holds

for the elements of G.

We proceed by recalling that Bayes’ Theorem yields

π(G,α,β,γ|Ĝ) = π(Ĝ|G,α)π(G|β,γ)π(α)π(β)π(γ)

π(Ĝ)
,

where π(G,α,β,γ|Ĝ) is the posterior density function, π(Ĝ|G,α) is the likelihood,

π(G|β,γ) is the prior, π(α), π(β), and π(γ) are the hyper-priors. In this context

we also define the random variables A ∈ (R+)
J
, B ∈ (R+)

J×N
, and C ∈ (R+)

J×N

as the noise precision, the precision of the intra-image prior, and the precision of the

sequential sparsity-promoting prior, with realizations α, β, and γ, respectively.

Sometimes called the evidence, π(Ĝ) ̸= 0 since otherwise there would be no ob-

servations in (6.15). It is, however, typically unknown so instead it is standard to

employ the relationship

π(G,α,β,γ|Ĝ) ∝ π(Ĝ|G,α)π(G|β,γ)π(α)π(β)π(γ), (6.16)

from which we compute the right hand side, i.e. an un-normalized version of

π(G,α,β,γ|Ĝ). The task is then to determine each of the five terms on the right

hand side of (6.16), which we now describe.
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The likelihood π(Ĝ|G,α). From the noise model in (6.15) we have

π(Ĝ|G,α) ∝
J∏

j=1

exp
{
−αj∥Fjgj − ĝj∥22

}
. (6.17)

The hyper-prior for the likelihood π(α). While there are many choices for

the hyper-prior on α, we choose to use an uninformative gamma prior on each αj,

j = 1, . . . , J , to maintain conjugacy and allow for flexibility regarding whether or not

prior knowledge of the noise precision is known. Thus we have

π(α) ∝
J∏

j=1

αηα−1
j exp{−νααj}, (6.18)

where ηα and να are chosen either to be in accordance with a priori knowledge of the

noise in the images or to be uninformative. Since the mode of (6.18) is zero when

ηα ≤ 1, values in this range promote sparsity in α, while smaller να result in more

uninformative hyperpriors [120].

The joint prior π(G|β,γ). To leverage both the sparsity assumption in the image

magnitude and sequential information [132], we define the joint prior as

π(G|β,γ) := π(G|β)π(G|γ),

where π(G|β) and π(G|γ) are the intra- and inter-image priors, respectively.

The intra-image prior π(G|β). Sparsity is encouraged in the SAR image mag-

nitude by imposing a conditional complex-valued Gaussian intra-image prior on each
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image pixel as

π(G|β) ∝
J∏

j=1

N∏
i=1

βj,i exp
{
−βj,i

∣∣gj,i∣∣2} , j = 1, . . . , J, i = 1, . . . , N. (6.19)

Here each precision βj,i is a random variable. The prior in (6.19) is commonly em-

ployed to promote sparsity because it is conjugate for the likelihood density function

(6.17) and therefore results in a closed form posterior [120]. Other sparsity promoting

priors may also be used.

The intra-image hyper-prior π(β). Since each image is expected to have a num-

ber of relatively small-magnitude pixels, we allow the precision βj,i to vary, specifically

by using a gamma distribution

π(β) ∝
J∏

j=1

N∏
i=1

β
ηβ−1
j,i exp{−νββj,i}, (6.20)

where ηβ and νβ are predetermined shape and rate parameters that are the same for

all βj,i.

The inter-image prior π(G|γ). As in previous work [113], we assume that the

difference in magnitude of gj compared with gj−1 is small for j = 1, . . . , J . We can

therefore employ the conditionally inter-image complex-valued Gaussian prior

π(G|γ) ∝
J∏

j=1

N∏
i=1

γj,i exp
{
−γj,i

∣∣ΨH
j−1,igj−1,i −ΨH

j,igj,i
∣∣2} . (6.21)

Since the azimuth angle θj, j = 1, . . . , J , is subdivided on [0, 2π), we also assume

periodicity and impose gJ = g0 in (6.21).
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The inter-image hyper-prior π(γ). Similar to the intra-image prior (6.19), we

use gamma distributed hyper-priors for each γj,i with hyper-parameters ηγ and νγ

akin to those in (6.20), i.e.

π(γ) ∝
J∏

j=1

N∏
i=1

γ
ηγ−1
j,i exp{−νγγj,i}. (6.22)

The posterior. Combining (6.17), (6.19), (6.20), (6.21) and (6.22), we are now

ready to calculate the posterior density function, (6.16) as

π(G,α,β,γ|Ĝ) ∝
J∏

j=1

[ (
αM
j exp

{
−αj∥Fjgj − ĝj∥22

})
×

(
N∏
i=1

βj,i exp
{
−βj,i

∣∣gj,i∣∣2})×(
N∏
i=1

γj,i exp
{
−γj,i

∣∣ΨH
j−1,igj−1,i −ΨH

j,igj,i
∣∣2})×

(
αηα−1
j exp{−νααj}

)
×(

N∏
i=1

β
ηβ−1
j,i exp{−νββj,i}

)
×

(
N∏
i=1

γ
ηγ−1
j,i exp{−νγγj,i}

)]
. (6.23)

Due to the structure of (6.23), we can decompose π(G,α,β,γ|Ĝ) into conditional

distributions whose modes we are able to analytically derive. Specifically, we can

update from iteration step ℓ to iteration step ℓ + 1 for each gj, αj, βj,i, and γj,i for

j = 1, . . . , J , i = 1, . . . , N , as

g
(ℓ+1)
j =

(
α
(ℓ)
j FH

j Fj +D
(
β

(ℓ)
j

)
+D

(
γ
(ℓ)
j

)
+D

(
γ
(ℓ)
j+1

))−1

(6.24)

×
(
α
(ℓ)
j FH

j ĝj +Ψ
(ℓ)
j D

(
γ
(ℓ)
j

)
Ψ

(ℓ)H
j−1 g

(ℓ)
j−1 +Ψ

(ℓ)
j D

(
γ
(ℓ)
j+1

)
Ψ

(ℓ)H
j+1 g

(ℓ)
j+1

)
α
(ℓ+1)
j =

ηα +M − 1

να +
∥∥∥Fjg

(ℓ+1)
j − ĝj

∥∥∥2
2

(6.25)
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β
(ℓ+1)
j,i =

ηβ

νβ +
∣∣∣g(ℓ+1)

j,i

∣∣∣2 (6.26)

γ
(ℓ+1)
j,i =

ηγ

νγ +
∣∣∣Ψ(ℓ+1)H

j−1,i g
(ℓ+1)
j−1,i −Ψ

(ℓ+1)H
j,i g

(ℓ+1)
j,i

∣∣∣2 , (6.27)

where γJ+1,i = γ1,i and γ0,i = γJ,i for i = 1, . . . , N . The derivations of (6.24), (6.25),

(6.26), and (6.27) are provided in Appendix 6.7. We note that (6.24) does not rely

on any gj from the ℓ+ 1 step, which increases opportunities for parallelization.

Remark 6.4. Since Fj is a non-uniform Fourier transform matrix, it is not unitary.

However most of the mass in FH
j Fj is concentrated near the diagonal, so following [35]

we choose to approximate FH
j Fj ≈ I for computational simplicity. When using this

approximation is not desirable, other techniques may be employed in the g update

to avoid inverting large matrices, such as the gradient descent method [53].

Algorithm 11 summarizes how the MAP estimate of (6.23) for each gj, j =

1, . . . , J , is obtained based on the update steps (6.24), (6.25), (6.26) and (6.27). Ob-

serve that each of these parameters is updated based on the mode of its conditional

distribution, and is then fixed as updates are made on subsequent parameters.

We will employ Algorithm 11 in two different contexts for 3D SAR image recon-

struction. As described in Section 6.4.2, our first approach considers 2D slices of the

frequency domain data whose Fourier transforms can be interpreted as projections

of the 3D scene of interest onto the corresponding 2D plane, similar to what was

done in [68, 113]. In this case Algorithm 11 is used over sequential azimuthal angles,

{θp}Pp=1 (Algorithm 12). By contrast, Algorithm 13 in Section 6.4.3 is performed over

volumetric images formed by 3D subapertures, i.e. where the sequenced information

is over partitions of the azimuthal angles {Θj}Jj=1, (6.9). A composite image is then

created from these subaperture reconstructions using (6.30).
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Algorithm 11 Joint Hierarchical Bayesian Learning for J sequential data acquisi-
tions (JHBL)

Input SAR PHD ĝ from (6.3) and hyperparameters ηα, ηβ, ηγ, να, νβ, νγ. Define
ℓmax as the maximum number of iterations and tol as the threshold determining
convergence.
Output Collection of reconstructions G = {gj}Jj=1, corresponding phase Ψ, and
hierarchical parameters α,β, and γ.
if 2D IRB (Algorithm 12) then

Ĝ = {ĝp}P/2
p=1 given by (6.28) and J = P/2.

else if 3D SRCI (Algorithm 13) then
Ĝ = {ĝn}Nθ

n=1 according to the azimuth partitions given in (6.9) and J = Nθ.
end if
Initialize G(0) using the NUFT, set Ψ(0) = ang

(
G(0)

)
, and α(0) = β(0) = γ(0) = 1.

while ℓ < ℓmax or 1
J

∑J
j=1

∥∥∥∣∣∣g(ℓ)
j

∣∣∣− ∣∣∣g(ℓ−1)
j

∣∣∣∥∥∥
1
< tol do

G(ℓ+1) = argmaxG π
(
G|G(ℓ),α(ℓ),β(ℓ),γ(ℓ), Ĝ

)
Ψ(ℓ+1) = ang

(
G(ℓ+1)

)
α(ℓ+1) = argmaxα π

(
α|G(ℓ+1)

)
β(ℓ+1) = argmaxβ π

(
β|G(ℓ+1)

)
γ(ℓ+1) = argmaxγ π

(
γ|G(ℓ+1)

)
end while

6.4.2. 2D image reconstruction with backprojection (2D IRB)

In our first approach using the JHBL method, which we denote as 2D image recon-

struction with backprojection (2D IRB), we consider gp to be the unknown image and

ĝp the corresponding PHD on the imaging plane with azimuth angle θp and elevation

angle φ = π
2
.

This technique for reconstruction begins by partitioning the data ĝ into P/2

slices,4 which we denote as the zθp-plane for each p = 1, . . . , P/2, so that

ĝp = S3
2 [ĝBp ], (6.28)

where S3
2 is the slice operator defined in (6.4) and Bp is the rotational change of basis

4We use P/2 slices instead of P slices since, in each ĝp, the data along both azimuth θp and
θp+P/2 = θp + π are included.
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that rotates θp degrees about the z-axis followed by a rotation of π
2
radians about

the x-axis. The set Ĝ = {ĝp}P/2
p=1 is then used as input to Algorithm 11, where the

2D NUFT is utilized. Given that g1 and gP/2 are centered on the zθ1-plane and

zθP/2-plane, we define g0 and gJ+1 in Algorithm 11 to respectively be gP/2 and g1

reflected over the z-axis. This satisfies the expectation that |g1| should be similar to

a mirrored version of |gP/2|. Then, the volumetric image g is formed from the output

G = {gp}P/2
p=1 as

g =

P/2∑
p=1

(P2
3 [|gp|])B−1

p
, (6.29)

i.e. backprojecting each gp in physical 3D, performing the inverse rotation to the

one that was originally performed on the data, and then summing the resulting back-

projections to form the volumetric image. This reconstruction process relies on the

assumption from Theorem 6.1 that each gp is a projection of the spatial domain onto

the vertical plane intersecting the origin with normal in the azimuth direction θp. We

note that this assumption is not accurate when the scatterers in the scene are not

isotropic [107]. We are able to demonstrate, however, that even when anisotropic

scatterers are found in the volumetric image, backprojecting the magnitude of the

two-dimensional images gp, p = 1, . . . , P/2, still reconstructs the scene in a robust

and predictable manner. Lastly, the resulting image g can be thresholded according

to a user-defined threshold value cIRB to form a volumetric point cloud gc. This point

cloud can then be used for 3D visualization and error estimation. It is important to

note that the thresholding is done as a post-processing step, so multiple threshold

values may be tested on the same volumetric image g with relatively little additional

computational cost. The 2D IRB method is summarized in Algorithm 12.

Remark 6.5. The 2D projections {gp}P/2
j=1, obtained during the 2D IRB method in
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Algorithm 12 2D Image Reconstruction with Backprojection (2D IRB)

Input SAR PHD ĝ ((6.3) for (6.8)) and threshold value cIRB.
Output Volumetric reconstruction g and point cloud gc.
Partition ĝ into P/2 slices ĝp, p = 1, . . . , P/2 according to (6.28).

Obtain 2D projections G = {gp}P/2
p=1 by using Ĝ = {ĝp}P/2

p=1 as input to Algorithm
11.
Backproject gp according to (6.29) to form g.

For each i = 1, . . . , N , set gi
c =

{
1 if gi > cIRB

0 else
.

Algorithm 12 can be used as input to other volumetric image recovery methods, see

e.g. [67].

6.4.3. 3D subaperture reconstruction with composite imaging (3D SRCI)

Our second approach utilizing the JHBL method, which we call 3D subaperture re-

construction with composite imaging (3D SRCI), partitions the frequency domain

data into J subapertures according to the sets Θj in (6.9). The sequential sparsity

assumption holds for the J volumetric images gj formed using the partitions of the

data Ĝ = {ĝj}Jj=1.

With the data partitioned, we then perform Algorithm 11 using the 3D NUFT,

which results in the collection of J volumetric images G = {gj}Jj=1. Each of these 3D

images describes the entire scene of interest, but the strength of anisotropic scatterers

in each image is affected by the azimuth angles in Θj. Analogous to the 2D approach

given in (6.11), we mitigate this issue by constructing a composite image [100, 107]

gi = argmax
j

∣∣gi
j

∣∣ (6.30)

for each pixel i = 1, . . . , N . As with the 2D IRB method in Algorithm 12, the final

point cloud gc is formed by thresholding g in (6.30), in this case to some threshold

value cSRCI . Multiple threshold values may again be tested for the same volumetric
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image g. The 3D SRCI process is summarized in Algorithm 13.

Algorithm 13 3D Subaperture Reconstruction with Composite Imaging (3D SRCI)

Input SAR PHD ĝ ((6.3) for (6.8)) and threshold value cSRCI .
Output Volumetric reconstruction g and point cloud gc.
Partition ĝ into J subapertures ĝj, j = 1, . . . , J , according to the azimuthal sets
Θj in (6.9).

Obtain 3D reconstruction G = {gj}Jj=1 by using Ĝ = {ĝj}Jj=1 as input to Algorithm
11.
Perform the composite imaging step according to (6.30) to form g.

For each i = 1, . . . , N , set gi
c =

{
1 if gi > cSRCI

0 else
.

A couple of comments are in order:

• In addition to a point estimate for each gj, j = 1, . . . , J , our method recovers

a MAP estimate for the precisions of the likelihood and both priors. This

information may be used in lieu of (6.30) to form the final volumetric image,

and will be considered in future investigations. In this regard, the technique

developed to despeckle SAR from composite sub-aperture data in [36] may be

useful.

• Following the discussion regarding composite imaging (6.30) used in the 3D

SRCI (Algorithm 13), one might wonder why composite imaging is not incor-

porated into the 2D IRB (Algorithm 12). This is because the set of images

{gp}P/2
1 reconstructed using JHBL (Algorithm 11) are projections of the volu-

metric image onto different imaging planes. Thus if g were to be calculated via

composite imaging, i.e.

gi = argmax
p

[
(P2

3 [|gp|])B−1
p

]i
, i = 1, . . . , N,

the volumetric image would be incorrectly comprised of high-valued intensity
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streaks rather than the properly formed local regions of high-valued intensity

resulting from (6.29).

Section 6.5

Numerical experiments

We now provide some numerical examples to evaluate our methods. While there is no

consensus on which error metric best captures the efficacy of 3D SAR imaging, there

is precedent for using the modified Hausdorff distance (MHD) [44] for comparable

2D and 3D SAR image formation and data fusion [69, 85, 113, 139]. Hence we use

that here and note that other error metrics may also be useful and provide better

comparisons at various noise levels.

The MHD between two point clouds S and T is given by

MHD(S, T ) = max(d(S, T ), d(T ,S)), (6.31)

where

d(S, T ) =
1

Ns

∑
s∈S

d(s, T ), d(s, T ) = min
t∈T

∥s− t∥2,

and Ns and Nt represent the number of points in S and T , respectively. When

thresholding the reconstructed images, for ease of interpretability we choose to use a

dB scale, where dB is the decibel unit of measurement. In this scaling the dB-scaled

values of a given vector f are

fdB = 20 log10

(
1

∥f∥∞
f

)
. (6.32)

We also restrict the domain according to the alias-free extents given in [113].
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The rest of this section is organized as follows: Section 6.5.1 establishes the various

parameters used for each numerical experiment. Sections 6.5.2 and 6.5.3 analyze the

ideal case, respectively for synthetic and measured data, for which there is no added

noise. In each experiment we calculate and compare the MHD based on various

dB threshold values determined by (6.32). Section 6.5.4 considers the more realistic

scenario where the PHD is affected by additive white Gaussian noise. We compare

results using the 2D IRB and 3D SRCI techniques for different signal-to-noise ratio

(SNR) levels. Section 6.5.5 evaluates both techniques using a sub-sampled data set

with no additional noise, and we compare these results to those obtained in [113].

6.5.1. Selection of parameters

With respect to parameters, for our experiments using the 2D IRB approach (Algo-

rithm 12) we have N = 40401, M = 6266, and J = 1800. We also use a volumetric

imaging cube with 201 equispaced gridpoints in each dimension, and 1800 imaging

planes. By contrast, for our experiments using the 3D SRCI approach (Algorithm

13) we have N = 8120601, M = 313300, and J = 36. In this case the data are par-

titioned according to 36 equally-sized azimuth sets, and the spatial 3D imaging cube

contains 201 equispaced gridpoints in each dimension. The image reconstruction sizes

N for both the 2D IRB and 3D SRCI methods are chosen based on computational

feasibility, as are the subaperture sizes in the 3D SCRI approach. The parameters

for both types of experiments are summarized in Table 6.2.

Recalling the discussion following (6.18) regarding the selection of hyperparame-

ters, when using Algorithm 11, we set the hyperparameters to be

ηα = 1.5, ηβ = ηγ = 0.5, and να = νβ = νγ = 10−3.

Our experiments indicate that Algorithm 11 is robust to choice of hyperparameters.
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We also set the maximum number of iterations, ℓmax, and threshold that determines

convergence, tol, in Algorithm 11 to be

ℓmax = 10 and tol = 10−5.

We evaluate the utility of the JHBL approach in the noisy regime by also consid-

ering reconstructions formed using the MAP of (6.17), which we call the maximum-

likelihood estimate (MLE), in lieu of the MAP of (6.23) that is calculated using

Algorithm 11. That is, we compare using just the likelihood density function to using

the full posterior density function. This allows us to analyze the effects of the intra-

and inter-image priors, (6.20) and (6.22), in the presence of noise. When reconstruct-

ing the volumetric images in this way, we replace Algorithm 11 with the MLE in

Algorithm 12 or Algorithm 13, in which case we refer to these modified techniques as

MLE (in contrast to JHBL) methods.

Parameter 2D IRB (Algorithm 12) 3D SRCI (Algorithm 13)
Image Size 201× 201 201× 201× 201
Data Size 241× 13× 2 241× 13× 100

Data Partitions 1800 36

Table 6.2: Sizes of the inputs and outputs of Algorithm 12 and Algorithm 13 for our
numerical experiments.

6.5.2. Reconstruction from synthetic data

We first evaluate the 2D IRB and 3D SRCI techniques on the synthetically generated

Fourier data (using the NUFT [11]) from a hollow cube centered at the origin. The

cube is 15 cm in length, the sides of the cube are 1 cm thick, and the length of the

imaging domain is 70 cm in each direction.5 To accurately approximate the integral

transform and avoid the inverse crime, we generate the data with the cube centered

5Due to how the data are generated the units in this example are arbitrary and are chosen to
remain comparable with the B747 data set.
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(a) 2D IRB,
cIRB = −6 dB

(b) 2D IRB,
cIRB = −6 dB

(c) 2D IRB,
cIRB = −3 dB

(d) 2D IRB,
cIRB = −3 dB

(e) 3D SRCI,
cSRCI = −18 dB

(f) 3D SRCI,
cSRCI = −18 dB

(g) 3D SRCI,
cSRCI = −6 dB

(h) 3D SRCI,
cSRCI = −6 dB

Figure 6.3: Different views at various dB thresholds of the 3D reconstruction of the
synthetic cube data set in the ideal case; ground truth point cloud is displayed in
black. The threshold values chosen to best demonstrate reconstruction quality.

on a voxelized grid with grid size 301×301×301. All other parameters are consistent

with those in Table 6.1.

Figure 6.3 displays the 2D IRB and 3D SRCI reconstructions of the cube in (a)-

(d) and (e)-(h), respectively. We see from (a)-(b) and (e)-(f) of Figure 6.3 that the

reconstruction from the 3D SRCI technique (Algorithm 13) tends to more sharply

define edges of the cube, while the 2D IRB method (Algorithm 12) neither captures

the edges nor the corners of the cube as well thus supporting the hypothesis that

composite imaging for anisotropic scatterers yields better resolution. This is also

observed in Figure 6.4 (a)-(b), which shows centered cross-sections of the 2D IRB

and 3D SRCI reconstructions of the cube before any thresholding occurs. From (c) of

Figure 6.4, it also appears that the 3D SRCI technique results both in a lower global

MHD value as well as a wider dynamic range in this ideal case of no added noise.
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Figure 6.4: Centered cross-sections of the (left) 2D IRB and (middle) 3D SRCI recon-
structions of the cube data set with no additional noise and no thresholding. (right)
MHD values at various cIRB or cSRCI threshold values (dB) when either technique is
used on the cube data set with no additional noise; the minimum MHD value calcu-
lated for the 2D IRB method is 0.7017cm, and for the 3D SRCI, the minimum MHD
is 0.6014cm.

6.5.3. Reconstructions from measured data

(a) 2D IRB,
cIRB = −11 dB

(b) 2D IRB,
cIRB = −11 dB

(c) 2D IRB,
cIRB = −8 dB

(d) 2D IRB,
cIRB = −8 dB

(e) 3D SRCI,
cSRCI = −32 dB

(f) 3D SRCI,
cSRCI = −32 dB

(g) 3D SRCI,
cSRCI = −22 dB

(h) 3D SRCI,
cSRCI = −22 dB

Figure 6.5: Different views at various dB thresholds of the 3D reconstruction of the
B747 data set with no added noise; ground truth CAD model is displayed in black.

Figure 6.5 displays reconstructions of the B747 with no additional noise using the

2D IRB and 3D SRCI techniques. Observe in the 2D IRB (Algorithm 12) reconstruc-

tions (a)-(d) that the tail of the plane is poorly resolved. The tail is particularly dif-
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ficult to resolve without the benefit of composite imaging because it is an anisotropic

scatterer, and the signal does not persist across all viewing angles. Consistent with

what we already observed in the synthetic data case, Figure 6.5(e)-(h) show that

using the 3D SRCI (Algorithm 13) approach significantly helps to mitigate this issue.

Figure 6.5 shows that the both the 2D IRB and 3D SRCI techniques can identify

and isolate persistent scatterers in the original scene, such as the engines of the plane,

while the 3D SRCI is able to detect weaker scatterers, such as horizontal stabilizers

in (e)-(f). Figure 6.6 displays cross sections of the reconstructed B747 data set using

both the (a) 2D IRB and (b) 3D SRCI techniques, where the structure of the wings

and the horizontal stabilizers are much clearer (b) as opposed to (a). Note that the

sidelobe artifacts result from the use of subapertures but are tempered in the 3D

SRCI solution by the use of the composite imaging step (6.30). Observe in Figure

6.6(c) that, as in Figure 6.4, the 3D SRCI approach achieves a smaller global MHD

value as well as a larger dynamic range.

Figure 6.6: Centered cross-sections of the (left) 2D IRB and (middle) 3D SRCI recon-
structions of the B747 data set with no additional noise and no thresholding. (right)
MHD values at various cIRB or cSRCI threshold values (dB) when either technique
is used on the B747 data set with no additional noise; the minimum MHD value
calculated for the 2D IRB method is 1.832cm, and for the 3D SRCI, the minimum
MHD is 1.440cm.
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6.5.4. Noise study

For given SAR PHD with additive complex-valued circularly symmetric Gaussian

noise, we calculate the signal-to-noise ratio (SNR) as

SNR = 10 log10

(
µ2

σ2

)
dB,

where µ is the mean of the magnitude of the data, and σ is the noise standard

deviation. Note that the SNR is also written in terms of decibels, and this is not to be

confused with the decibel scaling adopted in (6.32). We now evaluate our techniques

in both high (≈ 0 dB) and low (≈ −24 dB) SNR environments. This compares to

the B747 data set used in [68, 113], where the noise was given as standard deviation

values of 0.1 and 1, respectively. We evaluate the MHD at various threshold values

for each noise value tested.

2D IRB (Algorithm 12) 3D SRCI (Algorithm 13)
MLE JHBL MLE JHBL

Cube, High SNR 0.7281 0.6774 0.5925 0.5222
Cube, Low SNR 0.6820 0.6408 0.5542 0.5570
B747, High SNR 1.868 2.150 1.354 1.401
B747, Low SNR 2.728 2.882 1.357 1.369

Table 6.3: Minimum MHD (cm) achieved across tested dB thresholds.

Table 6.3 displays the minimum MHD values achieved for the 2D IRB and 3D

SRCI algorithms using either JHBL (Algorithm 11) or replacing it by the MLE. While

comparable minimum MHD values are obtained regardless of whether the MLE or

JHBL is used, the 3D SRCI method tends to outperform the 2D IRB technique at

both noise levels. Figure 6.7 provides further insight. Here we observe that JHBL

typically yields a larger dynamic range than MLE reconstruction does. A larger dy-

namic range is beneficial in applications such as automatic target recognition (ATR),

since a wider distinction between target scatterers and background noise, and clear
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(a) 2D IRB, Cube,
High SNR

(b) 3D SRCI, Cube,
High SNR

(c) 2D IRB, B747,
High SNR

(d) 3D SRCI, B747,
High SNR

(e) 2D IRB, Cube,
Low SNR

(f) 3D SRCI, Cube,
Low SNR

(g) 2D IRB, B747,
Low SNR

(h) 3D SRCI, B747,
Low SNR

Figure 6.7: Threshold value vs. MHD for the cube (left) and B747 (right) data sets
comparing the 2D IRB and 3D SRCI for both the JHBL and MLE approximations.
(top) SNR ≈ 0 dB; (bottom) SNR ≈ −24 dB. In all plots, the dashed blue lines are
the MLE MHD values, while the solid red lines are the JHBL MHD values. In all
cases, it is straightforward to infer the rest of the characterization of the MHD values
by continuing the trends in (a)-(h).

Figure 6.8: Slices of the (left) MLE and (right) JHBL reconstructions of the B747
with SNR of −30 dB using the 3D SRCI approach.

separation between distinct scatterers, may lead more accurate target classification

[76, 98, 140]. Figure 6.8 shows a cross section of the MLE and JHBL reconstructions

of the B747 at low SNR, highlighting this distinction. Observe that the background
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in the MLE image is approximately −35 dB while the background in the 3D SRCI

image is approximately −60 dB.

Figure 6.9: Slices of the (left) 2D IRB and (right) 3D SRCI reconstructions of the
B747 with SNR of approximately−34 dB. Note that for interpretability, the threshold
dB scale is different for each figure.

Using the 3D SRCI approach, we are able to maintain data fidelity at even lower

SNR values. Figure 6.9 shows slices of the 2D IRB and 3D SRCI reconstructions

(both using JHBL) of the B747 with an SNR of approximately −34 dB. Observe that

while the outline of the hull of the plane is barely visible in the 2D IRB reconstruction,

the front and back of the plane as well as the engines are clearly visible when using

the 3D SRCI approach.

6.5.5. Sub-sampled data

As our final experiment we consider the case where the acquired data are noise-free

but sub-sampled. In particular, data are given in a smaller bandwidth with lower

frequency and azimuth sampling rates (see Table 6.4). The data sizes and partitions

used in the sub-sampled case are adjusted accordingly (as well as for computational

feasibility), with the resulting parameters displayed in Table 6.5. The same numerical

experiment was performed in [113] using (6.14) (also see footnote there), where a

minimum MHD value of 3.78cm was reported.
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Parameter Sub-sampled Value
Elevation Range [−3o, 3o]

Elevation Sampling 0.5o

Frequency Range [31, 35]GHz
Frequency Sampling 150MHz

Bandwidth 4GHz
Center Frequency 33GHz
Azimuth Range [0o, 359.9o]

Azimuth Sampling 0.3o

Table 6.4: Parameters of sub-sampled data set used for experimentation.

Parameter 2D IRB (Algorithm 12) 3D SRCI (Algorithm 13)
Image Size 201× 201 201× 201× 201
Data Size 27× 13× 2 27× 13× 30

Data Partitions 600 40

Table 6.5: Sizes of the parameter inputs and outputs for Algorithm 11 for the sub-
sampled data experiments.

(a) 2D IRB,
cIRB = −7 dB

(b) 2D IRB,
cIRB = −7 dB

(c) 2D IRB,
cIRB = −4 dB

(d) 2D IRB,
cIRB = −4 dB

(e) 3D SRCI,
cSRCI = −30 dB

(f) 3D SRCI,
cSRCI = −30 dB

(g) 3D SRCI,
cSRCI = −15 dB

(h) 3D SRCI,
cSRCI = −15 dB

Figure 6.10: Different views at various dB thresholds of the 3D reconstruction of the
B747 sub-sampled data set using our reconstruction techniques with no additional
noise added; ground truth CAD model is displayed in black.

Figure 6.10 shows the results of using the 2D IRB and 3D SRCI techniques in the

sub-sampled data case. Both the 2D IRB and 3D SRCI techniques are still able to
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recover key features of the B747. The 3D SRCI method in particular is still able to

separate scattering from the nose, tail, and engines when the threshold is set high

enough. As expected, we observe that sub-sampling causes a loss of fine feature

information in the reconstruction, such as the tail in (c)-(d) and the nose and engines

in (e)-(h).

Figure 6.11: Cross-sections of the (left) 2D IRB and (middle) 3D SRCI reconstructions
of the sub-sampled B747 data set using the parameters in Tables 6.4 and 6.5. (right)
MHD values at various dB threshold values.

Figure 6.11 shows cross-sections of reconstructions of the B747 using the sub-

sampled data set (no additive noise), as well as MHD values plotted at different dB

thresholds. The minimum MHD value calculated in the 2D IRB case is 2.405cm,

while the minimum MHD using the 3D SRCI technique is 1.442cm. Thus we see

that in the MHD metric, the methods developed in this investigation outperform the

technique in [113] in this sub-sampling experiment. Indeed, it does not appear that

the MHD values differ significantly in the sub-sampling case.

Section 6.6

Conclusion

This investigation develops a new 3D SAR imaging technique that leverages joint

sparsity using hierarchical Bayesian modeling. The method has the advantage of

both enabling the learning of hyper-parameters as well as efficient composite recon-
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struction. By using standard SAR imaging assumptions and employing appropriate

conjugate priors, we are able to build a posterior from which we can analytically

derive modes of the conditional distributions.

The 2D IRB and 3D SRCI techniques both enable high-fidelity reconstructions of

synthetic and measured data in noisy environments, while also yielding a higher dy-

namic range when compared to methods that employ an MLE estimate, that is, those

that do not leverage the sequential joint sparsity. The difference in computational

complexity between the two approaches depends heavily on the NUFT implementa-

tion used, since the 3D SRCI technique requires a much larger transform than the

2D IRB method, as well as the value of P in (6.29) that is used with 2D IRB, as the

backprojection step of Algorithm 12 involves rotating a 3D image and interpolating

the result to uniform grid points. While both approaches perform well in low SNR en-

vironments, the 3D SRCI technique yields a lower MHD when compared with the 2D

IRB approach at all noise levels tested. The 3D SRCI method is also able to maintain

data fidelity at a lower SNR, and it tends to produce a larger dynamic range when

compared with the 2D IRB method. We hypothesize that this is mainly because

the composite imaging helps to further mitigate the effects of the faulty assump-

tion regarding isotropic scatterers beyond using sequential joint sparsity. Finally, we

evaluated our new techniques in the sub-sampled regime and again found that both

methods outperform previously designed algorithms.

Future work will focus on evaluating our approach for various levels of under-

sampling in the azimuth, elevation, and frequency domains. Additional insight may

be gained from the MAP estimates for α, β, and γ, and these may prove useful in

the post-processing used to form the final volumetric image. We will also leverage the

Bayesian nature of our method to quantify the uncertainty we hold in our reconstruc-

tion and explore how this information can be used in the volumetric reconstruction
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process as well as downstream processing tasks, such as coherent change detection

and interferometry.

Lastly, we note that the minimum MHD achieved is sometimes smaller for low

values of SNR than for high values in Table 6.3. This indicates that the MHD

metric may not be best suited for comparison purposes using various noise levels.

Other metrics that may provide more insight include the mean squared error and the

structural similarity index measure.

Section 6.7

Derivation of the JHBL updates

Here we derive several of the update steps given by (6.24), (6.25), (6.26), and (6.27)

that are used in Algorithm 11. Since the updates for α, β, and γ are similarly

obtained, we only include the derivation for the α update step.

6.7.1. The G update

Let G = {gj}Jj=1 in Algorithm 11. To make parallelization possible, we choose each

gj update to depend on the g−j vectors from the previous update step,6

g
(ℓ+1)
j = argmax

gj

π
(
gj|g(ℓ)

−j,α
(ℓ),β(ℓ),γ(ℓ)

)
, j = 1, . . . , J. (6.33)

6The negative subscript refers to all similarly-named variables with subscripts other than the one
indicated, in this case g−j = {gi : i = 1, . . . , J, i ̸= j}.
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From (6.23) the probability density function in (6.33) yields

π
(
gj|g(ℓ)

−j,α
(ℓ),β(ℓ),γ(ℓ)

)
∝ exp

{
−α(ℓ)

j ∥Fjgj − ĝj∥22
}
×

(
N∏
i=1

exp
{
−β(ℓ)

j,i

∣∣gj,i∣∣2})×(
N∏
i=1

exp
{
−γ(ℓ)j,i

∣∣Ψ(ℓ)H
j−1,ig

(ℓ)
j−1,i −Ψ

(ℓ)H
j,i gj,i

∣∣2})×(
N∏
i=1

exp
{
−γ(ℓ)j+1,i

∣∣Ψ(ℓ)H
j,i gj,i −Ψ

(ℓ)H
j+1,ig

(ℓ)
j+1,i

∣∣2})

∝ exp

(
− gH

j Σgj + α
(ℓ)
j ĝH

j Fjgj + α
(ℓ)
j gH

j FH
j ĝj

+ gH
j Ψ

(ℓ)
j D

(
γ
(ℓ)
j

)
Ψ

(ℓ)H
j−1 g

(ℓ)
j−1 + g

(ℓ)
j−1HΨ

(ℓ)
j−1D

(
γ
(ℓ)
j

)
Ψ

(ℓ)H
j gj

+ gH
j Ψ

(ℓ)
j D

(
γ
(ℓ)
j+1

)
Ψ

(ℓ)H
j+1 g

(ℓ)
j+1 + g

(ℓ)H
j+1 Ψ

(ℓ)
j+1D

(
γ
(ℓ)
j+1

)
Ψ

(ℓ)H
j gj

)

∝ exp
(
(gj − ḡ)HΣ(gj − ḡ)

)
,

where D(·) = diag(·) and

Σ = α
(ℓ)
j FjFj +D

(
β

(ℓ)
j

)
+D

(
γ
(ℓ)
j

)
+D

(
γ
(ℓ)
j+1

)
,

ḡ = Σ−1
(
α
(ℓ)
j FH

j ĝj +Ψ
(ℓ)
j D

(
γ
(ℓ)
j

)
Ψ

(ℓ)H
j−1 g

(ℓ)
j−1 +Ψ

(ℓ)
j D

(
γ
(ℓ)
j+1

)
Ψ

(ℓ)H
j+1 g

(ℓ)
j+1

)
.

Equivalently, we have

π
(
gj|g(ℓ)

−j,α
(ℓ),β(ℓ),γ(ℓ)

)
∼ CN (ḡ,Σ−1), (6.34)

and since (6.34) is complex Gaussian, the mode is also given by ḡ.
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6.7.2. The α, β, and γ updates

Since α is only present in (6.17) and (6.18) and each αj is conditionally independent

from α−j, for the α update in (6.25) we have

π
(
α|G(ℓ+1),β(ℓ),γ(ℓ)

)
∝

J∏
j=1

π
(
αj|g(ℓ+1)

j

)
,

which is maximized by maximizing each π
(
αj|g(ℓ+1)

j

)
, j = 1, . . . , J . In this case,

from (6.23) we have

π
(
αj|g(ℓ+1)

j

)
∝ αM

j exp

(
−αj

∥∥∥Fjg
(ℓ+1)
j − ĝj

∥∥∥2
2

)
αηα−1
j exp(−νααj). (6.35)

Since the distribution in (6.35) is continuous, the maximum is obtained simply by

solving d
dαj

π
(
αj|g(ℓ+1)

j

)
= 0. In this regard, observe that

d

dαj

π
(
αj|g(ℓ+1)

j

)
∝
(
M + ηα − 1

αj

−
∥∥∥Fjg

(ℓ+1)
j − ĝj

∥∥∥2
2
− να

)
× αM+ηα−1

j exp

(
−αj

(∥∥∥Fjg
(ℓ+1)
j − ĝj

∥∥∥2
2
+ να

))
.

Setting the right hand side to zero yields

αj =
ηα +M − 1

να +
∥∥∥Fjg

(ℓ+1)
j − ĝj

∥∥∥2
2

.

The β and γ updates in (6.26) and (6.27) are similarly derived.
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Chapter 7

Concluding Remarks

The goal of this dissertation was to explore and develop new methods of solving

computational and statistical inverse problems with applications in medical imaging

and remote sensing. Four distinct approaches were considered, each of which relies on

some a priori knowledge regarding the unknown signal of interest. While a classical

regularization technique was implemented in Chapter 3, Chapters 4, 5, and 6 all utilize

inversion approaches rooted in Bayesian statistics. These methods enable uncertainty

quantification in addition to generating point estimate solutions, and they allow for

the incorporation of uncertainty regarding a practitioner’s prior knowledge. Several

preliminary ideas used in these methods were discussed in Chapter 2, such as classical

regularization techniques, Bayesian probability fundamentals, and signal processing

for synthetic aperture radar (SAR), giving a broader context to our work.

In Chapter 3, we detailed the mathematics behind a proposed volumetric pho-

toacoustic imaging system. In this novel approach, FPE-based PA image detection

is combined with compressed ultrafast photography to further improve the tempo-

ral resolution of the data. The associated inverse problem was then solved using

an ℓ1-regularization approach. Several of the statistical techniques explored in later

chapters, particularly the joint sparsity approach detailed in Chapter 6, offer alternate
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ways of solving for the initial pressure distribution (IPD), i.e. the unknown of inter-

est. A statistical approach would have the added benefit of recovering uncertainty

information regarding the IPD as well.

Chapters 4 and 5 discussed new ways of applying statistical inversion techniques

to complex-valued signals. The focus of these chapters was developing techniques

that recovered not only magnitude information but phase information as well. These

problems are particularly relevant when using coherent imaging systems such as SAR,

ultrasound, and digital holography. The techniques discussed in both chapters are

used to enforce sparsity in some domain of the magnitude, with Chapter 4 focusing

on the single measurement vector case with a scale mixture prior and Chapter 5 dis-

cussing the multiple measurement vector regime with a support-informed empirical

prior. Both methods decompose the complex-valued signal of interest into its mag-

nitude and phase components, enabling distinct prior distributions to be placed on

each. This decomposition is novel to both works, and we prove that the resulting

conditional distribution on the phase component is a von Mises distribution. This

enables sampling of the complex-valued signal when an sparsity-promoting prior is

placed exclusively on the magnitude, which is not possible when using previous tech-

niques. To our knowledge, our work is also the first to extend the real-valued Bayesian

LASSO to consider any full-rank sparsifying linear operator.

While much care is placed on the derivation of the magnitude prior, a simple

uniform prior is used on the phase components to reflect no a priori information

regarding the phase. Future investigations will explore the use of structural priors

on the phase in addition to the magnitude. These sampling methods could also

potentially be used as the first step in Bayesian interferometric or coherent change

detection techniques, which would require further investigation.

Finally in Chapter 6, we implemented a joint hierarchical Bayesian learning ap-
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proach to recover maximum a posteriori (MAP) estimates regarding a volumetric

scene of interest from multi-pass SAR data. These MAP estimates were then used to

form a composite image of the 3D scene. Our work is the first to apply the joint hier-

archical Bayesian learning approach to 3D SAR imaging, and we do so using two dis-

tinct approaches based on backprojection and composite imaging. This approach also

provided estimates for the covariance terms in the likelihood and joint prior, which

may be used to further enhance the reconstruction. Notably, only data with uniform

sampling in azimuth, elevation, and frequency were considered in our experiments.

Future work will prioritize extending these ideas for use with nonuniformly-sampled

data that may also have additional uncertainty in the data acquisition process.
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