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Abstract

Synthetic aperture radar (SAR) is a day or night any-weather imaging modality that

is an important tool in remote sensing. Most existing SAR image formation methods

result in a maximum a posteriori image estimate which approximates the reflectivity

function of an unknown ground scene. This single image provides no quantification of

the certainty with which the features in the estimate should be trusted. In addition,

finding the mode is generally not the best way to interrogate a posterior. Therefore,

we introduce a sampling approach to SAR image formation. A hierarchical Bayesian

model is constructed using conjugate priors that directly incorporate coherent imaging

and the problematic speckle phenomenon which is known to degrade image quality.

A Gibbs sampler is used to sample the resulting posterior, obtaining samples of

the image as well as the parameters governing speckle and noise. Utilizing a non-

uniform fast Fourier transform, ∼ 5 × 105 latent variables are efficiently sampled.

The resulting samples are used to compute estimates, as well as to derive other

statistics such as confidence images which aid in uncertainty quantification. The latter

information is particularly important in SAR, where ground truth images even for

synthetically-created examples are typically unknown. Examples are performed using

the GOTCHA Volumetric SAR data set from the Air Force Research Laboratory. Our

results and analysis show that a sampling-based approach to SAR image formation

provides parameter-free estimates with improved contrast and significantly reduced

speckle, as well as unprecedented uncertainty quantification information.
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Chapter 1

Introduction

Synthetic aperture radar (SAR) is a widely-used imaging technology for surveillance

and mapping. Because SAR is capable of all-weather day-or-night imaging, it over-

comes several challenges faced by optical imaging technologies and is an important

tool in modern remote sensing, [42]. Applications for SAR include areal mapping

and analysis of ground scenes in environmental monitoring, remote mapping, and

military surveillance, [2]. Figure 1.1 shows a basic geometry for spotlight mode SAR

data collection. An airborne sensor traverses a flight path, periodically transmitting

an interrogating waveform toward an illuminated region of interest. The microwave

energy pulses emitted impinge on targets in the illuminated region that scatter elec-

tromagnetic energy back to the sensor. The sensor measures the reflected signal and

processes it. The demodulated data, called a phase history, is collected and passed

on to an image formation processor. This paper mainly concerns the function of

the image formation processor: to produce a reconstruction of the two-dimensional

electromagnetic reflectivity function of the illuminated ground scene from SAR phase

history data. For a thorough overview of SAR and basic image formation techniques,

see e.g. [34, 39, 42, 52]. Traditionally, SAR images are formed using back projection,

see e.g. [40]. Figure 1.2 shows a SAR image of a parking lot formed using back projec-
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Introduction Introduction

Figure 1.1: Basic diagram of circular spotlight mode SAR data collection.

tion, [20]. While this SAR image looks much different than an optical image (optical

images of this parking lot are shown in Chapter 3), key features from the parking

lot can be recognized such as the roads, medians, and cars. Only the magnitude of

this complex-valued reflectivity image is viewed here, and we notice the very grainy

appearance due to the speckle phenomenon, which we later discuss at length. Back

projection can also produce streaking and sidelobe artifacts. Several issues make it

difficult to form artifact-free denoised SAR images from phase history data. These

issues and our approach to addressing them are given below.
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1.1 Addressing SAR image formation challenges Introduction

Figure 1.2: A SAR image of a parking lot formed using back projection.

Section 1.1

Addressing SAR image formation challenges

In this paper, we develop a sampling-based SAR image formation method which

directly addresses problem size, speckle, and uncertainty quantification.
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1.1 Addressing SAR image formation challenges Introduction

1.1.1. Problem size

SAR image formation is a large problem, requiring efficient storage and methods. Our

examples will have images with ∼ 3 × 105 pixels and data with ∼ 2 × 107 elements.

This large scale prohibits use of traditional matrix-based methods for linear inverse

problems, as even storing dense matrices of this size is problematic. Hence function

handles are used to apply the action of such matrices. The SAR forward model

can be viewed as a non-uniform Fourier transform. Hence, we use the NUFFT to

quickly apply its approximate forward and inverse action, [33]. More information on

the NUFFT can be found in [29, 30, 33, 41, 44]. Such a high-dimensional problem

is rarely addressed by sampling methods. Our algorithm employs an NUFFT to

efficiently sample each of ∼ 5× 105 latent variables in the posterior.

1.1.2. Coherent imaging and speckle

SAR is a coherent imaging system, meaning that both the data and the reflectivity

image are complex-valued. While typically only the magnitude is viewed, the phase

information cannot be neglected in the image formation process, and is important

for downstream tasks like interferometry, [46]. All coherent imaging modalities are

contaminated with speckle, a multiplicative-noise-like phenomenon which causes im-

ages to have a grainy appearance, [4]. A hierarchical Bayesian network structure,

[8, 36, 55], allows our model to directly incorporate fully-developed speckle into the

prior probability distribution. In addition, the parameter governing the distribution

of the speckle is also estimated for each image pixel, spatially specifying the distribu-

tion of speckle. This hierarchical structure also reduces the importance of parameter

selection. In what follows we need only choose hyper-hyper-parameters, i.e. parame-

ters on the parameters of the prior distribution on the reflectivity image. In general

these hyper-hyper-parameters can be chosen to make the resulting prior uninforma-

tive, but we focus on exploring how these parameters can be chosen to encourage
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1.1 Addressing SAR image formation challenges Introduction

sparsity.

1.1.3. Uncertainty quantification

The deterministic approach to SAR image formation typically only obtains a sin-

gle image that estimates the ground truth reflectivity of the scene. However, in a

Bayesian formulation an entire probability density function for the unknown vari-

ables is returned. Hence, in an effort to better describe the unknown reflectivity, we

take an approach to compute an entire posterior density from which samples can be

drawn and statistics can be computed. In the Bayesian approach to estimation, all

quantities of interest are viewed as random variables, with probability distributions

describing their behavior. Known quantities, e.g. SAR phase history data, are called

observable variables, and unknown quantities, e.g. the reflectivity image, are called

latent variables. The goal is to infer the latent variables from the observable variables.

The encoding of these quantities as random variables does not contradict that they

are defined quantities, but expresses our lack of certainty about them. Recall that

Bayes’ theorem tells us that

Posterior probability ∝ Likelihood function× Prior probability.

The posterior is built from the prior distribution on the latent variable, i.e. our belief

about it before data has been considered, and the likelihood function, which governs

how well the data fits the model. In this way the posterior is a synthesis of prior

belief and information carried by the data, [16, 17, 43].

There are two main point estimates used in SAR image formation. Maximum

likelihood estimates, e.g. NUFFT image formation, that minimize a least-squares

cost function typically result in noisy reconstructions. Hence, usually maximum a

posteriori (MAP) estimates are sought. By definition a MAP estimate uses the max-

5



1.1 Addressing SAR image formation challenges Introduction

imum of the posterior probability distribution to estimate a latent variable. However,

MAP estimates in SAR are usually applied within the traditional deterministic ap-

proach, where ill-posedness resulting in artifacts and noise like in Figures 1.2 and 2.1

is addressed using regularization, meaning that a penalty term is added to the least

squares cost function seen in maximum likelihood estimates. The regularity imposed

is often thought of as including a priori information, e.g. that the image should be

smoothly varying. Usually a convex optimization method is required to compute the

maximum.

There are a few issues with MAP estimates. The maximum is not a categorically

strong representative of the posterior probability distribution. In general, sampling

is a better way to interrogate a probability distribution than finding its maximum.

A consequence of only estimating with the maximum is that we do not know the

certainty with which we can trust the estimate. Hence we have no way of knowing

which structures in the reflectivity estimate are truly there and which are noise or

artifacts. Hence, in this paper we develop a sampling-based SAR image formation

method with uncertainty quantification. The resulting posterior density is frequently

not from a known family of distributions. Therefore, samples cannot easily be drawn

from it and a sampling scheme is required. In particular, we use a Markov Chain

Monte Carlo (MCMC) based Gibbs sampler to sample the posterior. While sampling-

based methods have been developed to quantify the uncertainty in basic linear image

reconstruction, e.g. [8], they have not been used in SAR image formation, perhaps

due to the aforementioned circumstances of problem size and speckle which make this

more than a straightforward application of established methods.

The extra information obtained by sampling the posterior density can be used in

a variety of ways. It can be used to compute sample mean or median estimates of

the unknown reflectivity image as well as the speckle parameter. In addition, sam-
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1.2 Outline Introduction

ple variance statistics can be computed to aid in uncertainty quantification. The

examples presented in this paper suggest that our sampling-based method provides

estimates with significantly better contrast and drastically reduced speckle compared

with other SAR image formation methods, in addition to the unprecedented uncer-

tainty quantification information.

Section 1.2

Outline

This paper is organized as follows.

• Chapter 2 realizes a method for SAR image formation that incorporates coher-

ent imaging and the corresponding fully-developed speckle phenomenon into a

hierarchical Bayesian model, using an MCMC-based Gibbs sampler to sample

from the posterior in order to quantify uncertainty in the data and compute

superior estimates.

• Chapter 3 demonstrates the method of Chapter 2 with examples of SAR image

formation from real-world data. While the methods presented are independent

of the flightpath, we focus on two-dimensional image formation from single-pass

circular spotlight mode SAR phase history data. In particular, the method is

tested on real-world phase history data from the Air Force Research Labora-

tory’s GOTCHA Volumetric Dataset Version 1.0, [20].

• Finally, Chapter 4 contains perspectives on this work as it relates to existing

sparsity-encouraging image reconstruction methods. A summary of the work

and an outline for future research directions are also provided.
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Chapter 2

Methods

SAR image formation is the process of transforming measured electromagnetic scat-

tering data into an image. This is a difficult problem for several reasons. SAR image

formation is a large-scale problem with high-resolution images requiring more than 105

pixels and phase history data in some cases containing more than 107 elements. SAR

is a coherent imaging system, meaning that SAR images are complex-valued, con-

taining both magnitude and phase information. Hence they are affected by speckle,

a phenomenon similar to multiplicative noise, which degrades the image quality. The

data are also complex-valued, and are typically modeled as the two-dimensional dis-

crete Fourier transform of the desired reflectivity image with Fourier modes located

on a non-uniform grid.

The result of most existing SAR image formation methods is a single image that

represents an estimate of the unknown ground truth image, typically a maximum a

posteriori estimate. However, the maximum is not categorically representative of the

posterior probability distribution. In addition, this prediction is not probabilistic.

Hence, in this paper a new approach is formed. Considering each element of the

model for SAR image formation, a hierarchical Bayesian model is constructed using

conjugate priors, and a Gibbs sampler is used to sample the resulting posterior density.

8



2.1 Model and posterior specification Methods

The result is a set of samples from the posterior density, from which a variety of

statistics (including the sample mean and sample variance, etc.) can be computed

and used not only to estimate the image but the speckle itself and in general to

quantify uncertainty. In this chapter, this new model and algorithm for sampling its

posterior are presented.

Section 2.1

Model and posterior specification

This section begins by specifying the linear system used to model the relationship

between SAR images and phase history data. Next, a hierarchical prior structure is

specified in order to account for the speckle phenomenon. We work with the fully

developed speckle model, [28], to form a posterior density for the latent variables,

which is analytically computed.

2.1.1. Continuous model

This subsection closely follows [51]. SAR data are acquired by measuring reflections

from interrogating waveforms sent along a flight path. We focus on spotlight SAR,

where waveforms are high bandwidth pulses transmitted at equally-spaced azimuth

angles θ. The illuminated circular region of interest is D = {(x, y)|x2 +y2 ≤ R2}. For

each angle θ, the emitted pulses are linear FM chirp signals given by the real part of

s(t) =

e
i(ω0t+αt2), |t| ≤ T

2

0, otherwise
, (2.1)

where ω0 is the center frequency, 2α is the chirp rate, and T > 0 is the chirp pulse

duration. The chirp signal is convolved with the reflectivity function f(x, y) and the

reflected waveforms are recorded at equally spaced discrete time steps. What follows

9



2.1 Model and posterior specification Methods

relies on five assumptions:

(a) The chirp rate α is small enough so that for each recorded time t, the demodu-

lated reflected waveform is mixed with the wave having instantaneous frequency

ω(t) = ω0 +2α(t−2dθ/c), [42], where dθ is the distance from the sensor at angle

θ to the scene center, and c is the speed of light.

(b) The distance from the flight path to the receiver is assumed sufficiently larger

than the illuminated region radius R, such that the range error due to wavefront

curvature is negligible.

(c) The scene contains only isotropic scatterers. This assumption implies that the

response amplitude f(x, y) is independent of the azimuth angle θ.

(d) There are no scatterers outside D.

(e) The Born approximation applies. Essentially this means that the returned signal

does not include any scattered energy that has impinged on a target and then

subsequently impinged on other targets before returning to the sensor.

While assumptions (a), (b), (d), and (e), are commonly used in SAR and introduce

little error, assumption (c) is only even approximately true for narrow-angle synthetic

apertures, [51]. In future work, we will discuss composite imaging. However, in this

paper we focus on direct imaging using full 360o synthetic apertures.

Given a constant elevation angle φ between the flight path and D, the reflected

waveforms are of the form

f̂(ω(t), θ) =

∫ ∫
D
f(x, y) exp

(
−i4πω(t) cosφ

c
(x, y) · (cos θ, sin θ)

)
dxdy (2.2)

where c is the speed of light, [51]. Hence the phase history data f̂(ω(t), θ) are the

two-dimensional Fourier transform of the reflectivity function f(x, y).

10



2.1 Model and posterior specification Methods

2.1.2. Discrete model

To discretize (2.2), consider f̂(ω(t), θ) for a discrete set of azimuth angles {θj}, and a

set of time steps corresponding to a discrete set of frequency values {ωk}, [51]. The

SAR phase history data provided by AFRL come in a matrix, so we can think of f̂

describing the grid of vectors containing all frequency samples at angle θj, and f the

complex reflectivity image to be recovered on a uniform grid. For simplicity, we use

the concatenation of both f̂ ∈ CM and f ∈ CN where M and N are defined as the

number of data samples and pixels, respectively. Then we have discretized (2.2) as a

complex-valued linear system. To summarize, we have

f̂ = Ff + n (2.3)

where f̂ ∈ CM is the vertically concatenated phase history data. The matrix F ∈

CM×N is the two-dimensional discrete non-uniform Fourier transform matrix. The

vector f ∈ CN is the unknown reflectivity image matrix having been vertically con-

catenated. Finally, the vector n ∈ CM represents model and measurement error.

The objective is to infer f from f̂ . Note that while SAR images are complex-valued,

usually only the magnitude is viewed while the phase is omitted. However, recovering

the phase is also important, [46], and therefore cannot be neglected. We note that

(2.3) is a fairly simple model for the relationship between image and data in SAR,

and modifications to it are common in order to deal with issues such as autofocusing

to reduce phase error, [53]. These additional modifications are not a main concern in

this paper, and indeed are able to be incorporated into the method that follows.

Throughout this paper we assume n is complex circularly-symmetric white Gaus-

sian noise. That is, n ∼ CN (0M , β
−1IM) where 0M is a M -length vector of zeros,

β−1 > 0 is the noise variance, and IM is the M ×M identity matrix. The assumption

11



2.1 Model and posterior specification Methods

of white Gaussian noise is often made in SAR, but a diagonal covariance matrix im-

plying independently distributed noise across each pixel with a potentially different

variance for each element is easily accommodated in the proposed sampling proce-

dure. Nevertheless, we focus on the white Gaussian noise assumption. Therefore we

have a Gaussian likelihood function

p(̂f |f , β) ∝ βM exp

(
−β

2
||̂f − Ff ||2

)
. (2.4)

Read ‘the probability of f̃ given f and β’, (2.4) measures the goodness of fit of the

model (2.3). Note ||g||2 = gHg where gH is the conjugate transpose of g.

2.1.3. Estimation techniques

In the Bayesian approach to linear inverse problems, the data and unknown image

are encoded as observable variables and latent variables (i.e. variables that need to be

inferred). Recall that the likelihood function is defined as the probability distribution

of the observed variables conditional on the other variables. In this subsection, we’ll

use the likelihood function to derive a few different inversion techniques to find an

estimate for the unknown quantity f . As of now, the only model parameter is the noise

variance β−1, which for now we will consider a known quantity (hence observable).

Maximum likelihood estimation. Perhaps the most straightforward way to es-

timate f from f̂ is to maximize this likelihood function. From the Gaussian likelihood

defined above by (2.4), this estimate is

f∗ML = arg max
f

{
p(̂f |f , β)

}
= arg min

f

{
||̂f − Ff ||2

}
.

(2.5)

12



2.1 Model and posterior specification Methods

Note this estimate is referred to as the NUFFT reconstruction, as f∗ML = FH f̂ only re-

quires an inverse NUFFT application in order to invert the data, [33]. Specifically, the

reflectivity image can be found by interpolating the typically polar grid of measured

samples in frequency space to an equally spaced rectangular grid, then computing

an inverse uniform fast Fourier transform, [2]. However, noisy data and model error

can cause artifacts or a noisy image using this traditional least-squares-type NUFFT

inversion. An example is shown in Figure 2.1, [20]. As shown in the figure, this

estimate, depending on the sampling, can have an even grainier appearance than

the traditional back projection reconstruction. While it may result in lower image

quality, the NUFFT reconstruction has the advantage of speed and is very quickly

reconstructed. Hence in general an improvement is needed.

Priors, MAP estimation, and regularization. In SAR, to improve on the

maximum likelihood estimate given by (2.5), the cost function is frequently regular-

ized by adding a penalty term on the `1 norm of |f | or a transform T|f |

f∗ = arg min
f

{
β

2
||̂f − Ff ||2 + λ||T|f |||1

}
. (2.6)

In addition to regularizing the ill-posed problem, where more than one f may satisfy

the model equation, this formulation encourages sparsity in the magnitude |f |. The

phase, which is not modeled as sparse, [42], is governed only by the least squares fit

term. Equation (2.6) in general has no direct solution and must be minimized using

a convex optimization method like the alternating direction method of multipliers

(ADMM), [13]. The `1 regularization term in (2.6) imposes the sparsity penalty

on f . In the field of compressive sensing the sparsity prior parameter λ and noise

variance β−1 are often combined and relabeled as the regularization parameter, which

balances the fidelity term, the sparsity penalty, and noise reduction. Even though the
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2.1 Model and posterior specification Methods

Figure 2.1: A SAR image of a parking lot formed using the NUFFT.

inversion can be ill-posed, if certain conditions are met, then with high probability x

can be exactly recovered from many fewer than N measurements using the noise-free

version of this method known as basis pursuit, [18]. Figures 2.2 and 2.3 show two

reconstructed images using (2.6), the first with T = I and the second with T the

total variation (approximate gradient) operator. We see that the `1 regularization

reconstruction does a decent job at sparsifying the image, i.e. drawing values to zero,

especially along the road area which is fairly smooth and hence won’t scatter much
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electromagnetic energy back to the sensor. This has the effect of increased contrast

making targets like the cars more clearly visible. However, there is still significant

speckle causing an overall grainy appearance in the rough grassy areas. The TV

regularization reconstruction on the other hand handles the grainy speckle issue very

well, smoothing out much of the image. The issue here is the block-like appearance,

which is an artifact known to occur in TV regularization. These blocky regions make

it more difficult to determine if there is actually signal there, particularly without

any uncertainty quantification information.

From the cost function used in (2.6), however, the observation can be made that

had the prior probability distribution

p(f |λ) ∝ exp (−λ||T|f |||1) , (2.7)

been invoked, the resulting posterior would be

p(f |̂f , β, λ) ∝ p(̂f |f , β)p(f |λ)

∝ exp

(
−β

2
||̂f − Ff ||2 − λ||T|f |||1

)
.

(2.8)

It is clear that maximizing (2.8) would yield (2.6), hence (2.6) is known as a maximum

a posteriori estimate. This `1 prior is often chosen in the field of compressed sensing,

where limited data is collected and sparsity is suspected in |f |. Of course this is not

the only prior distribution that can be used and others would invoke other a priori

beliefs. From this discussion above, it is clear that the regularization penalty term

within the cost function imposes the a priori belief specified in the prior probability

distribution, [54]. It is also evident that without prior information of λ or β, they

will be difficult to choose. Hence in what follows we take the view that they should

also be estimated.
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2.1 Model and posterior specification Methods

Figure 2.2: A SAR image of a parking lot formed using `1 regularization.

We note that due to the difficulty of minimizing the `1 norm of the magnitude

of a complex vector, in SAR, typically an approximation |f | = Θ∗f is made, where

Θj,j = angle(̃fj) and f̃ is an approximate cheaply-computed solution like e.g. the

NUFFT image, [51]. This has two consequences. First, this no longer regularizes the

sparsity of the magnitude of |f |, but an approximation to the magnitude. In addition,

the regularization term no longer corresponds to any prior distribution as the data

was considered in order to form the initial estimate.
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Figure 2.3: A SAR image of a parking lot formed using TV regularization.

2.1.4. Efficient application of large matrices

Forming, storing, and applying the dense matrices F and FH matrices in real-world

problems is not practical. Hence function handles will be used to apply the action of

these matrices. In particular, let the application of the discrete nonuniform Fourier

transform matrix F be approximated by the forward NUFFT. Similarly let the ap-

plication of its Hermitian transpose FH be approximated by the inverse NUFFT. We

make this change in order to utilize libraries to quickly apply NUFFTs. The NUFFT
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operation uses discrete convolution to regrid the non-uniform Fourier mode locations

onto a uniform grid so that a uniform FFT can be applied, [51]. For the specific im-

plementation of the NUFFT used in the examples, see [33]. General information on

NUFFTs can be found in [29, 30, 33, 41, 44]. Therefore, using existing libraries for the

NUFFT, [33], application of F, FH , and their respective products can be efficiently

applied without requiring the storage of any prohibitively large matrices. For efficient

use of space, we continue to use F and FH notation. For more research regarding

using function handle as forward operator, see e.g. [12, 57]. This is commonly seen

in nonlinear inverse problems and PDEs, [7, 10, 11].

Note at least three sources of error in this model thus far: the approximation of a

continuous Fourier transform with a discrete Fourier transform which includes Gibbs

phenomenon, the gridding of non-uniform to uniform Fourier modes taking place in

the NUFFT which makes the operation only approximately unitary, and model and

measurement error. Further work is needed to meaningfully quantify this error.

2.1.5. Posterior computation

With the likelihood given by (2.4) and the NUFFT in hand, the next step in comput-

ing the posterior distribution is to specify prior probability distributions for the latent

variable f . The prior expresses a belief about a quantity before observation, which

may support or contradict the prior. We use the fact that SAR images are affected by

the speckle phenomenon as a prior. This phenomenon, often misidentified as “noise”,

causes a complicated granular pattern of bright and dark spots throughout an image,

[42]. While speckle is in fact signal (as opposed to noise) it degrades the image quality

by lowering the contrast, and hence we would like to remove it. Speckle occurs in

all coherent imaging, that is imaging where one tries to retrieve both magnitude and

phase information, [42]. Our focus in this paper is not on reducing speckle through

denoising or other methods, see e.g. [4], but simply by incorporating it into the image
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formation model. While acknowledging that it may not be appropriate for all image

pixels, we uniformly employ the fully-developed speckle model, [28, 49], (a.k.a. Gaus-

sian scattering), based on the assumption that the spatial resolution dimension is

considerably larger than the wavelength and the illuminated surface is rough enough,

[28]. This model is widely used to describe speckle in SAR, [42, 52]. In this model,

assume elements of the real and imaginary parts of the image, Re(fi) and Im(fi),

respectively, are independently and identically Gaussian distributed with precision

(inverse variance) αi to be determined. That is, Re(fi), Im(fi) ∼ N (0, 2α−1i ). By in-

dependence, the distribution of the vector quantities is also zero-mean Gaussian with

covariance diag(2α−1). That is, Re(f), Im(f) ∼ N (0N , diag(2α−1)) with precision

α ∈ RN sometimes called the radar cross section, [28]. This is conveniently encoded

by f ∼ CN (0N , diag(α−1)). That is, f is distributed circularly-symmetric complex

Gaussian. The prior density is

p(f |α) ∝
N∏
i=1

αi exp

(
−1

2
||
√
α� f ||2

)
, (2.9)

where � is elementwise multiplication. Therefore, the prior on the magnitude |fi| =√
Re(fi)2 + Im(fi)2 is a Rayleigh probability distribution with mean proportional to

α−1i , [49]. This is the standard specification for fully-developed speckle. Because

the changes in the magnitude of each pixel |fi| is proportional to α−1i , the speckle

phenomenon has also been modeled as a multiplicative noise, [28]. While efforts to

reduce speckle abound, [4], here we address the speckle directly by including it in

our model with the joint prior probability distribution (2.9), and later estimating the

associated speckle parameter α−1 through sampling rather than post-image-formation

techniques. By parametrizing f with α we are doubling the number of parameters

in this model! This is of course a computational challenge, but not a methodological

one, [48].
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Digression on MAP estimates. At this point, we have a likelihood (2.4) and

a prior (2.9), so a posterior can be computed for f if a noise variance β and a prior

precision α are specified. Recall that the posterior is the probability of the unknown

latent variables conditional on the observable variables. By Bayes’ theorem,

p(f |̂f ,α, β) ∝ p(̂f |f , β)p(f |α, β)

∝ βM
N∏
i=1

αi exp

(
−β

2
||̂f − Ff ||2 − 1

2
||
√
α� f ||2

)
. (2.10)

This would allow us to take the typical approach of obtaining a maximum a posteriori

(MAP) estimate by solving the optimization problem

f∗MAP = arg max
f
p(f |̂f ,α, β) (2.11)

= arg min
f

{
β

2
||̂f − Ff ||2 +

1

2
||
√
α� f ||2

}
.

As explained at length above, however, a MAP estimate is not necessarily representa-

tive of the posterior, and does not provide an estimate of certainty. Nevertheless, we

present the optimization problem as it may be useful for reference or for those more

experienced with regularization to analyze the form of this cost function. In (2.11) we

have a least-squares fidelity term coming from the likelihood function which measures

the fit of the data to the proposed f , followed by a regularization term which penalizes

the `2 norm of f after being transformed by
√
α. Resulting from the Gaussian prior

(2.9), regularization with the `2 norm, known as Tikhonov regularization or ridge re-

gression, can be used to encourage smoothness in the solution. The solution requires

an convex minimization with `2-regularized solutions at each step. See, e.g. [28], for

a detailed example of how one could handle a minimization of this type in the context

of SAR image formation. This model is fairly flexible, in that modifications can be
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made to the effective regularization term to include an analysis operator, or this type

of regularization can be encouraged in a synthesis manner, [31]. Our previous work

discussed a synthesis approach for the total variation operator, [24]. If an analysis

operator is invoked, then attention must be paid to its rank, see [8, 9].

Hierarchical model. As mentioned, we do not wish to limit ourselves to a MAP

estimate first because it may not be representative of the posterior. Second, although

an estimated value for each pixel is given, there is no estimate of the statistical

confidence we have in those pixel values or in the resulting features formed in the

image, [47]. That is, we not only wish to obtain parameter estimates, but also to

quantify the uncertainty in those estimates. Third, (2.11) is lacking in that the noise

variance β−1 and prior precision α are simply specified or asserted, similar to the

regularization parameter and regularization matrix in a standard regularized cost

function common in the deterministic approach. In reality, β and α are unknown

and therefore should also be considered latent variables which need to be inferred.

Hence the posterior we seek is p(f ,α, β |̂f), not p(f |̂f ,α, β) as in (2.10). It is important

to note that we will thus be estimating an entire density for the speckle parameter α

for every pixel contemporaneously with the image. This is important because it will

be more clear when speckle reduction techniques (if incorporated into this model)

are actually working. Typically, without a reference ground truth image, speckle

statistics are only estimated from small regions of already-formed images, [4]. In

order to calculate this posterior, we need to define prior probability distributions on

β and α.

In general, we have no intuition for the values of β and α, and we can encode that

uncertainty by choosing uninformative priors to allow as much variation as possible

and let the data choose. In order to compute an analytical form of the posterior, a

conjugate Gamma prior is invoked for β. That is, β ∼ Γ(c, d) with probability density
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function

p(β|c, d) ∝ βc−1 exp(−dβ). (2.12)

Similarly a conjugate Gamma prior is invoked on each element of the speckle

parameter α, i.e. αi ∼ Γ(a, b) with probability density function

p(αi|a, b) ∝ αa−1
i exp(−bαi). (2.13)

By independence, α ∼ Γ(a, b) with

p(α|a, b) ∝
N∏
i=1

αa−1
i exp

(
−b

N∑
i=1

αi

)
. (2.14)

Note the dependence of (2.12) and (2.14) on parameters a, b, c, and d, which as

in [8, 55] are simply chosen rather than inferred themselves. In [8], the parameters

are chosen to reflect the uncertainty in the latent variable, making the prior unin-

formative. Recall that the mean of this Gamma distribution is c
d

and the variance

is c
d2

. Hence if c is chosen to be 1 and d is chosen to be 10−4, then the mean is

104 and the variance is 108. By giving this distribution such a large variance, we

impose little bias on the value of β. Similar choices can be made for a and b to

make this prior uninformative. However, in [55] the same prior structure is used with

a, b, c, d = 0. This improper prior makes the marginalized priors p(f |a, b) Student-t

distributions, which are peaked at zero for appropriate a and b, and hence encourage

sparsity. This provides an interesting prospect as there has been significant research

of sparsity-promoting image formation methods for SAR. Our previous work used this

prior to perform edge detection from data similar to that seen in SAR, [25]. Hence

our examples in Chapter 3 include both the uninformative and sparsity-encouraging
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parameters. Nevertheless, the derivation below is done for general a, b, c, and d.

Importantly, a, b, c, and d, are the only parameters required to be defined in this

model, and require no tuning beyond the two potential schemes mentioned above.

The choice of Gamma priors for β and αi is deliberate. Because the Gamma prior

is conjugate to the Gaussian in this case, the prior and the posterior are from the

same distribution family. That is, the individual posterior densities for β or α will

be Gamma.

The form of the posterior is achieved through the hierarchical Bayesian model

described above, where the model parameters (here f) are given priors with prior

parameters (here α, and β), referred to as hyperparameters. Moving up to the final

level of hierarchy in this model, the hyperparameters α and β also have priors (called

hyperpriors) with hyperhyperparameters a, b, c, and d. Conjugate priors are used

so that all posteriors can be solved for analytically and easily sampled. Specifically,

the noise in the system is assumed Gaussian, the noise precision is assumed Gamma,

the priors on the real and imaginary parts of the image are Gaussian, and the prior

precision at each pixel is Gamma. Finally, again using Bayes’ theorem, the joint

posterior distribution for f , β, and α is

p(f ,α, β |̂f , a, b, c, d) ∝ p(̂f |f , β)p(β|c, d)p(f |α)p(α|a, b)

∝
∏N

i=1α
a
i

β−M−c+1
exp(−β

2
||̂f − Ff ||2 − 1

2
||
√
α� f ||2 − dβ − b

N∑
i=1

αi).

(2.15)

The algorithm below will require the individual posteriors for each latent variable.

Individual posteriors. Because of the conjugate priors used, the individual pos-

terior densities for each latent variable can be found analytically. The posterior for f

is Gaussian, for α is a product of independent Gammas, and for β is Gamma. We
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have

p(f |̂f ,α, β) ∝ exp

(
−β

2
||̂f − Ff ||2 − 1

2
||
√
α� f ||2

)
(2.16)

p(α|̂f , f , β, a, b) ∝
N∏
i=1

αa
i exp

(
−1

2
||
√
α� f ||2 − b

N∑
i=1

αi

)
(2.17)

p(β |̂f , f ,α, c, d) ∝ βM+c−1 exp

(
−β
[

1

2
||̂f − Ff ||2 + d

])
. (2.18)

Therefore each latent variable can be sampled from the following distributions

f |̂f ,α, β ∼ CN
(

(βFHF + diag(α))−1βFH f̂ , (βFHF + diag(α))−1
)

(2.19)

α|̂f , f , β, a, b ∼ Γ

(
1 + a,

1

2
f � f̄ + b

)
(2.20)

β |̂f , f ,α, c, d ∼ Γ

(
M + c,

1

2
||̂f − Ff ||2 + d

)
. (2.21)

Section 2.2

Sampling-based SAR image formation

In this section, a sampling-based image formation procedure based on that of [8] is

used to obtain approximate samples from each latent variable in (2.15). From these

samples, various estimates and confidence statistics can be retrieved.

2.2.1. Efficient sampling method

Now that the joint posterior has been specified (2.15), it remains to be defined how

to learn information about and interrogate it by efficiently gathering samples and

later developing statistics. Clearly, the density (2.15) is of a complicated form that

is not described by a known family of probability distributions. It is essentially the

product of two Gaussian and two Gamma distributions. Therefore, (2.15) cannot

be efficiently sampled directly. While a standard MCMC implementation like the
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Metropolis-Hastings algorithm could be used to obtain approximate samples, we will

use the following Gibbs sampler scheme to obtain approximate samples from (2.15),

[8]. Therefore we can forego the discussion of MCMC algorithms like Metropolis-

Hastings and focus on the Gibbs sampler, [37]. Using a Gibbs sampler, we are able to

sample a large set of variables by sampling each variable in succession, [8]. That is, we

obtain approximate samples of (2.15) by successively sampling the above individual

posteriors. As with other MCMC methods, Gibbs sampling creates a Markov chain

of samples, each of which is correlated with the other samples.

Efficiently sampling f. In terms of computational efficiency, a potential issue

occurs in sampling the individual posterior for f given by (2.19), where the following

linear system must be solved for f

βFHFf + α� f = βFH (̂f + v1) + v2, (2.22)

with v1,v3 ∼ N (0M , IM/
√
β) and v2,v4 ∼ N (0N/2, diag(

√
α)), [8]. The way Fessler’s

NUFFT, [33], works is by interpolating non-uniform Fourier mode quantities to a

uniform grid such that the uniform FFT can be used with zero-padding. This is

called “gridding.” The NUFFT is not without error of course, the main part of which

comes from the error accumulated when interpolating non-uniform to uniform Fourier

modes. Hence, the end result is actually the application of a uniform FFT, such that

βFHFf + α� f ≈ (β + α)� f (2.23)

That is, the LHS of (2.22) can be approximately diagonalized. Therefore approxi-

mately inversion only requires an elementwise division by β+α which can be efficiently

applied. Note this does not mean that this solve comes without error. There is still
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error from modifying the non-uniform modes in order to make them conform with

a uniform grid. A significantly less efficient but potentially more accurate method

would be to use elementwise division by β + α as a preconditioner in a conjugate

gradient descent scheme. PCG, [56], is used to solve a similar linear system in [8].

The detailed algorithm is below.

An efficient MCMC method for sampling from p(f ,α, β |̂f , a, b, c, d).

(a) Initiate f0, α0, β0. Choose a, b, c, d. Let k = 0;

(b) Compute fk+1 = (βkFH (̂f + v1) + v2)� (βk + αk);

(c) Compute αk+1 ∼ Γ
(
a+ 1, 1

2
fk+1 � fk+1 + b

)
;

(d) Compute βk+1 ∼ Γ
(
M/2 + c, 1

2
||̂f − Ffk+1||2 + d

)
;

(e) Set k = k + 1 and return to Step (b).

The result of this algorithm is a group of k samples for each of the latent variables

f , β, and α, that are approximately drawn from the joint posterior (2.15). Each

sample k requires just two NUFFT applications. This speed is of course relative, as

NUFFT image formation takes only a single NUFFT application.

2.2.2. Chain convergence

It has been proven that the Gibbs sampling method above converges, [8], such that

samples of each latent variable are approximately from the posterior (2.15). However,

it is unknown how quickly it will converge. The following describes how we determine

chain convergence.

A trace plot is often used to display the history of a parameter’s samples, showing

where the chain has been exploring. These time series of the individually sampled
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parameters have been used to gauge chain convergence, [16]. In particular, the average

value of a converged chain should have no long term trend, and samples should

look like random noise. Colloquially this is referred to as “mixing well.” However,

displaying trace plots for ∼ 5 × 105 latent variables is not practical. Hence we use

the following statistic from [8, 35] to determine chain convergence.

Computing the convergence statistic R̂. In this approach, multiple chains are

computed using randomly chosen starting points based on the observation that the

variance within a single chain will converge faster than the variance between chains.

A statistic is computed for each element of each latent variable, the value of which

is a measure of convergence of that individual parameter. This statistic is computed

as follows, and the derivation closely follows that in [8]. Compute nr chains (in our

implementation this is done in parallel) each of length 2ns, keeping only the latter

ns samples. Let ψij denote the ith sample from the jth chain for a single parameter,

and define

B =
ns

nr − 1

nr∑
j=1

(
ψ̄·j − ψ̄··

)2
, with ψ̄·j =

1

ns

ns∑
i=1

ψij, and ψ̄·· =
1

nr

nr∑
j=1

ψ̄·j;

and

W =
1

nr

nr∑
j=1

s2j , with s2j =
1

ns − 1

ns∑
i=1

(
ψij − ψ̄·j

)2
Notice that ψ̄·j is the mean of the samples in the chain j, and ψ̄·· is the mean of the

samples in every chain. Hence B is a measure of the variance between the chains

while W is a measure of the variance within each individual chain. The marginal
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posterior variance var(ψ|̂f) is then estimated by

v̂ar+(ψ|̂f) =
ns − 1

ns
W +

1

ns
B, (2.24)

which is an unbiased estimate under stationarity, [35]. From this variance estimate,

we compute the aforementioned desired statistic

R̂ =

√
v̂ar+(ψ|̂f)

W
, (2.25)

which tends to 1 from above as ns → ∞. Once R̂ dips below 1.1 for all sampled

parameters, the nsnr samples can together be considered samples from the posterior

(2.15), [35]. Other values can also be chosen as a tolerance for R̂, [8]. We note that

this is not the only statistic used to determine chain convergence. See, e.g. [1] for

theoretical analysis of the Gibbs sampler for hierarchical Bayesian models.

2.2.3. Computing statistics from the samples

At this point, we have samples of f , β, and α, from the posterior (2.15). Now we

form statistics with these samples to summarize that complicated density. Perhaps

the most obvious statistic to compute from the samples is the mean of f , the noise

precision β, and the speckle parameter α. For f and α, these will be images that

can give information about objects and features and their locations within the image.

For β, this statistic will be scalar. In addition, sorting the samples by pixel value and

looking at the image formed by the median pixel value can also provide an estimate.

To quantify uncertainty, viewing the variance or standard deviation can be useful in

determining the range of possible values for each pixels. In addition to the mean and

variance, computing Bayesian confidence intervals for each sampled parameters. In

this uncertainty quantification method, the samples are again sorted by pixel values
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and a confidence intervals is formed for each pixel. That is, sort the samples of each

parameters from lowest to highest. Take the the 0.025 percentile pixel value and

the 0.975 percentile pixel value. The interval between these two values represents

a 95% confidence interval for the value of that parameter. In order to display this,

samples are drawn uniformly from this interval for each pixel and displayed in a GIF,

called a confidence image, [47]. While not thoroughly explored in this paper, it is

suspected that these samples and their confidence images, explained later, can offer

more information and answer downstream questions, e.g. about the support of the

scene, [8]. With that being said, a few observations of this type are in fact made in

the next chapters.
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Chapter 3

Results

In this chapter, we provide an example that demonstrates the accuracy, efficiency,

and robustness of the preceding sampling-based SAR image formation algorithm.

Note that the ground truth reflectivity images is unknown, preventing the compu-

tation of standard error statistics such as the relative error. This is common even

in synthetically-created SAR examples, where the true reflectivity is still unknown.

Therefore, the unprecedented uncertainty quantification information this method pro-

vides is all the more valuable, as it is able to quantify how much we should trust pixel

values and structures in the image even in the absence of ground truth. Throughout,

reflectivity images f are displayed in decibels (dB):

20 log10

(
|f |

max |f |

)
. (3.1)

To set a standard for images and also minimize clutter in the figures all images will

be displayed with a minimum of −60 dB and maximum of 0 dB. Lesser or greater

values are assigned the minimum or maximum. We begin with a specification of the

data used in the image formation examples that follow.
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3.1 Data Results

Figure 3.1: Optical images of parking lot being imaged in GOTCHA dataset. Note
scene contains a variety of calibration targets, such as primitive reflectors like the
tophat shown, a Toyota Camry, forklift, and tractor.

Section 3.1

Data

The GOTCHA Volumetric Data Set 1.0 consists of SAR phase history data collected

at X-band with a 640 MHz bandwidth with full azimuth coverage at 8 different eleva-

tion angles with full polarization, [20]. This is a real-world SAR dataset captured by

the Air Force Research Laboratory. A plane carrying a sensor flew a roughly circular

measurement flight around a parking lot near the Sensors Directorate Building at

Wright-Patterson Air Force Base in Dayton, Ohio, and collected SAR phase history

data each time. The parking lot contains various vehicle targets including civilian

vehicles, construction vehicles, calibration targets, primitive reflectors, and military

vehicles. See Figure 3.1 for optical images of the targets. Note that because this is

real-world data, the elevation angle is not perfectly constant, and path is not perfectly

circular. The center frequency is 9.6GHz and bandwidth is 640MHz. This public re-

lease data has been used extensively for testing new SAR image formation methods,
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3.2 Example image estimates Results

Figure 3.2: Full images formed with (clockwise from top left) BP; NUFFT; uninfor-
mative sample mean; sparse sample mean; `1 regularization; TV regularization.

[5, 6, 32].

Section 3.2

Example image estimates

The paper accompanying the GOTCHA data set, [20], indicates that research inter-

est is focused on mitigating the large side lobes in the point spread function, since

due to the sparse nature of the elevation aperture, traditional imaging techniques

introduce excessive artifacts in the processed images. Hence, we have reason to be-

lieve that setting the hyperhyperparameters a, b c, and d, to be sparsity-encouraging

may be useful. For this reason, in the following figures for comparison’s sake we

show images formed using two aforementioned popular sparsity-encouraging image

formation methods: `1 regularization and total variation (TV) regularization. In `1
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3.2 Example image estimates Results

Figure 3.3: Subregion of images from Fig. 3.2 formed with (clockwise from top left)
BP; NUFFT; uninformative sample mean; sparse sample mean; `1 regularization; TV
regularization.

regularization, sparsity is promoted in the image itself, while in TV regularization,

sparsity is promoted in the approximate edges in the image. These methods have

been extensively applied in SAR. See, e.g., [3, 21, 28, 51, 53].

In Figure 3.2, a full image comparison of the parking lot scene is shown using

back projection, NUFFT, `1 regularization, total variation (TV) regularization, and

the novel sampling-based method with both uninformative and sparsity-encouraging

parameters. The full images shown are square with N = 5122. Code from [50] is used

to perform image formation for the comparison methods, as well as to wrangle the

GOTCHA data. Figures 3.3 and 3.4 zoom in on smaller subregions of the illuminated

scene in order to see how each image formation method compares when localizing par-

ticular targets. The sampling-based method using uninformative parameters seems

to provide perhaps the worst image quality, appearing much grainier than even the

back projection and NUFFT reconstructions. While this is indeed considered a poor

estimate, it may be worth considering that setting the parameters to be uninformative

has simply brought out more signal altogether including speckle, which, despite our

33



3.2 Example image estimates Results

Figure 3.4: Another subregion of images from Fig. 3.2 formed with (clockwise from top
left) BP; NUFFT; uninformative sample mean; sparse sample mean; `1 regularization;
TV regularization.

NUFFT `1 regularization uninformative sampling sparse sampling

.03s 5.8s 16s 526s

Table 3.1: Runtimes for each algorithm with N = 5122.

wish to remove it, is indeed signal. On the other hand, the sampling-based method

using sparsity-encouraging parameters appears to retrieve a significantly better esti-

mate than the other methods in terms of sidelobe reduction, noise reduction, speckle

reduction, and contrast improvement. In addition, there are no artifacts from the

image formation method as seen, e.g., in the block-like TV regularization formation.

N uninformative sampling sparse sampling

1282 33 517

2562 35 896

5122 41 1322

Table 3.2: Required chain length ns for various N .
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Figure 3.5: Logarithm base 10 of the sample variance of f using (left) uninformative
parameters; (right) sparsity-encouraging parameters.

Table 3.1 gives the runtime for each algorithm. Each method was performed on

Polaris, a shared memory computer operated by Dartmouth Research Computing

with 40 cores, 64-bit Intel processors, and 1 TB of memory. Note that the back

projection reconstruction has not been optimized for runtime. While only images

with N = 5122 are shown throughout this paper, converged chains were computed

for other values and the required chain lengths are shown in Table 3.2. In particular,

Tables 3.1 and 3.2 show that while parameter choice does not affect the time per

sample, convergence takes significantly more samples, and hence significantly more

time, when using the sparsity-encouraging parameters. In addition, Table 3.2 begins

to demonstrate that the required chain length appears roughly linear, although more

examination is needed. Hence this method requires large storage and memory.

Section 3.3

Visualizing uncertainty quantification

With the samples having been drawn, and image estimates computed, a way to display

confidence information is required to provide valuable information about the certainty
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3.3 Visualizing uncertainty quantification Results

Figure 3.6: Comparison of the 95% confidence images. Top: 0.025 percentile image;
bottom: 0.975 percentile image. Left: uninformative; right: sparsity.

of these estimates. Because this is an imaging application, this useful information

needs to be displayed in a visibly tractable way. A confidence image, defined above

in Section 2.2.3, gives a viewer visual information and insight into the uncertainties

in the estimates, i.e. which features in the image can be trusted.

3.3.1. Variance images

A simple way to quantify uncertainty in this problem using the collected samples is

to look at the variance of the samples (or standard deviation) at each pixel. This can
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3.3 Visualizing uncertainty quantification Results

be helpful in forming a confidence estimate by acknowledging that roughly 2 stan-

dard deviations from the mean contains 95% of samples in a Gaussian distribution.

Figure 3.5 shows the logarithm base 10 of the variance of the samples of f for the

example from Section 3.2. Notice that for the uninformative parameters, the variance

is roughly constant across all pixels, while for the sparsity-encouraging parameters,

the variance away from scatterers is significantly lower for pixels with low-magnitude.

Hence, the uninformative parameter plot says that high-magnitude pixels and low-

magnitude pixels have the same spread, which is one reason why the corresponding

image estimate appears so grainy. Therefore, this is further evidence beyond the esti-

mate that the uninformative parameter sampling-based method is not terribly useful

in this scenario. Meanwhile, the sparsity-encouraging parameter plot shows exactly

what we would expect with multiple scales in a scene, that high-magnitude pixels

tend to vary more than low-magnitude pixels.

Figure 3.7: Histogram of samples of the noise precision β using (left) uninformative;
(right) sparsity-encouraging parameters.

3.3.2. Confidence images

Another method to visualize uncertainty in f is to compute a confidence image, the

process for which is given below. Visualizing samples of one-dimensional signal can
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Figure 3.8: Comparison of the sample mean of α for (left) uninformative parameters;
(right) sparsity-encouraging parameters.

be done using, e.g., confidence intervals with error bars on the mean estimate, trace

plots represented as error bars at each point of the signal, or histograms. E.g., a

histogram for samples of the one-dimensional noise precision β is shown in Figure

3.7. For reference, the mean of the uninformative β samples is 2.3005 × 10−7, and

the mean of the sparsity β samples is 1.2331 × 10−7. In many applications, a trace

plot of the sample chain is shown to show a cursory level of convergence. However,

for two-dimensional images the visualization of the chain variance of an image is

less obvious. In [47], the authors develop Twinkle, a tool to visualize 2D confidence

images. In Twinkle, the samples are sorted in increasing order and the 0.025 percentile

value and the 0.975 percentile value are chosen as the lower and upper bounds for

a 95% confidence interval at a particular pixel. Such an interval is computed for

every pixel. Figure 3.6 shows the lower and upper bounds for the confidence images

using both uninformative and sparsity-encouraging parameters. We see that the

lower and upper confidence bounds for the sparsity-encouraging parameters appear

quite similar in contrast and background noise level, indicating in general a tighter

confidence interval than that of the uninformative parameter image which has a larger
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Figure 3.9: Comparison of the logarithm base 10 of the sample mean speckle parame-
ter α−1 for (left) uninformative parameters; (right) sparsity-encouraging parameters.

variance between the lower and upper confidence bounds. Then, image samples are

formed by drawing pixel values uniformly at random from each of these confidence

intervals. A GIF or short movie is then created from the image samples, showing

them in quick succession for a fraction of a second each. The heuristic is that we can

be more confident in features that persist in the image throughout the video, and less

confident in features or pixel values in the image that flicker or twinkle. The latter

could be real or attributable to an artifact or noise. As of now, GIFs are not easily

embedded in LATEX, so a GIF showing the twinkling effect for the example above is

available at my website. Besides Twinkle, another reasonable way to view this type

of information is to simply display the posterior samples themselves in a GIF or short

movie.

Section 3.4

Estimating the speckle parameter

Similar to the image estimates obtained in Section 3.2, the sampling-based image

formation method described in Chapter 2 produces samples of α, the parameter
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Figure 3.10: Sample variance of α using (left) uninformative parameters; (right)
sparsity-encouraging parameters.
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Figure 3.11: Logarithm base 10 of the sample variance of α−1 using (left) uninforma-
tive parameters; (right) sparsity-encouraging parameters.

governing speckle. The mean of these samples is shown in Figure 3.8 for both the un-

informative and sparsity-encouraging parameters. There are several observations that

can be made from these images. Notice how in the uninformative parameter image

even the perhaps most-prominent feature of the tophat is barely visible in the top left

of the image, while in the sparsity-encouraging parameter image, many features in the

reflectivity image are visible. Therefore, by looking at (2.11), we see that in a sense

the uninformative parameters provide little spatially varying regularization while the
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Figure 3.12: Comparison of the 95% confidence images for α. Top: 0.025 percentile
image, bottom: 0.975 percentile image. Left: uninformative; right: sparsity.

sparsity-encouraging parameters provide quite sharp regularization only away from

high-magnitude image features. In addition to providing heuristics about the success

of this algorithm through the lens of deterministic regularization, we also have that

the reciprocal values of this image provide an estimate for the mean speckle param-

eter. Recall that the magnitude of each pixel |fi| is Rayleigh distributed with mean

proportional to α−1i , hence changes in the magnitude of each pixel |fi| are propor-

tional to α−1i . Hence, since roughly all pixels in the uninformative parameter image

are on the order of 10−4, the speckle phenomenon is consistently high throughout

the entire image. This is confirmed by checking the noisy image estimate in Figure
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Figure 3.13: Comparison of the 95% confidence images for α. Top: 0.025 percentile
image; bottom: 0.975 percentile image. Left: uninformative; right: sparsity.

3.2. Meanwhile for the sparsity-encouraging parameter image, there is practically no

speckle (on the order 10−14) except at the various high-magnitude target reflectivities,

matching the speckle reduction we saw in Figures 3.2, 3.3, and 3.4. This confirms

that the sparsity-encouraging measures taken effectively reduced speckle. The absent

median images for α and α−1 support these conclusions as well.

In addition to these estimates, we can also perform similar uncertainty quantifi-

cation analysis for the α as in Sections 3.3.1 and 3.3.2 by looking at the variance

and confidence images of the samples. Figure 3.10 shows the sample variance of the

prior precision (or regularization matrix) α for both sampling schemes, while Figure
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3.4 Estimating the speckle parameter Results

Figure 3.14: Histogram of samples for α using (left) uninformative; (right) sparse
sampling.

3.11 shows the same for log of the speckle parameter α−1. In both cases, we see that

the plots indicate a tighter confidence range, particularly in regions away from high-

magnitude points, for the sparsity-encouraging parameters over the uninformative

parameters. Similar conclusions can be drawn from the lower and upper confidence

interval images shown for α in Figure 3.12, and log10(α
−1) in Figure 3.13. Finally,

Figure 3.14 shows a histogram plot of the first pixel of each α sample. We see that

the maximum of the uninformative sampling strategy is greater than 1, while for the

sparse sampling strategy is very nearly 0.
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Chapter 4

Discussion

In this final chapter, we begin by discussing and expanding upon the image estimate

results of Chapter 3, and move on to summarize this paper and outline future research

directions.

Section 4.1

Sparsity perspectives

The use of sparsity-encouraging methods in SAR image formation is not new. See,

e.g., [3, 21, 28, 51, 53]. Nor is use of a hierarchical Bayesian model to encourage

such sparsity, [15, 14]. These approaches are limited to MAP estimates, however, and

limited to viewing sparsity in the magnitude of the image rather than in the real and

imaginary parts as is done above.

4.1.1. Draws from individual posteriors

Of significance in discussing sparsity is Figure 4.1, which shows a histograms of values

for the real and imaginary parts of the first pixel of each sample. Notice how the

uninformative parameter histograms on the left look Gaussian (albeit there aren’t

many samples), while on the right the sparsity-encouraging parameter histograms
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4.1 Sparsity perspectives Discussion

Figure 4.1: Histogram comparison of samples for the first pixel of the image f . Top is
uninformative parameters, bottom is sparsity parameters. Left is real part samples,
right is imaginary part samples.

are sharply peaked at zero. This is the manifestation of the sparsity encouraging

improper prior p(fi) ≈ 1/|fi| when a, b, c, d = 0.

4.1.2. Relation to sparsity-encouraging regularization schemes; IRLS

In our scheme above, α is effectively a regularization parameter that is chosen by the

data in order to encourage sparsity. This idea is not new, and is common is iterative

reweighting schemes. See, e.g. [19, 22]. In iteratively reweighted least squares, e.g.,

the goal is to encourage sparsity in an unknown x by solving the `p minimization
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4.1 Sparsity perspectives Discussion

problem

arg min
x

{
||x||pp

}
subject to Ax = b. (4.1)

This is achieved by replacing the unweighted `p norm with a weighted `2 norm

arg min
x

{
||w � x||22

}
subject to Ax = b, (4.2)

where w is a weighting vector and � is the elementwise product. This is similar to in

our scheme where we effectively have an individual regularization parameter for each

element of x. The weighting vector is set with the update rule

wi =
((

xk−1i

)2
+ εk

)p/2−1
(4.3)

for 0 ≤ p ≤ 1. Note that p = 0 corresponds to a cost function
∑

i log(|xi|2), which

is actually the same regularization that occurs when using the improper prior 1/|fi|

above. The regularization with εk keeps the algorithm from dividing by zero if the

previous iterate of x is zero. This scheme has been used in ill-posed inverse problems

typically in a manner where this problem is repeatedly solved and weights are updated

at each step in order to encourage sparsity, [22, 27, 38]. We believe that the advantage

of our algorithm is the uncertainty quantification information and provided, as well as

the theoretical underpinning of Bayesian inference. Indeed, as above with `1 and TV

regularization used in SAR with an approximation to |f |, because data information

is considered in developing w, this cost function does not correspond to putting a

prior distribution on x. In our scheme, we have more appropriately put a prior on

α (similar to w here), as it is unknown and needs to be included in the inference

problem.
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4.1 Sparsity perspectives Discussion

For further insight, we show below that when w is updated at each iteration it is

essentially treated w as another variable that can be minimized over. So we solve

x∗,w∗ = arg min
x,w

L(x,w) = arg min
x,w

{
||Ax− b||22 + ||w � x||22

}
. (4.4)

That is, we minimize the cost function over x and w. Taking an alternating min-

imization approach to this problem, after initializing x0 and w0, we minimize with

respect to x and then w. The cost function L(x,w) is differentiable, so

∇xL(x,w) = AT (Ax− b) + w �w � x (4.5)

∇wL(x,w) = x� x�w. (4.6)

Setting ∇xL(x,w) equal to zero, the update for x is

xk = (ATA + wk �wk)−1ATb. (4.7)

Setting ∇wL(x,w) to zero, however, results in w = 0. So it is clear that this alternat-

ing minimization approach yields a trivial solution for w, such that no regularization

is applied in the original inverse problem.

We see at this point the modifications from IRLS, [22, 27], make this problem

solvable. E.g., rather than setting ∇wL(x,w) to zero, we can set it equal to 1 and

retrieve the update for IRLS with p = 0, albeit without ε-regularization,

wk
i =

((
xk−1i

)2)−1
. (4.8)

Other modifications would retrieve the updates for 0 < p ≤ 1. An alternative ap-

proach is to use binary weighting: wk
i = 0 if (xk−1i )2 > ε, else wi = 1. This was the

approach of our previous work, [23, 26].
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4.2 Conclusions Discussion

Section 4.2

Conclusions

In this paper, we developed a new framework for coherent SAR image formation. This

is a challenging task due to the problem size, the speckle phenomenon, and the lack

of uncertainty quantification in current methods. This framework uses a hierarchical

Bayesian model with conjugate priors to directly incorporate fully-developed speckle.

A parameter-free sparsity-encouraging sampling method is introduced to provide es-

timates of the image, the speckle, and the noise. Our example from the GOTCHA

data set shows that in real-world applications our method reduces speckle and noise

significantly more than other commonly used methods. Uncertainty quantification

information unprecedented in SAR is also provided in the form of confidence images

that indicate if the pixel values and features shown in an estimate can be trusted. Un-

certainty quantification is also provided for the speckle and noise. This information is

of particular importance in SAR, where ground truth images even for synthetically-

created examples are unknown.

Future work in this direction will focus on further accelerating the sampling

method, as well as decreasing storage and memory requirements. This will enable

image formation with more pixels, as well as multi-pass and three-dimensional imag-

ing. In addition, this will allow composite image formation for wide angle SAR to

complement the strong direct imaging results of this paper. In composite image for-

mation, the 360o aperture is broken up into small overlapping chunks. An image

is formed for each chunk, and those chunk images are then combined by taking the

maximum pixel value of the chunks. Hence if there are 60 chunks, the current speed

of this method this would be very costly. Finally, comparisons with deep learning

based SAR image formation (still in its nascent stages, [45]) will be necessary.
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