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ABSTRACT

Inverse problems model real world phenomena from data, where the data are often

noisy and models contain errors. This leads to instabilities, multiple solution vectors

and thus ill-posedness. To solve ill-posed inverse problems, regularization is typically

used as a penalty function to induce stability and allow for the incorporation of a

priori information about the desired solution. In this thesis, high order regularization

techniques are developed for image and function reconstruction from noisy or mis-

leading data. Specifically the incorporation of the Polynomial Annihilation operator

allows for the accurate exploitation of the sparse representation of each function in

the edge domain.

This dissertation tackles three main problems through the development of novel

reconstruction techniques: (i) reconstructing one and two dimensional functions from

multiple measurement vectors using variance based joint sparsity when a subset of

the measurements contain false and/or misleading information, (ii) approximating

discontinuous solutions to hyperbolic partial differential equations by enhancing typ-

ical solvers with `1 regularization, and (iii) reducing model assumptions in synthetic

aperture radar image formation, specifically for the purpose of speckle reduction and

phase error correction. While the common thread tying these problems together is the

use of high order regularization, the defining characteristics of each of these problems

create unique challenges.

Fast and robust numerical algorithms are also developed so that these problems

can be solved efficiently without requiring fine tuning of parameters. Indeed, the

numerical experiments presented in this dissertation strongly suggest that the new

methodology provides more accurate and robust solutions to a variety of ill-posed

inverse problems.
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Chapter 1

INTRODUCTION

Inverse and Ill-Posed Problems

The underlying goal of an inverse problem is to estimate an unknown function

or quantity based on indirect measurements of such estimates. Typically, these mea-

surements are noisy and contain many errors. Associated with a particular inverse

problem is a forward model, which describes the relationship between the data and

the unknown function. Because inverse problems can rarely be solved analytically,

the forward model must be discretized to facilitate the use of computational methods.

This discretization introduces further errors into the problem. With the accumulation

of measurement errors and model errors, inverse problems quickly become unstable.

In a general sense, an inverse problem is ill-posed if it has no solutions within a

desired space, has many solutions within the space, or the solution procedure is un-

stable. Here, unstable means that arbitrarily small errors in the data, such as noise,

may lead to large errors in the solutions. The investigations specific to ill-posedness

that have proven helpful in this research include [73, 154, 64, 114, 72].

Because there are a wide variety of applications for inverse problems, encompass-

ing physics, geophysics, medicine, ecology and economics, efficient methods for solv-

ing inverse problems have been investigated for many years. Moreover, increasingly

powerful computational capabilities have spawned new numerical methods, whose

approaches would have previously been deemed too costly for consideration. This

has been coupled with the influx of massive data sets collected in various scientific

disciplines. Some investigations along these lines that have informed this dissertation

include [72, 73, 147, 166, 41, 95, 103, 111, 134].
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High Order Total Variation Regularization

Researchers in the field of inverse and ill-posed problems develop and study stable

methods for approximating unstable mappings, transformations or operations. Reg-

ularization is typically used as a penalty function to induce stability and to allow

for the incorporation of a priori information about the desired solution. Specifically,

regularization restricts the class of possible solutions and penalizes highly varying es-

timates. In this manner, it becomes feasible to find more accurate and stable solutions

to ill-posed inverse problems.

Classical algorithms for image denoising and reconstruction have been primarily

based on the least-squares method. Consequently, their outputs may be contaminated

by the Gibbs phenomenon, and thus do not accurately approximate images contain-

ing edges or discontinuities. Total variation (TV) regularization has been used to

overcome this difficulty [15, 43, 111, 119, 148, 88, 151, 158]. This technique preserves

edges, however the images resulting from the application of TV in the presence of

noise are often piecewise-constant and thus finer details in the original images may

not be recovered satisfactorily. Specifically, the image defaults to a piecewise con-

stant solution, often referred to as the “staircasing effect”. High order total variation

(HOTV) methods reduce the staircase effect while preserving jump discontinuities,

[89, 134, 28, 4].

The theme of this dissertation is using HOTV regularization to reconstruct func-

tions or images from noisy data. We first discuss how these techniques can be used

to develop methods that exploit the use of multiple measurement vectors through

non-parameteric, variance-based joint sparsity. We then formulate more accurate

and robust estimations of discontinuous solutions to hyperbolic partial differential

equations (PDEs). Finally we show that HOTV regularization is a useful technique

for reducing various sources of error in synthetic aperture radar imagery.
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Variance Based Weighted Joint Sparsity

Much research has recently been devoted to jointly sparse (JS) signal recovery from

multiple measurement vectors (MMV) using `2,1 regularization [3, 135, 120, 31, 33, 46],

which is often more effective than performing separate recoveries using standard

sparse recovery techniques. However, JS methods are difficult to parallelize due to

their inherent coupling. In a recent paper [2] the variance based joint sparsity (VBJS)

algorithm was introduced. VBJS is based on the observation that the pixel-wise vari-

ance across signals convey information about their shared support, motivating the use

of a weighted `1 JS algorithm, where the weights depend on the information learned

from calculated variance. Specifically, the `1 minimization should be more heavily

penalized in regions where the corresponding variance is small, because it is likely

there is no signal there. In this thesis, we expand on the original method, notably

by introducing weights that ensure accurate, robust, and cost efficient recovery us-

ing both `1 and `2 regularization. Moreover, we show that the VBJS method can

be applied in situations where some of the measurement vectors may misrepresent

the unknown signals or images of interest, which is illustrated in several numerical

examples.

Regularization for Hyperbolic PDEs

Regularization is commonly used in image reconstruction and signal processing

when the inverse problem is ill-posed. However, the use of regularization to pro-

mote sparsity in the numerical solution of PDEs is more limited. Compressed sensing

techniques were developed in [16, 17] to approximate solutions to elliptic PDEs. Hy-

perbolic PDEs present more challenges, especially when the solution emits shocks.

Consequently, as time evolves the solution may contain a significant amount of diffu-

sion (necessary for stability) or conversely it may be cluttered with spurious, unwanted
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oscillations. By diffusing the solution, the discontinuities are not resolved with a high

order of accuracy. When spurious oscillations occur, errors are found throughout the

entire solution domain. Those errors are amplified at each time step, and eventually

solutions become unstable. Thus we see that at each time step there is an ill-posed

inverse problem to be solved.

The research in this dissertation therefore takes a new approach to solving hyper-

bolic PDEs using HOTV regularization. Specifically, it is known that the solution

will contain a sparse number of jump discontinuities at each iteration. Therefore,

by incorporating the HOTV `1 regularization into the numerical method, we enforce

this sparsity and restrict our solution at each time step to a class of stable and accu-

rate solutions. The technique developed here appends a conventional numerical PDE

solver with an `1 regularization term which will encourage the solution to be sparse

in the jump discontinuity domain. A main advantage of this technique is that it does

not require shock tracking. Further, the regularization appears to improve the time

stepping restrictions normally required by the CFL condition. We provide several

examples and discuss ideas on how to improve and further develop our method for

other applications.

Regularization for Synthetic Aperture Radar

One area in image formation where ill-posed inverse problems arise is synthetic

aperture radar (SAR) image formation. SAR is an all-weather, night and day, data

and information acquisition technology commonly used for military applications, [69,

44]. To form a SAR image, a radar system transmits electromagnetic signals that hit

scatterers in a target patch and reflect back to the receiver. The returned signals are

then processed, and image formation algorithms are used to display a visual of the

targeted scene.
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To understand the signals that return to the SAR system, a continuous-time

Fourier model describing the SAR data associated with the underlying reflectivity

function as Fourier coefficients on a (partial) polar grid was developed, (see e.g.

[69, 112, 104, 32, 44] and references therein). Typical SAR signal processing tech-

niques can obtain high resolution images, but they do not account for the fact that,

on the microscopic level, the underlying scenes are extremely rough. That is, the

wavelength of the transmitted signal is much smaller than the size of the resolution

cell. This leads to the constructive and destructive summation of signals that return

from the same resolution cell. This phenomenon manifests as a multiplicative gamma

noise that corrupts the entire imaging domain with salt and pepper like features,

and is referred to as speckle, [57, 56, 113, 34]. Further, the Fourier model makes

the unrealistic assumption that the location of the SAR imaging platform is known

exactly. This erroneous assumption, along with the discretization of the continuous

model, [58], leads to unwanted model errors. Thus we see that the associated inverse

problem is to determine an estimate of the underlying scene given the noisy data and

inaccurate forward model. These different sources of error cause the inverse problem

to be extremely ill-posed, establishing the need for more accurate and robust image

formation procedures.

Compressed sensing and regularization techniques have been extensively developed

and explored for SAR image formation, [24, 25, 27, 166, 115, 108]. These methods

use `p regularization with p ≤ 1 to incorporate the prior knowledge that the scene

contains a sparse amount of scatterers and a sparse amount of edges or variation.

However, typical scenes consist of many scatterers, each with their own complex

reflectivity properties and random phase. Note that none of the methods cited above

use HOTV regularization, which has been shown to be effective in both low resolution

environments and also when the underlying scene is highly variable, [120].
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The research in this dissertation advances the work of [120] and uses the HOTV

`1 regularization to form SAR imagery. The classic regularization problem is also

updated to include a step for the estimation of the phase errors that arise from the

imperfect knowledge of the location of the imaging platform. Our methods alternate

between estimating the phase errors and estimating the image. A similar technique

was developed in [26, 110], but again only considered TV regularization, and moreover

did not account for the dependency of the phase errors on the spatial frequency values.

In this thesis, phase errors are estimated using the phase synchronization technique,

a common method for recovering phase in the phase retrieval community [68, 131].

The algorithm developed here is robust to noise and converges at an improved speed.

Further, we propose two separate high order models for removing the multiplicative

speckle noise present in the imagery. The first model is inspired by the work found in

[8, 94, 9, 30], and the second model utilizes the variance based joint sparsity techniques

developed in Chapter 3 of this thesis.

1.1 Contributions

This thesis makes the following novel contributions to the field of high order

regularization techniques:

1. A robust, non-parametric variance based joint sparsity (VBJS) method is de-

veloped for reconstructing one and two dimensional functions from multiple

measurement vectors.

2. Numerical partial differential equation solvers are enhanced using `1 regulariza-

tion, gaining accuracy and stability of solutions that contain discontinuities or

shocks.

3. The techniques above are then immediately used to develop two novel speckle
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reduction techniques.

(a) The `1 enhanced numerical PDE solver is employed to approximate the

steady state solution of an Euler-Lagrange PDE that models a denoised

image.

(b) The VBJS technique is used to reduce speckle from multiple measurements

of the same scene.

4. An auto-focusing method that uses an alternating minimization procedure es-

timating both the image and phase error from defocused SAR phase history

data is developed. In particular, phase synchronization, a technique commonly

utilized in the phase retrieval community, is adapted for the purpose of reducing

the effects of phase error, and HOTV minimization is adapted for SAR image

formation.

1.2 Outline of Thesis

The rest of this dissertation is organized as follows. Chapter 2 provides back-

ground information, including a more in depth review of `1 regularization. The

HOTV operator is also thoroughly explained along with a description of the algo-

rithm used to implement the proposed numerical method. In Chapter 3 we develop

a variance-based weighted joint sparsity technique that uses the overlapping support

of multiple measurement vectors to design weights that eliminate regularization pa-

rameters and ignore misleading data. Chapter 4 presents the new `1 regularization

technique designed for approximating solutions to non-linear conservation laws. A

detailed explanation of how standard PDE solvers are augmented with the regular-

ization is provided, along with numerical results. We conclude the chapter with some

ideas for future work in this area and provide a discussion of our results. Chapter 5
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begins with a derivation of the mathematical model for speckle, and a discussion of

current speckle reduction techniques, followed by development of two HOTV regular-

ization techniques for the reduction of speckle. We then discuss phase error correction

using autofocusing and explain how these phase errors should be incorporated into

the forward SAR model, culminating in a joint phase error and image estimation

procedure. Examples using HOTV for SAR image formation, speckle reduction and

phase error estimation are displayed. To conclude, we discuss future work in SAR

image formation.
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Chapter 2

PRELIMINARIES

Section 2.1 consists of a thorough review of `1 regularization. We then present the

Polynomial Annihilation (PA) operator, which is a high order total variation (HOTV)

operator. Its formulation and convergence properties are given in Section 2.2, followed

by a discussion of our HOTV optimization approach in Section 2.3.

2.1 `1 Regularization

In recent years, `1 regularization has received considerable attention in designing

image reconstruction algorithms from under-sampled and noisy data when it is known

a priori that some measurable features of the unknown image have a sparse represen-

tation in a particular domain or basis. Also, `1 regularization provides a formulation

that is compatible with compressed sensing applications, specifically when an image

can be reconstructed from a very small number of measurements [19, 18, 41].

Let f ∈ RN be an unknown image or signal. We assume that some measurable

features of f have sparse representation in a particular domain or basis. Define

f̂ ∈ RM to consist of data samples corresponding to f , and let F : RN → RM be

the forward model that projects f to f̂ . Typically, F is defined as a linear operator

or invertible matrix. Define H : RN → R to be the regularization operator. The

objective is to solve the following optimization problem:

argmin
f

H(f) subject to Ff = f̂ . (2.1)

Note that if the data f̂ are under-sampled, then F may only contain a subset of rows

of the forward model matrix. The equality constraint is the data fidelity term, and
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it measures how well the reconstructed image fits the given data for the particular

forward model. The regularization term H enforces the known sparsity present in the

underlying image by penalizing highly varying solutions and restricting the solution

space to a desired class of functions. We will consider H to be the `1 norm of f (or

some transformation of f) and note that any `p norm with p ≤ 1 will enforce sparse

solutions.

Typically, for measured data which is inherently noisy, the related total variation

(TV) denoising problem is solved, which relaxes the equality constraint on the data

fidelity term. It is formulated as

argmin
f

H(f) subject to ||Ff − f̂ ||22 < σ, (2.2)

where σ ∈ R is some positive regularization parameter [119, 148]. The TV denoising

problem can be approximated as the following unconstrained problem by the intro-

duction of a non-negative regularization parameter ζ ∈ R that represents the trade-off

between smoothness and fidelity to the original data [43, 95, 103, 111, 119]

argmin
f

{
H(f) +

ζ

2
||Ff − f̂ ||22

}
. (2.3)

Ideally H(f) = ||Lf ||0, but because the `0 norm introduces non-convexity into the

optimization problem, and produces an NP-hard problem [143], a convex relaxation

of the `0 to the `1 problem is used with

H(f) := ||Lf ||1,

where L : RN → RN maps f into a space where it is sparse. The regularization

formulation in (2.3) can be interpreted as the numerical solution to a diffusive partial

differential equation with specific initial conditions after one time step [126], or, in a

Bayesian framework, the solution to a maximum a-posteriori problem with a Gaussian

prior [73].
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Often L is chosen to be the discrete total variation (TV) operator, which enforces

the approximation of the first derivative of the solution to be zero at all but a small

number of points. However, a well known drawback in using the TV operator is

that the reconstructed image defaults to a piecewise constant approximation. While

suitable for some applications, in others it is important to see more detail. This

has been addressed in several ways. For example, total generalized variation (TGV),

which generates piecewise (typically quadratic) polynomial approximations in smooth

regions, was developed in [15]. Multi-wavelets have also been used to formulate

sparsifying transforms, [127]. We will make use of the polynomial annihilation (PA)

transform [4, 5, 153] as an appropriate HOTV regularization operator, which we

briefly describe in the following section.

2.2 Polynomial Annihilation

Consider a function f : [a, b] → R. For all y ∈ (a, b), let f(y−) and f(y+) denote

the left and right hand limits of f , respectively. Then, the jump function of f at y is

defined at each y by

[f ](y) = f(y+)− f(y−). (2.4)

Because [f ](y) = 0 everywhere except in cells containing jumps, we say that [f ](y)

has sparse representation. To approximate [f ](y) we use the polynomial annihilation

(PA) edge detection method, originally proposed in [5], given by

Lmf(y) =
1

qm(y)

∑
xj∈S

cj(y)f(xj). (2.5)

Here m is the order of approximation to (2.4), S is a local set of m + 1 grid points

about y from the set of given grid points, and the annihilation coefficients cj are
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obtained by solving

∑
xj

cj(y)pl(xj) = p
(m)
l (y), j = 1, ...,m+ 1. (2.6)

Here pl, l = 0, ...,m, is a basis for the space of polynomials of degree less than or

equal to m. An explicit formula based on Newton divided differences was provided

in [5]:

cj(y) =
m!

ωj(S)
, ωj(S) := Πm

i=1,i 6=j(xj − xi), (2.7)

for j = 1, · · · ,m. When the grid points are equally spaced, that is xj = j∆x with

∆x = (b− a)/N and j = 0, · · · , N, (2.7) leads to

cj =
m!

m+1∏
k=1
k 6=j

(j − k) ∆x

. (2.8)

The normalization factor qm ensures convergence to the jump value at each disconti-

nuity and is given by

qm(y) =
∑
xj∈S+

cj(y), (2.9)

where S+ is the set of points xj ∈ S such that xj ≥ y. It was shown in [5] that

(2.5) yields mth order convergence in smooth regions (outside the stencil containing

the jump discontinuity) as long as f has m continuous derivatives in those regions.

The method yields a first-order approximation to the jump value in regions where

singularities are present. As m increases, oscillations develop in each jump location

region. Post-processing methods can reduce the impact of these oscillations. However,

because we are using (2.5) to enforce sparsity and not to explicitly detect edges, the

oscillations occurring in jump regions do not have direct impact our results. That

is, we are only interested in those locations which produce a high response when the

function is transformed by the PA operator. Specifically, the PA method was used to
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design a high order `1 regularization operator in [4] as

H(f) := ||Lmf ||1.

Consequently, the sparsity of edges in f will be enforced when solving (2.3).

A main advantage in using PA with m > 1 is that it enables distinction of jump

discontinuities from steep gradients, which is critical in solving non-linear conservation

laws and when reconstructing images that are not simply piecewise constant. It is

also more effective than TV in low resolution environments, in particular by helping

to reduce the staircase effect that occurs when using the TV operator (equivalently,

PA m = 1) as the regularization operator.

We also note that the PA method can be used for multivariate, non-uniformly

spaced data in any domain and in multiple dimensions. However, in [4] it was noted

that for reconstruction on uniform grids, applying the PA transform dimension by

dimension is as effective in promoting sparsity in two dimensions, and is more cost

efficient. We therefore define Lmx and Lmy to be the respective directional PA transform

operators and minimize

H(f) = ||Lmx f ||1 + ||Lmy f ||1, (2.10)

to encourage sparsity in the two-dimensional jump function domain.

In this thesis investigation, (2.5) is included inside the optimization problem (2.3),

and therefore only solved on the discrete set of grid points y = xj, j = 0, · · · , N .

Hence (2.9) can also be determined explicitly and we are able to write the PA trans-

form matrix for any integer m. For example, when considering a uniform grid spread

over the domain [a, b] and a periodic solution f , we have
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L1 =



1 −1

1 −1

. . . . . .

1 −1

−1 1


, L3 =

1

2



3 −3 1 −1

−1 3 −3 1

. . . . . . . . . . . .

1 3 −3 1

1 1 3 −3

−3 1 −1 3


. (2.11)

As noted previously, when m = 1, the PA transform is equivalent to using TV

regularization. In this regard, the PA transform can be seen as a high-order total vari-

ation (HOTV) operator. Also note that (2.11) assumes periodicity. For non-periodic

problems, there is an analogous transform that becomes one-sided as the boundaries

are approached, [5]. Finally, even orders may also be used, because they still achieve

sparsity in the edge domain. 1 Indeed even order transforms may be advantageous

for some PDE solvers, and also in the case where there is some information known

about the underlying solution. As will be demonstrated in Chapter 4, using m = 2

for Sod’s shock tube problem yields the best results because the solution between the

shock discontinuities is essentially piecewise linear. More information on the general

properties of the PA transform used for recovering piecewise smooth solutions can be

found in [5, 134, 4, 153].

To demonstrate the utility of the PA transform, consider a periodic function f :

[−1, 1]→ R defined as the following saw-tooth function

f(x) =


x+ 1, −1 ≤ x ≤ 0

x− 1, 0 < x ≤ 1

, (2.12)

1Even orders were not used in [5] because the post-processing techniques used for pinpointing the
edges assumed that maximum (minimum) values occurred at the edge, which is true only for odd
orders.
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with corresponding jump function

[f ](x) =


−2, x = 0

0, x 6= 0

. (2.13)

Assume we are given f at equally spaced grid points xj = −1 + 2j/N , j = 0, · · · , N ,

where we choose N = 64. To determine an edge map of f , we apply (2.5) with m = 2.

The results are shown in Figure 2.1. Observe that due to the piecewise linearity of

(2.12), the PA method annihilates [f ] except in the jump region, where the jump is

spread over two points.

-1 -0.5 0 0.5 1

x

-1

-0.5

0

0.5

1 f(x)
L2f(x)

Figure 2.1: Result of applying Lm, m = 2, to the saw-tooth function in equation

(2.12). Observe that the edge occurs at the zero crossing between the two extrema

of Lmf .

Similarly, Figure 2.2 shows the results of applying Lmx + Lmy , m = 2, for a two

dimensional image. Here, the test function used is given in [4] as

f(x, y) =


sin(π

√
x2 + y2/2), 0 < x, y < 3

4

g(x, y), otherwise,
(2.14)

where

g(x, y) =


cos(3π

√
x2 + y2/2),

√
x2 + y2 ≤ 1

2

cos(π
√
x2 + y2/2),

√
x2 + y2 > 1

2
,

(2.15)
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and 0 ≤ x, y ≤ 128. Observe that the edge locations are approximated as the zero

crossings of the PA response, as in the one-dimensional case.

Figure 2.2: Given gray scale image (2.14) (left), the result (middle) of
(
Lmx + Lmy

)
f ,

m = 2 to the function defined in (2.14) and a cross section (center) of the edge

response at location y = 64.

In summary, applying the PA transform to a piecewise smooth function f produces

a vector with small, approximately zero values in the smooth regions of f and large

values (in magnitude) at the jump locations. Performing minimization with H(f) :=

||Lmf ||1 encourages a solution f to (2.3) that has a sparse representation in the jump

function domain [5, 134, 4, 153].

2.3 High-Order Total Variation Optimization Algorithm

It is important to solve (2.3) efficiently. In this section we discuss the alternating

direction method of multipliers (ADMM), which is commonly used to solve `1 regu-

larization problems, [88, 151, 158]. Our framework differs from the typical ADMM in

two ways. First, rather than TV, we employ HOTV in the `1 regularization. Second,

we also consider complex signals, both as data f̂ , as well as in the image f . We note

that several comparable algorithms, for example the split Bregman algorithm, [55],

have also been used to effectively split the regularization and fidelity terms.

We develop the ADMM algorithm for the equality constrained problem and note
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that the modifications for the unconstrained problem (2.3) simply involve eliminating

the Lagrange multiplier associated with the data fidelity term. The discrete problem

is formulated as

argmin
f

||Lmf ||1 subject to Ff = f̂ , (2.16)

where f ∈ RN or f ∈ CN is the optimal function we wish to produce. For simplicity

we assume f ∈ RN and note that only minor modifications to Lm are needed when the

signal is complex. These modifications will be discussed in Chapter 5. F : RN → RM

is the forward operator, f̂ ∈ RM is the given data set, and Lm : RN → RN is the mth

order PA operator (2.5). Application of the ADMM to numerical partial differential

equations will be discussed in Chapter 4 and to SAR in Chapter 5.

The equality constrained problem in (2.16) is difficult to directly solve due to the

non-differentiability present in the `1 norm and the non-seprability of f from the Lm

operator. Instead, the solution is typically obtained by iteratively solving a sequence

of unconstrained sub-problems [156, 77, 14]. To develop the algorithm, consider for

example the equality constrained problem given by

min
x
f(x) subject to h(x) = 0. (2.17)

Let λ ∈ RN be a Lagrange multiplier and define the Lagrangian function associ-

ated with (2.17) as

L(x, λ) = f(x)− λTh(x). (2.18)

The first order optimality conditions are given in the following theorem.

Theorem 2.3.1 [156] Suppose that x̂ is a local solution of (2.17) and that the func-

tions f and h are continuously differentiable. Then there is a Lagrange multiplier
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vector λ̂ such that the following conditions are satisfied:

∇xL(x, λ̂)|x̂ = 0 (2.19)

h(x̂) = 0. (2.20)

The proof of Theorem 2.3.1 can be found in any standard optimization text book

such as [156]. From Theorem 2.3.1, we see that at the local minimum x̂,

0 = ∇xL(x, λ̂)|x̂ = ∇xf(x)|x̂ − λ̂T∇xh(x)|x̂. (2.21)

Using the quadratic penalty method [156, 77, 14], the solution to (2.17) can be

found by minimizing the quadratic penalty function

Q(x;µ) = f(x) +
µ

2
hT (x)h(x), (2.22)

where µ > 0 is the penalty parameter. From (2.22) we see that driving µ towards ∞

will penalize the constraint h(x) = 0 with increasing severity. Thus, by considering

a sequence of values {µk} → ∞ as k → ∞ the quadratic penalty method seeks the

minimizer xk+1 of Q(x;µk). That is,

xk+1 = argmin
x

Q(x;µk). (2.23)

The convergence properties of the quadratic penalty method are summarized in the

following theorem.

Theorem 2.3.2 [156] Suppose {µk} → ∞ as k → ∞. If a limit point x̂ of xk+1 is

feasible, then x̂ satisfies the first order optimality conditions of Theorem 2.3.1 and

(2.21). Thus for limk→∞ xk+1 = x̂,

lim
k→∞
−µkh(xk+1) = λ̂, (2.24)

where λ̂ is the multiplier in (2.18) that satisfies the first order optimality conditions

for the equality constrained problem (2.17).
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According to Theorem 2.3.2, at the final iteration of the quadratic penalty method,

h(xk+1) ≈ − λ̂

µk
.

For the constraint h(xk+1) = 0 to be satisfied, we now see that it must be that

µk →∞.

The augmented Lagrangian method (also referred to as the method of multipliers)

overcomes the bottleneck of the quadratic penalty method by altering (2.23) such

that we more nearly satisfy the equality constraint in (2.17) for moderate values of

µk [156, 54]. The augmented Lagrangian function achieves this goal by including

an estimate for λ̂ based on (2.24). This results in a combination of the quadratic

penalty function (2.22) and the Lagrangian function (2.18) associated with (2.17).

The resulting augmented Lagrangian function is

LA(x, λ;µ) = f(x)− λTh(x) +
µ

2
hT (x)h(x). (2.25)

For a fixed λk and µk, the augmented Lagrangian method seeks the minimizer

xk+1 of LA(x, λk;µk). That is,

xk+1 = argmin
x

LA(x, λk;µk). (2.26)

Because xk+1 is the minimizer of (2.26), the optimality condition for the unconstrained

problem (2.26) holds:

0 = ∇xLA(x, λk;µk)|xk+1
= ∇xf(x)|xk+1

−
[
λTk − µkh(xk+1)

]
∇xh(x)|xk+1

.

Thus, according to Theorem 2.3.1, because xk+1 minimizes (2.26), λk converges to λ̂

as k increases with the following update:

λk+1 = λk − µkh(xk+1). (2.27)
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This update ensures that λk is dual feasible, or equivalently ∇xL(x, λk+1)|xk+1
= 0.

Moreover, for λk+1 ≈ λ̂, we have that

h(xk+1) = − 1

µk

(
λ̂− λk

)
, (2.28)

and if λk is close to λ̂, the equality constraint can be satisfied without the requirement

that µk →∞ as k →∞.

It can be shown that with exact knowledge of λ̂, the solution x̂ of (2.17) is a

minimizer of LA(x, λ̂;µ) for all positive µ. Although we do not know λ̂ in practice,

we see from (2.28) that we can obtain a good estimate of x̂ by minimizing (2.25)

even when µk is not particularly large, provided that λk is a reasonable estimate of

λ̂. With the augmented Lagrangian method (2.26), xk+1 will be close to x̂ if λk is

close to λ̂ or µk is large, unlike the quadratic penalty method, which only converges

for large µk. The augmented Lagrangian method is summarized in Algorithm 1.

Algorithm 1 Augmented Lagrangian Method
1: Initialize: µ0, λ0, x0 and tolerance tol.

2: while || ∇xLA(x, λk;µk)|xk || > tol do

3: Solve xk+1 = argmin
x

LA(x, λk;µk).

4: Update multiplier according to (2.27).

5: Choose new penalty parameter µk+1 ≥ µk.

6: end while

We now explain how the augmented Lagrangian method is applied specifically

to our problem (2.16). Observe that Step 3 in Algorithm 1 is the surrogate un-

constrained minimization problem of (2.17). The particular augmented Lagrangian

function associated with (2.16) is

L̃A(f, λ;µ) = ||Lmf ||1 − λT (Ff − f̂) +
µ

2
||Ff − f̂ ||22. (2.29)
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Because || · ||1 is not differentiable and f cannot be separated from Lm, we introduce

slack variables in (2.16)

w = Lmf.

Thus, instead of solving (2.16) by minimizing (2.29), the augmented Lagrangian

method is now used to solve the equivalent variant

argmin
w,f

||w||1, subject to Ff = f̂ and Lmf = w. (2.30)

Using yet another Lagrange multiplier augmentation,

||w||1 − νT (Lmf − w) +
β

2
||Lmf − w||22, (2.31)

the augmented Lagrangian function associated with (2.30) is

L̃A(w, f, ν, λ;µ, β) = ||w||1 − νT (Lmf − w) +
β

2
||Lmf − w||22

− λT (Ff − f̂) +
µ

2
||Ff − f̂ ||22.

(2.32)

Here, µ and β are parameters that do not effect the solution, but rather control the

speed of convergence of the algorithm. From this we see that Step 3 in Algorithm 1

solves the specific problem

argmin
w,f

L̃A(w, f, νk, λk), (2.33)

for fixed multipliers νk and λk, where L̃A(w, f, ν, λ) is defined in (2.32), and the

notational dependence on µ and β is dropped for simplicity.

As mentioned previously, the alternating direction method of multipliers (ADMM)

is commonly used to solve `1 regularization problems, [88, 151, 158]. Because it is

difficult to solve (2.33) jointly over both w and f , the ADMM algorithm splits the

problem and alternates between solving for w with a fixed f and solving for f with a

fixed w. We now apply the ADMM to solve (2.33) in Step 3 of Algorithm 1. Below

we describe how this is accomplished.
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In the ADMM algorithm, the problem is split into a w sub-problem and a f sub-

problem. In the w sub-problem f , ν and λ are held fixed while solving for the value

of w that minimizes (2.33), and in the f sub-problem w, ν and λ are held fixed while

solving for the optimal f . The Lagrangian multipliers are adjusted after f and w

have alternatively been updated. Thus, when performing the optimization, we only

need to include terms that correspond to the sub-problem we are considering.

For example, let fk, νk, λk and wk be approximate minimizers of L̃A(w, f, ν, λ) at

the kth inner iteration. We calculate

wk+1 = argmin
w

L̃A(w, fk, νk, λk)

by solving the w sub-problem, defined as

wk+1 = argmin
w

{
||w||1 − νTk (Lmfk − w) +

β

2
||Lmfk − w||22

}
. (2.34)

The following lemma from [88] enables fast implementation for the w sub-problem.

Lemma 2.3.3 Consider the following problem for β > 0 and ν, y ∈ RN :

min
x
||x||1 − νT (y − x) +

β

2
||y − x||22 (2.35)

The minimizer is given by the one-dimensional shrinkage-like formula

x̂ = max

{∣∣∣∣y − ν

β

∣∣∣∣− 1

β
, 0

}
sign

(
y − ν

β

)
. (2.36)

Proof 2.3.4 Following the ideas in [88], because the objective function is convex,

bounded below and coersive, there exists at least one minimizer x̂ of (2.35) [156]. The

subdifferential of f(x) = ||x||1 is given element-wise as [88]

(∂xf(x))i =


sign(xi), xi 6= 0

{h : |h| ≤ 1, h ∈ R} , otherwise,
(2.37)
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where the origin is required to be included according to the optimality condition for

convex problems. According to (2.37), each component x̂i must satisfy
sign(x̂i) + β(x̂i − yi) + νi = 0, x̂i = 0

|νi − βyi| ≤ 1, otherwise.
(2.38)

If x̂i 6= 0, (2.38) yields
1

β
sign(x̂i) + x̂i = yi −

νi
β
. (2.39)

Because 1/β > 0, taking the absolute value of both sides of (2.39) gives

1

β
+ |x̂i| = |yi −

νi
β
|. (2.40)

Combining (2.39) and (2.40) shows that

sign(x̂i) =
sign(x̂i)|x̂i|+ sign(x̂i)/β

|x̂i|+ 1/β
=
x̂i + sign(x̂i)/β

|x̂i|+ 1/β

=
yi − νi/β
|yi − νi/β|

= sign
(
yi −

νi
β

)
.

(2.41)

Thus, using (2.40) and (2.41) we have for x̂i 6= 0

x̂i = |x̂i|sign(x̂i) =

(
|yi −

νi
β
| − 1

β

)
sign

(
yi −

νi
β

)
. (2.42)

On the other hand, x̂i = 0 if and only if [88]

|yi −
νi
β
| ≤ 1

β
. (2.43)

By coupling (2.42) with (2.43), we can conclude that

x̂i = max

{
|yi −

νi
β
| − 1

β
, 0

}
sign

(
yi −

νi
β

)
.

In vector form, this is equivalent to (2.36). �

From Lemma 2.3.3, we are able to exactly solve (2.34) at every iteration as

wk+1 = max

{∣∣∣∣Lmfk − νk
β

∣∣∣∣− 1

β
, 0

}
sign

(
Lmfk −

νk
β

)
. (2.44)
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Next we consider the f sub-problem. We determine fk+1 from (2.32), while holding

wk+1, νk and λk fixed. Specifically,

fk+1 = argmin
f

L̃A(wk+1, f, νk, λk)

is equivalent to solving

fk+1 = argmin
f

J(f), (2.45)

where

J(f) := −νTk (Lmf −wk+1) +
β

2
||Lmf −wk+1||22−λTk (Ff − f̂) +

µ

2
||Ff − f̂ ||22. (2.46)

We define the combination of (2.45) and (2.46) as the f sub-problem. Notice J(f) is

a quadratic function with gradient

d(f) = β(Lm)T (Lmf − wk+1)− (Lm)Tνk + µFT (Ff − f̂)−FTλk. (2.47)

By forcing d(f) = 0, so that

β(Lm)TLmf + µFTFf = β(Lm)Twk+1 + (Lm)Tνk + µFT f̂ + FTλk

we achieve the exact minimizer of J(f) in (2.46) as

fk+1 =
(
β(Lm)TLm + µFTF

)† (
β(Lm)Twk+1 + (Lm)Tνk + µFT f̂ + FTλk

)
, (2.48)

where A† denotes the pseudo-inverse of A. As it is typically not efficient to compute

the (pseudo-) inverse of a large matrix that might additionally be ill-conditioned, an

iterative method is more commonly used for solving the f sub-problem. We describe

the process below.

To ensure computational efficiency, we start by taking an aggressive step in the

steepest descent direction starting at fk:

fk+1 = fk − αkdk

dk = d(fk).

(2.49)
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The step size αk is chosen as the Barzilai-Borwein (BB) step (see [10]),

αk =
sTk sk
sTk yk

, (2.50)

with
sk = fk − fk−1

yk = d(fk)− d(fk−1).

A backtracking algorithm is performed to ensure αk is not chosen to be too large.

This requires checking what is known as the Armijo condition, [156], which guaran-

tees that using (5.62) sufficiently reduces the magnitude of the objective function.

Algorithmically, the Armijo condition is given by

J(fk − αkdk) ≤ J(fk)− δαkdTk dk, (2.51)

where δ ∈ (0, 1). If the Armijo condition (2.51) is not satisfied, we backtrack and

decrease the step length according to

αk = ραk, (2.52)

where ρ ∈ (0, 1) is chosen as the backtracking parameter. At the kth iteration of

the algorithm, after the new w and f values are found using (2.34) and (2.45), the

Lagrange multipliers are updated according to

νk+1 = νk − β(Lmfk+1 − wk+1)

λk+1 = λk − µ(Ffk+1 − f̂).

(2.53)

The minimization method in Algorithm 2 summarizes what is explained above and

provides a step-by-step procedure of how to (alternatively) solve the w sub-problem

(2.34) and f sub-problem (2.45) at each iteration, thus ultimately solving the high-

order total variation (HOTV) minimization problem posed in (2.30). Typically, to

initialize Algorithm 2, we choose ρ = .4 and δ = 10−4 [156, 88].
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Algorithm 2 HOTV ADMM
1: Initialize ν0 and λ0. Choose starting points w0, f0 and number of iteration K.

2: for i = 0 to K do

3: Set 0 < ρ, δ < 1 and tolerance tol.

4: while ||fk+1 − fk|| > tol do

5: Compute wk+1 using the shrinkage like formula (2.44).

6: Set αk using (5.62).

7: while Armijo condition (2.51) unsatisfied do

8: Backtrack αk = ραk.

9: end while

10: Compute fk+1 using (2.49) and (2.47).

11: end while

12: Update Lagrange multipliers according to (3.40)

13: end for

This HOTV ADMM algorithm will be modified throughout this thesis to be used

in variance based joint sparsity recovery (Chapter 3), the approximation of solutions

to hyperbolic partial differential equations (Chapter 4), and synthetic aperture radar

image formation (Chapter 5).
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Chapter 3

REDUCING THE EFFECTS OF BAD DATA USING VARIANCE BASED JOINT

SPARSITY RECOVERY

3.1 Introduction

Recovering sparse signals and piecewise smooth functions from under-sampled and

noisy data has been a heavily investigated topic over the past decade. Typical algo-

rithms minimize the `1 norm of an approximation of a sparse feature (e.g. wavelets,

gradients, or edges) of the solution so that the reconstructed solution will preserve

sparsity in its corresponding sparse domain. A weighted `1 reconstruction algorithm

was introduced in [21] to reconcile the difference between the “true” sparsity `0 norm

and the surrogate `1. Sparse signal recovery was accomplished by a solving a se-

quence of weighted `1 minimization problems, with the weights iteratively updated

at each step. As was demonstrated there, updating the weights yielded successively

improved estimations of the non-zero coefficient locations, and consequently relaxes

standard sampling rate requirements for sparse signal recovery. An adjustment for the

weight calculation was proposed in [29] resulting in an improvement to the iterative

reweighting algorithm. An adaptively weighted total variation (TV) regularization

algorithm, where the spatially adaptive weights were based on the difference of values

between neighboring pixels, was introduced in [92]. A different weighting technique

was developed in [28] to reduce the staircase effect of TV regularization. An adaptive

function was used along with new parameters to balance the trade off between penal-

izing discontinuities and recovering sharp edges. While the method accomplishes the

goal of allowing smooth transitions without reducing sharp edges, the mathematical
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formulation is challenging and uniqueness is not guaranteed. Further weighted `1

literature can be found at [21, 28, 92, 157, 159, 29] and references therein.

In many inverse problems, it may be possible to acquire multiple measurement

vectors (MMVs) of the unknown signal or image, [52, 31, 91, 33, 46, 47, 3, 120]. MMV

collection is especially useful when trying to recover solutions of an underdetermined

system when the MMVs have the same, but unknown, sparsity structure. Techniques

exploiting this type of commonality, referred to as joint sparsity (JS) methods, can

be developed by extending the commonly used single measurement vector (SMV)

algorithms for sparse solutions, [33]. Additional examples of this can be found in

[87, 145, 142, 31, 155] and references therein. In particular, jointly sparse vectors are

often recovered using the popular `2,1 minimization, [37, 162, 31, 132, 164], which was

thoroughly analyzed in [46, 47]. Conditions for guaranteeing improvements over SMV

were determined for a class of MMV techniques in [46] and moreover, it was shown

in [47] that under mild conditions the probability of not recovering a sparse vector

with high probability (based on a chosen threshold) using `2,1 regularization decays

exponentially with the increase of measurements. Various algorithms are used to im-

plement `2,1 regularization, including the alternating direction method of multipliers

(ADMM), split Bregman, joint-OMP, and “reduce-and-boost”, [100, 144, 162]. An

algorithm is typically chosen to yield the most efficiency for the particular problem

at hand (for example, based on problem complexity). In this chapter we use ADMM,

and note that while other methods may yield faster convergence for our chosen ex-

amples, in general `2,1 regularization techniques are inherently coupled, making them

difficult to parallelize.

While much work has been done on designing weighed `p (specifically `1) re-

construction methods for SMV, and in constructing joint sparsity MMV methods

using the `2,1 norm, there has been less work devoted to improving MMV through

28



weighted `p minimization. Three notable investigations include: (i) [132], where the

SMV weights were adapted from those in [21] to `2,1 minimization for the problem

of multi-channel electrocardiogram signal recovery. Although the technique enhances

the sparseness of the solution and reduce the number of measurements required for

accurate recovery, it requires hand tuning of parameters. (ii) [164], where a weighted

`2,1 minimization algorithm is used for direction of arrival estimation, high resolution

radar imaging and other sparse recovery related problems using random measurement

matrices. The singular value decomposition is used to exploit the relationship between

the signal subspace and the noise subspace for designing the weights. (iii) [52], where

a shape-adaptive jointly sparse classification method for hyperspectral imaging was

developed. We note that all of these developments were problem specific, and not

easily adapted for general sparse signal recovery.

In this chapter we propose using the variance based joint sparsity (VBJS) method

for MMV, introduced in [2]. The VBJS technique exploits the idea that the variance

across jointly sparse MMVs should be sparse in the sparsity domain of the underly-

ing signal or image, an idea first proposed in [38] for the purpose of edge detection

and localization. The weights in [2] used for the weighted `1 regularization term are

essentially reciprocals of this variance (with a threshold built in to ensure no division

by zero), with the idea being that the `1 term should be heavily penalized when the

variance is small, but should not influence the solution as much when the variance is

large. Presumably, the large variance indicates support of the image or signal in the

sparse domain. One of the main advantages of VBJS is that it is easily parallelized.

In particular, it was shown in [2] that VBJS is consistently more computationally

efficient than `2,1 regularization algorithms when using standard black box solvers.

In this chapter we improve on the VBJS algorithm by designing weights that reduce

the parametric dependence on the reconstruction, making it more amenable to a va-

29



riety of other applications not considered in [2]. Specifically, the VBJS can now be

used in situations where some measurement vectors may misrepresent the unknown

function of interest. In contrast, such “rogue” data may wield undue influence on the

reconstruction of piecewise smooth solutions when using the standard `2,1 approach.

The original VBJS approach does not adequately account for false data in the weight

design, so much more parameter tuning would be needed. False data problems appear

in applications including state estimation of electrical power grids, [90], large scale

sensor network estimation, [160], synthetic aperture radar (SAR) automated target

recognition (ATR), [75], and many others, [163, 165]. False data may be purpose-

fully injected into these systems to decrease the performance of automated detection

algorithms. In other situations, misrepresentations of data occur due to human error

or environmental issues effecting the measurements. For example, in SAR ATR it is

often the case that targets are obscured by their surroundings (trees) or by enemies

(meshes placed over the targets). Also, additional parts may be taken off or added to

targets, corrupting measurement data, [75]. As part of our reconstruction algorithm,

we include a numerically efficient comparative measurement of the measurement vec-

tors, which allow us to appropriately disregard rogue data and improve our overall

reconstruction.

Our proposed VBJS technique offers several advantages: (i) Our method is (es-

sentially) non-parametric so that regularization parameters need not be hand tuned;

(ii) We take advantage of the joint sparsity information available in the MMV setup,

thus improving reconstruction accuracy while decreasing sampling rates, independent

of application; (iii) With some sharpness reduction, our weights allow us to use the

`2 norm, which is much more cost efficient; (iv) Our method mitigates the effects of

rogue data. Finally, as noted above, the VBJS algorithm is easily parallelizable, so

even when using the weighted `1 norm, it is much more efficient than when the `2,1
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norm is used.

The rest of this chapter is organized as follows: In Section 3.2 we define joint

sparsity for multi-measurement vectors and provide details for the standard `2,1 reg-

ularization approach used to recover sparse signals. In Section 3.3 we describe the

variance based joint sparsity (VBJS) approach, initially developed in [2], and demon-

strate how weights should be constructed to reduce the impact of false information.

We also propose a technique to choose the “best” solution from the set of possible

solution vectors that can be recovered from the VBJS method, so that we do not

have to compute each vector in the solution space. In Section 3.4 we prove that the

alternating direction method of multipliers (ADMM) can be applied to the weighted

`1 minimization. We also show how the VBJS method can be efficiently computed for

the weighted `2 norm. Section 3.5 provides some numerical results for sparse signal

recovery and one and two dimensional images. Some concluding remarks are given in

Section 3.6.

3.2 Preliminaries

Consider a piecewise smooth function f(x) on [a, b]. We seek to recover f : RN →

RN , where each element of f is given as fi = f(xi), i = 1, ..., N , with

xi = a+ ∆x(i− 1), (3.1)

and ∆x = b−a
N

. We note that xi are chosen to be uniform for simplicity of numerical

experiments and is not required for our algorithm.

Because the underlying function f is piecewise smooth, it is sparse in its corre-

sponding edge domain. Formally we have:

Definition 3.2.1 [31, 36] A vector p ∈ RN is s-sparse for some 1 ≤ s ≤ N if

||p||0 = |supp(p)| ≤ s.
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In our case, p corresponds to the edge vector of f at the set of grid points in (3.1).

Suppose we acquire J data vectors, yj ∈ CM , as

yj = Aj(f) + ηj, j = 1, ..., J. (3.2)

Here Aj : RN → CM is a forward operator (often defined as a square (N = M),

orthogonal matrix for simplicity) and

ηj ∈ CM , j = 1, ..., J, (3.3)

model J Gaussian noise vectors.

Due to the sparsity in the edge domain, `1 regularization provides an effective

means for reconstructing f given any of the J noisy data vectors. Specifically, we

compute the unconstrained optimization problem

f̌ j = argmin
g

{
||Lg||1 +

µ

2
||Ajg − yj||22

}
, j = 1, ..., J, (3.4)

where µ is the `1 regularization parameter. In our experiments we often sample µ from

a uniform distribution for all calculations of f̌ j to simulate the ad-hoc proceedure for

selecting typical regularization parameters. The sparsifying operator, L, is designed

so that the chosen solution is sparse in the edge domain. In this chapter we choose

L to be the mth order polynomial annihilation (PA), discussed in Chapter 2 and in

[5, 4], and note that when m = 1 in (2.5) the method is equivalent to using total

variation (TV). 1 To solve (3.4) we use the traditional alternating direction method

of multipliers (ADMM) algorithm [88, 151, 54] discussed in Chapter 2 and described

in Algorithm 2.
1Although there are subtle differences in the derivations and normalizations, the PA transform

can be thought of as higher order total variation (HOTV). Because part of our investigation discusses
parameter selection, which depends explicitly on ||Lf ||, we will exclusively use the PA transform as
it appears in [4] so as to avoid any confusion. Explicit formulations for the PA transform matrix
can be found in [4] and Chapter 2. We also note that the method can be easily adapted for other
sparsifying transformations.
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As shown in Figure 3.1(left), assuming that the model in (3.2) is correct, any of

the reconstructed f̌ j (which we will refer to as the single measurement vector (SMV)

reconstruction) should adequately approximate the underlying function f or any de-

sired features of it. However, this may be impossible due to undersampling, noise, or

bad information. Intuitively, using the redundant data from part of or all of the avail-

able data sets in (3.4) should lead to a better reconstruction algorithm. Indeed, many

techniques have been developed to recover images from such multiple measurement

vectors (MMV), [52, 31, 91, 33, 46, 47, 3, 120]. In our case the underlying function f

is sparse in the edge domain, and so the collected set of recovered vectors is jointly

sparse in the edge domain. The formal definition of joint sparsity is given by

Definition 3.2.2 We say that

P =

[
p1 p2 · · · pJ

]
∈ RN×J

is s-joint sparse if

||P ||p,0 =

∣∣∣∣∣
J⋃
j=1

supp
(
pj
)∣∣∣∣∣ ≤ s,

where each pj is s-sparse according to Definition 3.2.1.

For the variance based joint sparsity method in Algorithm 3, we also will assume that

supp(p1) ≈ supp(p2) ≈ · · · ≈ supp(pJ), (3.5)

that is, the joint sparsity of the vectors does not greatly exceed the sparsity of each

individual vector.

To exploit the joint sparsity of the system, `2,1 regularization is often applied, [162,

31, 135, 164]. Essentially, each vector is assumed to be sparse in its sparsity domain

(e.g. edge domain), which motivates minimizing the `1 norm of each column. The

“jointness” is accomplished by minimizing the `2 norm of each row (spatial elements).
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The general joint sparsity technique using `2,1 regularization is [135]

f̂ =

{
argmin
z∈RN×J

||Lz||2,1 subject to Az = Y

}
, (3.6)

where L is the sparsifying transform matrix (here the PA transform (2.5) of order

m), Y = [y1 y2 · · · yJ ] ∈ RM×J and A = A1 = · · · = AJ . The solution f̂ =

[f̂ 1 f̂ 2 · · · f̂J ] ∈ RN×J contains estimates for each measurement yj, j = 1, ..., J .

It has been shown, both theoretically and in practice, that (3.6) yields improved

approximations to each reconstruction in (3.4) when there is no misleading/false data,

[31, 132, 164].

Note that (3.6) is typically solved using optimization techniques such as the

ADMM, focal underdetermined system solvers (FOCUSS) and matching pursuit al-

gorithms, [33]. 2 As demonstrated in Figure 3.1(middle), the joint sparsity approach

using `2,1 regularization is effective in cases where the data vectors are somewhat pre-

dictable, that is, when each measurement vector is determined from (3.2), and Aj is

known. However, it is often the case when some of the acquired data do not have

known sources. Worse, the information can be deliberately misleading, so that we

assume we are acquiring yj but in fact a completely different data set is obtained.

We will refer to such a data set as a “rogue” vector. Figure 3.1(right) illustrates that

in these situations, using (3.6) may be heavily influenced by the false measurements.

3 Hence we are motivated to find a technique that is able to discern “good” from

“bad” information in the context of joint sparsity.
2We used the Matlab code provided in [37, 162] when implementing (3.6).
3For this simple example, the false measurements were formed by adding a false data point, with

height sampled from the corresponding distribution, (binary, uniform or Gaussian) to K = 5 of the
data vectors.
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Figure 3.1: Sparse vector of uniformly distributed values on [0, 1] reconstructed us-

ing (left) `1 regularization with a single measurement vector (SMV), (middle) `2,1

regularization (3.6) applied on J = 10 true measurement vectors, and (right) `2,1

regularization (3.6) applied to J = 10 measurement vectors, with 5 containing false

data. In each case N = 256, M = 100 and ||f ||0 = 20 with A having i.i.d. Gaussian

entries and µ = .25 in (3.4). Plotted here is the average of the final 10 joint sparsity

(JS) `2,1 reconstructions.

3.3 Variance Based Joint Sparsity (VBJS)

Minimizing the effect of rogue measurement vectors consists of two parts. First,

we must develop a technique to recognize points in the spatial domain where the

measured data are inconsistent, and ensure that these regions of uncertainty do not

have undue influence on the rest of the approximation. Second, we must have a way

to identify the best reconstruction from the set of J solutions. With regard to the

first, the variance based weighted joint sparsity (VBSJ) algorithm, developed in [2],

can be adapted for the rogue measurement problem. The idea is described below.

We begin by gathering the (processed) measurements from (3.4) into a measure-

ment matrix given by

F̌ =

[
f̌ 1 f̌ 2 · · · f̌J

]
∈ RN×J . (3.7)
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We note that in most applications the initial data sets will come from (3.2), so

it will be necessary to construct f̌ j, j = 1, · · · , J . Techniques other than (3.4) may

be used for this purpose, however, and it might be sufficient to use a more cost

efficient algorithm. Moreover, in some cases only one data vector is acquired, but

is then processed in multiple (i.e. J) ways, with each processing providing different

information. Indeed this was the case for one example discussed in [2], where one

vector of Fourier data was collected but then several edge detection algorithms were

used to construct jump function vectors (e.g. yj in (3.4)). For ease of presentation, in

this chapter we use the traditional interpretation of (3.2) followed by the computation

of (3.4) for a given set of J measurement vectors to obtain (3.7), and leave these other

cases to future work.

Next we define

P =

[
Lf̌ 1 Lf̌ 2 · · · Lf̌J

]
∈ RN×J (3.8)

as the matrix of J vectors approximating some sparse feature of the underlying func-

tion f . For example, here L is the PA transform operator (2.5) so that Lf̌ j is an

approximation of the edges of piecewise smooth f on the set of grid points given in

(3.1). 4 Note that even if f is known explicitly, Lf̌ j will only be approximately zero

in smooth regions, and hence is not truly sparse. However, the behavior of Lf̌ j should

be consistent across all data sets, j = 1, · · · , J , especially in smooth regions where

|Lf̌ j| is small. This behavior should be confirmed in the variance vector v̌ = (v̌i)
N
i=1,

where each component is given by

v̌i =
1

J

J∑
j=1

P2
i,j −

(
1

J

J∑
j=1

Pi,j

)2

, i = 1, ..., N. (3.9)

That is, (3.9) should yield small values in smooth regions when the data measurements

are consistent. Note that supp(v̌) ≈
⋃J
j=1 supp(Lf̌j) and in our experiments we

4Specifically it approximates the jump function [f ](x) = f(x+)−f(x−) on a set of N grid points.

36



Figure 3.2: (top-left) Five measurements of the underlying function in Example 3.5.1,

acquired using (3.4). (bottom-left) Corresponding five sparsity vectors (3.8) with

order m = 3. (top-right) The variance of the sparsity vectors calculated using (3.9).

(bottom-right) The corresponding weights calculated as in (3.12).

consider.

We will exploit (3.9) in determining how the joint sparsity algorithm should be

regularized. Figure 3.2 demonstrates how this may be useful. Five measurement

vectors of the function in Example 3.5.1, where A has i.i.d. entries sampled from a

uniform distribution on [0, 1] and the noise is Gaussian with mean zero and variance

0.1, is shown in the top left. The bottom left displays the corresponding sparsity

vectors, Lf̌ j. Observe that the variance of the sparsity vectors, provided in the top

right, is spatially variant, with the larger values occuring near the jump discontinuities

as well as where more noise is apparent in the data measurements. This suggests that

a spatially variant (weighted) `1 norm might work better than the uniform `2,1 norm
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in regularizing the joint sparsity approximation. Algorithm 3 describes this process.

Algorithm 3 Variance-Based Joint Sparsity algorithm

1: Recover the vectors f̌ j, j = 1, . . . , J, separately using (3.4) to obtain (3.7).

2: Compute the variance of Lf̌ j, j = 1, · · · , J , using (3.9).

3: Use the results from (3.9) to determine the weights for the weighted `p norm,

1 ≤ p ≤ 2, in the joint sparsity reconstruction. In particular, v̌i should be large

when the index i belongs to the support of v̌, while v̌i ≈ 0 otherwise. Hence we

compute a vector of nonnegative weights w = (wi)
N
i=1, 0 ≤ wi ≤ C, C ∈ R based

on this information. In general, wi ≈ 0 when v̌i is large and wi ≈ C when v̌i ≈ 0.

The weights we design for this purpose are provided in (3.12).

4: Determine data vector ŷ ∈ {yj|j = 1, · · · , J}, and corresponding matrix Â that

will be used as the “best” initial vector approximation. This is done according to

(3.15) and (3.16).

5: Solve the weighted `p minimization problem to get the final reconstruction of the

vector f :

ĝ = argmin
g∈RN

{
1

p
||Lg||pp,w +

µ

2
||Âg − ŷ||22,

}
(3.10)

for µ > 0 a constant parameter.

Remark 3.3.1 Observe that in contrast to (3.6), any p ∈ {1, 2} can be used in Step

5 of Algorithm 3. While p = 1 is consistent with compressive sensing techniques, a

spatially variant weighting vector may relax the requirements on p while still achiev-

ing the goal of sparsity. Intuitively, using `1 effectively promotes sparsity because

of the higher penalty placed on small values in the reconstruction of what is pre-

sumably sparse (e.g. edges of piecewise smooth f), as compared to the standard `2

minimization, which imposes a penalty proportional to the square of each value in the

reconstructed edge vector. Employing a (spatially variant) weighted `2 minimization
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designed to more strongly enforce small values in sparse regions should yield the same

desired property for promoting sparsity. Moreover, using || · ||2,w will be much more

efficient numerically, because a closed form gradient of the objective function is avail-

able. A complete characterization of `1 and weighed `2 minimizers can be found in

[36].

3.3.1 Weight Design

In contrast to (3.6), where each grid point in the sparsity domain is equally

weighted in the regularization term, Algorithm 3 uses a spatially variant regulariza-

tion, with the weights (wi)
N
i=1 being inherently linked to (3.9). In particular, because

small variance values strongly suggest joint sparsity in the sparsity domain, the associ-

ated values |Lfi|, where fi ≈ f(xi) of the underlying function and L is the sparsifying

transform operator, should be heavily penalized in the regularization term. On the

other hand, large variance values may indicate that the the corresponding indices

belong to the support of the function (or image) in the sparsity domain. Large vari-

ance values may also indicate unreliable information at that particular spatial grid

point. Hence |Lfi| should be penalized less at those indices when minimizing the

regularization term. Figure 3.2 (bottom right) depicts the weights chosen by (3.12)

to minimize the weighted `p norm in (3.10).

From the discussion above and illustrated in Figure 3.2, we see that the weights

for the regularization term should not depend on how the measurements in (3.4) are

constructed, but rather only the expectation that they be jointly sparse in the same

domain, as defined in Definition 3.2.2. In our examples, we assume that this joint

sparsity occurs in the edge domain. The variance calculated in (3.9) provides a means

of determining the actual joint sparsity, and moreover provides us a way to reduce

the effects of bad data.
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To determine the specific weighting vector w, we begin by defining a weighting

scalar as the average `1 norm across all measurements of the normalized sparsifying

transform of our measurements. This will enable us to scale the weights according

to the magnitude of the values in the sparsity domain, and ultimately reduce the

need for fine tuning regularization parameters in the numerical implementation. In

our investigation we use the PA transformation (2.5) to approximate the edges of

the underlying function or image, so we scale the weights according to the spatially

variant jump height of our solutions. Thus we define

P̃ =

[
P̃1 P̃2 · · · P̃J

]
∈ RN×J

as the normalized PA transform matrix from (3.8), where

P̃i,j =
|Pi,j|

max
i
|Pi,j|

, j = 1, ..., J.

We also define the weighting scalar as

C =
1

J

J∑
j=1

N∑
i=1

P̃i,j. (3.11)

Finally, we construct the weight vector w element-wise as

wi =


C
(

1− vi
maxi vi

)
, i /∈ I

1
C

(
1− vi

maxi vi

)
, i ∈ I

(3.12)

where I consists of the indices i such that

1

J

J∑
j=1

P̃i,j > τ. (3.13)

Here τ is a threshold chosen so that when (3.13) is satisfied, we assume there is a

corresponding edge at xi, and that the index i is part of the support in the sparse

domain of f . Because the jumps are normalized, it is reasonable for τ = O( 1
N

), that
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is, τ is resolution dependent. Because there is noise in the system, we choose τ > 1
N
,

and in our examples τ = .1, and note that if more is known apriori about the size of

the noise, then τ can be chosen accordingly. In general as τ increases, more noise is

assumed to be in the system, which corresponds to a more uniform weighting scheme.

Choosing weights based on information about system noise and nuisance parameters

will be addressed more in future investigations.

Observe that wi ∈ [0, C], i = 1, · · · , N and C > 1. The weighting scalar C defined

in (3.11) allows the regularization to better account for functions that contain multiple

edges with different magnitudes. Specifically, the weights in (3.12) are designed to

scale the penalty of the regularization according to the size of the jump, with the

largest weights being reserved for regions where the function is presumably smooth.

The intuition used for determining the weights formula in (3.12) is illustrated in

Figure 3.2. In this case we have J = 5 measurements for Example 3.5.1. We use the

PA transform in (3.8) with order m = 3, and µ = .25 in (3.4). 5

For comparative purposes, we will also consider weights that were used in [2]

wi =
1

vi + ε
, (3.14)

where ε is a small parameter chosen to avoid dividing by zero. In [2] it was demon-

strated that this weighting strategy was robust in sparse signal recovery (in the noise-

less case) for ε = 10−2.

3.3.2 Determining the Optimal Solution Vector

The traditional `2,1 method that exploits the joint sparsity of J multi-measurement

vectors (MMV) in (3.6) recovers J solution vectors. This is also the case in [2], however
5It was observed in [21] that multiple scales in jump heights can be handled by iteratively re-

defining a weighed `2,1 norm in the MMV case (3.6). This method proved to be computationally
expensive, as the optimization problem must be resolved at each iteration, however.
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Figure 3.3: (left) Five false measurements and five true measurements of Example

3.5.2. The true underlying function is displayed as the bold dashed line. (right) The

corresponding construction of the distance matrix D in (3.15).

we are only interested in one “best” solution, as described in Algorithm 3. Moreover,

we want to avoid using any bad information or rogue vectors as the base of our

solution. Therefore, we choose the final data vector ŷ in Step 4 of Algorithm 3 to be

one whose corresponding measurements are closest to most of the other measurement

vectors in the set of J vectors. Thus we define the distance matrix D with entries

Di,j = ||f̌ i − f̌ j||2, (3.15)

where each f̌ is defined in (3.4). The data vector ŷ = yj
∗ and forward operator

Â = Aj∗ correspond to the j∗th index that solves

j∗ = min
j 6=i
Di,j, i = 1, · · · , J. (3.16)

An example of this process is depicted in Figure 3.3. On the left we see ten mea-

surements of Example 3.5.2 where the first five measurements are false measurements.

Displayed on the right is the matrix D given in (3.15). Assuming that the number

of true measurement vectors J − K is greater than 2, it is reasonable to use (3.16)

to determine the “best” data vector for the final reconstruction. It must also be true

that rogue data vectors are not similar to one another. That is, for all i, j = 1, · · · , K,
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||f̌ i− f̌ j|| > σ where σ > 0 is a chosen distance threshold. The quality of the solution

is clearly dependent on the number of rogue measurements in the collection set. More

analysis is needed to determine the relationship between the ratio of false and true

measurements and the success of Algorithm 3, and will be the subject of future work.

3.4 Efficient Implementation of the VBJS Algorithm

After determining initial solutions, (3.4), the weighting vector, (3.12), and the

most suitable vector for reconstruction given in (3.16), we can now approximate the

solution ĝ to (3.10) in Algorithm 3. When using the weights designed in (3.12), we

eliminate the need to tune the parameter µ to ensure convergence, and thus we set

µ = 1 in (3.10) for our experiments.

For x ∈ RN , the weighted `p norm is defined as

||x||p,w =

(
N∑
i=1

wi|xi|p
)1/p

= ||Wx||p, (3.17)

where W = diag(w) ∈ RN×N . With this definition we can now solve (3.10) using

stardard `p minimization techniques, see e.g. [88, 54, 151, 156].

In two dimensions (x ∈ RN×N), especially as the number of data pointsN increase,

it quickly becomes undesirable to write the weights as a diagonal matrix. That is,

even though “stacking” the columns (noted by the vec function) holds intuitive appeal

for solving (3.10), because W = diag(vec(w)) ∈ RN2×N2 , it would be ideal to not

multiply by this dense matrix.

Fortunately, however, we are able to show that the ADMM algorithm can also be

applied in this case, as will be described below. For this purpose we first define the

weighted `p norm as

||x||pp,w =
N∑
i=1

N∑
j=1

wi,j|xi,j|p, (3.18)

where wi,j are elements of w ∈ RN×N and x ∈ RN×N .
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3.4.1 The ADMM Algorithm for the `1 Case

We now demonstrate how the ADMM can be efficiently applied to solve (3.10)

when p = 1. While the algorithm can be used for either the one- or two-dimensional

case, for computational efficiency, such an approach is desirable for two-dimensional

problems.

To start, we write (3.10) with µ = 1 as the equivalent non-parametric weighted `1

problem

(ĝ, ẑ) =

{
argmin

g,z
||z||1,w +

1

2
||Âg − ŷ||22 subject to Lg = z

}
. (3.19)

Here we assume Â, g, z and ŷ are all in RN×N , and because of the non-differentiability

in the `1,w norm and the non-seprability of L and g we have introduced slack variables

z ∈ RN×N . To solve (3.19), we minimize its corresponding augmented Lagrangian

function

argmin
g,z

{
||z||1,w − νTvec (Lg − z) +

β

2
||Lg − z||22 +

1

2
||Âg − ŷ||22

}
, (3.20)

where ν ∈ RN2 is the Lagrangian multiplier.

Remark 3.4.1 Two parameters, µ from (3.10) and β in (3.20), typically must be

prescribed in ADMM. In (3.19) we observe that we can use µ = 1 because the weighting

of this term is considered in the construction of the weighting vector (3.12). We also

note that although we have not formally analyzed the impact of using the weighted

`1 norm on the overall rate of convergence, our numerical experiments demonstrate

that choosing β = 1 yields reasonably fast convergence. A study of how the weighting

vector affects the convergence rate for different choices of β will be the subject of future

investigations. Thus we see that the ADMM method for VBJS is robust, as no fine

tuning of parameters is needed at the optimization stage.
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The problem is now split into two sub-problems, known as the z-subproblem and the

g-subproblem.

The z-subproblem

To analyze the z-subproblem, we assume that the values of g and ν are known

and fixed and set β = 1 in (3.20), so that

ẑ = argmin
z

{
||z||1,w − νTvec (Lg − z) +

1

2
||Lg − z||22

}
. (3.21)

Lemma 3.4.2 demonstrates that a closed form solution exists in general for the z-

subproblem for any β > 0.

Lemma 3.4.2 For a given β > 0, x, y ∈ RN×N and ν ∈ RN2, the minimizer of

argmin
x

{
||x||1,w − νTvec(y − x) +

β

2
||y − x||22

}
(3.22)

is given by the shrinkage-like formula

x̂ = max

{∣∣∣∣y − ν

β

∣∣∣∣− w

β
, 0

}
sign

(
y − ν

β

)
. (3.23)

Proof 3.4.3 Following the technique described in [88] for the non-weighted, one-

dimensional case, let x ∈ RN×N and wi,j ≥ 0 for all i, j = 1, ..., N . We drop the vec

notation for simplicity.

Define the objective function H : RN×N → RN×N as

H(x) := ||x||1,w − νT (y − x) +
β

2
||y − x||22. (3.24)

To show H(x) is convex, we first observe that for α ∈ (0, 1) and p, q ∈ RN×N , we
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have

||y − αp− (1− α)q||22 −
(
α||y − p||22 + (1− α)||y − q||22

)
= (y − αp− (1− α)q)T (y − αp− (1− α)q)−

(
α(y − p)T (y − p) + (1− α)(y − q)T (y − q)

)
= α(α− 1)

(
pTp− pT q − qTp+ qT q

)
= α(α− 1)||p− q||22

≤ 0.

(3.25)

Applying (3.25) to H yields

H(αp+ (1− α)q)− (αH(p) + (1− α)H(q))

= ||αp+ (1− α)q||1,w − νT (y − (αp+ (1− α)q)) +
β

2
||y − (αp+ (1− α)q)||22

− α||p||1,w − (1− α)||q||1,w + ανT (y − p) + (1− α)νT (y − q)− βα

2
||y − p||22 −

β(1− α)

2
||y − q||22

≤ β

2
||y − (αp+ (1− α)q)||22 −

βα

2
||y − p||22 −

β(1− α)

2
||y − q||22

=
β

2
α(α− 1)||p− q||22

≤ 0.

(3.26)

Therefore H is convex. For p 6= q, H is strictly/strongly convex and thus coercive

[109, 12, 11]. Hence there exists at least one solution x̂ of (3.22), [156].

The subdifferential of f(x) = ||x||1,w is given element-wise as

(∂xf(x))i,j =


sign(xi,j)wi,j, xi,j 6= 0

{h; |h| ≤ wi,j, h ∈ R} , otherwise,
(3.27)

where the origin is required to be included according to the optimality condition for

convex problems. According to (3.27), to minimize (3.24), each component x̂i,j, i, j =
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1, ..., N , must satisfy
sign(x̂i,j)wi,j + β(x̂i,j − yi,j) + νi,j = 0, xi,j 6= 0

|vi,j − βyi,j| ≤ wi,j, otherwise.
(3.28)

If x̂i,j 6= 0, (3.28) yields

wi,j
β

sign(x̂i,j) + x̂i,j = yi,j −
νi,j
β
. (3.29)

Because wi,j/β > 0, (3.29) implies

wi,j
β

+ |x̂i,j| = |yi,j −
νi,j
β
|. (3.30)

Combining (3.29) and (3.30) gives

sign(x̂i,j) =
sign(x̂i,j)|x̂i,j|+ sign(x̂i,j)wi,j/β

|x̂i,j|+ wi,j/β
=
x̂i,j + sign(x̂i,j)wi,j/β

|x̂i,j|+ wi,j/β

=
yi,j − νi,j/β
|yi,j − νi,j/β|

= sign
(
yi,j −

νi,j
β

) (3.31)

Thus, for x̂i,j 6= 0, we have

x̂i,j = |x̂i,j|sign(x̂i,j) =

(
|yi,j −

νi,j
β
| − wi,j

β

)
sign

(
yi,j −

νi,j
β

)
, (3.32)

where we have used (3.30) and (3.31) in the result.

Conversely, we now show that x̂i,j = 0 if and only if

|yi,j −
νi,j
β
| ≤ wi,j

β
. (3.33)

First assume that x̂i,j = 0. Then (3.33) follows from (3.28) because β > 0.

Now assume (3.33) holds for some x̂i,j 6= 0. By (3.28), x̂i,j satisfies (3.30). Hence

|x̂i,j| = |yi,j −
νi,j
β
| − wi,j

β
≤ 0

which only holds for x̂i,j = 0. Hence by contradiction, x̂i,j = 0. Combining (3.33)

with (3.32) yields

x̂i,j = max

{
|yi,j −

νi,j
β
| − wi,j

β
, 0

}
sign

(
yi,j −

νi,j
β

)
.

which is equivalent to (3.23) in matrix form.
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In light of Lemma 3.4.2, the closed form solution to (3.21) is given as

ẑ = max {|Lg − ν| −w, 0} sign (Lg − ν) . (3.34)

The g-subproblem

Once the z-subproblem is solved, we can proceed using standard ADMM. Specif-

ically, z and ν are held fixed, β = 1 in (3.20), and we construct g-subproblem from

(3.20) as

ĝ = argmin
g

J(g) :=

{
1

2
||Lg − z||22 +

1

2
||Âg − ŷ||22 − νTvec (Lg − z)

}
. (3.35)

We solve (3.35) using gradient descent, [88, 151, 54],

gk+1 = gk − αk∇gJ(gk), (3.36)

where

∇gJ(gk) = −νTL+ (L)T (Lg − z) + ÂT (Âg − ŷ). (3.37)

Note that for ease of presentation we have again dropped the vec notation, although

it is of course needed for implementation. The step length is chosen as the Barzilai-

Borwein (BB) step (see [10]),

αk =
sTk sk
sTkuk

, (3.38)

with
sk = gk − gk−1

uk = ∇gJ(gk)−∇gJ(gk−1).

A backtracking algorithm is performed to ensure αk is not chosen to be too large.

This requires checking what is known as the Armijo condition, [156], which guaran-

tees that using (3.38) sufficiently reduces the magnitude of the objective function.

Algorithmically, the Armijo condition is given by

J(gk − α∇gJ(gk)) ≤ J(gk)− δαk∇T
g J(gk)∇gJ(gk), (3.39)
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where δ ∈ (0, 1). If the Armijo condition (3.39) is not satisfied, we backtrack and

decrease the step length according to

αk = ραk,

where ρ ∈ (0, 1) is the backtracking parameter. At the kth iteration of the algorithm,

after the new z and g values are found using (3.34) and (3.35), the Lagrange multiplier

is updated according to

νk+1 = νk − vec(Lgk+1 − zk+1) (3.40)

Algorithm 4 provides the weighted version of the ADMM. The technique involves

alternating solving the z-subproblem (3.21) and g-subproblem (3.35) at each iteration.

Typical parameter choices are ρ = .4 and δ = 10−4, [88, 156].

Algorithm 4 Weighted ADMM
1: Initialize ν0. Determine weights w, starting points g0 and z0 and maximum

number of iterations K.

2: for i = 0 to K do

3: Set 0 < ρ, δ < 1 and tolerance tol.

4: while ||gk+1 − gk|| > tol do

5: Compute zk+1 using (3.34).

6: Set αk using (3.38).

7: while Armijo condition (3.39) unsatisfied do

8: Backtrack: αk = ραk.

9: end while

10: Compute gk+1 using (3.36) and (3.37).

11: end while

12: Update Lagrange multiplier according to (3.40).

13: end for
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3.4.2 Efficient Implementation for the `2 Case

When p = 2 in (3.10) we solve

ĝ = argmin
g

J(g) :=

{
1

2
||Lg||22,w +

1

2
||Âg − ŷ||22

}
(3.41)

using the gradient descent method defined in (3.36). However, some care must be

taken to derive the gradient of the first term of (3.41). According to (3.18), for

L, g,w ∈ RN×N ,

||Lg||22,w =
N∑
i=1

N∑
j=1

wi,j

(
N∑
k=1

Li,kgk,j

)2

. (3.42)

Taking the derivative of (3.42) with respect to an element of g yields

∂

∂gk,j
||Lg||22,w = 2

N∑
i=1

wi,jLi,k

(
N∑
l=1

Li,lgl,j

)
, k, j = 1, ..., N.

Performing this operation over all k, j = 1, ..., N , produces

∇g||Lg||22,w = 2LT [w � (Lg)] , (3.43)

where� denotes the pointwise Hadamard product. Thus, the gradient of the objective

function J in (3.41) is given by

∇gJ(g) = LT [w � (Lg)] + ÂT (Âg − ŷ). (3.44)

Using (3.44) in (3.36) with the BB step length (3.38), we can now solve (3.41) for

ĝ. The weighted `2 gradient descent process is described in Algorithm 5. Typical

parameter choices again are ρ = .4 and δ = 10−4 and a starting step length of α0 = 1

is chosen to initiate the algorithm [156].
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Algorithm 5 Weighted Gradient Descent
1: Initialize starting points g0 and α0, parameters δ, ρ ∈ (0, 1) and tolerance tol.

2: Determine weights w.

3: while ||gk+1 − gk|| > tol do

4: Set αk using (3.38).

5: while Armijo condition (3.39) unsatisfied do

6: Backtrack: αk = ραk.

7: end while

8: Compute gk+1 using (3.36) and (3.44).

9: end while

3.5 Numerical Results

We test the variance based joint sparsity (VBJS) technique in three different situ-

ations and compare our method in Algorithm 4 and 5 to the typical `2,1 minimization

algorithm in (3.6), the SMV case, and the VBJS method with weighted given as

(3.14). In our experiments we employ both `1 and `2 regularization in (3.10) with

µ = 1, demonstrating the accuracy and robustness of our methods in each case. As

was shown in [2], the VBJS method is consistently more cost efficient than `2,1 regu-

larization. Moreover, using weighted `2 regularization is clearly less costly than using

weighted `1.

First we consider recovering sparse signals. A similar experiment was performed

for VBSJ in [2] on noiseless data. In our example the measurement vectors contain

noise, and there are also measurements that contain false information. In this regard

it is important to note that the weights in (3.12) are designed so that no additional

parameters are needed in (3.20). That is, β = 1 in the z-subproblem and regulariza-

tion parameters normally included in the ADMM g-subproblem are not needed [88].
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However, this is not the case when using (3.14), where we will see that regularization

parameters are needed to obtain any meaningful results. As noted previously, to ob-

tain the first measurements in each algorithm, we use (3.4) with µ sampled from a

uniform distribution for each j = 1, · · · , J , thus simulating the ad-hoc procedure for

selecting typical regularization parameters.

For the second experiment we consider two one-dimensional signals that exhibit

sparsity in the edge domain. We apply the VBJS technique for both p = 1 and 2

in the weighted `p regularization, and again compare our method to techniques in

[2] with (3.14). In our third test we reconstruct two-dimensional images with sparse

edges.

3.5.1 Sparse Signal Recovery

We seek to recover the sparse signal f from a set of measurment vectors. This

problem has been widely studied within the context of MMV, [33, 46, 47]. An adap-

tively weighted `1 reconstruction method was developed in [21] for the single mea-

surement vector (SMV) case, and the VBJS method using the weights in (3.14) was

developed for MMV in [2]. In this case each data vector {yj}Jj=1 in (3.2) is acquired

using a measurement matrix A ∈ RN×M where each element of A is sampled inde-

pendently from a zero mean unit variance Gaussian distribution. The corresponding

noise vectors {ηj}Jj=1 are i.i.d. Gaussian with zero mean and unit variance. Of the J

measurements, K contain false information and in some cases are complete misrep-

resentations of the underlying signal. To recover the sparse signal f we used (3.17)

with p = 1 in Algorithm 4. Because the J −K true measurements have overlapping

support, we use the PA transform with order m = 0, that is L = I in the sparsity

regularization term of (3.10).

Figure 3.4 compares the signal recovery results for three sparse signals using the
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Figure 3.4: Sparse signal recovery employing the usual `2,1 joint sparsity method

in (3.6) and our proposed VBJS technique with p = 1. Here there are J = 10

measurements of which K = 5 contain false data. (left) Binary data values. (middle)

Data values sampled from a uniform distribution on [0, 1]. (right) Data values sampled

from a zero-mean unit-variance Gaussian distribution.

VBJS technique with p = 1 (dot-dashed) and the more classical `2,1 JS regulariza-

tion in (3.6), implemented using techniques in [37, 162]. In this case the final `2,1 JS

reconstruction is the pointwise average of the recovered vectors, {f̂ j}Jj=1. In Figure

3.4(left), the signal consists of a sparse number of binary values, while the signals

in Figure 3.4(middle) and (right) contain a sparse number of values sampled from a

uniform distribution on [0, 1] and a Gaussian distribution with zero-mean and unit-

variance, respectively. In each case there are a total of J = 10 measurements vectors

where K = 5 measurement vectors are corrupted with false data. Based on param-

eters used in other studies, [102, 2], we choose N = 256, M = 100 and sparsity

s = ||f ||0 = 15 for all three experiments. As is evident in Figure 3.4, the VBJS

method successfully recovers each of the three sparse signals with limited influence

from the false data. Conversely, the classic `2,1 JS method is indeed influenced by the

bad data. Similar behavior (not reported here) can be observed for different choices

of N , M J , K and s.
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Table 3.1: Relative reconstruction errors (3.45) for the traditional `2,1 JS method and

the VBJS method with p = 1 using the weights defined in (3.12) and (3.14).

False

Data

Binary Uniform Gaussian

JS `2,1 (3.12) (3.14) JS `2,1 (3.12) (3.14) JS `2,1 (3.12) (3.14)

0% .0127 .0104 .0383 .0254 .0244 .0579 .0142 .0153 .0388

20% .1724 .0094 .0288 .1068 .0234 .0594 .1304 .0144 .0314

50% .2961 .0108 .0499 .2943 .0243 .0621 .1249 .0168 .0262

90% .1543 .0083 .0358 .3089 .0196 .0775 .1233 .0128 .0397

Table 4.1 displays the relative error,

E =
||ĝ − f ||2
||f ||2

, (3.45)

for the recovery vector ĝ. In each case we use J = 10 measurements where K,

the number of false data measurements, is based on the given percentage in the

first column. For consistent comparison we use N = 256, M = 100 and sparsity

s = ||f ||0 = 20 in all cases. It is evident that the VBJS technique with p = 1 and

weights in (3.12) yields small error even as the percentage of false data increases.

Conversely, the traditional `2,1 JS method is more susceptible to false data. For

comparison we included results using the weights given in (3.14). We note that to

handle the noise and different jump heights in the problem, when using the weights

in (3.14), we must solve (3.10) by tuning the parameter µ to µ = .1. Regardless, it

is evident that the weights designed in (3.12) outperform the weights in (3.14) in all

cases, and in the former case, no additional parameter tuning is needed.

To further demonstrate the success of our method, at varying levels of sparsity for

different numbers of measurements and false data, we calculate the probability that
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Figure 3.5: Probability of successful recovery of the sparse (left) binary signal, (mid-

dle) uniform signal, and (right) Gaussian signal with J = 10, 20 and 30 measurements,

none of which contain false data.

the sparse signal is successfully recovered. Similar analysis was done in [91, 164, 21,

33, 46, 47]. Specifically, the probability of recovery is calculated over 100 trials at the

specified configuration (J , K, and sparsity level s) with N = 256, M = 100 and no

additive noise. Recovery is deemed a success if ||ĝ − f ||∞ ≤ 5× 10−3, that is, when

the VBJS method can successfully distinguish signals larger than the resolution size,

O( 1
N

).

In Figure 3.5 we see the recovery plots for each of the three signals considered

with J = 10, 20 and 30 measurements, none of which contain false data. In this case,

additional measurements do not improve the already high recovery rates. However,

in Figure 3.6 we see that as the percentage of measurements that are false increases,

it becomes more advantageous to have more measurements. Across top row of Figure

3.6 the percentage of false data increases to 50% while the number of measurements

changes from J = 10, 20 to 30 for each type of sparse vector (binary, uniform, and

Gaussian). Across the bottom row of Figure 3.6 the number of measurements J = 20

remains fixed, while the percentage of false data included increases from 20% to 50%

to 90%. We see that when 50% of the measurements are false, the probability of

recovery remains high for large sparsity values. When the percentage of false data
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Figure 3.6: The probability of recovery of a sparse signal for various combinations of

J , K and ||f ||0. Here N = 256 and M = 100. (left) Binary sparse vectors, (middle)

uniform sparse vectors and (right) Gaussian sparse vectors.

increases to 90%, most probability of recovery values fall below .5.

3.5.2 Sparse Edges in One Dimension

We now consider the reconstruction of two piecewise smooth functions, given by

Example 3.5.1 Define f(x) on [−π, π] as

f(x) =



3
2
, −3π

4
≤ x < −π

2

7
4
− x

2
+ sin

(
x− 1

4

)
, −π

4
≤ x < π

8

11
4
x− 5, 3π

8
≤ x < 3π

4

0, otherwise.
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Example 3.5.2 Define f(x) on [−1, 1] as

f(x) =


cos
(
π
2
x
)
, −1 ≤ x < −1

2

cos
(

3π
2
x
)
, −1

2
≤ x < 1

2

cos
(

7π
2
x
)
, 1

2
≤ x ≤ 1

Each function exhibits sparsity in the jump function domain, that is f is not

sparse, but ||[f ]||0 = s, with s << N , and [f ] = {[f ](xj)}Nj=1 is the corresponding

vector of edges. We consider the proposed weights (3.12) and the weights given by

(3.14) in [2] for the weighted `p reconstructions (3.10) with p = 1 and 2.

For both examples we use the uniform grid in (3.1) with N = 128 points andM =

128 measurements. We acquire J−K data vectors according to (3.2). The acquisition

process for theK rogue vectors, as described below, considers situations where there is

false information about the underlying solution as well as in the measurement matrix.

In both examples we initialize the VBJS algorithm by constructing data vectors f̌ j

for j = 1, ..., J via (3.4) with µ sampled from a uniform distribution on [0, 1]. The

sparsifying transform operator L is chosen to be the polynomial annihilation (PA)

transform matrix of order m = 2 in (2.5).

In Example 3.5.1, the K false data vectors are formed by adding random shifts

at random locations to the initial underlying function f in (3.2). That is, the data

vectors (3.2) are modified such that

yj =


Aj(f̃ j) + ηj, j = 1, ..., K

Aj(f) + ηj, j = K + 1, ..., J,

(3.46)

where each element f̃ ji of f̃ j is given as

f̃ j(xi) =


f(xi) + αj, x ≤ −1 + 2γj

f(xi) + βj, x > 1 + 2γj.
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Here αj and βj are random integers in [−2, 2] for j = 1, ..., K and each γj is i.i.d.

sampled from a uniform distribution on [0, 1]. The forward model Aj in (3.46) is

defined as a square matrix with i.i.d., zero-mean, unit-variance, Gaussian entries for

all j = 1, ..., J , and the additive noise ηj is assumed to be i.i.d. Gaussian with

zero-mean and variance equal to .2.

Figure 3.7: (top-left) J = 10 measurement vectors with K = 5 false data acquired

using (3.4) with (3.46). Weights proposed in (top-middle) (3.12) and (top-right)

(3.14) from [2]. (bottom-left) Corresponding distance matrix D in (3.15). VBJS

reconstructions with p = 1 and p = 2 in (3.10) and weights in (bottom-middle) (3.12)

and (bottom-right) (3.14).

For Example 3.5.2, we choose Aj to be a subsampled discrete Fourier transform

(DFT) matrix for j = 1, ..., K, and the standard DFT matrix for j = K + 1, ..., J , so

that

Aj =


1√
N
PΩjF , j = 1, ..., K

1√
N
F , j = K + 1, ..., J.

(3.47)
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Here F ∈ CN×N is the DFT matrix and PΩj ∈ RN×N is a row selector matrix where

each Ωj ⊆ {1, ..., N} randomly selects and zeros out N/2 rows of F . We choose to

replace 75% of the selected rows with a random vector γ sin(x), where γ is repeatedly

sampled from the normal distribution. In this way, we can simulate K false and J−K

true data vectors according to (3.2) where ηj is chosen as complex Gaussian noise

with zero mean and variance equal to .75 for all j = 1, ..., J .

Figure 3.8: (top-left) J = 10 measurement vectors with K = 5 false data acquired

using (3.4) with (3.47). Weights proposed in (top-middle) (3.12) and (top-right)

(3.14) from [2]. (bottom-left) Corresponding distance matrix D in (3.15). VBJS

reconstructions with p = 1 and p = 2 in (3.10) and weights in (bottom-middle) (3.12)

and (bottom-right) (3.14).

Figures 3.7 and 3.8 display the results of reconstructing Examples 3.5.1 and 3.5.2

using VBJS with weights defined in (3.12) and (3.14) for p = 1 and 2 in (3.10). It is

evident that using our proposed weights yields improved accuracy as well as prevents

the influence of misleading/false data. We repeat these experiments, without adding
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Gaussian noise to the data (ηj = 0 for all j = 1, ..., J), with our proposed weights for

N = 32, 64, 128 and 256 grid points, each time calculating the pointwise error in the

reconstruction. That is, for each ĝ we calculate

log10 |ĝ − f |. (3.48)

The pointwise error plots corresponding to the reconstruction of Examples 3.5.1 and

3.5.2 are then displayed in Figure 3.9(top) and Figure 3.9(bottom), respectively, for

p = 1 and 2 in (3.10). In Figure 3.9, the left two columns were calculated using

our proposed weights (3.12) and the right two columns were calculated using the

weights (3.14) given in [2]. The results shown here are consistent with those displayed

in Figure 3.6. It is also evident that the weights provided by (3.12) yield better

results than those given by (3.14). Finally, we see that the VBJS solutions with

p = 2 also maintain a high level of accuracy, indicating that accurate solutions can

be obtained using the less computationally intensive `2 regularization. For multi-

dimensional problems with many measurement vectors, using `2 instead of `1 would

provide a significant reduction in computational cost.

Table 3.2: Relative reconstruction errors (3.45) for the VBJS method (3.10) with

p = 1 and 2 using the weights defined in (3.12) and (3.14). Here N = 128.

SMV `1 (3.12) `2 (3.12) `1 (3.14) `2 (3.14)

Example 3.5.1 .0844 .0335 .0393 .4173 .1694

Example 3.5.2 .0692 .0536 .0716 .3142 .0959

For further comparison, Table 3.2 displays the relative error (3.45) for each exam-

ple, while Table 3.3 measures the performance at a neighboring grid point to a jump
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Figure 3.9: The pointwise error of the VBJS reconstructions of (top) Example 3.5.1

and (bottom) Example 3.5.2 for N = 32, 64, 128 and 256 with J = 20 measurements

K = 4 of which are false with p = 1 (left,right-middle) and p = 2 (left-middle,right).

In (left,left-middle) we use the weights given in (3.12) and in (right,right-middle) we

use the weights given in (3.14).

discontinuity, given by

|f(x∗)− ĝ(x∗)|.

For the SMV approximation we choose ŷ using (3.16), that is, we consider the best

possible solution. In each case we use J = 10 measurements where K = 5 vectors

contain false infromation. Observe that using the VBJS algorithm with the weights

in (3.12) with either `1 or `2 regularization yields better accuracy than the weights in

(3.14), proposed in [2]. These results occur without any additional parameter tuning,

which is required for both the SMV and VBJS using (3.14). Our method also shows

general improvement over the SMV approximation, (3.4), which does not contain any

false information.
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Table 3.3: Absolute error near a discontinuity for the VBJS method (3.10) with p = 1

and 2 using the weights defined in (3.12) and (3.14). In Example 3.5.1, x∗ = 1.23 and

in Example 3.5.2, x∗ = −.55. Here N = 128.

SMV `1 (3.12) `2 (3.12) `1 (3.14) `2 (3.14)

Example 3.5.1 .1417 .0048 .0285 .3440 .4276

Example 3.5.2 .0131 .0206 .0132 .3738 .1325

3.5.3 Sparse Edges in Two Dimensions

We now consider reconstructing two dimensional images using the VBJS approach.

We note that the original polynomial annihilation edge detection method constructed

in [5] was, by design, multi-dimensional. However, as was discussed in [4] and in Chap-

ter 2 in (2.10), for optimization algorithms using `1 regularization, applying the PA

transform dimension by dimension was both more efficient and more accurate when

on a uniform grid. Therefore, to calculate the weights (3.12) in the two dimensional

case, we first calculate the two dimensional edge map for each j = 1, · · · , J as

E j = Lf̌ j + f̌ jLT .

The columns of each E j, j = 1, · · · , J , are then stacked on top of each other to form

the matrix of J vectors of approximations of some sparse feature of the underlying

image, i.e. the two dimensional analogue of (3.8). Continuing as in one dimension,

the weights are now calculated according to (3.12) and then reshaped into a matrix

W ∈ RN×N . The non-zero entries wi,j of W correspond to the sparse regions of the

image, while the entries are approximately zero whenever an edge is assumed to be

present. Observe that W is not sparse, so the implementation methods developed in

Section 3.4 are critical for numerical efficiency.
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Figure 3.10: (left) Weights calculated using (3.12), where the darker shades indicate

wi,j ≈ 0. (middle-left) Reconstruction of a single measurement vector using (3.15)

and (3.4). (middle-right) VBJS with p = 1. (right) VBJS with p = 2. (top) Example

3.5.3 reconstruction performed with PA transform of order m = 1 in (2.5). (bottom)

Example 3.5.4 reconstruction performed with PA transform of order m = 2 in (2.5).

As in the one dimensional case, we consider two examples:

Example 3.5.3 Define f(x, y) on [−1, 1]2 as

f(x, y) =


15, |x|, |y| ≤ 1

4

20, |x|, |y| > 1
4
,
√
x2 + y2 ≤ 3

4

10, else

Example 3.5.4 Define f(x, y) on [−1, 1]2 as

f(x, y) =


10 cos

(
3π
2

√
x2 + y2

)
,
√
x2 + y2 ≤ 1

2

10 cos
(
π
2

√
x2 + y2

)
,
√
x2 + y2 > 1

2
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Figure 3.11: (top) Results corresponding to Example 3.5.3. (bottom) results corre-

sponding to Example 3.5.4. (left) Cross sections (y = 0) of J = 10 measurement

vectors with K = 5 false data representations. (middle) Cross sections (y = 0) of

VBJS reconstructions for p = 1 and 2 in (3.10) compared to the SMV constructed

using (3.4). (right) Data selection matrices D (3.15).

We sample each function f : RN×N → R on a uniform grid as fi,l = f(xi, yl),

where

xi = −1 +
2

N
(i− 1), yl = −1 +

2

N
(l − 1),

for each i, l = 1, · · · , N . In (3.2), A : RN×N → CN×N is defined to be the normalized,

two dimensional discrete Fourier transform operator so that A∗ = A−1, and ηj is

zero mean complex Gaussian noise with .5 variance for all j = 1, ..., J . As in the one

dimensional case we use (3.4) to construct each f̌ j. Because of the piecewise constant

nature of Example 3.5.3 we apply the PA transform with order m = 1. Similarly,

for Example 3.5.4 we use m = 2. We note that it is possible to use m > 2, but in

this case, because of the noise, the higher order polynomial approximation leads to
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overfitting. For each measurement vector the regularization parameter µ in (3.4) is

sampled from a uniform distribution on [0, 10].

Figure 3.10 displays the result of applying VBJS with p = 1 (middle-right) and

p = 2 (right) to Examples 3.5.3 and 3.5.4. For both examples we use J = 10 mea-

surement vectors where K = 5 falsely represent the underlying function. (The cor-

responding measurement selection matrices (3.15) are shown in Figure 3.11(right).)

Figure 3.10(middle-left) shows the the SMV results on the measurement vector se-

lected by (3.15) calculated using (3.4). It is evident in both examples that the VBJS

technique with either p = 1 or 2 in (3.10) leads to improved visualization over the

standard SMV reconstruction, even when the standard SMV uses the “best” initial-

ization as determined by (3.15). This result is confirmed in Figure 3.11, where we

compare the corresponding one-dimensional cross sections at y = 0.

Figure 3.12 shows the relative error, (3.45), and pointwise error (3.48) at cross

section y = 0, for the reconstructions of Examples 3.5.3 and 3.5.4 using the VBJS

algorithm with both p = 1 and 2. It is evident that when there are no false mea-

surements, for N sufficiently large, no additional measurements (J > 10) are needed

to improve performance. It is also apparent that the results are equally accurate for

p = 1 and p = 2, although using p = 2 is much more efficient.

3.6 Discussion and Conclusions

In this investigation we proposed a modification to the variance based joint spar-

sity technique (VBJS), introduced in [2], in both the weighting vector and in the

choice of reconstruction vector. Our adaptation is especially critical when some data

vectors contain false measurements. We additionally proved that the ADMM algo-

rithm could be successfully used for the weighted `1 case, and moreover, that for

our choice of weights in (3.12), no extra parameter tuning is needed to achieve high
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Figure 3.12: (top) Error in reconstructing Example 3.5.3. (bottom) Error in recon-

structing Example 3.5.4. Relative error of the VBJS reconstructions with (left) p = 1

and (middle-left) p = 2 reconstructions for N = 32, 64, 128, 256 and 512. Pointwise

error at cross section y = 0 of the VBJS reconstructions with (middle-left) p = 1 and

(right) p = 2 reconstructions for N = 32, 64, 128 and 256.

accuracy and fast convergence. Hence our method is robust and suitable to a wide

range of problems. We also presented a corresponding gradient descent method for

the weighted `2 case.

Our numerical results demonstrate that the VBJS method with the weights de-

signed in (3.12) yields improved accuracy and robustness over the single measurement

vector case, the classical `2,1 JS method, and the original VBJS method proposed in

[2]. By including an optimal data vector selection step, we are able to obtain high

accuracy and good sparse signal recovery even when a subset of the given measure-

ment data misrepresents the underlying function. Furthermore, using the weighted

`2 norm also yields good results and is much more cost effective than the weighted `1

reconstructions.

In future investigations we will conduct a thorough convergence analysis of the

VBJS method, in particular to establish rigorous results for the weighted `2 case.
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We will also parallelize our algorithm so that we may test it on synthetic aperture

radar automatic target recognition problems, where current algorithms fail when ob-

structions are added to (or taken out of) imaging scenes. Because our method is

non-parametric, autonomy will be maintained. This framework also lends itself to

data fusion problems, where measurements of a scene are obtained through multiple

imaging techniques and must be combined to yield optimal results. Finally, the VBJS

algorithm can potentially be used in numerical partial differential equation solvers,

in particular to develop predictor-corrector methods for equations that exhibit singu-

larities or for which shock discontinuities evolve.
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Chapter 4

USING REGULARIZATION TO IMPROVE NUMERICAL PARTIAL

DIFFERENTIAL EQUATION SOLVERS

4.1 Introduction

This chapter describes work that was published in [123] in The Journal of Scientific

Computing.

Hyperbolic systems of partial differential equations (PDEs) model a variety of

phenomena in fields such as gas dynamics, acoustics, elastodynamics, optics and

geophysics, [85]. Solutions to hyperbolic PDEs often contain discontinuities such

as shock waves and fronts, which can develop in finite time even when the initial

conditions are smooth. Although numerical algorithms for solving hyperbolic PDEs

have been broadly investigated, [40, 67, 86, 85, 84, 136, 137, 138, 139], the presence

of shock discontinuities still causes complications in the solutions. For example, high-

order methods must include viscosity or slope limiters of some kind in order to avoid

oscillations that lead to instabilities. On the flip side, too much viscosity yields a

loss of resolution near shock discontinuities. Clever upwinding algorithms can reduce

the amount of dissipation and still retain sharp features in the solution, but can

be more difficult and computationally intensive to implement. Finally, the stability

condition for non-linear PDEs is often more stringent, making long term solutions

more computationally expensive, [86, 85, 84].

A hybrid, spatially-adaptive, weighted, essentially non-oscillatory (WENO) scheme

was developed in [40]. With this technique, the spatial scheme is updated based on

the given spatial location and the dynamics of the system at a given time. At each
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iteration of the algorithm, the shock is detected using various shock detection algo-

rithms. The domain is then divided into non-smooth and smooth sub-domains, where

appropriate schemes are then used to approximate the solution in each sub-domain

The method is non-linear and also relies on accurate shock detection. In [139] the

spectral viscosity (SV) method was adapted to include a step that locates the region

containing the shock location. By doing so, less viscosity is enforced in the smooth re-

gions of the solution. High order post-processing, which typically requires knowledge

of each shock location, is required to recover spectral accuracy from the SV solution,

[59, 130].

One of the main difficulties with the approaches discussed above is their reliance on

detecting discontinuities. Mis-identification leads either to instability, when a shock

goes undetected, or to unnecessary dissipation, when a shock is determined to exist

in smooth regions. Typically, the algorithms are also computationally intensive, and

often require small time steps to satisfy the CFL stability conditions.

The use of `1 regularization methods to promote sparsity is frequently encoun-

tered in imaging and signal processing applications, but they are still of limited use

in solving PDEs. Sparse dynamics for hyperbolic PDEs with solutions exhibiting

behaviors on multiple spatial scales was investigated in [125], where it was proposed

to include the constraint that the approximate solution resides on a sparse subspace

of a basis. However, solutions with singularities in the physical domain were not con-

sidered. In particular, the solutions were such that they exhibited high frequencies

on a small spatial scale so that they had sparse representation when projected onto

a Fourier basis. Moreover, the algorithm consists of advancing the PDE forward in

time and then projecting the updated solution onto a sparse subset. This requires

additional transformations between spatial and coefficient domains at each iteration,

thereby adding considerable computational complexity. In [67], a method was pro-
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posed to approximate solutions to viscous conservation laws. The method utilizes

sparse and low-rank decompositions for which sharp-contrast features are separated

from smooth, low-energy behaviors. While higher accuracy is achieved, the tech-

nique relies on knowledge of the sharp-contrast feature locations, which is not always

practical.

An `1 minimization technique was developed in [79, 80] to approximate the so-

lutions of steady-state conservation laws in one and two dimensions, respectively.

In particular, the finite volume approximation of the corresponding non-singularly

perturbed problem was written as an overdetermined system and then solved by min-

imizing the `1 norm of the system residual. The minimization problem had a closed

form explicit solution for each test problem chosen. While both linear and non-linear

steady state problems were considered, the method did not include time integration,

and it is not apparent how such techniques could be adapted to time dependent

problems when `1 solutions are not explicitly available.

Finally, an `1 based finite element approximation method for first order partial

differential equations that converge to the corresponding viscosity solutions was de-

veloped in [61]. In particular, in the case of the linear transport equation, the `1

minimizer selects the upwind solution. The method only considers stationary prob-

lems, with the justification that the solution represents a snapshot in time. However,

this assumption is not valid when discontinuities are introduced. Indeed, while some

test problems had initial conditions with discontinuities, shocks were not considered

in any of the methods provided in [79, 80, 61].

In this thesis we offer an alternative approach that incorporates an `1 regular-

ization term directly into a time dependent PDE solver. Our method yields some

distinct advantages. First, because we account for the sparsity of the singularities in

the physical domain as part of the PDE solver, we do not need to explicitly locate any
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shock discontinuities or subdivide the domain. Second, because we use the polynomial

annihilation (PA) operator (discussed in Section 2.2) as our `1 regularization term,

our method is high-order [4, 5, 153]. We note that using TV would recover piecewise

constant solutions; that is, it yields first order approximations. Finally, our numerical

results demonstrate that our method maintains stability even when the time step is

larger than normally dictated by the CFL condition. Therefore, it is efficient when

fast optimization algorithms are employed.

The rest of this chapter is organized as follows. In Section 4.2 we describe how

a given PDE solver can be enhanced using the PA operator (2.5) in the `1 regular-

ization term. While the PDE solver can take on a variety of forms, we use standard

finite-difference schemes and pseudo-spectral methods to demonstrate our results.

To ensure efficiency, we then propose an alternating direction method of multipliers

(ADMM) algorithm for solving the resulting convex optimization problem in Section

4.3. We present our numerical results in Section 4.4. Examples of hyperbolic PDEs

include Burgers and Euler’s equations. In Chapter 5 we also test our method on a

two dimensional multiplicative noise model, which is often used to reduce speckle in

images. In all cases we are better able to resolve functions and images with disconti-

nuities without explicit knowledge of the jump locations.

4.2 Using `1 Regularization in PDE Solvers

Consider the one-dimensional non-linear conservation law of the form

ut(x, t) + f(u(x, t))x = 0 (4.1)

on a bounded domain, Ω. Here, f : Ω → R is the flux function and u : Ω → R is

a conserved quantity with appropriate initial and boundary conditions. We will use

(4.1) as a prototype to develop our new `1 regularization PDE solver. We seek an
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approximation Un
j ∈ RN to the solution unj := u(xj, tn) of (4.1) given by

Un+1
j = Un

j −
∆t

∆x

(
F n
j+1/2 − F n

j−1/2

)
, j = 0, ..., N − 1, (4.2)

where F n
j+1/2 is an approximation of the average flux along x = xj+1/2. That is, in

reference to (4.1),

F n
j+1/2 ≈

1

∆t

∫ tn+1

tn

f
(
u
(
xj+1/2, t

))
dt. (4.3)

and ∆x and ∆t are the appropriate grid size and time step size, respectively. We note

that our technique does not require a uniform grid, as the PA operator (2.5) can be

formulated for any set of data points. For our purposes, we will write (4.2) as

Un+1 = D (F n, Un) =: bn, (4.4)

where Un+1 represents the vector of approximations Un+1
j at time tn+1, F n represents

the vector of approximations F n
j+1/2 at time tn for j = 0, ..., N − 1, and D is the

operator representing the chosen numerical method. Observe that bn is simply a

vector of values explicitly calculated at time tn which will be incorporated into the

data fidelity term. We consider only explicit schemes, because an implicit scheme

may lead to non-convexities in the objective function. This will be explored more in

future research.

As noted previously, one of the main challenges in solving (4.1) is balancing the

amount of viscosity, introduced for stability purposes, with maintaining desirable high

resolution properties, especially near shocks. This is particularly difficult when the

shock locations are unknown. Applying the techniques described in Section 2.1, we

can now adapt (4.2) to include an `1 regularization term, reflecting that the jump

discontinuities in the solution of (4.1) are sparse. Specifically, our new algorithm is

given by

Un+1 = argmin
V

{
||LmV ||1 +

λ

2
||V − bn||22

}
, (4.5)
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which is analogous to the convex optimization problem given in (2.3). Observe that

minimizing ||Un+1−bn||22 obtains the best solution in the least squares sense, but does

not adequately capture the shocks that may appear in (4.1). However, by augmenting

(4.4) with the PA transform `1 regularization term, we encourage the solution Un+1

to have sparse representation jump function domain. Consequently, we obtain a

stable solution without introducing too much artificial viscosity, and thus are able to

maintain high resolution near shock locations. Moreover, by using m > 1 in (2.5), we

are able to see greater variation in smooth regions. The fidelity term in (4.5) contains

the numerical method chosen to solve (4.1), and the `1 regularization term includes

the PA transform of order m. The parameter λ > 0 determines the influence of

the sparsity constraint upon the fidelity term, and its tuning is typically application-

dependent. Our numerical results demonstrate that (4.5) is robust for a range of λ,

but more study is needed to verify its impact on stability.

4.2.1 `1 Enhancement for Finite Difference Methods

We first demonstrate our technique using the second order Lax Wendroff (LW)

scheme for (4.1) in the spatial domain x ∈ [a, b]. Assume we are given grid points

xj = a+ j∆x, j = 0, ..., N − 1, ∆x =
b− a
N

,

and define

U
n+ 1

2

j+ 1
2

=
1

2

(
Un
j + Un

j+1

)
− ∆t

2∆x

(
f(Un

j+1)− f(Un
j )
)

U
n+ 1

2

j− 1
2

=
1

2

(
Un
j−1 + Un

j

)
− ∆t

2∆x

(
f(Un

j )− f(Un
j−1)

)
.

The LW scheme is then given by

Un+1
j = Un

j −
∆t

∆x

[
f
(
U
n+ 1

2

j+ 1
2

)
− f

(
U
n+ 1

2

j− 1
2

)]
︸ ︷︷ ︸

D(Fn+1/2)

. (4.6)
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It is well known that using (4.6) to solve (4.1) results in unwanted oscillations behind

shock locations and may also lead to instability, [84, 85]. To apply `1 enhancement,

we define

bn = Un − ∆t

∆x
D(F n+1/2), (4.7)

and insert it directly into (4.5). We will refer to this particular combination as the

`1 enhanced LW method, and note that while we only employ LW in our numerical

examples, the `1 enhancement can be applied to any finite difference method that can

be written in the form (4.4).

In general, (4.6) is stable for

∆t ≤ ∆x

|ζ|max

,

where |ζ|max is the maximum characteristic speed in magnitude. However, the LW

method yields significant dissipation, leading to a loss of shock information at each

time step. Thus, as will be seen in our results, it is beneficial to consider high-order

methods which are better at resolving shocks. Of course, in this case stability becomes

a concern as we discuss in the next section.

4.2.2 `1 Enhancement for Spectral Methods

Spectral methods provide highly accurate approximations for sufficiently smooth

functions u : [a, b] → R. When u contains discontinuities, the resulting Gibbs phe-

nomenon leads to O(1) oscillations in neighborhoods of discontinuities and first order

accuracy in smooth regions. The method becomes unstable as a result of non-linear

interactions within the PDE. Filtering or additional viscosity is often introduced to

mitigate this problem. However, too much dissipation is undesirable as the shocks

are “smeared over” and information is lost. Methods such as (super) spectral vis-

cosity (SV), [137, 138], were introduced to apply minimal amounts of diffusion near
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shocks, and in [139] some attempt was made to localize the effects of dissipation even

further by determining the discontinuous regions as time evolved. The SV methods

are computationally expensive, as they amount to adding high-order viscosity in the

underlying conservation law. Nevertheless, they offer an alternative to standard filter-

ing. In Section 4.4 we demonstrate that using `1 regularization improves the accuracy

of standard filtering and vanishing viscosity methods. 1

We first consider the Fourier pseudo-spectral (PS) approximation of u : [−π, π]→

R given by [66, 22]

PNu(x, t) =

N/2−1∑
k=−N/2

ũk(t)e
ikx, ũk(t) =

N−1∑
j=0

u(xj, t)e
−ikxj , (4.8)

with xj = −π+ j∆x, and ∆x = 2π
N
. The pseudo-spectral (PS) approximation of (4.1)

takes the form

(uN)t + (PNf(uN))x = 0, (4.9)

with uN denoting the numerical solution. As noted previously, even when given a

smooth initial condition, the solution to (4.1) may develop singularities. Due to the

non-linear interaction, the resulting Gibbs phenomenon will yield instabilities within

finite time, [136].

Let us now define

bn = {G(Un)−∆t

N/2−1∑
k=−N/2

ikf̃k(tn)eikxj , j = 0, · · · , N − 1}, (4.10)

where

f̃k(t) =
N−1∑
j=0

f (uN(xj, t)) e
−ikxj (4.11)

and G(Un) represents a linear time-stepping scheme, e.g. Runge Kutta. All of our

numerical examples (except Lax-Wendroff and denoising) use fourth order Runge
1We also applied `1 enhancement to the spectral viscosity method for the Fourier and Chebyshev

cases. Both resulted in improved accuracy that essentially mirrored the approximations displayed
in Figures 4.4 and 4.10. Hence they are not reported here.
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Kutta. The `1 enhanced pseudo-spectral method is now constructed by substituting

bn into the fidelity term of (4.5) and using (2.5) to enforce sparsity in the jump

discontinuity domain.

A small amount of viscosity is often introduced in the numerical solver to re-

duce oscillations and overshoots resulting from the Gibbs phenomenon, [66, 22]. The

approximation of (4.1) takes the form

(uN)t + (PNf(uN))x = ε(uN)xx, (4.12)

where ε > 0 and uN denotes the numerical solution. Following the terminology in

[66, 22], we refer to (4.12) as the vanishing viscosity (VV) method. To incorporate `1

regularization into (4.12), we define

bn = {G(Un)−∆t

N/2−1∑
k=−N/2

ikf̃k(tn)eikxj + ε∆t

N/2−1∑
k=−N/2

k2ũk(t)e
ikx, j = 0, ..., N − 1}

(4.13)

with f̃k(t) defined in (4.11) and ũk(t) defined in (4.8). The `1 enhanced VV method is

constructed by inserting (4.13) into the (4.5). We note that (4.9) and (4.12) could have

been written in collocation form, and subsequently the corresponding `1 enhanced

collocation method. However, applying the FFT is sufficiently efficient in the given

form.

Filtering also helps to reduce oscillations and improve stability, [66]. In our ex-

periments, we applied an exponential filter (EF) to the solution after each time step.

Enhancement with `1 regularization is straightforward.

Because most PDEs do not admit periodic solutions, we also consider the Cheby-

shev collocation method. In this case we modify the interval to [−1, 1] and define the

Chebyshev grid points as

yj = − cos

(
πj

N

)
, j = 0, ..., N. (4.14)
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The Chebyshev approximation of u(x, t) is [66, 22]

PNu(x, t) =
N∑
k=0

ũk(t)Tk(x), ũk(t) =
1

γ̃k

N∑
j=0

u(xj)Tk(xj)wj, (4.15)

where the Chebyshev polynomials are

Tk(x) = cos(k arccos(x)), (4.16)

and the weights and normalizing factors are given respectively as

wj =


π

2N
j = 0, N

π
N

j = 1, ..., N − 1

, γ̃k =


π k = 0, N

π
2

k = 1, ..., N − 1

.

To improve computational efficiency, we map the Chebyshev points according to [78]

2 given by

xj =
2

απ
arcsin (βyj) , j = 0, ..., N, (4.17)

where we have chosen parameters

α = 1 +
2

Nπ
log(10−5), β = sin

(απ
2

)
. (4.18)

We note that no attempt was made to optimize the mapping parameters. The Cheby-

shev approximation of (4.1) takes the form

(uN)t +D(PNf(uN)) = 0, (4.19)

with uN denoting the numerical solution and D denoting the Chebyshev differentia-

tion matrix. Each entry in D is

D(i, j) =
1

Ncj

N∑
k=0

Tk(xj)T
′
k(xi)

ck
, (4.20)

2With a small decrease in accuracy, the mapped Chebyshev method allows the time step to
increase to O( 1

N ), [78].
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where cj = 1 for 1 ≤ j ≤ N − 1 and c0 = cN = 2. 3 In our experiments, we used the

software described in [42] to construct the Chebyshev differentiation matrix (4.20).

To implement the sparsity enforcing PDE solver we first define

bn = {G(Un)−∆tD(PNf
n)}, (4.21)

where

PNf
n = {f(uN(xj, tn)), j = 0, · · · , N}

so that

D (PNf(uN)) ≈ D(PNf
n).

Here again G(Un) represents an appropriate time stepping method. Inserting (4.21)

into (4.5) with the PA transform operator (2.5) yields the `1 enhanced Chebyshev

method. Boundary conditions are implemented at the end of each time step. When

the enhancement is not implemented, we must apply an exponential filter of order

p = 16 to maintain stability, [66].

4.3 ADMM for Regularized PDE Solvers

To minimize (4.5) for the optimial solution to the PDE at each time step, we

modify the ADMM algorithm [88, 54] developed in Chapter 2. This is accomplished

by formulating an equivalent problem

(Un+1, ĝ) =

{
argmin

V,g
||g||1 +

µ

2
||V − bn||22 subject to LmV = g

}
, (4.22)

where we have introduced the slack variable g ∈ RN due to the non-seprability of

Lm and V in the non-differentiable `1 norm. To approximate (4.22), we introduce
3The explicit matrix entries for (4.20) for (4.14) can be found in [22, 66]. In our examples, we

use the mapped Chebyshev points, [78], so the derivative matrix depends on the chosen grid points
xj .
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the Lagrangian multiplier σ ∈ RN , assume σ is fixed, and solve the unconstrained

minimization problem given by

argmin
V,g

J(V, g, σ) (4.23)

where

J(V, g, σ) := ||g||1 +
µ

2
||V − bn||22 +

β

2
||LmV − g||22 − 〈LmV − g, σ〉. (4.24)

Here µ ∈ R is a non-negative regularization parameter and β ∈ R is a penalty

parameter that effects the convergence rate of the ADMM algorithm. In particular, if

the Lagrangian multipliers are updated a sufficient number of times, then the solution

to (4.23) will converge to the solution of the constrained problem (4.22). The solution

is approximated by alternating between minimizations of V and g.

As in Chapter 2, given the current value of Vk and the multiplier σk, the optimal

g can be exactly determined using the shrinkage-like formula, [88, 55]:

gk+1 = max

(∣∣∣∣LmVk − σk
β

∣∣∣∣− 1

β
, 0

)
sign

(
LmVk −

σk
β

)
. (4.25)

This is analogous to (2.44). The gradient descent method (2.49) is used to find the

minimum over V as

Vk+1 = Vk − α∇V J(V, gk+1, σk)|Vk , (4.26)

where the gradient of J(V, gk+1, σk) with respect to V is given by

∇V J(V, gk+1, σk) = µ(V − bn) + β (Lm)∗ (LmV − gk+1)− (Lm)∗ σk, (4.27)

and the step size α is chosen as in (5.62) to give sufficient descent in the gradient

direction. The Lagrange multiplier σ is updated after a sufficient number of updates

on g and V as

σk+1 = σk − β(LmVk+1 − gk+1). (4.28)
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At the final iteration of the ADMM algorithm we set Un+1 = Vk+1. Algorithm 6

describes the general ADMM procedure for the PDE solution approximation problem

(4.5).

Algorithm 6 ADMM as a Numerical PDE Solver
1: Determine parameters µ, β and tol.

2: Initialize V0 = Un, g0 and σ0.

3: for k = 0 to K do

4: while ||Vk+1 − Vk|| > tol do

5: Minimize J for gk+1 according to (4.25).

6: Minimize J for Vk+1 according to (4.26) and (4.27).

7: end while

8: Update Lagrange multiplier according to (4.28).

9: end for

10: Set Un+1 = Vk+1.

4.4 Numerical Results

We are now ready to demonstrate our `1 enhanced numerical solver, (4.5), by

employing Algorithm 6, for Burgers’ and Euler’s equations. Our results show that

we are able to resolve solutions without explicit knowledge of shock locations. We are

also able to relax the usual CFL conditions so that our method is cost efficient.

In each case we will compare our new method to standard techniques based on

the log of the pointwise error

Elog(uN(x, t)) = log10 |uN(x, t)− u(x, t)| (4.29)

where uN(x, t) is the numerical approximation to the true solution u(x, t) at the final
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time step. To demonstrate the stability gained when using (4.5), we define

∆t = αmin |xj+1 − xj|, j = 0, ..., N − 1, (4.30)

so that the step size is increased with α. We then measure the error of the solution

at a grid point neighboring a discontinuity. Hence we are able to determine the

value of α for which each method becomes unstable. Our results show that stability

is maintained for larger values of α (and correspondingly ∆t) when using the `1

enhanced PDE solver as compared to traditional solvers.

As a final example, we solve an image denoising problem, demonstrating that the

`1 enhanced PDE solver may be used in multiple dimensions, again without explicit

knowledge of the jump discontinuities. The results of this two-dimensional example

can be found in Chapter 5.

4.4.1 Burgers’ Equation

Let u : (−π, π)→ R be the solution to
ut +

(
1
2
u2
)
x

= 0 x ∈ (−π, π), t > 0

u0(x) = 1 + 1
2

sin(x) x ∈ (−π, π), t = 0

u(−π, t) = u(π, t) t > 0

(4.31)

A shock develops in the solution to (4.31) when the wave breaks at time

tb = − 1

minx∈[−π,π] u′0(x)
= 2,

after which it will continue to re-form at each time step and propagate throughout

the domain. In our simulations we advance our solutions to time t = π so that the

shock will be fully developed. The exact solution for this case is calculated using

characteristic tracing, as is done in [139].
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Figure 4.1: Approximation of the solution to (4.31) for N = 16, 32, 64 and 128 with

∆t = ∆x
2

for final time t = π. (top-left) LW (top-right) `1 enhanced LW method.

Here we used the PA transform with m = 2 and λ = .55. Pointwise errors given in

logarithmic scale for (bottom-left) the LW and (bottom-right) the `1 enhanced LW

methods.

Figure 4.1 (top-left) and (top-right) compare the LW scheme solution to (4.31)

with and without `1 regularization. Here we choose m = 2 for the PA transform and

λ = .55 in (4.5). The pointwise errors are shown in Figure 4.1 (bottom-left) and

(bottom-right). In both cases the time step is chosen as ∆t = ∆x
2

to ensure stability.

As is apparent in Figure 4.1, augmenting the LW method with `1 regularization

improves the accuracy near the shock locations. Away from the shock locations the
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Figure 4.2: Approximation of the solution to (4.31) for N = 16, 32, 64 and 128 with

∆t = ∆x
2

for final time t = π. (top-left) PS (top-right) `1 enhanced PS method.

Here we used the PA transform with m = 2 and λ = .22. Pointwise errors given

in logarithmic scale for (bottom-left) the PS and (bottom-right) the `1 enhanced PS

methods.

accuracy is dictated by the LW approximation.

Figure 4.2 demonstrates that by enhancing the Fourier pseudo-spectral (PS) method

with `1 regularization, we are able to achieve accurate and stable results. As men-

tioned previously, the fourth order Runge-Kutta time stepping method was used for

both the Fourier and Chebyshev cases.

Figure 4.3 compares the approximation to (4.31) using VV (4.12) with and without
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Figure 4.3: Approximation of the solution to (4.31) for N = 16, 32, 64 and 128 with

∆t = ∆x
2

and ε = O( 1
N2 ) for final time t = π. (top-left) VV (top-right) VV with `1

regularization. Here we used the PA transform with m = 2 and λ = .12. Pointwise

errors given in logarithmic scale for (bottom-left) VV and (bottom-right) VV with `1

regularization.

`1 regularization, for which we chose PA transform order m = 2 and regularization

parameter λ = .12. Due to the numerical dissipation present in (4.12), the `1 en-

hancement does not appear to significantly improve the results.

The solutions to (4.31) using the pseudo-spectral Fourier method with a tenth

order exponential filter (EF), [66], with and without `1 enhancement are shown in

Figure 4.4. Here we used the PA transform with m = 2 and λ = .22 in (4.5). As
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Figure 4.4: Approximation of the solution to (4.31) for N = 16, 32, 64 and 128 with

∆t = ∆x
2

for final time t = π. (top-left) EF (top-right) EF with `1 regularization.

Here we used the PA transform with m = 2 and λ = .22. Pointwise errors given in

logarithmic scale for (bottom-left) EF and (bottom-right) EF with `1 regularization.

expected, filtering improves the accuracy away from the jump discontinuities, but the

`1 enhancement dramatically reduces the oscillations and overshoot.

Note that no post-processing was applied to any of the `1 enhancement approx-

imations. It has been shown that spectral reprojection, [59], improves the accuracy

in smooth regions of the spectral viscosity method, [130]. However, this requires a

priori knowledge of jump discontinuity locations. While the task is manageable in

one dimension, it becomes increasingly difficult in multi-dimensions. In future inves-
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tigations we will use the methods proposed in [134, 4] to post-process the `1 enhanced

solutions. Indeed, Figures 4.1-4.4 demonstrate that in all cases the `1 enhancement

improves resolution and reduces oscillations near shocks. Although the enhancement

does not have significant impact on the vanishing viscosity results, it is interesting to

note that using `1 enhancement directly on the pseudo-spectral method without filter-

ing yields the best approximation. This is also the most cost efficient choice, and it

does not require additional derivative approximations or additional parameter inputs,

such as amount of viscosity.

Discussion on accuracy

Table 4.1 provides a complete comparison of the accuracy of approximating the

solution to (4.31) with each method before the shock has formed (at a final time

T = 1.5). This accuracy comparison is also reflected in Figure 4.5.

Figure 4.5: ||u(x, 1.5) − uN(x, 1.5)||22 calculated for each method as the spatial grid

is refined from N = 50 to N = 300. All other parameters remain consistent with

previous experiments.

To estimate the effective order of accuracy, we consider different grid resolutions

N(k), k = 0, · · · , K (see Table 4.2 left-most column). Then for each N(k) we define
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Table 4.1: Comparison of ||u(x, 1.5)− uN(x, 1.5)||22 for each method.

N LW LW + `1 PS PS + `1

50 5.18E-02 5.19E-02 5.21E-04 1.38E-04

100 7.47E-03 7.47E-03 2.13E-05 8.71E-06

150 2.14E-03 2.14E-03 1.24E-06 7.38E-07

200 9.71E-04 9.71E-04 1.01E-07 8.63E-08

250 5.49E-04 5.49E-04 1.45E-08 1.50E-08

300 2.32E-04 2.32E-04 3.69E-09 3.88E-09

N VV VV + `1 EF EF + `1

50 4.31E-04 4.29E-04 7.44E-04 7.46E-04

100 9.63E-05 9.63E-05 1.36E-04 1.36E-04

150 4.23E-05 4.23E-05 2.86E-05 2.86E-05

200 2.37E-05 2.37E-05 6.33E-06 6.34E-06

250 1.51E-05 1.51E-05 1.48E-06 1.48E-06

300 1.05E-05 1.05E-05 3.65E-07 3.66E-07

a corresponding ∆(N(k)) = max |xj+1 − xj|, j = 1, · · · , N(k), and compute

p(N(k + 1)) ≈ log

(
A(N(k + 1))

A(N(k))

)
/ log

(
∆(N(k + 1))

∆(N(k))

)
, (4.32)

where A(N(k)) = ||u(x, T )− uN(k)(x, T )||22. Table 4.2 provides these results for T =

1.5 and K = 5. From this analysis, we see that before shocks are formed, the `1

enhancement retains the accuracy properties of the non regularized solution.

Discussion on stability

We now assess the stability properties of our method, which are displayed in
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Table 4.2: Order of accuracy p for each method given by (4.32).

N LW LW + `1 PS PS + `1

50 - - - -

100 1.7788 1.7789 4.6126 3.9895

150 1.9301 1.9301 7.0198 6.0851

200 1.9743 1.9743 8.7084 7.4635

250 2.2400 1.2400 8.7039 7.8380

300 1.9485 1.9485 7.5057 7.4120

N VV VV + `1 EF EF + `1

50 - - - -

100 2.1630 2.1566 2.4497 2.4515

150 2.0278 2.0278 3.8479 3.8500

200 2.0128 2.0128 5.2422 5.2430

250 2.0073 2.0073 6.5215 6.5214

300 2.0047 2.0047 7.6667 7.6651

Figure 4.6. Here we consider four different numerical solvers with and without the `1

enhancement for a grid size of N = 128. For each solution, for various choices of α

in (4.30), we calculate the error at location x = −0.2454, which is four grid points

behind the shock at time t = π. Observe that the `1 enhancement yields better

accuracy for larger values of ∆t than the standard solvers. Figure 4.6 also displays

the final `1 enhanced solutions for α = 2, so as to show that it is possible to maintain

accuracy and stability for suitable time stepping constraints when using a high order

method in the fidelity term of (4.5).
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Figure 4.6: (left) Stability analysis results. (right) The `1 enhanced solutions for a

value of α = 2 at final time t = π for N = 128.

Discussion on conservation

We now study the conservation properties of our method specifically to ensure

convergence to a weak solution of (4.31). Recall that a method is conservative if it

can be written as [84]:

u(xj, tn+1) = u(xj, tn)− ∆t

∆x
[f(u(xj+1, tn))− f(u(xj, tn))] . (4.33)

Globally, (4.33) implies that

N∑
j=1

u(xj, tn+1) =
N∑
j=1

u(xj, tn)− ∆t

∆x

N∑
j=1

[f(u(xj+1, tn))− f(u(xj, tn))] . (4.34)

While we cannot prove that (4.34) holds in general, Figure 4.7, which plots the

residual of (4.34) over all time steps for each method considered for 0 ≤ t ≤ π,

suggests that our method is indeed conservative. In particular we see that for Burg-

ers’ equation, each method maintains the conservation throughout the entire time

integration domain considered. 4

4We did not separately analyze our method for Euler’s equations, (4.37).
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Figure 4.7: The residual of (4.34) calculated after each time step for all techniques

considered in the time domain 0 ≤ t ≤ π.

As an additional tool to measure the conservation properties of our method, we

analyze energy conservation. We define energy at each time steb by ([71])

En =
1

2
||uN(x, tn)||22, (4.35)

with the rate of change of energy approximated as

dE

dt
≈ En+1 − En

∆t
. (4.36)

Figure 4.8 displays the result of calculating the energy and rate of change of energy

for all methods considered in this chapter. We see that energy is conserved before

time t = 2, when the shock is introduced. As expected, energy is lost after the shock

forms. Observe that in all cases, including the `1 term does not cause any reduction

of energy from the original scheme.
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Figure 4.8: (left) Energy (4.35) and (right) rate of change of energy (4.36) calculated

for each numerical method considered for 0 ≤ t ≤ π.

4.4.2 Euler’s Equations

The Riemann problem for the one dimensional Euler equations is given as

∂

∂t


ρ

ρq

E

+
∂

∂x


ρq

ρq2 + P

(E + P )q

 = 0, (4.37)

where ρ : (a, b) → R is density, q : (a, b) → R is velocity and E : (a, b) → R is

the total energy. The pressure P : (a, b) → R is related to the conserved quantities

through the equation of state:

P = (γ − 1)

(
E +

ρq2

2

)
,

with γ = 1.4 defined as the ratio of specific heat constants. The set of initial conditions

we consider describe Sod’s shock tube problem, [35], and are given by

ρ0(x) = 1, q0(x) = 0, P0(x) = 1, when x ∈ [−1, 0)

ρ0(x) = 0.125, q0(x) = 0, P0(x) = 0.1, when x ∈ [0, 1]. (4.38)
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We demonstrate the result of approximating the solution to (4.37) with (4.38)

using the two-step Lax-Wendroff method (4.6) with and without regularization. The

stability condition for this numerical scheme is

max
i
{|ζi|}

∆t

∆x
≤ 1,

where ζi, i = 1, 2, 3 are the eigenvalues of the Jacobian matrix ∂f/∂u, regarded as the

propagation speeds of the corresponding characteristic waves. It can be shown [84]

that for the Euler system of equations, the stability condition leads to an adaptive

time step given by

∆t = CFL
∆x

|q|+ a
, CFL < 1 (4.39)

where a =
√
γP/ρ is the local speed of sound. We chose CFL = .8 for our numerical

experiments using the Lax-Wendroff method and adjust the time stepping for stability

for our numerical experiments using the Chebyshev technique.

Figure 4.9 compares solutions using the LW and `1 enhanced LW methods for

density ρ, velocity q and pressure P when N = 256. While it is evident that the

`1 enhancement reduces the size of the overshoots and oscillations that occur near

discontinuities, the LW method appears to be too dispersive for the `1 enhancement

to be very effective.

Figure 4.10 displays the approximation results using the filtered (mapped) Cheby-

shev method (4.19). The approximation results using the `1 enhanced Chebyshev

method (4.21) are also displayed. In the non-regularized version, a 16th order expo-

nential filter is implemented to the solution after each time step to ensure stability.

No additional filtering is needed in the `1 enhancement case. Time stepping was im-

plemented using fourth order Runge Kutta, with the time step ∆t chosen according to

the stability requirements in [78]. We approximate the solution at resolutions N = 64,

128, 256 and 512. In each case, we use PA transform order m = 2 and regularization
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Figure 4.9: (top-left) Density (top-right) Pressure (bottom) Velocity. Here, for the

`1 enhancement, we used the PA transform with m = 2 and λ = .35. The final time

is t = .2 and CFL = .8.

parameter µ = 100. The parameter β varies with N , with β = .75 for N = 64, 256,

β = 1.25 for N = 128, and β = .5 for N = 512. Although these values for β represent

the “best” results, in general the choice of β did not greatly affect the quality of the

results, only the speed of algorithm convergence, as expected. Future investigations

will consider parameter optimization To obtain the results in Figure 4.10, Algorithm

6 requires 5 outer and 5 inner iterations. Hence there is a maximum of 25 iterations

per time step. The efficiency of Algorithm 6 ensures that no additional significant

computational time is required. Figure 4.11 displays the pointwise errors associated

with estimating the final density for various resolutions with and without `1 enhance-

ment. As noted previously, due to the low order of accuracy, `1 enhancement does
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Figure 4.10: (top-left) Density (top-right) Pressure (bottom) Velocity. For the `1

enhancement we used the PA transform with m = 2. The final time is t = .2 and

∆t = 1
10N

.

not significantly improve the results in the LW case. However, the `1 enhancement

does dramatically improve the resolution properties near the discontinuities in the

Chebyshev case. Future investigations will include studies on post-processing these

solutions.

4.5 Discussion and Conclusions

In this chapter we introduced a method for solving non-linear partial differential

equations using `1 regularization, and specifically, using the polynomial annihilation

(PA) transform operator in the `1 term. Our results demonstrate that it is possible

to efficiently implement a method that is accurate and resolves shock discontinuities.
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Figure 4.11: Pointwise error in approximating the solution to Sod’s shock tube prob-

lem using the (top) LW method (bottom) Chebyshev method, (left) without regular-

ization and (right) with the `1 enhancement.

The method does not require advance knowledge of the shock locations.

Our new method is particularly useful for numerically solving hyperbolic partial

differential equations that develop shocks or discontinuities. The `1 regularization

enhanced method exploits the knowledge that there are a sparse number of singu-

larities in the solution. Our method is made numerically efficient by employing the

alternating direction of multipliers algorithm. We used our technique to approximate

the solution to Burgers’ equation with a smooth initial condition and Euler’s equa-

tions with initial conditions describing Sod’s shock tube. A two-dimensional PDE,

95



often employed for denoising imagery corrupted with multiplicative gamma noise, is

explored in Chapter 5. In all cases, our new method showed improved accuracy near

the shock locations. These results are obtained without post-processing or the need

for shock tracking. However, post-processing may further improve our results. In ad-

dition, our method remains stable for larger time steps than those typically used by

conventional solvers. In future investigations we will study how to optimize the pa-

rameters of our method as well as develop a more rigorous understanding of stability

conditions.

Other areas to explore include using different PDE solvers, such as the discon-

tinuous Galerkin method, in the data fidelity term. We anticipate that this will

help localize the effect of smoothing to only those cells that contain discontinuities.

Also beneficial could be the inclusion of time dependent regularization to enforce the

knowledge that the solutions do not vary significantly from one time step to the next.

Both topics will be explored in future studies.
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Chapter 5

INCORPORATION OF REGULARIZATION TECHNIQUES FOR SYNTHETIC

APERTURE RADAR IMAGE FORMATION

This chapter incorporates regularization techniques into traditional synthetic aper-

ture radar (SAR) image formation procedures. A thorough discussion of SAR and

current two-dimensional SAR image formation techniques is given in Appendix A.

Two main sources of error corrupt the quality of SAR images and hinder the per-

formance of target recognition and detection algorithms: (i) speckle, which is a salt

and pepper like, granular noise and (ii) phase error, which results from not precisely

knowing the imaging platform location. This error manifests as a phase error on the

data.

Speckle is inherent in any coherent imaging system. It corrupts the quality of im-

ages throughout the entire imaging domain, and is typically modeled as a multiplica-

tive noise. Current speckle reduction agorithms are discussed in Section 5.1.1, while

the mathematical description of speckle, which is based on statistical arguments, is

provided in Section 5.1.2. We then develop regularization methods to reduce speckle

in SAR imagery using two different techniques: (i) by enhancing a currently used

speckle reduction partial differential equation (PDE) model with regularization using

the techniques developed Chapter 4, and (ii) by employing the variance based joint

sparsity (VBJS) technique developed in Chapter 3. We first explored the techniques

mentioned in (i) in [124]. Numerical experiments are provided there to demonstrate

how incorporating prior knowledge about the variation in the underlying image into

the speckle reduction model is beneficial. In what follows, we compare the results of

the new methods in this thesis to the high-order total variation (HOTV) model for
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speckle reduction introduced in [120].

Correcting for the phase error caused by inexact information about the imaging

platform location is called autofocusing. We review some current autofocusing tech-

niques (mostly post-processing procedures) in Section 5.2.1, and discuss the need for

better algorithms. In Section 5.2.2 we explain the source of this error. We then

present a new phase error correction method, based on phase synchronization, which

uses phase retrieval methods to jointly optimize for the underlying image while de-

pressing the phase errors through an iterative, alternating optimization technique.

We originally explored the joint optimization technique in [121], where correlations in

the phase errors were exploited. The new phase synchronization technique introduced

here improves upon these previous results, which is demonstrated by numerical ex-

amples in Section 5.2.5. A discussion of future work in this area is provided in Section

5.2.7.

5.1 Speckle in SAR

In observing multiple synthetic aperture radar (SAR) images of the same scene,

it is apparent that the brightness distributions of the images are not smooth, but

rather composed of complicated granular patterns of bright and dark spots. Further,

these brightness distributions vary from image to image. This salt and pepper like

feature of SAR images is called speckle. Even though there is only one scene being

reconstructed, the acquired images are independent, so that the observed speckle is

uncorrelated across them. Hence modeling speckle is difficult.

Speckle occurs in any form of coherent imaging where objects being illuminated

have surface features that are rough on the microscopic scale of the illuminating

wavelength. In SAR the scale is considered microscopic because, for example in Figure

5.2(left), the transmitted wavelength is approximately 0.03m while a resolution cell
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is approximately .3m in length (i.e. the wavelength is an order of magnitude smaller

than the resolution cell). When a SAR system sends out a continuous chirp, the

wave that is reflected back from the rough surface then contains contributions from

many different scattering points or areas, all of which are subject to random phase

delays. Therefore, at any given point in the image plane, the image will consist of a

combination of many amplitude point spread functions that arise from the different

scattering points on the surface of the scene. Because the phases of each path are

highly varying, they may interact (sum) constructively or destructively. Thus speckle

is the result of random phasor sums from many scattering centers within a given

resolution cell. A simple comparison of constructive and destructive interference is

found in Figure 5.1.

Figure 5.1: Diagram depicting the difference between constructive (left) and destruc-

tive (right) phasor sums [53].

5.1.1 Current Speckle Reduction Techniques

As is evident in Figure 5.2, speckle reduces the contrast in SAR images, which has

a negative effect on texture based image analysis. It also alters the spatial statistics

of the underlying scene backscatter which makes image classification difficult [97].

Consequently, in addition to diminishing the performance of both automated scene

analysis and information extraction techniques, speckle may be harmful in applica-
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Figure 5.2: (left) Image of a T-72 tank from the measured MSTAR data set [122].

(right) Image of a Jeep 93’ from the synthetic (computer generated) Civilian Vehicle

Data Dome data set [116]. Notice that speckle corrupts both measured and synthetic

SAR imagery.

tions requiring multiple SAR observations, such as automatic multi-temporal change

detection. Finally, along with the complications that naturally arise in registering the

different acquisition geometries of optical and SAR systems, speckle poses a major

impediment towards the development of an effective optical-SAR fusion. [6].

Most speckle reducing methods are post-processing techniques that take advan-

tage of the multiplicative noise model, as will be discussed in Section 5.1.2. Generally

speaking, speckle noise can be reduced by multi-look processing or filtering [6, 97].

While computationally inexpensive to process, such techniques often result in over-

smoothing the fine details in the image. Another disadvantage of these methods is

that multiple looks of a scene are often infeasible due to data collection and mis-

sion constraints. Post-processing and image formation techniques have also used

approaches based on regularization and compressive sensing [103, 6], but these meth-

ods often do not incorporate known statistical properties of speckle into the model,

however. A final class of often employed denoising techniques in SAR are based on
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variational methods [30, 9, 94, 8, 118], where the image is often considered to be the

steady state solution to an Euler-Lagrange partial differential equation. Though com-

putationally expensive, variational methods can consider the multiplicative speckle

model and the statistical properties of the noise. Currently the variational approach

is only employed as a post-processing procedure. In any case, when despeckling, it

is essential to avoid throwing away any useful information such as the local mean of

the backscatter, point target location information, linear features and textures. More

information on speckle in SAR can be found in [6, 83, 93, 97, 103, 101, 150].

5.1.2 Mathematical Modeling of Speckle Noise

Understanding speckle requires a detailed examination of the properties of electro-

magnetic waves after they have been reflected or scattered from rough objects [113].

Because of the difficulty in understanding such details of the small scale structures

of the complex wavefronts leaving the objects, it is common to instead generate a

statistical speckle model. Such models predict the statistical properties of intensity

over an ensemble of different rough surfaces with the same macroscopic properties,

but different in microscopic detail. Summarized below is a description of the multi-

plicative speckle model typically used to describe the salt and pepper phenomenon

that characterizes speckle [6, 97, 30, 9, 94, 8, 118].

Important to the discussion are the definitions of amplitude, intensity and bright-

ness of the image:

Definition 5.1.1 Let Ω ∈ R2 be some bounded rectangular domain and f : Ω→ C be

the complex reflectivity measured by the radar. The amplitude refers to the magnitude

|f |, the image intensity g is given by g = |f |2, and the brightness refers to the scaling

of amplitude typically used for display purposes. In SAR applications, the brightness
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is often defined in dB scale as

20 log10

(
|f(x, y)|

maxx,y |f(x, y)|

)
.

The amplitude of the homogeneous regions of the SAR reflectivity with fully de-

veloped speckle is modeled by the Rayleigh density function. Note that all probability

density functions below hold for non-negative random variables and that speckle is

only considered fully developed in homogeneous regions that do not include returns

from targets. Specifically, if for each pixel i = 1, · · · , N2, of the SAR reflectivity

function f ∈ CN×N we define α ∈ RN×N and β ∈ RN×N such that αi = Re(fi) and

βi = Im(fi) (so that |fi| =
√
α2
i + β2

i ), then their joint probability density function

follows a Gaussian distribution given by

pαi,βi(αi, βi) =
1

πσi
exp

(
−α

2
i + β2

i

2σi

)
. (5.1)

The only unknown in (5.1), σi, represents the radar cross section at pixel i. From

(5.1) it is evident that the amplitude |f | obeys the Rayleigh distribution

p|fi|(|fi|) =
2|fi|
σi

exp

(
−|fi|

2

σi

)
, (5.2)

at each pixel i = 1, · · · , N2. Moreover, each speckled image intensity value gi = |fi|2

follows a negative exponential law

pgi(gi) =
1

σi
exp

(
− gi
σi

)
(5.3)

with mean σi and variance σ2
i . If ν ∈ RN×N defines the speckle intensity, then it also

follows that ν obeys the negative exponential law given by [6]

pνi(νi) = e−νi . (5.4)

Finally, the speckle intensity can equivalently be written as the multiplicative noise

model [6]

g = |f |2 = νσ ≈ νf. (5.5)
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We can confirm (5.5) since it yields (along with (5.4)) that

pgi(gi) =
1

∂gi/∂νi
· pνi(νi = gi/σi) =

1

σi
exp

(
− gi
σi

)
,

i.e., we get back (5.3). Observe that if we are able to extract the unknown radar cross

section σ from (5.5) then we will be able to fully characterize f using its first order

statistics (5.1)-(5.3).

Multi-look data collection

Often there are L independent looks of the same scene collected and combined,

yielding a mean speckled image intensity

gL =
1

L

L∑
k=1

gk,

where each gk follows the density function defined in (5.3). It can be shown that at

each pixel location, the multilook intensity obeys the gamma distribution given by

pgL(g) =

(
L

σ

)L
1

Γ(L)
gL−1 exp

(
−Lg
σ

)
. (5.6)

Note that here the dependence on pixel location i has been dropped for clarity. In

this case, the speckle intensity can then be described as

pν(ν) = LL
1

Γ(L)
νL−1 exp (−Lν) . (5.7)

Note that (5.6) and (5.7) reduce to (5.3) and (5.4) respectively in the single look case

(L = 1) and that in each case E[ν] = 1.

The derivations of the above probability density functions are discussed in detail

in Appendix B.

5.1.3 Proposed Despeckling Techniques

In this section we propose two novel despeckling techniques. The first is an `1

enhancement of a PDE-based multiplicative noise removal technique. We utilize the
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methods developed in Chapter 4 to augment the solution to the variational model

proposed in [9], which incorporates the statistical properties of speckle into the model.

In this way, we are able to better predict the speckle behavior while enforcing sharp

transitions and edges in imagery. The second method we propose is an image for-

mation procedure adapted for SAR image formation from the variance based joint

sparsity (VBJS) techniques developed in Chapter 3. We incorporate the multiplica-

tive speckle model (5.5) into the data acquisition process and test our algorithms on

both synthetic data sets and SAR phase history data sets.

PDE Based Method

In [9], maximum a-posteriori probability (MAP) estimation theory is used in gener-

ating the variational model

min
f∈Ω

∫
Ω

{
|D(f)|+ η

(
log f +

g

f

)}
. (5.8)

Here η > 0 is the inherent model parameter, f, g and ν follow the multiplicative

noise model defined in (5.5), and we consider the possibility of multiple looks (i.e.,

(5.6)-(5.7)). We will refer to (5.8) the AA model and note that
∫
|D(f)| represents

the total variation of f .

As is classically done in image denoising, the solution to (5.8) is computed by

embedding the integral equation into a dynamical system using the Euler-Lagrange

equation, which is driven to a steady state, [119]. The Euler-Lagrange equation is

a second-order PDE with solutions that are functions for which a given functional

is stationary. Because a differentiable function is stationary at local minima and

maxima, this is a useful tool for optimization. The time dependent Euler-Lagrange
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equation associated with solving the AA model (5.8) is
∂f
∂t

= 1
η
div
(

∇f√
ε2+|∇f |2

)
+ g−f

f2
in Ω

∂f
∂ν

= 0 on ∂Ω

, (5.9)

with given initial conditions. To remove the possible singularity when |∇f | = 0,

(f > 0 so f 2 6= 0) the model has been relaxed with ε > 0, where we define

div

(
∇f√

ε2 + |∇f |2

)
:=

∂

∂x

(
fx√

ε2 + f 2
x + f 2

y

)
+

∂

∂y

(
fy√

ε2 + f 2
x + f 2

y

)
.

As time increases, the energy in (5.8) will decrease leading to a denoised image at

steady state.

To discretize the solution to (5.9), for 0 ≤ i, j ≤ N , let

xi = i∆x, yj = j∆x,

where ∆x is the pixel size. A forward Euler time stepping scheme was proposed in

[9, 119] to solve (5.9) and is given by

fn+1
i,j − fni,j

∆t
=
fni,j − gni,j(
fni,j
)2 +

c1

2η∆x2

(
fni+1,j − fn+1

i,j

)
− c2

2η∆x2

(
fn+1
i,j − fni−1,j

)
+

c3

2η∆x2

(
fni,j+1 − fn+1

i,j

)
− c4

2η∆x2

(
fn+1
i,j − fni,j−1

)
,

(5.10)
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where

c1 =
1√

ε2 +
(
fni+1,j−fni,j

∆x

)2

+
(
fni,j+1−fni,j

∆x

)2
,

c2 =
1√

ε2 +
(
fni,j−fni−1,j

∆x

)2

+
(
fni−1,j+1−fni−1,j

∆x

)2
,

c3 =
1√

ε2 +
(
fni+1,j−fni,j

∆x

)2

+
(
fni,j+1−fni,j

∆x

)2
,

c4 =
1√

ε2 +
(
fni+1,j−1−fni,j−1

∆x

)2

+
(
fni,j−fni,j−1

∆x

)2
.

for interior grid points 1 ≤ i, j,≤ N − 1 and time step ∆t. The boundary conditions

imposed are

f0,j = f1,j, fN,j = fN−1,j, fi,0 = fi,1, fi,N = fi,N−1,

f0,0 = f1,1, f0,N = f1,N−1, fN,0 = fN−1,1 and fN,N = fN−1,N−1.

The PDE is advanced in time for n = 0, ..., Nt. We note that using higher order tem-

poral and spatial derivative approximations might yield higher accuracy, especially

when using the `1 regularization enhancement. We will explore this idea in future

investigations.

To reduce speckle and preserve the edges present in images, we enhance the Euler-

Lagrange PDE associated with the AA model with `1 regularization using the PA

transform (2.5). To use the technique described in Chapter 4, we first solve (5.10) for

fn+1
i,j and define Bn

i,j for 1 ≤ i, j ≤ N − 1 to be the right hand side of of the resulting

expression

Bn
i,j :=

1

Λ

[
fni,j + ∆t

fni,j − gi,j(
fni,j
)2 +

c1∆t

2η∆x2
fni,j−1 +

c2∆t

2η∆x2
fni−1,j

+
c3∆t

2η∆x2
fni,j+1 +

c4∆t

2η∆x2
fni,j−1

]
,

(5.11)
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where

Λ = 1 +
∆t

2η∆x2
(c1 + c2 + c3 + c4) .

Analogous to (4.4), we write

bn :=



Bn
1,1 Bn

1,2 · · · Bn
1,N−1

Bn
2,1 Bn

2,2 · · · Bn
2,N−1

...
... . . . ...

Bn
N−1,1 Bn

N−1,2 · · · Bn
N−1,N−1


.

This matrix is embedded into (4.5) as

Un+1 = argmin
V

{
||LmV ||1 +

λ

2
||V − bn||22

}
, (5.12)

to determine the solution at time tn+1 at the interior grid points. Again Lm is themth

order PA operator (2.5). After a sufficiently large number of time steps Nt, UNt →

f . That is, the numerical solution will approach the despeckled image f in (5.5).

The ADMM algorithm for enhancing numerical PDE solvers with `1 regularization,

Algorithm 6 of Chapter 4, is employed to solve (5.12).

Remark 5.1.2 Algorithm 6 is currently used in this case as a post-processing method

to reduce speckle from an initial approximation of the image intensity g in (5.5).

In actuality, we do not have g, but rather some SAR phase history data. A better

approach would be to use Algorithm 6 directly on the SAR phase history, so that

information is not lost in the initial approximation of the underlying image. This will

be the topic of future work.

VBJS Weighted Regularization Approach

As an alternative to the PDE approach, we propose using the VBJS technique, de-

veloped in [2] and expanded in Chapter 3, as an effective way to reduce speckle in
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SAR. As described in Chapter 3, VBJS is designed to exploit joint sparsity across

different realizations of the same image while at the same time reducing the effect of

bad information that is not common to all data sets. Thus the VBJS technique can

be especially useful in reducing speckle, because the multiple looks of a scene have

joint sparsity structure and yield highly uncorrelated speckle.

To describe how VBJS can be applied to the speckle reduction problem let us con-

sider a piecewise smooth image f(x, y) on [a, b]2 in (5.5). To generate J measurement

vectors corresponding to f : RN×N → C, the function is sampled on a uniform grid

as fi,l = f(xi, yl), where

xi = a+
b− a
N

(i− 1), yl = a+
b− a
N

(l − 1), (5.13)

for each i, l = 1, · · · , N . The J simulated phase history data vectors yj ∈ CN×M are

corrupted by both additive Gaussian noise and multiplicative gamma noise such that

yj = Aj(νj � f) + ηj, j = 1, ..., J, (5.14)

where � represents the Hadamard product. Here, Aj : CN×N → CN×M is a forward

operator typically chosen as a two-dimensional discrete Fourier transform operator,

[49, 60, 107], in our numerical experiments,

ηj ∈ CN×M , j = 1, ..., J, (5.15)

model J additive Gaussian noise vectors and

νj ∈ RN×N , j = 1, ..., J, (5.16)

model J multiplicative noise vectors. To simulate the speckle noise in SAR imagery,

the multiplicative noise is sampled from the gamma distribution given in (5.7). That

is,

νj ∼ Γ(L, 1/L), j = 1, ..., J,
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where L > 0 represents the number of looks made by the imaging platform.

To form each single measurement vector (SMV) of f the following `1 regularization

problem is solved as

f̌ j = argmin
z∈CN×N

{
||Tz||1 +

ζ

2
||Ajz − yj||22

}
, j = 1, ..., J, (5.17)

where ζ is sampled from a uniform distribution on [0, 10] to simulate the ad-hoc

procedure for selecting typical regularization parameters.

The transform T : CN×N → RN×N maps the unknown into the space of sparse

edges. Because f is the complex scene reflectivity, with random phase values for

each pixel, the operator T must effectively extract the sparsity of |f |, i.e. in only the

magnitude, and not in the phase [120]. However, because | · | is nondifferentiable, it

can not be seamlessly integrated into (5.17). To get around this, we write f = |f |eiφ

where φ = tan−1(Im{f}/Re{f}) [108]. We then approximate the phase angle matrix

Θ, with Θj,k ≈ ang(fj,k). Hence we obtain Θ∗ � f ≈ |f |.

To obtain a more accurate estimate of |f |, Θ is updated each time the approxi-

mation of f is updated. Specifically, we define T : CN×N → RN×N such that

Tf = Lm(Θ∗ � f), (5.18)

where Lm is the mth order PA transform (2.5) and � is the Hadamard product. 1 A

full characterization of the PA transform and its convergence properties can be found

in [5, 4].

Remark 5.1.3 When given actual SAR data, solving (5.17) may not be necessary

for obtaining the SMVs. Instead, the different phase history data sets (5.14) may be

processed using techniques that exploit different information channels. For example,
1In this regard, the PA transform for m > 1 can be viewed similarly to high order total variation

(HOTV) regularization [120].
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different polarization, different integration angles, different elevation heights, etc. can

all be considered as the measurement vectors f̌ j. Indeed, we demonstrate in Section

5.1.4 that the VBJS technique can be used to exploit the joint sparsity of these different

information channels.

Continuing as in Section 3.3, after gathering the J measurement vectors f̌ j in

(5.16), we form the matrix P similar to (3.8) as

P =
[
T f̌ 1 T f̌ 2 · · · T f̌J

]
, (5.19)

where as before, P contains the sparse edge information for all measurements. The

variance (3.9) of P across all measurements is then computed, revealing the joint spar-

sity of the measurements. From the variance we compute weights as in (3.12), so that

near an edge, the weights are small, approximately zero valued, and away from the

edges the magnitude of the weights is approximately equal to the average jump/edge

height. In this way, we are able to exploit the true sparsity of the underlying image

through the weighted `p norm.

As a final step we solve the VBJS weighted `p problem given as

f̂ = argmin
z∈CN×N

{
1

p
||Tz||pp,w +

1

2
||Âz − ŷ||22

}
, (5.20)

where Â and ŷ are chosen according to the optimal solution vector technique out-

lined in Section 3.3.2 and T is defined in (5.18). It is important to note that the

incorporation of the spatially varying weighting matrix w ∈ RN×N in (5.20) allows

for a non-parametric solution and thus the need to carefully hand tune parameters

is eliminated. As we will show in our numerical experiments, the inclusion of the

weights enforces a more accurate speckle model. In our numerical experiments we

choose p = 1 or 2 in (5.20) and employ the weighted ADMM algorithm (Algorithm 4)

for p = 1 and the modified gradient descent method in Algorithm 5 for p = 2. These

algorithms were developed in Chapter 3, Section 3.4.
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Speckle Metrics

One challenging task associated with analyzing speckle is the validation and quality

assessment of data processed for speckle reduction. Specifically, we want to quantita-

tively assess the amount of speckle reduction that our methods are producing. There

are two categories of metrics that can be used: (i) with-reference indices and (ii)

without-reference indices [6]. With-reference indices are those that can be used when

a ground truth image is available. More often than not, however, the true reflectiv-

ity of the scene is not known. This is when without-reference indices are utilized.

Without-reference indices are uniquely based on specific statistical hypotheses about

the signal model as well as some simple assumptions on the degree of heterogeneity of

the underlying scene. In any practical application of SAR, there is no ground truth

image, so here we only discuss some possible without-reference speckle metrics.

0

Figure 5.3: White boxes show the homogeneous regions where without-reference

speckle suppression metrics are calculated for the (left) MSTAR and (right) CV Dome

data sets.

We consider three different speckle metrics:

1. The equivalent number of looks (ENL) is a metric used for evaluating the level
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of smoothing in homogeneous areas. In particular, it is desirable for the scene

variation to be negligible with respect to speckle noise fluctuations in these

homogeneous regions. The ENL calculates the number of multiple looks that

would otherwise be required to create an image with the same level of reduced

speckle. For example, an ENL of 10 implies that the speckle reduction technique

is as effective as if the scene were measured 10 times, with the resulting images

averaged to produce a despeckled image. Hence a good despeckling technique

yields a high ENL number. We normalize all ENL calculations with respect to

the single measurement vector ENL, that is, so that in the SMV case the ENL

measurement is always 1. In reference to (5.5), if f is the despeckled image,

then in the homogeneous areas h we have

ENL :=
Eh[f ]2

varh[f ]
. (5.21)

2. The speckle standard deviation given by

σspeck :=
√

varh[f ] (5.22)

measures the average variation in speckle amplitude throughout homogeneous

regions h. A small speckle standard deviation is indicative of desirable smooth-

ness and speckle reduction.

3. The reconstruction bias, B, measures the level of bias in the estimated image.

One way to calculate the bias is to measure the relative expected value of the

reconstructed image to the cluttered image g, and is given by

B := E

[
g − f
f

]
. (5.23)

Because we assume the fully developed speckle model (Rayleigh model), which

only holds in homogeneous regions, we expect |g − f | to be smallest in target
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areas. Hence it is desirable that reconstruction in the target area not change as

a result of the speckle reduction technique, implying that (5.23) is small. Con-

versely, the bias will be high if these regions are greatly affected, (e.g. smoothed

over). Also, the despeckled image should posses the same first order statistics as

the assumed model (5.5). That is, according to (5.7), E(ν) = 1, and using (5.5)

we desire E(g/f) ≈ E(ν) = 1, or E(g/f)− 1 ≈ 0. A bias measurement of zero

represents a completely unbiased estimate, while a value of B < .1 indicates a

low level of bias, [133].

To calculate (5.21) and (5.22), we must select a region in each image where only

noise is expected to be present (no target response), [6]. For the MSTAR and CV

Dome images, we chose the bottom twenty rows of the image matrix to correspond

to a homogeneous region. These regions are highlighted in Figure 5.3. In the future

we would like to develop more precise speckle reduction metrics that do not rely on

user selection of homogeneous regions.

5.1.4 Numerical Results

To test our speckle reduction algorithms, we first consider despeckling images

formed using data simulated by (5.14). The simulated images contain only homoge-

neous regions. Thus the fully developed speckle model developed in Section 5.1.2 will

hold over the entire simulated image. We then use SAR phase history data provided

by AFRL to despeckle SAR images. We compare the results of our methods to the

single measurement vector (SMV), filtering, HOTV regularization and the typical AA

method, without the `1 enhancement. To quantitatively compare our results, for each

method we calculate the speckle reduction metrics discussed in Section 5.1.3.
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a b c d

hgfe

Figure 5.4: (a) True image, (b) noisy SMV image (c) filtered image (d) image recon-

structed using HOTV regularization with order m = 1 and parameters µ = .06 and

β = 8, (e) AA with parameters η = .2, ∆t = .1 and Nt = 100, (f) AA + `1 with order

m = 4 and parameters η = .2, µ = 60, β = 10, ∆t = .1 and Nt = 100, (g) VBJS with

p = 1, and (h) VBJS with p = 2.

Simulated Data

As in Chapter 3 we consider the following two examples:

Example 5.1.4 Define f(x, y) on [−1, 1]2 as

f(x, y) =


15, |x|, |y| ≤ 1

4

20, |x|, |y| > 1
4
,
√
x2 + y2 ≤ 3

4

10, else

Example 5.1.5 Define f(x, y) on [−1, 1]2 as

f(x, y) =


10
(

1 + cos
(

3π
2

√
x2 + y2

))
,
√
x2 + y2 ≤ 1

2

10
(

1 + cos
(
π
2

√
x2 + y2

))
,
√
x2 + y2 > 1

2
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Table 5.1: Speckle metrics for reconstructions from Example 5.1.4.

SMV Filter HOTV AA AA + `1 VBJS `1 VBJS `2

ENL 1 81.782 121.4081 110.9548 173.0935 71.036 129.6014

σspeck 1.9941 .02209 .1810 .1882 .1500 .2364 .1752

Bias 0 3.01E-5 3.52E-17 .0104 .018 1.15E-18 1.04E-18

We simulate data by sampling each function f : RN×N → R on [−1, 1]2 on a

uniform grid defined in (5.13). In (5.14), we define A : RN×N → CN×N to be the

normalized, two dimensional discrete Fourier transform operator so that A∗ = A−1

with N = 256. The additive noise in (5.15) is zero mean complex Gaussian noise with

variance equal to 50 for Example 5.1.4 and 100 for Example 5.1.5. The multiplicative

noise in (5.16) is sampled from the gamma distribution (5.6) with mean µ = 1 and

number of looks L = 25 for Example 5.1.4 and L = 10 for Example 5.1.5. We

use (5.17) to construct each f̌ j with the regularization parameter ζ sampled from a

uniform distribution on [0, 10]. We choose J = 10 multiple measurement vectors for

each example. Because of the piecewise constant nature of Example 5.1.4 we apply

the modified PA transform with order m = 1. Similarly, for Example 5.1.5 we use

m = 2.

The AA method (recall Section 5.1.3) can also be used to recover the images in

Examples 5.1.4 and 5.1.5. In this case we choose η = .2 in (5.9) and set Nt = 100

time steps of size ∆t = .1. To implement (5.12), Algorithm 6 is employed using the

4th order PA transform with regularization parameters µ = 60 and β = 10.

Figures 5.4 and 5.5 display the results of despeckling noisy images from Examples

5.1.4 and 5.1.5, respectively. In each case, we compare our results to the outcome of
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a b c d

e f g h

Figure 5.5: (a) True image, (b) noisy SMV image (c) filtered image (d) image recon-

structed using HOTV regularization with order m = 2 and parameters µ = .005 and

β = 2, (e) AA with parameters η = .2, ∆t = .1 and Nt = 100, (f) AA + `1 with order

m = 4 and parameters η = .2, µ = 60, β = 10, ∆t = .1 and Nt = 100, (g) VBJS with

p = 1, and (h) VBJS with p = 2.

filtering the noisy image with a Lee filter [81, 82, 83]. We also compare to the result

of reconstructing the scene using the HOTV method, which requires careful tuning of

parameters. The HOTV method and ADMM algorithm (Algorithm 2) were discussed

in Chapter 2 and adapted for SAR in [120]. In Example 5.1.4, when using the HOTV

technique, we employ the PA transform of order m = 1 with parameters µ = .06 and

β = 8, and in Example 5.1.5 we choose PA order m = 2 with parameters µ = .005

and β = 2.

It is apparent in Figures 5.4 and 5.5 that the AA methods and VBJS techniques

successfully reduce image variability due to speckle. However, it appears that the `1

enhanced AA method does not provide significant improvement over the AA method

in these examples. Cross sections of the results are displayed in Figure 5.6 for the
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Table 5.2: Speckle metrics for reconstructions from Example 5.1.5.

SMV Filter HOTV AA AA + `1 VBJS `1 VBJS `2

ENL 1 6.7522 6.3041 6.6233 6.3749 4.6975 5.1115

σspeck 4.1637 1.6014 1.6543 1.6057 1.6089 1.9024 1.8409

Bias 0 5.69E-4 -1.19E-17 .0239 .0328 1.46E-18 -4.33E-19

AA, `1 enhanced AA, and VBJS methods. These plots show the improvement each

technique is making compared to the SMV case along with the accuracy of each

method.

Tables 5.1 and 5.2 confirm these results by providing the calculated speckle metrics

for each reconstruction. We see through speckle standard deviation σspeck that both

the VBJS `1 and `2 methods significantly reduce speckle while maintaining a low level

of bias and high ENL, while eliminating the need for hand tuning parameters, as in

the HOTV method. The AA methods reduce speckle and increase ENL numbers, but

introduce more bias into the final image. As discussed previously, this additional bias

indicates possible loss of information.

As in Chapter 3, we then calculate the relative `2 error of each reconstruction f̂

of f as
||f̂ − f ||2
||f ||2

. (5.24)

Figure 5.7 displays the result of calculating this error for each technique with pa-

rameters described above and resolutions N = 32, 62, 128, 256 and 512. We see that

the VBJS technique with p = 1 and the AA method both consistently maintain low

relative errors. The proposed VBJS method with p = 2 and `1 enhanced AA methods

also produce convergent results.
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Figure 5.6: (top) Cross sections of despeckling Example 5.1.4. (bottom) Cross sections

of despeckling Example 5.1.5.

SAR Phase History Data

Our results so far demonstrate that the speckle reduction techniques work well for

simulated examples. We are now ready to test our methods on actual SAR phase

history data. Specifically we consider the MSTAR [122] and Civilian Vehicle (CV

Dome) [116] data sets provided by AFRL. Each data set that we utilize has been

explained in detail in Section A of Appendix A. We also include examples of typical

MSTAR and CV Dome imagery in Appendix A, Figures A.13 and A.15. We choose

to explore these particular data sets to test our algorithms on both measured and

computer generated SAR phase history data. The MSTAR data are measured data,

as it was acquired by flying over the scene with the radar, and the CV Dome data

set was generated using Xpatch [65], an electromagnetic simulation software.
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Figure 5.7: Relative error (5.24) of speckle reduction techniques for despeckling (left)

Example 5.1.4 and (right) Example 5.1.5 at resolutions N = 32, 62, 128, 256 and 512.

Table 5.3: Speckle metrics for reconstructions from MSTAR data [122].

SMV Filter HOTV AA AA + `1 VBJS `1

ENL 1 58.0563 93.3568 7.2904 27.3967 60.8743

σspeck 5.6843 .7221 .5556 2.0971 1.0872 .6980

Bias 0 .0337 .0566 .0048 .0251 .0455

MSTAR Phase History Data

In our first experiment we use the MSTAR data set [122]. We choose to reconstruct

data corresponding to a scene that contains a T-72 (SNS7) tank where the imaging

platform is located 4551m above the scene center at a 15◦ elevation angle. For this

data collect, the center frequency is set at ωc = 9.6GHz with wavelength λ = c/ωc =

.0312m, a bandwidth of B = 591MHz and an integration angle of θa = 2.9361◦. The

range and cross range resolutions are thus

ρx =
c

2B
= .2536m and ρy =

λ

2θa
= .3047m.

We first despeckle the MSTAR imagery using the HOTV regularization technique
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Figure 5.8: (a) Noisy SMV image (b) image reconstructed using HOTV regularization

with order m = 2 and parameters µ = .25 and β = 1.5, (c) filtered image, (d) AA

with parameters η = 1.5, ∆t = .1 and Nt = 100, (e) AA + `1 with order m = 4 and

parameters η = 1.5, µ = 10, β = 5, ∆t = .1 and Nt = 100 and (f) VBJS with p = 1.

discussed in Chapter 2, for which we use PA order m = 2 and parameters µ = .25 and

β = 1.5 in Algorithm 2. The forward model is defined as the non-uniform fast Fourier

transform (NUFFT) [49, 60, 107]. We also despeckle the imagery using the Lee filter

[81, 82, 83], the AA method and the `1 enhanced AA method discussed in Section

5.1.3, all of which are post-processing techniques. For the AA methods we choose η =

1.5, ∆t = .1, Nt = 100, m = 4, µ = 10 and β = 5. As a final despeckling technique,

we consider the VBJS method in Algorithm 4 where we generate measurements f̌ j,
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Figure 5.9: (a) Noisy SMV image (b) image reconstructed using HOTV regularization

with order m = 2 and parameters µ = 60 and β = 120, (c) filtered image, (d) AA

with parameters η = 2, ∆t = .1 and Nt = 100, (e) AA + `1 with order m = 4 and

parameters η = 2, µ = 10, β = 5, ∆t = .1 and Nt = 100, and (f) VBJS with p = 1.

j = 1, ..., 10, by varying the regularization parameter ζ in (5.17) so that

f̌ j = argmin
z∈C103×103

{
||Tz||1 +

ζj
2
||Az − y||22

}
, j = 1, ..., 10.

Here T is given by (5.18) with m = 2, A is the NUFFT, and y is the given phase

history data corresponding to the MSTAR scene. We then solve (5.20) for f̂ with

p = 1 and T again as the modified second order PA transform (5.18).

Figure 5.8 displays the despeckled results when using the MSTAR data, and Ta-

ble 5.3 gives the associated speckle reduction metrics. Observe that the results are

consistent with the previously shown simulated data case (see Figures 5.4 and 5.5 and
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Tables 5.1 and 5.2). Although HOTV yields the best results for the chosen speckle

metrics, careful parameter tuning is required. The VBJS technique performs compa-

rably without the need for parameter tuning. Finally the `1 enhancement of the AA

method now yields improvement over the standard AA method and enhances shadow

information, which is important for applications such as target recognition.

Table 5.4: Speckle metrics for reconstructions from CV Dome data [116].

SMV Filter HOTV AA AA + `1 VBJS `1

ENL 1 13.5821 2.1001 2.4384 2.6037 3.36

σspeck 6.828 1.6159 4.5797 4.3180 4.2112 3.4823

Bias 0 .1517 .0334 .0032 .0061 .0787

CV Dome Phase History Data

With the CV Dome data set we choose to reconstruct the scene consisting of a 93’

Jeep. The data are collected at a 30◦ elevation angle with a 360◦ azimuth sweep

and center frequency of 9.6GHz. This leads to a phase history data set consisting of

512 frequencies and 5760 azimuth angles (pulses). We first despeckle the CV Dome

imagery using the HOTV regularization technique discussed in Chapter 2, for which

we use PA order m = 2 and parameters µ = 60 and β = 120 in Algorithm 2. The

forward model is defined again as the NUFFT. We also despeckle the imagery using

the Lee filter [81, 82, 83], the AA method and the `1 enhanced AA method discussed

in Section 5.1.3. For these methods we choose η = 2, ∆t = .1, Nt = 100, m = 4,

µ = 10 and β = 5.

As a final despeckling technique, we consider the VBJS method given in (5.20) with

122



p = 1 where we generate measurements by varying the polarization of the transmitted

and received signals. We consider a horizontal transmit with a horizontal receive (HH)

and a vertical transmit with a vertical receive (VV). The measurements f̌ j, j = 1, 2

are acquired by solving (5.17) with y1 as the HH phase history data and y2 as the VV

phase history data. We find it necessary to solve (5.17) to obtain the SMVs because

speckle must be reduced before enhancing the edges and finding the optimal sparsity

vector (5.19). We choose A1 = A2 = A to be the NUFFT and T in (5.18) with

m = 2. For the final VBJS reconstruction (5.20), given the measurements f̌ j, we also

choose T as in (5.18) with m = 2.

Figure 5.10: Weights calculated according to (3.12) for the VBJS technique (5.20)

when despeckling (left) the MSTAR data and (right) the CV Dome data. Dark regions

indicate values near zero.

Displayed in Figure 5.9 are the resulting images from the aforementioned despeck-

ling techniques, where the VV phase history data are used in the HOTV reconstruc-

tion. All images are displayed at the same dynamic range. Calculated in Table 5.4

are the corresponding speckle metrics for each image. In this case, we see through

the ENL and speckle standard deviation that filtering removes the most speckle, but

introduces the most bias into the reconstruction. On the other hand, the `1 enhanced
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AA method and the VBJS technique both significantly reduce speckle and remain

unbiased. Furthermore, both techniques outperform the HOTV method, however

the main advantage of using the VBJS method is that it does not require parameter

tuning and is thus robust to different data sets.

Figure 5.10 shows the weights that were calculated by the VBJS algorithm. The

dark regions indicate values near zero and the light regions indicate values significantly

greater than zero. What is most evident here is that the weights are approximately

zero wherever there is a strong response from the radar. Thus, by weighting the

reconstruction in this way (5.20), we only regularize at locations away from the areas

of interest, preserving information about targets and introducing minimal bias into

the solution. This is also important because the multiplicative model for speckle does

not hold in the presence of strong scatterers, and thus by only applying the model to

the homogeneous regions, we obtain a more accurate model of the speckle phenomena.

5.1.5 Discussion and Conclusions

In this section we thoroughly analyzed speckle noise in SAR imagery. This led

to proposing two novel techniques for speckle reduction. Our first technique, the `1

enhanced AA method, was based on ideas developed in Chapter 4 of this thesis, where

we augment known PDE solvers with `1 regularization. This method incorporates the

statistics of speckle intensity and enforces sharp transitions and edges within imagery.

The second technique is based on methods proposed in Chapter 3 of this thesis,

where we developed a variance based joint sparsity algorithm for recovering images

from multiple measurements having the same sparsity profile. This method is non-

parametric and exploits the extra information gained when provided with multiple

measurements of the same underlying scene.

Our numerical results show that the `1 enhanced AA method provides small im-
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provements in speckle reduction over the AA method while maintaining a low level of

image bias – thus reducing speckle while preserving information, which is important

when using images for object classification and recognition. However, there are many

parameters to tune within the AA algorithms and they are computationally expensive

as the PDE that must be solved has to be driven to steady state. Moreover, as of

now, the method can only be applied as a post-processing technique, and important

information is being lost in the PDE simulation. Overcoming these bottlenecks is a

topic of future research.

The VBJS method has shown to be a numerically efficient, robust way to reduce

speckle in SAR images. Numerical results show that the results for the VBJS method

are comparable to those of HOTV regularization, but without the need to hand tune

parameters. Hence the method is nearly autonomous and thus can be used in SAR

automated target recognition (ATR) algorithms. Implementation of the VBJS in

SAR ATR is another topic of future research, as well as implementing the VBJS

method for noise reduction of imagery from other sensors.

5.2 Autofocusing

5.2.1 Introduction

Imaging via synthetic aperture radar (SAR) is a well-established technique for

effective scene reconstruction under most conditions, with resolution up to a few

centimeters [106, 32, 69]. SAR imaging works by acquiring data from a number

of different viewpoints, or azimuth angles, and moving the transmission mechanism

around a flight path about the scene. At each azimuth angle, an electromagnetic

(EM) wave with microwave length frequencies is transmitted towards the scene and

scattered from obstructions, or “scatterers,” within the scene. The measured scattered
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echo response from the scene serves as the data from which to reconstruct the image.

This measurement process requires the round trip time for the EM wave to travel

to the scene and return back to the sensing mechanism. Under ideal conditions, the

distance from the scene center to the transmission and sensing mechanisms is ac-

curately known. Moreover, in a vacuum it is known that the EM wave travels at

precisely the speed of light. Hypothetically, the round trip time can be exactly deter-

mined. In practice however, this distance can only be approximated, and atmospheric

disturbances can delay the wave propagation. Additionally, because EM waves prop-

agate at a very high speed, minute errors in the measurement of the distance to the

scene can result in significant relative errors in the round trip time estimates. These

errors manifest as phase errors on the data which produce imagery that is then char-

acterized as defocused. A defocused image often appears smeared or blurred, making

information extraction difficult. Thus a number of autofocusing algorithms have been

designed to alleviate this issue [110, 76, 149, 26].

The Phase Gradient Autofocus (PGA) algorithm [149, 45] is often used to correct

for these errors in imagery formed from data collected by monostatic radar systems.

PGA is an iterative post processing algorithm that makes a robust estimation of the

gradient of the phase error with respect to azimuth angle. The estimation process

exploits the redundancy of the phase error information contained in the defocused

image. The PGA algorithm requires circular shifting of data to remove frequency

offset due to Doppler shifting of the scatterer, windowing of the circularly shifted

imagery to preserve the width of the dominant scatterers in the scene, a phase gradient

estimation, and an iterative correction process to remove any estimation bias.

Within the PGA algorithm, Fourier transforms between the image and the range-

compressed domains are required for each iteration. To take advantage of the redun-

dancy in the data, this back and forth processing must be performed over many range
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bins, making the algorithm computationally intensive. Finally, we note that since the

PGA is a post processing algorithm, it can not account for information lost in the

reconstruction process.

Because of the inherent limitations of the PGA algorithm, in this investigation

we propose a regularization-based autofocusing procedure that jointly estimates the

underlying image and its corresponding phase errors. While similar techniques were

proposed in [74, 110, 146, 161], our algorithm also exploits the redundancies and

correlations present in the unknown phase errors. Furthermore, we more carefully

exploit the nature of the unknown phase errors, as they vary linearly with respect to

the frequencies, making them inherently two-dimensional.

Autofocusing algorithms typically correct for a one-dimensional phase error in the

range compressed domain which ignores the dependency on the spatial frequencies

of the transmitted EM wave. For example, a weighted least squares estimation of

these one-dimensional phase errors was formulated in [161]. The algorithm makes no

assumptions on the noise model or underlying scene, with the weights calculated to

be inversely proportional to the variance of the phase in each range bin. The method

was shown to minimize the variance of the residual phase error, and although shown

to be robust with respect to various noise models, it is evident that estimation can be

improved by the incorporation of prior knowledge about the scene and phase errors

[63, 121, 146, 26]. We also note that while it was recognized in [98, 76, 152, 110]

that the source of defocusing is a two-dimensional phase error corrupting the raw

phase history data, the algorithms proposed in these investigations all perform the

correction in the range compressed domain.

The effects of one-dimensional phase errors on an under-sampled SAR system

were investigated in [74], where the SAR data were considered to be under-sampled

in the cross-range dimension, and phase errors assumed to be constant. It was also
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assumed that there were a sparse number of scatterers in the underlying scene so that

it was possible to jointly optimize for the phase errors and the imagery. This work

was further advanced in [146] where a total variation constraint was incorporated on

the reconstructed scene.

An autofocusing technique that performs one-dimensional phase error correction

through the optimization of an image-domain sharpness function 2 was developed in

[128] and further enhanced in [7]. In [128] a SAR sharpness function was derived as

the solution to maximum-likelihood and maximum-posterior estimation for idealized

SAR data. This theory was then applied to develop an autofocusing method for

images formed using backprojection [7]. Such geometric interpretation of the problem

allows for optimal, single-pulse phase corrections to be derived in closed form as the

solution of a quartic polynomial. This was shown to reduce the computational cost

of autofocusing back-projected images, but to date the work has not been extended

to more numerically efficient image formation algorithms, such as those based on

interpolation techniques (e.g., the non-uniform fast Fourier transform (NUFFT) or

the Polar Format Algorithm.)

In [50, 51], a shear averaging technique was developed for SAR autofocus. 3 The

shear averaging algorithm consists of computing the average over the sheared product

of phase corrupted data from adjacent azimuth angles. The phase of the computed

average is equivalent to the difference of the unknown phase from one azimuth angle

to the next. Thus the unknown phase can be written as a recurrence relationship

and explicitly calculated as the sum of the phases of the computed average. This pre-

processing technique is only suitable for phase errors that do not depend on frequency

values, i.e. that are one-dimensional. Adapting the shear averaging technique to two-
2In [128, 7], the sharpness function is chosen as ||ν||22, where ν is the image intesity. In general,

sharpness is a convex function of intensity.
3Shear averaging has some similarities to wavefront sensing by shearing interferometry, [50, 129].
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dimensional phase error correction is beyond the scope of this paper.

Finally, a different approach was suggested in [110] and [63]. The autofocusing

methods in those investigations also assume that the phase errors only depend on the

azimuth angle, and as before the underlying scene is assumed to be dominated by a

small number of strong scatterers. The phase errors and imagery are found through

an alternating optimization procedure, with the scene assumption incorporated into

the cost function by sparsity promoting `1 and `p norms with p < 1. Though the

results are promising, these papers do not accurately model the phase errors.

In this section, we develop an autofocusing techniquee that exploits the correlation

of the phase error on both the azumth angle and spatial frequencies while also enforc-

ing the piecewise smooth nature of the image within the scene. Initially constructed

in [121], our method estimates the phase error correction and the image through

a joint optimization procedure. New to this investigation is the incorporation of a

phase synchronization technique for the estimation of the unknown, two-dimensional

phase error. This is needed because the optimization prceedure proposed in [121] was

not robust to large spatial frequency values. Also, smoothness was enforced on the

phase errors. This is an inaccurate assumption, however, as the phase should only

be recovered as wrapped, piecewise smooth functions. As in [121], here we use high

order regularization methods, yielding the additional advantage of reducing speckle

in SAR images.

5.2.2 Mathematical Modeling of Phase Errors

The explanation below generally follows the work of Jakowatz et al. [69] (see

Chapter 4). A comprehensive discussion of the SAR data acquisition process is given

in Appendix A. Let f : Ω → C denote be the two-dimensional reflective scene of
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scattering objects that we want to recover, and suppose f is defined over

Ω := {(x, y) ∈ R2|x2 + y2 ≤ L2}.

At a particular position in the sensing process, indicated by an azimuth angle θ ∈ R,

the transmitted linear, frequency-modulated (FM) chirp mixes with the scene in a

way that depends upon θ, the angle from which the chirp is emitted. 4 In the far

field case, once the transmitted signal reaches the scene it has essentially a planar

wave front, and thus the points in the scene along each line perpendicular to the

direction of the chirp all mix with the same values. Hence the two-dimensional setup

is often simplified to a one-dimensional process by compressing the scatterers along

each of these lines to a single point. This compression is commonly referred to as the

projection or Radon transform of f at the angle θ, and is denoted p : Ω→ R2. It can

be expressed mathematically as

p(θ, u) =

∫∫
x2+y2≤L2

f(x, y)δ(u− x cos θ − y sin θ) dx dy. (5.25)

The linear FM chirp that is transmitted and mixed with the scene is described as

the real part of

s(t) =


ei(ωt+αt

2), |t| ≤ T
2

0, otherwise
, (5.26)

where ω is the carrier frequency, 2α is the chirp rate, and T > 0 is the pulse duration.

This chirp signal mixes with the scene to yield reflected signals of the form

r(θ, t) =

∫ L

−L
Re {p(θ, u)s(t− τ0 − τ(u))} du, (5.27)

where τ0 + τ(u) is the estimated round trip time for the chirp to travel to scene

position u. Specifically, τ0 is the round trip time required for the chirp to travel to
4In practice there is also a relevant angle of elevation which is not critical to the development of

our method.
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the scene center and τ(u) is the additional travel time for any particular position in

the scene u. If R is the distance from the transmitter/receiver to the scene center

and c is the speed of light in a vacuum, we have

τ0 = 2R/c, τ(u) = 2u/c.

A deramping process is implemented to extract approximate instantaneous fre-

quency information (i.e. the classical Fourier transform of f) from the chirp response.

In brief, this process requires the following steps:

1. Demodulation of r(θ, t) for each θ by multiplication with in-phase and quadra-

ture signals

rI(t) = cos
[
ω(t− τ0) + α(t− τ0)2

]
rQ(t) = sin

[
ω(t− τ0) + α(t− τ0)2

] (5.28)

to obtain rd(θ, t) = r(θ, t) (rI(t) + irQ(t)). Using the appropriate trigonometric

identities, one can show that

rd(θ, t) =
1

2

∫ L

−L
p(θ, u)exp{i(ω(2t− τ(u)− 2τ0)

+ α((t− τ0)2 + (t− τ(u)− τ0)2))} du

+
1

2

∫ L

−L
p(θ, u)exp{i[ατ 2(u)− τ(u)(ω + 2α(t− τ0))]} du.

(5.29)

2. Low pass filtering of (5.29) to remove the first term, yielding

rd(θ, t) ≈
1

2

∫ L

−L
p(θ, u) exp

{
−i2u

c
[ω + 2α(t− τ0)]

}
exp

{
iα

4u2

c2

}
du. (5.30)

Assuming that the chirp rate α and the scene radius L are sufficiently small, we have

ατ 2(u) =
4αu2

c2
≈ 0,

so that eiατ2(u) ≈ 1. The resulting approximation of the ideal data is then given by

f̂θ(t) :=

∫ L

−L
p(θ, u)e−iku du ≈ rd(θ, t), (5.31)
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where

k = k(t) :=
2

c
(ω + 2α(t− τ0)). (5.32)

In other words, the demodulation approximately yields the Fourier coefficients of the

projection of f , and therefore by the projection slice theorem [32, 69], we have

f̂θ(t) =

∫ L

−L
p(θ, u)e−iku du =

∫∫
x2+y2≤L2

f(x, y)e−ik(x cos θ+y sin θ)dxdy. (5.33)

An error in the estimated round trip propagation time corresponds to an unknown

shift in τ0, which varies with respect to azimuth angle. To understand the effects of

this error, we replace τ0 by τ0 + ε(θ) in (5.28). The demodulation procedure now

requires multiplication with shifted in-phase and quadrature signals,

rεI(t) = cos
[
ω(t− τ0 + ε(θ)) + α(t− τ0 + ε(θ))2

]
rεQ(t) = sin

[
ω(t− τ0 + ε(θ)) + α(t− τ0 + ε(θ))2

]
,

(5.34)

resulting in the corresponding demodulation

rεd(θ, t) = r(θ, t)(rεI(t) + irεQ(t)).

Once again using appropriate trigonometric identities, one can show that

rεd(θ, t) =
1

2

∫ L

−L
p(θ, u) exp{i(ω(2t− 2τ0 − τ(u) + ε(θ))

+ α((t− τ0)2 + (t− τ0 − τ(u))2 + 2ε(θ)(t− τ0)}du

+
1

2

∫ L

−L
p(θ, u) exp{−iτ(u)(ω + 2α(t− τ0))} exp{−iε(θ)

(ω + 2α(t− τ0))} exp{iα(τ(u)2 + ε(θ)2)}du.

(5.35)

As before, low pass filtering is used to remove the first term of (5.35) yielding

rεd(θ, t) ≈
1

2

∫ L

−L
p(θ, u) exp {−i (τ(u) + ε(θ)) [ω + 2α(t− τ0)]}

exp
{
iα
(
τ(u)2 + ε(θ)2

)}
du.

(5.36)
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The chirp rate α and the scene radius L are again assumed to be sufficiently small,

so that ατ 2(u) = 4αu2

c2
≈ 0. It is further assumed that ε(θ) is small, implying

αε(θ)2 ≈ 0

and therefore

eiα(τ2(u)+ε(θ)2) ≈ 1.

This leads to the model for the phase corrupted data:

f̂ εθ(t) :=

∫ L

−L
p(θ, u)e−ikue−i

ε(θ)c
2
kdu = e−ikφ(θ)f̂θ(t) ≈ rεd(θ, t), (5.37)

where the spatial frequencies k are defined in (5.32) and φ(θ) = ε(θ)c
2

. Hence we

have the following problem: Given phase corrupted data f̂ ε in (5.37), how do we

extract the appropriate phase correction, without explicit knowledge of f̂ , and also

simultaneously estimate f? Our approach to this problem is discussed below.

Model Discretization

To discretize the problem, we let the temporal frequency values be given by tj for

j = 1, ..., K, and the azimuth angles by θn for n = 1, ..., Np. We also denote

kj =
2

c
(ω + 2α(tj − τ0)), j = 1, ..., K, (5.38)

as the discretized spatial frequencies and F : CN×N → CK×Np as the discrete forward

operator modeled by (5.33) that maps the reflectivity f ∈ CN×N to the data f̂ ∈

CK×Np . Finally, we define

b = {f̂θn(kj)}K,Npj=1,n=1 and bε = {f̂ εθn(kj)}K,Npj=1,n=1 (5.39)

as the vectors containing the ideal data acquired in (5.33) and the data containing

phase errors in (5.37), respectively.
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The classical problem is to find f satisfying Ff = b. Because of the imperfect

knowledge of the round trip wave propagation time, we instead seek to solve

F εf = bε, (5.40)

where F ε is the discrete forward transform modeled by (5.37). However, due to the

phase error, F ε is not known must be estimated through F by incorporating a phase

correction into the model. The process is described below.

5.2.3 Range Compressed Data

For simplicity, define φ(θn) = ε(θn)c
2

= φn where as before, ε denotes the phase

error defined in (5.37). We denote φ = {φn}Npn=1 as the vector of phase errors, for

which we build a correction to the forward model as

E = E(φ) = diag{e−ikjφn}K,Npj,n=1. (5.41)

Clearly, if φ is known then from (5.37) we can explicitly determine the forward oper-

ator in (5.40) as F ε = EF . However, in practice φ is not known, so we must design

our algorithm to attempt to recover it along with the image.

In most autofocusing algorithms, [7, 26, 51, 63, 146, 149], the phase correction is

done in the range compressed domain. The range compressed data are the discrete,

one-dimensional (inverse) Fourier transforms of the phase history data along the range

dimension. The range compressed data corresponding to the idealized phase history

data (5.33) are given by

cr(θn,m) =
K∑
j=1

f̂θn(kj)e
ikjm, m = 1, ...K, (5.42)

and all autofocusing algorithms to our knowledge correct for a phase error defined

as e−iφncr(θn,m), where the phase error, −φn, is assumed to be one-dimensional and
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depend only on the azimuth angle. However, from the above derivation concluding

at (5.37), it is evident that the range compressed data corresponding to the phase

corrupted phase history data are actually given by

cφr (θn,m) =
K∑
j=1

f̂ εθn(kj)e
ikjm =

K∑
j=1

f̂θn(kj)e
ikj(m−φn) = cr(θn,m− φn), (5.43)

for m = 1, ..., K. Moreover, due to the dependency of the phase error on the spatial

frequencies,

cr(θn,m− φn) 6= e−iφncr(θn,m), (5.44)

and hence the phase correction should be done on the raw phase history data, rather

than the range compressed data.

5.2.4 Proposed Method for Joint Image Formation and Phase Error Correction

(Autofocusing)

Our proposed autofocusing algorithm follows the general methodology introduced

in [26, 110, 63]. The idea is to alternate between the recovery of the image infor-

mation f and the phase errors φ(θ). Unique to our approach is the way the phase

errors are characterized, specifically that they vary linearly with respect to the spatial

frequencies, as written in (5.37). This is significant because the entire phase error,

Φj,n := ang(E) = −kjφn, j = 1, · · · , K, n = 1, · · ·Np, (5.45)

is a two-dimensional phase error (rather than one-dimensional), which we correct

for in the raw phase history data. Moreover, no additional information is lost to

pre-processing the data by first forming the image.

In what follows we first explain how to determine the phase correction φ in (5.37).

We then describe how the phase correction is used in our image formation procedure

directly. That is, we approximate f without explicit knowledge of the phase error,
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meaning that we do not require the ideal data f̂ in (5.33) to form the image, or

equivalently, we are able to accurately estimate F ε in (5.40).

Phase Error Correction via Phase Synchronization

Developed in the phase retrieval community for function reconstruction from magni-

tude only data is an eigenvector-based phase (or angular) synchronization [131, 68]. In

phase synchronization, one attempts to recover N phases, eiφ1 , ..., eiφN , from measure-

ments of relative phases ei(φi−φj), i, j = 1, ..., N , or more simply, to recover individual

phases φ1, ..., φN from phase differences (φi−φj), i, j = 1, ..., N . Using this technique

it is possible to construct E in (5.41) which is needed to build the forward operator

F ε in (5.40). In what follows, we adapt the eigenvector-based phase synchronization

technique for the purpose of autofocusing SAR data (5.37).

For simplicity, denote f̂ εn,j = f̂ εθn(kj). For a fixed frequency kj, define Xj ∈ CNp×Np

for j = 1, ..., K such that

(Xj)n,m := exp
{
i
[
ang〈f̂n,j, f̂ εn,j〉 − ang〈f̂m,j, f̂ εm,j〉

]}
, (5.46)

where, for y ∈ C,

ang(y) = tan−1

(
Im{y}
Re{y}

)
.

Discretizing and substituting (5.37) into (5.46) yields

(Xj)n,m = exp {ikj (φn − φm)} .

By construction, when there is no noise present in the data, Xj is a rank 1, Hermitian

symmetric matrix. However, noise is always present in measured data, so we define

Zj :=
1

2

(
Xj +X∗j

)
(5.47)

to mitigate the effects of unwanted errors on the rank and symmetry of Xj. Future

investigations will consider relaxing the rank 1 assumption and using a rank mini-
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mization method such as the phaselift procedure described in [20]. In the ideal case,

because Zj is Hermitian symmetric, it has an eigenvalue decomposition

Zj = UΛU∗,

where U is a unitary matrix made up of the eigenvectors {u1, u2, ..., uNp} of Zj, and

Λ = diag(λ1, λ2, ..., λNp) is a diagonal matrix containing its corresponding eigenvalues

|λ1| > |λ2| ≥ · · · ≥ |λNp |. If Zj is rank 1, Λ contains one unique, non-zero eigenvalue,

λ. The corresponding eigenvector is given by

Yj = eiβkj
[
ei(kjφ1) ei(kjφ2) · · · ei(kjφNp )

]T
, (5.48)

where βkj is a constant phase term that is assumed to be dependent on frequency kj.

This is easily shown, because YjY ∗j = Xj, yielding

XjYj = Yj(Y
∗
j Yj) = Yj||Yj|| = NpYj.

Hence the eigenvector Yj (5.48) corresponds to eigenvalue λ = Np.

As mentioned previously, Xj, and consequently Zj, typically contain noise, in

which case there is more than one non-zero eigenvalue. We therefore employ the power

iteration method (see e.g. [141]) to approximate the maximum eigenpair (λ1, u1) of

Zj, where |λ1| > |λ2|≥ · · · ≥|λNp|, and u1 is the normalized eigenvector corresponding

to λ1. To initialize the power iteration, we set

v(0) = [eiΨ1 , ..., eiΨNp ]T , and λ(0) = (v(0))TZjv
(0) (5.49)

where Ψn is chosen to be independent and identically distributed in [0, 2π] for all

n = 1, ..., Np. The power iteration algorithm is provided in Algorithm 7, and its

convergence is stated in Theorem 5.2.1.
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Algorithm 7 Power Iteration: approximate the maximum eigenpair (λ, v) of Zj,

j = 1, ..., K.

1: Determine tolerance tol, initialize vectors v(0) and λ(0) according to (5.49) and set

k = 1. The matrix Zj is defined in (5.47).

2: while ||λ(k+1) − λ(k)|| > tol do

3: Set w = Zjv
(k−1).

4: Compute the normalized eigenvector v(k) = w/||w||.

5: Use the Rayleigh quotient to determine the corresponding eigenvalue as

λ(k) = (v(k))TZjv
(k).

6: Set k = k + 1.

7: end while

Theorem 5.2.1 Let (λ1, u1) be the maximum eigenpair of matrix Zj ∈ CNp×Np. Sup-

pose |λ1| > |λ2| ≥ · · · ≥ |λNp | ≥ 0 and uT1 v(0) 6= 0. Then the iterates of Algorithm 7

satisfy

||v(k) − (±u1)||2 = O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

(5.50)

as k →∞. The ± sign means that at each step k, one or the other choice of sign is

to be taken, and then the indicated bound holds.

The proof for Theorem 5.2.1 can be found in standard numerical linear algebra text-

books, see e.g. [141].

Figure 5.11 (left) demonstrates the convergence rate of Algorithm 7 given A ∈

R100×100. Here the maximum eigenpair (λ1, u1) is real, that is λ1 ∈ R and u1 ∈

R100. Figure 5.11 (right) displays the final eigenvector approximation along with the

true eigenvector corresponding to λ1. The algorithm is terminated when the relative
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Figure 5.11: The maximum eigenpair approximation of a randomly distributed matrix

A ∈ R100×100 calculated using Algorithm 7. (left) Error using Algorithm 7 compared

to the theoretical bound in (5.50). (right) Comparison of the actual eigenvector, u1 ∈

R100, and estimated eigenvector, vend, resulting from Algorithm 7 after 11 iterations.

change is below a given tolerance. That is,

||v(k+1) − v(k)||22
||v(k)||22

< tol,

where we chose tol = 10−12. Figure 5.12 demonstrates the results for the Algorithm

when the maximum eigenpair is complex, specifically for when λ1 ∈ C and u1 ∈ C100.

In this case the angle of the maximum eigenvector can be recovered only up to a

constant phase shift. However, as will be demonstrated in what follows, this constant

phase shift does not affect the overall phase correction, and thus the power iteration

is still a reasonable option.

Once the eigenvector Ykj = Yj corresponding to the maximum eigenvalue for

each frequency {kj}Kj=1 is determined, we can build the phase synchronization matrix

Y ∈ CK×Np as

Y :=



Y T
1

Y T
2

...

Y T
K


=



eiβk1eik1φ1 · · · eiβk1eik1φNp

eiβk2eik2φ1 · · · eiβk2eik2φNp

... . . . ...

eiβkK eikKφ1 · · · eiβkK eikKφNp


. (5.51)
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Figure 5.12: The maximum eigenpair approximation of a randomly distributed matrix

A ∈ C100×100 calculated using Algorithm 7. (left) Error using Algorithm 7 compared

to the theoretical bound in (5.50). Comparison of the magnitude (center) and angle

(right) of the actual eigenvectors, u1 ∈ C100, and estimated eigenvector, vend, resulting

from Algorithm 7 after 12 iterations.

To extract the phase, we sum over the columns of Y for each row n = 1, ..., Np,

yielding ∑K
j=1 ang (Yj)n sign(kj)∑K

j=1 |kj|
= φn + β̃, (5.52)

where

β̃ =

∑K
j=1 βkjsign(kj)∑K

j=1 |kj|
. (5.53)

The phase synchronization process separates the phase error φ = {φn + β̃}Npn=1 from

the corrupted data f̂ ε using (5.52), and is further described in Algorithm 8.

As is apparent from (5.52), the recovery of φ includes an unknown phase shift β̃,

which cannot be removed. Because this phase shift is constant with respect to the

azimuth angle θ, it does not affect our phase correction (5.41). For example, Figure

5.13 shows the results using Algorithm 8 to recover from phase corrupted data an

unknown phase error defined as

φ̂n = γψ2
n, ψn = −1 +

2

N
n, n = 1, ..., N, (5.54)

for N = 512 and γ = 17. In this case we input both the ideal (5.33) and phase
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Algorithm 8 Phase Synchronization: recover unknown phase error φ given phase

corrupted data f̂ ε.

1: Input phase corrupted data f̂ ε, forward model F , and image estimate f .

2: Estimate f̂ = Ff .

3: for j = 1 to K do

4: Define Xj according to (5.46).

5: Compute Zj using (5.47).

6: Find the maximum eigenvalue λj and corresponding eigenvector Yj of Zj using

Algorithm 7.

7: end for

8: Construct phase synchronization matrix Y according to (5.51).

9: for n = 1 to Np do

10: Calculate phase error vector φ = {φn + β̃}Npn=1 using (5.52).

11: end for

corrupted (5.37) data into Algorithm 8 so that the only discrepancy between the true

phase error and estimated phase error is β̃ in (5.52). Specifically, Step 2 of Algorithm

8 is not necessary, as we input the exact f̂ . We see in Figure 5.13(left) that β̃ and φn

are wrapped 5 in the same locations and that β̃ possesses a constant shift for each

wrapped portion of φn. When φn is unwrapped (see Figure 5.13(right)) and compared

to the true phase φ̂n for all n = 1, ..., N , we see that the error is only a constant shift,

which does not affect the accuracy of the phase correction (5.41).

Figure 5.13 describes the phase synchronization given exact Fourier data, f̂ . How-

ever, in applications we will only be given the phase corrupted data, f̂ εθ(t) in (5.37).

In this case, we expect that performing an iterative process in Step 2 of Algorithm 8
5A phase is considered wrapped when only its principle values (i.e. values that lie between ±π)

are considered. That is, Φn = φn + 2πηn and ηn is an integer function that forces −π < Φ ≤ π.
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Figure 5.13: (left) The wrapped φ and β̃ in (5.52) and (right) the final unwrapped

phase estimated using Algorithm 8 compared to the true injected phase error (5.54).

to update f̂ such that

f̂new = Ffnew, (5.55)

each time the image f is updated should yield a better approximation of the ideal

data f̂ which is in turn used in Step 4 to calculate (5.46), and subsequently improve

the accuracy of Step 10.

Image Formation via High Order Regularization

We can now incorporate the estimated phase error φ, found through the phase syn-

chronization technique described in Algorithm 8 into a high order `1 regularization

procedure for estimating the image f . High order regularization has been shown to

be a robust and accurate way to reconstruct images from noisy and/or undersampled

data [4], and was adapted for for SAR image formation in [120]. The joint estimation

of the SAR image with phase error correction is written as

argmin
f,φ

{
||Tf ||1 +

µ

2
||EFf − bε||22

}
. (5.56)

Here µ > 0, F is the NUFFT operator [49, 60], and, with φ known exactly, EF =

F ε with E = E(φ) in (5.41). The phase error φ is determined from Algorithm 8.

There are several options for choosing the sparsity transform operator T . Due to its
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demonstrated success in reconstructing SAR images, [120, 121], we choose T to be

the (modified) mth order Polynomial Annihilation (PA) transform as given in (5.18).

Numerical Implementation

Due to its robustness and efficiency, we use the alternating direction method of mul-

tipliers (ADMM) algorithm [88, 156] to solve (5.56). Other `1 regularization solvers

may be as effective, including the Split-Bregman Algorithm [55] or the Fast Iterative

Shrinkage-Thresholding Algorithm (FISTA) [13], but such comparisons of techniques

is not the focus of this investigation so we do not consider them further. Provided

below is a concise description of the ADMM as it pertains to (5.56). A more detailed

analysis can be found in [120] and Chapter 2 of this dissertation.

Because f cannot be separated from T in (5.18), to implement the ADMM al-

gorithm we must first define slack variables g ∈ RN×N such that g = Tf . We then

introduce the Lagrange multiplier ν ∈ RN×N , yielding the augmented Lagrangian

form of (5.56)

Jν(f, g, φ) =

{
µ

2
||EFf − bε||22 +

β

2
||Tf − g||22 − 〈ν, Tf − g〉+ ||g||1

}
. (5.57)

The approximation to (5.56) is then determined as

argmin
f,g,φ

Jν(f, g, φ). (5.58)

for fixed multiplier ν. The problem is now split into two sub-problems, known as the

g sub-problem and the f sub-problem respectively, which are solved in an alternating

fashion. Specifically, at the k + 1 iteration, for fixed fk and νk, the solution to the g

sub-problem is

gk+1 = max

{
|Tfk −

νk
β
| − 1

β
, 0

}
sign

(
Tfk −

νk
β

)
. (5.59)
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Holding gk+1 and νk constant, updates over f then take the form

fk+1 = fk − α∇fJνk(f, gk+1, φ)|fk , (5.60)

where the gradient of J with respect to f is given by

∇fJνk(f, gk+1, φ) = µF∗ (Ff − E∗bε) + βT ∗ (Tf − gk+1)− T ∗νk, (5.61)

and α is chosen as a Barzilai-Borwein step length (see [10]),

αk =
sTk sk
sTk yk

, (5.62)

with

sk = fk − fk−1,

yk = ∇fJνk(f, gk+1, φ)|fk −∇fJνk(f, gk+1, φ)|fk−1
.

If the step length does not satisfy the Armijo condition, [156], we backtrack and

shorten the step length according to

αk = ραk, (5.63)

where ρ ∈ (0, 1) is chosen as the backtracking parameter. After a sufficient number

of updates on g and f are performed, the Lagrange multiplier is updated according

to

νk+1 = νk − β(Tfk+1 − gk+1). (5.64)

The joint minimization method in Algorithm 9 summarizes what is explained

above and provides a step-by-step procedure of how to (alternatively) solve the g

sub-problem and f sub-problem at each iteration, while updating φ according to the

phase synchronization process. Typically, to initialize Algorithm 9, we choose ρ = .4

[156, 88].
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Algorithm 9 Joint Minimization for SAR Autofocus
1: Determine parameters ρ, µ, β for the algorithm, set tolerance tol, maximum

iterations K, and initialize f0, g0 and ν0.

2: Perform initial estimates of Θ0 = ang(f0) and f̂ 0 = Ff0.

3: for i = 0 to K do

4: Determine phase estimate φi using Algorithm 8 with image estimate f i and the

ideal data f̂ i.

5: while ||fk+1 − fk|| > tol do

6: Minimize g according to (5.59).

7: Update f according to (5.60) and (5.61) with E(φi) in (5.41).

8: Update Lagrange multiplier according to (5.64).

9: end while

10: Set i = i+ 1.

11: Fix f i = fk+1 and update the approximation of ideal data by f̂ i = Ff i.

12: Update T using Θi = ang(f i) according to (5.18).

13: end for

5.2.5 Numerical Results

For our numerical experiments we first consider the Gotcha parking lot [23] and

MSTAR [122] phase history data sets. 6 We take each phase history data set

and inject phase errors into the given raw phase history data according to (5.37).

In this way we are able to test our method under the more realistic assumption

that the phase errors occur in the raw data, not the range compressed data, per

the discussion in Section 5.2.3 culminating with (5.44). We next consider a problem

where we generate our own corrupted phase history data. This is accomplished by
6Both data sets are provided by the Air Force Research Lab and can be downloaded at

https://www.sdms.afrl.af.mil/.

145



adding a small error to the imaging platform location during the data acquisition

procedure. Specifically, rather than simply multiplying “good” data by a phase error

to simulate corrupted data (i.e. f̂ ε = E(φ)f̂), we instead generate data that contain

phase corruption without knowing the ideal data, that is, we generate f̂ ε without

knowing f̂ . For this example we consider a scene containing a few isotropic point

scatterers. This allows a more realistic way to model phase errors without making

biased assumptions while also controlling for all other errors in the system.

For each experiment we compare our results to those acquired using high order

total variation (HOTV) regularization without phase estimation. That is, we compare

our reconstructions to the ones acquired by solving (5.56) with E(φ) defined as the

identity matrix. We note that other regularization transforms may also be utilized

for solving the general form of (5.56), and in some cases may yield more accurate

results. This will be explored in future investigations.

To demonstrate the recovery of the phase error up to a constant shift, for our ex-

amples given below we will display the true two-dimensional phase error, {Φj,n}K,Npj=1,n=1

in (5.45), along with the recovered two-dimensional phase error defined as

Φ̂j,n = ang(Ê) = −φ̂nkj, j = 1, · · · , K, n = 1, · · ·Np, (5.65)

where {φ̂n}Npn=1 is the final phase error recovered via Algorithm 9. We will also show

the differences between the recovered and true two-dimensional phase error,

Φ̃j,n = Φj,n − Φ̂j,n, j = 1, · · · , K, n = 1, · · ·Np. (5.66)

We will illustrate that the phase error remains constant for our examples by displaying

(5.66) as a one-dimensional plot across spatial frequency values, j = 1, · · · , K for a

subset of azimuth angles indexed by l ⊂ {1, · · · , Np}. Finally, we approximate the

first derivative of Φ̃ with respect to the spatial frequencies for the same subset of the
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azimuth angles l ⊂ {1, · · · , Np}, given by

∂Φ̃

∂k
≈ Φ̃j,l − Φ̃j−1,l

∆k
, j = 2, ..., K, (5.67)

where ∆k = (kK − k1)/K and {kj}Kj=1 is defined in (5.38). If (5.67) is near zero,

the phase differences (5.66) are indeed constant, as is needed for the success of our

autofocusing algorithm.

5.2.6 Injection of Phase Errors

For our first two examples, we are given ideal phase history data f̂θn(kj), for

n = 1, ..., Np, and j = 1, ..., K. We inject the phase error into the raw phase history

data in accordance to (5.37) as

f̂ εθn(kj) = f̂θn(kj)e
−ikjφn , n = 1, ..., Np, j = 1, ..., K. (5.68)

Example 5.2.2 We consider the Gotcha phase history data [23] with a θa = 4◦

azimuth sweep centered at 30◦ and an elevation of 45.7◦. The center frequency of

this data collect is ωc = 9.6GHz with a 622.36MHz bandwidth. Range resolution is

ρy = .2409m and cross range resolution is ρx = .2242m. The phase history data

consists of Np = 586 azimuth angles (pulses) and K = 424 frequencies. According to

(5.68), we inject into the ideal data the following phase error

φn = γ sin(πψn), (5.69)

where γ = .25, ψn = −1 + n 2
Np

and n = 1, ..., Np. To display the one-dimensional

error in the phase correction, we choose l = {1, 119, 237, 355, 473} in (5.67) so that

the difference is calculated for θl = {27.01◦, 28.01◦, 29.02◦, 30.03◦, 31.03◦}.

Example 5.2.3 We utilize the MSTAR data set [122] to reconstruct data correspond-

ing to a scene that contains a T-72 (SNS7) tank where the imaging platform is located
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Figure 5.14: Parking lot scene reconstructed from the phase corrupted Gotcha [23]

data set described in Example 5.2.2. Reconstructions are done using (top-left) the

NUFFT, (top-right) least squares minimization, (bottom-left) HOTV regularization

with order m = 2 and parameters µ = 128 and β = 60 and (bottom-right) the

proposed joint image formation and phase estimation (5.56) with order PA m = 2,

µ = 128 and β = 60.

4551m above the scene center at a 15◦ elevation angle. For this data collect, the center

frequency is set at ωc = 9.6GHz with wavelength λ = c/ωc = .0312m, a bandwidth of

B = 591MHz and an integration angle of θa = 2.9361◦. The range and cross range
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Figure 5.15: Result of estimating the phase error in the Gotcha parking lot data,

Example 5.2.2. (left) True two-dimensional phase error injected into data. (middle)

Two-dimensional phase correction recovered using proposed autofocusing technique.

(right) The difference between the recovered and true phase, (5.66). Note the different

scales in each image. This is acceptable, as we expect that for each azimuth angle

there will be a constant phase shift for all frequency values.

resolutions are therefore

ρx =
c

2B
= .2536m and ρy =

λ

2θa
= .3047m.

In this case we corrupt the phase history data using

φn = γψ3
n (5.70)

in (5.68), where γ = .25, ψn = −1 + n 2
Np

and n = 1, ..., Np. To display the one-

dimensional error in the phase correction, we choose l = {1, 27, 53, 79, 105} in (5.67)

so that the difference is calculated for θl = {−1.47◦,−0.87◦,−0.27◦, 0.34◦, 0.94◦}.

In Examples 5.2.2 and 5.2.3 we use the corrupt phase history data (5.68) as the

input of our joint image formation and phase correction technique described in Al-

gorithm 9. We compare our results to using the inverse (adjoint) NUFFT operator,

the least squares solution, and the HOTV solution. The reconstruction results are

respectively displayed in Figures 5.14 and 5.17 for the Gotcha data and the MSTAR
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Figure 5.16: Result of estimating the phase error in the Gotcha parking lot data,

Example 5.2.2. (left) Phase difference (5.66) at specific azimuth angles for all spa-

tial frequencies. (right) Approximate derivative (5.67) of the one-dimensional phase

differences at the same subset of azimuth angles.

data. In Example 5.2.2 we use m = 2, µ = 128 and β = 60, while in Example 5.2.3

we use m = 1, µ = 70 and β = 20. These parameters were chosen because of their

performance value, but were not optimized or tested for robustness, which will be the

topic of future research. The results clearly demonstrate that we are able to focus

the phase corrupted data using Algorithm 9. Moreover, it is apparent that our auto-

focusing algorithm can be utilized both on full scenes consisting of many targets, (as

in the Gotcha image), as well as on scenes where software has honed in on a specific

target of interest (as in the MSTAR image).

Figures 5.15 and 5.18 show the recovered two-dimensional (5.65) phase errors

outputted from Algorithm 9 compared to the true two-dimensional phase error (5.45).

The discrepancy between the two errors, (5.66), is also displayed. Figures 5.16 and

5.19 demonstrate that the error in the recovery is due to the constant phase shift β̃

in (5.52) and inherent algorithm errors due to noise.
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Figure 5.17: T-72 tank reconstructed from the phase corrupted MSTAR [122] data set

described in Example 5.2.3. Reconstructions are done using (top-left) the NUFFT,

(top-right) least squares minimization, (bottom-left) HOTV regularization with order

m = 1 and parameters µ = 70 and β = 20 and (bottom-right) the proposed joint

image formation and phase estimation (5.56) with order PA m = 1, µ = 70 and

β = 20.

Generation of Phase Errors

As a final experiment, we simulate phase history data (5.33) that has been acquired

without perfect knowledge of the SAR imaging platform. To do so, we discretize

according to (5.37) and (5.39) to find f̂θn(kj) = f̂n,j for n = 1, ..., Np and j = 1, ..., K.

In this way, the following model, originally posed in [58], is used to acquire data from
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Figure 5.18: Result of estimating the phase error in the MSTAR data, Example 5.2.3.

(left) True two-dimensional phase error injected into data. (middle) Two-dimensional

phase correction recovered using proposed autofocusing technique. (right) The differ-

ence between the true and recovered phase, (5.66). Notice that the scales are different

in each image. This is acceptable, as we expect that for each azimuth angle there will

be a constant phase shift for all frequency values.

a scene containing M scatterers:

f̂n,j =
M∑
m=1

Am exp

(
−i4π∆Rm(θn)kj

c

)
. (5.71)

Here c is the speed of light, Am is the amplitude of the mth scatterer, and ∆Rm(θn)

is the differential range to the mth scatterer from angle n. The differential range is

defined as the distance from the scene center to a scatterer. Below we provide brief

discussion on differential range and how it is affected by the imperfect knowledge of

the imaging platform location. A thorough discussion of this discrete model (5.71)

and the differential range in the single scatterer case is provided in Appendix A.

For a multiple scatterer scene, let x̃n = [xa(θn) ya(θn) za(θn)]T ∈ R3 be the

location of the SAR antenna center at angle θn and xn = [xm(θn) ym(θn) zm(θn)]T ∈

R3 be the location of the mth scatterer at angle θn. Then the distance from the

antenna center to the scene center is

R(x̃n) =
√
xa(θn)2 + ya(θn)2 + za(θn)2, (5.72)
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Figure 5.19: Result of estimating the phase error in the MSTAR data, Example 5.2.3.

(left) Phase difference (5.66) at specific azimuth angles for all spatial frequencies.

(right) Approximate derivative (5.67) of the one-dimensional phase differences at the

same subset of azimuth angles.

and the distance from the antenna phase center to the mth scatterer is

Rm(xn) =
√

(xa(θn)− xm(θn))2 + (ya(θn)− ym(θn))2 + (za(θn)− zm(θn))2. (5.73)

The differential range is then

∆Rm(θn) = Rm(xn)−R(x̃n). (5.74)

The distances described by (5.72)-(5.74) have been labeled in Figure 5.20 for clarity.

Because the location of the antenna is not known exactly, we assume

Rε(x̃n) = R(x̃n) + εn =
√
xa(θn)2 + ya(θn)2 + za(θn)2 + εn, (5.75)

where εn represents some shift in space and φn = εnc/2 is the corresponding phase

shift. When including the antenna location error, the differential range in (5.74)

becomes

∆Rε
m(θn) = Rm(xn)−Rε(x̃n). (5.76)
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We therefore approximate the phase corrupted discrete data (5.39) as

f̂ εθn(kj) ≈ f̂ εn,j :=
M∑
m=1

Am exp

(
−i4π∆Rε

m(θn)kj
c

)

=
M∑
m=1

Am exp

(
−i4π(∆Rm(θn)− εn)kj

c

)
,

(5.77)

where Am is again the amplitude of the mth scatterer and ∆Rε
m(θn) is the inexact

differential range to the mth scatterer at angle θn.

R(  )

x

ΔRm

Rm(x)

Figure 5.20: Depiction of the ranges calculated in (5.72)-(5.74) for a scene consisting

of a single scatterer in one dimension (all y and z coordinates set to zero with n = 0).

Remark 5.2.4 Clearly (5.71) and (5.77) do not account for all scattering phenomenol-

ogy. However, by using (5.77), we are able to discern that all additional sources of

error are caused by the phase.

Example 5.2.5 We place M = 10 ten scatterers randomly within our scene. Cor-

rupted phase history data are generated according to (5.77) and typical SAR system

parameters. Specifically, we use Np = 512 linearly spaced azimuth angles ranging

from θ1 = −1.5◦ to θNp = 1.5 giving an integration angle of θa = 3◦. We consider

are K = 512 frequencies centered at ωc = 9.6GHz with a bandwidth of B = 500MHz

giving a wavelength of λ = c/ωc = .0312m. Our SAR platform is assumed to be at an

elevation of 30◦ and altitude of 5km. Together this gives us a range resolution ρx and
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Figure 5.21: Ten target scene reconstructed from phase corrupted data described in

Example 5.2.5. Reconstructions are done using (top-left) the NUFFT, (top-right)

least squares minimization, (bottom-left) HOTV regularization with order m = 2

and parameters µ = 40 and β = 100 and (bottom-right) the proposed joint image

formation and phase estimation (5.56) with order PA m = 2, µ = 40 and β = 100.

cross range resolution ρy of

ρx =
c

2B
= .3m, ρy =

λ

2θa
= .3m. (5.78)

To generate the data using (5.77) we define the phase error as

εn = γψ2
n, (5.79)
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Figure 5.22: Result of estimating the phase error in the data representing the ten

target scene, Example 5.2.5. (left) True two-dimensional phase error injected into

data. (middle) Two-dimensional phase correction recovered using proposed autofo-

cusing technique. (right) The difference between the recovered phase and the true

phase (5.66). Notice that the scales are different in each image. This is acceptable,

as we expect that for each azimuth angle there will be a constant phase shift for all

frequency values.

where γ = .05, ψn = −1 + n 2
Np

and n = 1, ..., Np. Before the inversion process

we also corrupt the data with additive complex Gaussian noise with mean zero and

variance .5. Finally, we choose F in the forward model (5.56) to be the NUFFT

[49, 60, 107]. To display the one-dimensional error in the phase correction, we

choose l = {1, 104, 207, 310, 413} in (5.67) so that the difference is calculated for

θl = {−1.5◦,−0.89◦,−0.29◦, 0.31◦, 0.91◦}.

We use Algorithm 9 to reconstruct a representation of the scene described in

Example (5.2.5) from the corrupt phase history data (5.77). We chose regularization

parameters µ = 40, β = 100 and PA orderm = 2. As before, the parameters were cho-

sen for their high performance value but were not optimized or tested for robustness.

Figure 5.21 compares our scene reconstruction to those using the inverse (adjoint)

NUFFT operator, HOTV regularization, and least squares estimation. While HOTV

regularization helps to eliminate noise in the reconstruction, it is clear that without

156



Figure 5.23: Result of estimating the phase error in the data representing the ten tar-

get scene, Example 5.2.5. (left) Phase difference (5.66) at specific azimuth angles for

all spatial frequencies. (right) Approximate derivative (5.67) of the one-dimensional

phase differences at the same subset of azimuth angles.

the phase estimation the targets remained blurred and their true locations cannot be

discerned. Figure 5.22 displays the true two-dimensional phase error, (5.45), along-

side the two-dimensional phase correction, (5.65), outputted from Algorithm 9, as

well as the difference between the two. It is evident from Figure 5.23 that as in the

previous examples, the phase is recovered up to a constant phase shift. This is further

made apparent in Figures 5.14(right), 5.17(right), and 5.21(right), which show this

constant phase shift for each azimuth angle across all spatial frequencies.

5.2.7 Discussion and Conclusions

In this section we analyzed the effects of imperfect imaging platform location

measurements on SAR phase history data and showed how it is manifested as a two-

dimensional phase error on the raw phase history data. Previous investigations tried

to correct this error on range compressed data, but as demonstrated by the derivation

of (5.43), such techniques omit the dependence of the two-dimensional phase error on

the frequency values.
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Instead we propose a joint phase estimation and image formation optimization

procedure to autofocus SAR imagery. As the image is updated using HOTV regu-

larization, we adjust the phase error using a phase synchronization technique, which

allows us to recover the unknown phase error up to a constant shift. Additionally, the

use of HOTV regularization reduces speckle and other sources of noise in the resulting

image. Compared to other `1 regularization techniques, our method incurs additional

computational complexity arising from calculating of K eigenvectors at each iteration

to form the phase synchronization matrix. Future investigations will consider more

efficient eigenvalue problem solvers. We will also investigate the sensitivity of our

method to HOTV parameter fluctuations in a Bayesian framework.

Two different numerical experiments are included in this section. In the first, we

inject two dimensional phase error into the Gotcha parking lot and MSTAR focused

phase history data sets to create phase corrupted data. In the second, we generate

phase corrupted data without explicitly knowing the ideal data. We consider sinu-

soidal, quadratic and cubic phase errors, each with different maximum magnitudes.

We compare our results to the least squares solution, the inverse (adjoint) NUFFT

solution and HOTV regularization without phase estimation. Our results show that

in every case we are able to recover the appropriate phase correction and focus the

imagery.
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Chapter 6

CONCLUSIONS AND FUTURE WORK

The goal of this dissertation was to develop and analyze high order total variation

(HOTV) techniques for robust function approximation in ill-posed inverse problems.

Our major assumption throughout this dissertation is that the one and two dimen-

sional functions we consider are sparse in the space of discontinuities/edges. We

are then able to exploit this prior knowledge by using the Polynomial Annihilation

transformation in an `1 regularization formulation.

After reviewing fundamental concepts in `1 regularization and optimization in

Chapter 2, in Chapter 3 we developed a robust variance based joint sparsity (VBJS)

technique for recovering one and two dimensional functions from multiple measure-

ment vectors. We show that the accuracy of this VBJS technique does not decrease

when a subset of the measurement vectors contain false or misleading information.

Moreover, the VBJS is essentially non-parametric, allowing for autonomous imple-

mentation and further algorithm robustness.

In Chapter 4 we tackle the problem of approximating solutions to nonlinear hy-

perbolic partial differential equations (PDEs). Even when given smooth initial data,

solutions to these types of problems develop shocks and discontinuities in finite time,

making it hard to find robust numerical approximations to solutions. We propose an

`1 enhanced numerical solver that augments current numerical solvers with `1 reg-

ularization. In this way, we are able to maintain stability and accuracy far beyond

classical restrictions.

Chapter 5 discusses reducing model assumptions in synthetic aperture radar (SAR)

image formation. First we develop two novel speckle reduction techniques. One is
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based on the `1 enhanced numerical PDE solver we developed in Chapter 4, and the

other is an adaptation of the VBJS method described in Chapter 3. Our numerical

results show that though both techniques are successful at reducing speckle, the VBJS

method better maintains target intensities, which is essential for object detection and

recognition. Further, VBJS performs comparably to HOTV regularization, but the

need for parameter tuning is eliminated, allowing for autonomous implementation.

We note, however, that the numerical method used for solving the speckle reduction

PDE model was low order, so it is possible that the results may be improved by

incorporating a more sophisticated solver.

The incorrect assumption that the SAR imaging platform location is known per-

fectly yields a phase error on the raw phase history data, resulting in defocused

imagery. We develop a new autofocusing technique that, at each iteration, jointly

estimates the appropriate phase correction and the resulting image. Our phase cor-

rection estimation is based on the phase (angular) synchronization technique utilized

throughout the phase retrieval community, and we use HOTV regularization for our

image formation algorithm. Our results show that with our algorithm, we are able to

produce a focused, speckle reduced image where the true phase error is recovered up

to a constant phase shift.

The results of this dissertation strongly support the idea that high order regular-

ization methods are effective at solving a wide range of ill-posed inverse problems. In

particular, they provide robust, efficient, and accurate means for solving real world

problems, as was demonstrated here for reconstructing SAR images and approximat-

ing solutions to conservation laws. Possible broader application areas range from
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hyper-spectral and magnetic resonance imaging to threat detection.

6.1 Future Work

Much of my future work will be focused on adapting the VBJS method for Air

Force applications. First, we will work to use the VBJS method for 3D SAR image

reconstruction. In this scenario, we must determine the optimal way to splice the

SAR data cube to obtain multiple measurement vectors that will fit into the VBJS

framework. Next, we will explore the possibility of data fusion using VBJS, where the

multiple measurement vectors will be data from a radio-frequency sensor (SAR) and

data from an electro-optical (EO) sensor. The fusion of SAR and EO is difficult due

to the different scattering phenomenologies of each sensor and different projection

spaces. The sensors will have the same support as they are both obtaining reflected

energy from the latent geometry of the object; however, determining the joint support

in the signal and image space will challenging, as the specular nature of SAR will only

coincide with the diffuse EO reflections at discrete 3D points on the objects surface.

In addition, only the projection of these points will be available to the respective

sensors.

Another project of interest is using the VBJS method to generate a database of

SAR images that can be used in the training and testing of SAR automated target

recognition (ATR) algorithms. The goal of the project is to improve the performance

of the SAR ATR algorithms using the new image database. This is important because

in SAR ATR, a small performance increase could result in the ATR being deployed

on a real system. The proposed VBJS speckle reduction technique was shown in this

thesis to remove background clutter while maintaining target fidelity and autonomy.

Thus, the images in the new database will contain less noise and higher target to

clutter ratios without the need to tune parameters. By generating new testing and
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training sets with this algorithm, SAR ATR algorithms can be retrained and then

tested for performance increases or decreases. The algorithm will be tested under

different operating conditions and constraints such as target obscuration and orien-

tation.

Finally, we also will propose using joint sparsity to develop a predictor/corrector

method for approximating solutions to nonlinear hyperbolic PDEs. This will require

advancing the numerical solution of the PDE ahead k time steps, and then using the

k solutions as multiple measurement vectors in the classic joint sparsity set up. Here

we will use joint sparsity, and not VBJS, because we expect the solutions to be jointly

sparse, but not jointly sparse at the same spatial locations. By performing the `2,1

regularization across measurements, we can update the solution to the PDE over the

k time steps and then continue to advance the solution.
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This Appendix discusses the synthetic aperture radar (SAR) data acquisition pro-

cedure for a scene with a single scattering target in the range direction, multiple

targets in the range direction and then a two dimensional patch of scatterers spread

throughout both the range and cross-range directions. We also describe the data sets

made available by the Air Force Research Laboratory (AFRL), as well as some typical

SAR image formation procedures. The material and notation presented throughout

this appendix has been adapted from [69, 58, 24].

Radar stands for radio detection and ranging. The concept of echo-ranging simply

states that knowing an echo signal’s round trip flight time and its speed of propagation

is equivalent to knowing the range from the signal source to the target. In radar

systems, the echo-ranging principle is implemented by transmitting high bandwidth

pulses and then using pulse compression techniques to discriminate points in a scene

based on their distances from the source (in the range direction). However, it is

possible for two or more points to be the same distance from a radar antenna but at

slightly different angles. Hence, cross-range information is also necessary to visualize

a two-dimensional image. This is the standard aperture problem.

If we denote the antenna width by D, the distance to the target as R, and the

wavelength of the transmitted microwaves as λ, then the resolution distance is given

by

res =
λR

D
.

Hence given that a typical wavelength is λ ≈ 0.3m, a radar placed 5km from the target

would require an antenna 1500m wide to achieve 1m of resolution. As it is impossible

to put an antenna of that size aboard an airplane, SAR was developed to achieve the

same effect. A SAR system sends out multiple pulses from many observation points

and then coherently focuses the received information to obtain a two-dimensional

image. In this way, the system synthesizes the effect of a large antenna by using
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multiple observations from a small antenna. Thus the name synthetic aperture radar

is appropriate.

There are three common SAR imaging modes: spotlight, stripmap, and scan.

During a spotlight mode data collection, the sensor steers its antenna beam so that it

continuously illuminates a single ground patch. In the stripmap mode, the antenna

remains fixed to be parallel with the flight line, illuminating a ground patch that

is usually orthogonal to the sensor direction. In the scan mode, the sensor steers

the antenna beam to illuminate a portion of the terrain at any angle to the path

of motion. Figure A.1 gives a visual depiction of the three SAR modes. Due to its

common use in practice, this thesis focuses on spotlight mode SAR.

Figure A.1: Left: Spotlight mode. Middle: Stripmap mode. Right: Scan mode.

SAR Data Acquisition

Let us visualize the radar beam looking out of the side of the aircraft, pointing

in a direction orthogonal to the flight path. This direction of wave propagation

is referred to as the range direction. The direction parallel to the flight path is

called the cross-range, or azimuth direction. As the aircraft moves along a flight

path, it periodically transmits pulses of microwave energy that hit targets within

an illumination patch and then reflect back to the radar, where a demodulation

(information extraction) procedure is performed. The data collected in this way are
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called the phase history data. The phase history data are then passed onto a specific

image formation processor, which produces, as an output, a reconstruction of the

electromagnetic reflectivity field of the illuminated ground patch [69].

Linear Frequency Modulated Chirps and Pulse Compression

The limitations of a SAR system require us to carefully choose and process the

appropriate electromagnetic signal to transmit towards a scene. Pulse compression

allows a radar system to transmit a pulse of relatively long duration and low power to

obtain the range resolution and detection performance of a short-pulse, high-power

system. A short-pulsed, high-powered system is desirable because the underlying goal

of a radar system is to form a high resolution image at a low cost while being unde-

tected by enemies. High resolution images are needed for accurate object detection

and classification. To avoid detection, the radar system must have a large stand off

range R. Let Pt and Pr be the average power level of the transmitted and received

signals, respectively. The fundamental radar equation is then

Pr =
Pt
R4
C =⇒ R =

(
Pt
Pr
C

)1/4

, (A.1)

where C represents a collection of constants relating to the radar system and the

scene being imaged. From (A.1), we see that to have a large standoff range and a

large returned power, the transmit power needs to be large.

A high return power also yields improved quality of the returned signal. We can

see this by considering in a very general sense,

Energy =

∫
Power. (A.2)

Let σ be the standard deviation of the noise in the returned signal, and Er be the

energy in the returned signal. The signal-to-noise ratio of the returned signal is then

SNR =
Er
σ
. (A.3)
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Thus to have a high SNR in (A.3) and improved returned signal quality in (A.1),

a large amount of energy is required returned to the radar and thus high returned

power, according to (A.2).

A short pulse is desirable because if Te is effective pulse length, B = 1/Te is the

bandwidth of the transmitted waveform, and then range resolution is given as

ρx =
c

2B
=
cTe
2
, (A.4)

where c ≈ 3×108m/s is the speed of light. (A full discussion on resolution is provided

later in this Appendix.) From (A.4) we see that short duration transmitted pulses

yield improved range resolution. However, there is a trade off. The average power of

a the signal is given as

Pe = PTe, (A.5)

where P is the peak power, implying that short duration pulses result in diminished

transmit power and thus lower received power. Pulse compression is what allows

for long duration pulses to be transmitted at a large standoff range yet achieve high

resolution images. In the end, a radar system that incorporates pulse compression

processing rather than a simple pulse system to achieve high range resolution provides

the following advantages:

1. Improved detection performance.

2. Mutual interference reduction.

3. Increased system operational flexibility.

To perform pulse compression, a system must transmit a signal that is either fre-

quency or phase modulated. SAR systems often transmit linear frequency modulated
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Figure A.2: (left) A linear FM chirp signal described by (A.6) with ωc = 0Hz, Tt =

1×10−4s and α = 3.14×1010Hz. (middle) The corresponding chirp phase and (right)

instantaneous frequencies.

(FM) chirps described by Re{s(t)}, where s : R→ C is defined as

s(t) =


ei(ω0t+αt2), |t| ≤ Tt

2

0, else
. (A.6)

Here, ω0 ∈ R is the carrier frequency of the chirp, Tt ∈ R is the transmitted chirp

duration, and 2α ∈ R is the chirp rate. The time variable t ∈ R is referred to as fast

time because it represents the time along each pulse. During this time interval, the

SAR imaging platform is assumed to be stationary, preventing the use of fast time

to actually clock the motion of the SAR system. A slow time variable, on the other

hand, allows for motion detection of the SAR platform and will be discussed later.

Frequency is interpreted as the first derivative of phase. The phase of the chirp

signal is given by ω0t+ αt2, and thus the instantaneous SAR frequencies encoded by

the chirp signal are

ω(t) =
1

2π
(ω0 + 2αt),

where we represent ω(t) as ω. Note that the frequencies are increasing linearly with

time. A depiction of a chirp and its corresponding phase and instantaneous frequencies

can be seen in Figure A.2.
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The SAR central frequency is given by

ωc =
ω0

2π
, (A.7)

with corresponding wavelength

λ =
2πc

ω0

=
c

ωc
, (A.8)

where once again c is the speed of light. Because |t| ≤ Tt/2, the chirp frequencies

range from

ω0 − αTt ≤ 2πω ≤ ω0 + αTt, (A.9)

yielding the chirp bandwidth (measured in Hertz)

Bω =
|maxt ω −mint ω|

2π
=
αTt
π
. (A.10)

The effective pulse length is given by

Te :=
1

Bω

=
π

αTt
. (A.11)

The compression ratio CR (time-bandwidth product) gives the ratio of the average

power of the transmitted compressed signal Pt to the average power of the typical

waveform Pe, assuming both signals have the same peak power P . Using (A.5) and

(A.11) yields a compression ratio of

CR =
Pt
Pe

=
PTt
PTe

=
Tt
Te

= TtBω =
αT 2

t

π
. (A.12)

Thus the average power of the received signal is amplified by a factor of αT 2
t /π when

the chirp signal is transmitted.

A depiction of a typical chirp FM signal can be seen in Figure A.3(left). For

comparison, a continuous waveform (CW) simple pulse is shown in Figure A.3(right).

It is given by

s(t) =


cos(ω0t), |t| ≤ Tc

2

0, else.
(A.13)
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Figure A.3: (left) Depiction of a linear FM chirp signal, (A.6), and (right) continuous

burst waveform, (A.13), with signal durations of Tt = Tc = 0.75sec, chirp rate of

α = 100Hz and center frequency ωc = 500Hz.

Figure A.4(left) compares the bandwidth (width of main lobe) of the discrete

Fourier transform (in dB) given by

dB(|Fs(t)|) = 20 log10

|Fs(t)|
maxt |Fs(t)|

of the chirp (A.6) and CW (A.13) waveforms each having a pulse duration Tt = Tc =

0.75sec. Observe the larger bandwidth corresponding to the chirp signal, implying

improved range resolution. Figure A.4(right) compares the spectrum of the same

signals, only the CW is given a pulse duration of Tc = 0.03sec. This shows that to

achieve the bandwidth of the chirp using the CW pulse, the pulse duration of the

CW must be reduced by more than a factor of 10. Thus, according to (A.5), the

corresponding power of the returned signal using the CW signal would also be re-

duced by more than a factor of 10. This is consistent with the idea that by using the

frequency modulated chirp, we can increase bandwidth while decreasing power, and

hence achieve the desirable resolution properties of a continuous pulse waveform with-

out high energy costs. In Figure A.4, empirical evidence has shown that a maximum
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side lobe level of -35dB is ideal for approximation.

Figure A.4: dB(|Fs(t)|) where Fs is the (discrete) Fourier transform of the chirp,

given in (A.6), (solid-blue), and continuous burst waveform, given in (A.13), (dashed-

orange). Here α = 100Hz and ωc = 500Hz with (left) both signals having pulse

duration of Tt = Tc = 0.75sec and (right) the chirp signal has pulse duration Tt =

0.75sec and the CW signal has pulse duration Tc = 0.03sec.

We now consider three possible scenarios, each of which builds on the previous one,

in order to develop a SAR data model that accurately describes realistic scattering

phenomenology.

Model 1: Single Scatterer in Range Direction

Assume there is a single scatterer located in the range direction and 0◦ azimuth

change, as depicted in Figure A.5. At a given fast time t ∈ R, we assume the radar

system transmits the chirp signal (A.6). The returned signal r : R → C is then a

one-dimensional, scaled and delayed version of the transmitted signal in (A.6):

r(t) = ARe
{
f(u) exp

[
i
(
ω0(t− τ0 − τ) + α(t− τ0 − τ)2

)]}
, (A.14)

where the scene reflectivity f is only a function of the slant range u, and the scale

factor A ∈ R accounts for propagation attenuation. In Figure A.5, the x-axis reflects
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Figure A.5: Geometry of SAR imaging system with one scatterer in the scene (adapted

from [69]).

the ground range, with the center of the illuminated patch located at x = 0 and

offset from the plane’s position by distance x0. The distance from the plane to the

illumination patch center is u0, while the distance to the scatterer located at position

x is given approximately by Rs = u0 + u. Defining the depression angle (elevation

angle) by ϕ, the relationship between the ground range and slant range is given by

u = x cosϕ. (A.15)

Because the radar is assumed to be parallel to the ground, the elevation and depression

angles are congruent and can be used interchangeably [112]. It is also assumed that

the plane is a significant distance away from the target scatterer (x << u0).

The returned signal (A.14) is dependent on the scene geometry and contains infor-

mation about the microwave reflectivity function we seek to recover, f : R×R→ C,

given by

f(x, y) = |f(x, y)|eiΦ.

The magnitude of reflectivity |f(x, y)| determines the amount of the incident energy

that is reflected back as the return signal and Φ ∈ R2 describes the phase change of

the waveform upon reception. In general, Φ (and therefore f) is determined by the
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electrical and physical properties of the target material at the center frequency.

The quantity 2Rs
c

= τ0 − τ(u) is the round trip propagation time (signal delay),

where

τ(u) =
2u

c
=: τ, τ0 =

2u0

c
, (A.16)

and the dependence of τ on u is dropped for simplicity. Here τ0 is the propagation

time to the center of the scene, and is assumed to be explicitly known. In reality,

τ0 can only be estimated, which causes a phase error that is observed as smearing

in the reconstruction. Techniques to overcome such imperfect propagation attenua-

tion measurements, including autofocusing or phase error correction, are discussed in

Chapter 5.

Model 2: Continuum of Scatterers in Range Direction

For this model, we assume that there is continuum of scatterers located in the

range direction, as shown in Figure A.6. The returned, one-dimensional signal is

now given by the superposition of scaled and delayed transmitted signals that have

reflected back from targets lying at slant ranges constrained to −u1 ≤ u ≤ u1,

r(t) = A

∫ u1

−u1
Re
{
f(u) exp

[
i
(
ω0 (t− τ0 − τ) + α (t− τ0 − τ)2)]} du, (A.17)

where (A.15) yields u1 = L cosϕ. Define the patch propagation time τp ∈ R as the

two way propagation delay between the target at the near edge and the target at the

far edge of the radar illumination path, which from (A.16) is given by

τp = 2τ(u1) = 2

(
2u1

c

)
= 4

L cosϕ

c
. (A.18)

The returned signal as defined in (A.17) therefore is supported on

τ0 +
τp
2
− Tt

2
≤ t ≤ τ0 −

τp
2

+
Tt
2
, (A.19)

185



Range

Cross-range

L-L
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Figure A.6: Depiction of a continuum of scatterers in the range direction.

where τp and Tt are given in (A.18) and (A.6) respectively.

The returned signal (A.17) can be written equivalently as

r(t) = A

∫ u1

−u1
Re {f(u)s(t− τ − τ0)} du,

so that

r(t+ τ0) = A

∫ u1

−u1
Re {f(u)s(t− τ)} du.

Finally substituting τ1 = 2u1/c, du = dτc/2 and A1 = Ac/2 yields

r(t+ τ0) = A1

∫ τ1

−τ1
Re {f(τ)s(t− τ)} dτ. (A.20)

It is apparent that to obtain an estimate for f we must deconvolve s from r. In

SAR, this is accomplished via quadrature demodulation. The demodulation process,

inherent in the radar system hardware, is mathematically described below.

Quadrature Demodulation in SAR

Under the assumption that Tt >> τp and that τ0 is known exactly, we can extract

approximate instantaneous frequency information (i.e. the classical Fourier transform

of f) from the chirp response, (A.17), by implementing a deramping process. This

process requires the following steps:

1. Demodulation of r(t) by multiplication with in-phase (real) and quadrature

186



(imaginary) versions of the transmitted, complex sinusoid

rI(t) = cos
[
ω(t− τ0) + α(t− τ0)2

]
rQ(t) = sin

[
ω(t− τ0) + α(t− τ0)2

] (A.21)

to obtain rd(t) = r(t) (rI(t) + irQ(t)). Using the appropriate trigonometric

identities, one can show that

rd(t) =
1

2

∫ u1

−u1
f(u)exp{i(ω(2t− τ − 2τ0) + α((t− τ0)2 + (t− τ − τ0)2))} du

+
1

2

∫ u1

−u1
f(u)exp{i(ατ 2 − τ(ω + 2α(t− τ0)))} du.

(A.22)

2. Low pass filtering of the result from step 1 to remove the first term and substi-

tuting (A.16) into the result to obtain

rd(t) ≈
1

2

∫ u1

−u1
f(u) exp

{
−i2u

c
[ω0 + 2α(t− τ0)]

}
exp

{
iα

4u2

c2

}
du.

From here, if we suppose that the chirp rate α and the scene size u1 are sufficiently

small, then 4αu2

c2
≈ 0, so that by (A.16), eiατ2 ≈ 1 and

f̂(Ω(t)) =

∫ u1

−u1
f(u)e−iΩ(t)u du ≈ rd(t), (A.23)

where

Ω(t) :=
2

c
(ω0 + 2α(t− τ0)) (A.24)

are the spatial frequencies. In other words, the demodulation in (A.22) approximately

yields the Fourier coefficients of f evaluated over a specific limited range of frequencies

determined by the time-support of the return signal.

To further characterize (A.23), note that (A.19) implies that the range of Ω(t) is

given by

2

c
(ω0 − α(Tt − τp)) ≤ Ω(t) ≤ 2

c
(ω0 + α(Tt − τp)) .
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Moreover, under the assumption that Tt >> τp, we have

2

c
(ω0 − πBω) ≤ Ω(t) ≤ 2

c
(ω0 + πBω), (A.25)

where Bω given in (A.10). Hence the offset of spatial frequencies transduced by the

chirp waveform is

∆Ω(t) :=
2

c
(ω0 + πBω)− 2

c
(ω0 − πBω) =

4πBω

c
. (A.26)

Remark A.0.1 Observe that using the linear FM chirp and the described quadrature

demodulation results in an intermediate signal that measures a portion of the Fourier

spectrum of the reflectivity. In this sense, as a result of the specific transmitted wave-

form and corresponding deconvolution process, the range has been converted to spatial

frequency, and the data can be thought of as spatial frequency data. This is not nec-

essarily the case when continuous wave bursts are transmitted, however. Indeed, for

continuous wave bursts, the Fourier domain data never appear as an intermediate step

of the processing, but instead the output of the demodulation filter directly estimates

the reflectivity.

Range Resolution

Essential to this discussion is range resolution, which is defined as the minimal

distance two targets must be separated in order to be discernible from one another in

the range direction. The range resolution, ρx, where x represents the range dimension

in Figure A.5, can be determined by conducting an impulse response analysis. More

discussion can be found in [69].

To perform the impulse response analysis, assume f(u) = δ(u), the Dirac delta

function arbitrarily placed at u = 0. We can only recover a band limited signal

where the Fourier transform is zero for |Ω(t)| > ∆Ω/2 and ∆Ω is given in (A.26).
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Specifically, we have

f̂(Ω(t)) =
1

2π

∫ ∞
−∞

δ(u)e−iuΩ(t)du =


∆Ω
2π
, |Ω(t)| ≤ ∆Ω/2

0, else,
(A.27)

yielding the band limited signal∫ ∆Ω/2

−∆Ω/2

∆Ω

2π
eiuΩ(t)dΩ(t) =

∆Ω

2π

sin(u∆Ω/2)

u∆Ω/2
=

∆Ω

2π
sinc

(
u∆Ω

2

)
≈ f(u). (A.28)

The first zero crossing occurs when sinc
(
u∆Ω

2

)
= 0 yieding u = 2π

∆Ω
. This means

that the minimal separation for which two targets are distinguishable occurs when

the range resolution is given by

ρx =
2π

∆Ω
=

c

2Bω

. (A.29)

where we have used (A.26). Observe that the slant range resolution ρu is inversely

proportional to the radar bandwidth and is not a function of the center frequency.

Model 3: Continuum of Scatterers in Range and Cross Range Directions

Figure A.7: Illustration of the approximation of an arc, which contains points equidis-

tant from the radar at observation angle 0 (left) and θ (right), by a line [104].

Consider multiple scatterers located equidistant from the radar in the azimuth

direction as depicted in Figures A.7 and A.9, where x and y correspondingly represent
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the range and cross-range directions. We now define R as the distance from the radar

to the center of the scene and L as the radius of the circular ground patch. As

shown in Figure A.7, the points in the ground patch equidistant from the radar lie

on the curved blue arc. Because R >> L for a typical radar system, we make the

assumption that this arc is nearly a straight line, seen in red. This is known as the

far field assumption. Below we describe two main sources of error caused by this far

field assumption, and the conditions that guarantee that the errors due to the far

field assumption are negligible with respect to the other model errors.

1. Let us define ρ̄ as a two-dimensional (resolution) cell where the lengths in the

x and y directions are respectively ρx and ρy. Here ρy refers to the cross-range

resolution. To ensure the range error, that is the error in the x direction due

to wavefront curvature over the target field, is negligible, we must demonstrate

that it is at least as small as ρ̄. Using Figure A.7(left), we define Ex,0 as the

range error at zero azimuth angle. Because R >> |x0| and R >> |y0| at the

point (x0, y0), we have

Ex,0 =
[
(R + x0)2 + y2

0

]1/2 − (R + x0) = (R + x0)

[(
1 +

y2
0

(R + x0)2

)1/2

− 1

]

≈ (R + x0)

[
1 +

y2
0

2(R + x0)2
− 1

]
= (R + x0)

[
y2

0

2(R + x0)2

]
≈ Ry2

0

2R2
=

y2
0

2R
.

where we have employed the first-order Taylor expansion
√

1 + z = 1+ z
2
around

z = 0 in the approximation. Because the maximum of y0 within the target patch

occurs at y0 = L, we have

Ex,0 ≈
L2

2R
,

leading to our first condition
L2

2R
< ρx.
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2. The other main issue stems from how the SAR system coherently combines

projections from many different angles. To preserve coherency (i.e. the constant

phase change), we require that the range error due to wavefront curvature at a

particular point must vary by no more than a small fraction of a wavelength,

(A.8), through the full range of look angles. Figure A.8 shows the wavefront

curvature at the point (x0, y0) due to look angles 0 and θ. Observe that

cos θ =
x0

`1

, sin θ =
`2

`1

, sin θ =
`4

`3

, cos θ =
`5

`3

.

Therefore,

`1 =
x0

cos θ

`2 = `1 sin θ = x0 tan θ

`3 = y0 − `2 = y0 − `1 sin θ = y0 − x0 tan θ

`4 = `3 sin θ = y0 sin θ − x0
sin2 θ

cos θ

`5 = `3 cos θ = y0 cos θ − x0 sin θ.

Analogous to the derivation for Ex,0, the range error at point (x0, y0) for a

projection at angle θ is given by

Ex,θ =
[
(R + `1 + `4)2 + `2

5

]1/2 − (R + `1 + `4)

= (R + `1 + `4)

[(
1 +

`2
5

(R + `1 + `4)2

)1/2

− 1

]

≈ (R + `1 + `4)

[
1 +

`2
5

2(R + `1 + `4)2
− 1

]
=

`2
5

2(R + `1 + `4)
≈ `2

5

2R
,

where we have used the fact that R >> `1 + `4.

The above two conditions allow us to calculate the difference D in wavefront
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Figure A.8: Wavefront curvature for projection angles 0◦ and θ◦ (adapted from [104]).

curvature from projection angle 0◦ to projection angle θ◦ as

D = Ex,0 − Ex,θ

=
1

2R

[
y2

0 − `2
5

]
=

1

2R

[
y2

0 − (y0 cos θ + x0 sin θ)2
]

=
1

2R

[
y2

0 − y2
0 cos2 θ + 2x0y0 sin θ cos θ − x2

0 sin2 θ
]

=
1

2R

[
y2

0(1− cos2 θ) + 2x0y0 sin θ cos θ − x2
0 sin2 θ

]
=

1

2R

[
y2

0 sin2 θ + 2x0y0 sin θ cos θ − x2
0 sin2 θ

]
=

1

2R

[
(y2

0 − x2
0) sin2 θ + 2x0y0 sin θ cos θ

]
.

WLOG, given the constraints θ ≤ θmax ≤ π
4
and x2

0 + y2
0 ≤ L2, two cases which

maximize deviations in D are

• Case 1. Consider x0 = 0 and y0 = L. Then

D =
1

2R
[L2 sin2 θ] ≤ L2 sin2 θmax

2R
=: Dmax

1 .

• Case 2. Consider x0 = y0 = L/
√

2. Then

D =
1

2R
[L2 sin θ cos θ] =

L2 sin 2θ

4R
≤ L2 sin 2θmax

4R
=: Dmax

2 .
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Because θmax ≤ π/4, we have Dmax
1 ≤ Dmax

2 . Therefore to preserve co-

herency, Dmax
2 must be smaller than a fraction of the wavelength, say λ/8.

Our second condition is therefore

L2 sin 2θmax
4R

<<
λ

8
=⇒ L2 sin 2θmax

R
<<

λ

2
.

In practice, these two conditions are assumed to always hold. The analysis above

helps to provide insight into the errors that are committed when making this far field

approximation.

When a continuum of scatterers located equidistant from the radar in the azimuth

direction, the return from such scatterers will be received by the radar at precisely

the same time, and thus they will not be distinguishable from one another. However,

if we send pulses from multiple azimuth angles, we will be able to gather enough

information about the two-dimensional reflectivity function f : Γ → C of the scene

to distinguish the scatterers from one another and reconstruct the two-dimensional

image. Here, f is defined over the illumination patch defined as

Γ :=
{

(x, y) ∈ R2|x2 + y2 ≤ L2
}
.

The combined return of a set of scatterers equidistant from the radar is again the

superposition of the returns that would be received from each individual scatterer.

This leads us to tomographic formulation of SAR phase history data. Similar tech-

niques have been utilized in medical imaging and electron microscopy [105]. Let

p : R× R→ C be a line integral, or projection, defined by p(θ, u) at distance R + u

from the radar at observation angle θ ∈ R, which is considered to be a counter-

clockwise rotation from the x axis (illustrated in Figure A.9). We now define a new

coordinate system (u, v) given by

x = u cos θ − v sin θ, y = u sin θ + v cos θ. (A.30)
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Figure A.9: Ground-plane geometry for a data collection in two-dimensional spotlight-

mode SAR.

The inverse transformation is then

u = x cos θ + y sin θ, v = −x sin θ + y cos θ. (A.31)

Note that u and v are the new range and cross-range directions at viewing angle θ,

respectively. The relationship between the projection p(θ, u) and the reflectivity field

f(x, y) is given by the one-dimensional line integral through the illumination patch

at angle θ:

p(θ, u) =

∫ L

−L
f(u cos θ − v sin θ, u sin θ + v cos θ)dv

=

∫∫
Γ

δ(u− x cos θ − y sin θ)f(x, y)dxdy,
(A.32)

which is known as the Radon transform of f at angle θ, [48].

The two-dimensional return r : R × R → C from all targets that lie along a
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constant range line u = u0 as in Figure A.9 is given by

r(θ, t) = Re
{
p(θ, u0)s

(
t− 2(R + u0)

c

)}
.

Thus, analogous to (A.17), the entire returned signal is the superposition of returns

from all constant lines,

r(θ, t) =

∫ L

−L
Re
{
p(θ, u)s

(
t− 2(R + u)

c

)}
du, (A.33)

on the time interval of the transmitted chirp given in (A.6),

− Tt
2

+
2(R + L)

c
≤ t ≤ Tt

2
+

2(R + L)

c
, (A.34)

Substituting the transmitted signal (A.6) into (A.33), and performing the same

quadrature demodulation proceedure in (A.22) yields

rd(θ, t) =
1

2

∫ L

−L
p(θ, u)exp{i(ω(2t− τ(u)− 2τ0) + α((t− τ0)2 + (t− τ(u)− τ0)2))} du

+
1

2

∫ L

−L
p(θ, u)exp{i(ατ 2(u)− τ(u)(ω + 2α(t− τ0)))} du,

(A.35)

where τ and τ0 are the return propagation times given in (A.16). By low pass filtering

(A.35), and again assuming the chirp rate α and scene radius L are sufficiently small,

we arrive at

f̂θ(t) =

∫ L

−L
p(θ, u) exp

[
−i2u

c
(ω0 + 2α(t− τ0))

]
du

=

∫ L

−L
p(θ, u)e−iuΩ(t)du ≈ rd(θ, t),

(A.36)

where, as in (A.24), the spatial frequencies are defined as

Ω(t) =
2

c
[ω0 + 2α(t− τ0)] (A.37)

on the interval
2

c
(ω0 − αTt) ≤ Ω(t) ≤ 2

c
(ω0 + αTt). (A.38)
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From (A.36) we see that the radon transform p(θ, u) can equivalently be given as

p(θ, u) =

∫ ∞
−∞

f̂θ(t)e
iuΩ(t)dt. (A.39)

Substituting (A.32) into (A.36) yields the relationship between the returned signal

and the reflectivity field

f̂θ(t) =

∫
|u|≤L

∫∫
Γ

δ(u− x cos θ − y sin θ)f(x, y)e−iuΩ(t)dxdydu

=

∫∫
Γ

f(x, y)e−iΩ(t)(x cos θ+y sin θ)dxdy.

(A.40)

This is in fact the Fourier (Projection) Slice Theorem [99], which states that if the

Fourier transform of the reflectivity function to be recovered exists, then the one-

dimensional Fourier transform of the projection at angle θ is a slice of the two-

dimensional Fourier transform of the reflectivity field taken at the same angle θ. The

data f̂θ(t) collected from all observation angles are called the phase history data.

Range and Cross-Range Resolution for Two-Dimensional SAR

We now discuss the range and cross-range resolutions of the two-dimensional SAR

system to determine the minimal distance two targets must be separated in order to

be distinguished from one another. As seen in Figure A.10(left), processing returns

across a range of azimuth angles, θa, provides samples on a polar grid in an annulus

segment away from the origin. For comparison, the standard Cartesian grid is shown

in Figure A.10(right). Note that the FFT does not directly apply to polar coordinates,

yielding additional complexity in processing the data. Indeed several algorithms

[24, 120, 69, 117, 49] have been developed to ensure the efficiency and accuracy for

processing the polar coordinate Fourier data. This will be discussed further in Section

A.

We can also relate the achievable resolution of SAR images to the dimensions of

this annulus. Assume that the dimensions of the annulus can be approximated by a
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rectangle of width ∆Ωy and height ∆Ωx. We then perform another impulse response

function analysis, analogous to (A.27), by considering a point reflector in the scene and

computing its Fourier transform limited to this rectangular region. As in the single

scatterer case in (A.28), the inverse Fourier transform yields a (two-dimensional) sinc

function. The wider the support of the rectangular region, the narrower the main

lobe of this sinc function, resulting in better resolution. Once again, the minimal

separation for which two targets are distinguishable occurs at the first zero crossing

away from the origin, which is determined as

ρ̄ =

(
2π

∆Ωx

,
2π

∆Ωy

)
.

Thus, two point scatterers are distinguishable only if they are separated by more than

ρx =
2π

∆Ωx

, ρy =
2π

∆Ωy

(A.41)

in the range direction and cross-range directions, respectively.

Cross-range

Range

Cross-range

Range

Δ
Ω

x

ΔΩ
y

θ
a

Figure A.10: Graphical representation (left) of the annulus segment containing known

samples of the Fourier transform of the reflectivity density and (right) an approxima-

tion of these samples on a rectangular grid.

Assuming the width of the rectangle is equal to the radial width of the annulus,

which is essentially the spatial frequency bandwidth of each return, the maximum
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width can be determined by substituting the maximum temporal interval (A.34) into

the definition of Ω(t) given in (A.37), thereby yielding the limits of the radial extent.

To this end, let us recall (A.16) that in this two-dimensional setup τ0 = 2R
c
, and so

by (A.34), we have

−Tt
2

+
2L

c
≤ t− τ0 ≤

Tt
2
− 2L

c
.

where Tt is the duration of the transmitted chirp (A.6). Because Tt >> 4L/c for

typical spotlight mode SAR, (A.38) yields

max
t

Ω(t) =
2

c

(
ω0 + 2α

(
Tt
2
− 2L

c

))
=

2

c

(
ω0 + αTt −

4Lα

c

)
,

and

min
t

Ω(t) =
2

c

(
ω0 + 2α

(
−Tt

2
+

2L

c

))
=

2

c

(
ω0 − αTt +

4Lα

c

)
.

Thus,

∆Ωx =
∣∣∣max

t
Ω(t)−min

t
Ω(t)

∣∣∣ =
4αTt
c

=
4πBω

c
.

As before, Bω is the chirp bandwidth defined as Bω = αTt/π in (A.10).

We now discuss the cross-range resolution, determined by ∆Ωy. Referencing Fig-

ure A.10, let θa be the angle sweep (i.e. the integration angle) of the annulus segment.

The horizontal (cross-range) and vertical (range) axis are given by Ωy and Ωx respec-

tively. Following (A.37), the radius of the polar data in Figure A.10(left) (in polar

coordinates) has length 2ω0/c = Ω(τ0) := Ω0. (Recall that the right most ray of the

data occurs at t = τ0.) Now, using the (upper) right triangle created by the annulus of

data in the first quadrant, we see that the hypotenuse has length 2ω0/c = Ω(τ0) := Ω0.

The length of the side opposite of the angle θa/2 has approximate length ∆Ωy/2.

Thus,

sin

(
θa
2

)
≈ ∆Ωy/2

Ω0

=
∆Ωyc

4ω0

.

Recall the wavelength of the transmitted pulse given by equation (A.8) is λ =

2πc/ω0 = c/ωc. Assuming θa is small enough such that sin
(
θa
2

)
≈ θa

2
(which is
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typically the case in narrow angle SAR [69]), we have

θa
2

=
∆Ωyc

4ω0

=⇒ ∆Ωy =
2θaω0

c
=

4πθa
λ

.

The range and cross-range resolutions for the system are respectively then given by

(A.41) as

ρx ≈
c

2Bω

(A.42)

ρy ≈
πc

ω0θa
=

c

2ωcθa
=

λ

2θa
. (A.43)

Hence it is apparent that the resolution in the range direction depends on the band-

width of the pulse used for transmission while the resolution in the cross-range di-

rection depends on the angular diversity of observations and the central frequency of

the transmitted chirp.

To demonstrate the importance of cross-range resolution, Figure A.11 illustrates

two point scatterers located two feet apart at locations p1 = (0,−1) and p2 = (0, 1).

According to (A.43), to get a two-foot (approximately .61m) cross-range resolution,

we require

θa =
c

2ωcρy
≈ .0256 rad ≈ 1.4676◦,

where we have set the central frequency to ωc = 9.6GHz with a bandwidth of Bω =

600MHz (A.10) for this example. Recall c is the speed of light given approximately

as 3× 108m/s. That is, to achieve a 2ft range resolution roughly 1.5◦ of information

is needed. As you see in Figure A.11(bottom-left), 2◦ of azimuth information places

the scatterers in different cross-range bins, and thus they are distinguishable.

To demonstrate the effects of bandwidth on the range resolution in (A.42), consider

two point scatterers located at p1 = (0, 0) and p2 = (0.5, 0), as seen in Figure A.12. In

this example the central frequency is again set to ωc = 9.6GHz. The integration angle

is θa = 20◦, and the elevation angle is set to zero. When Bω = 600MHz, according to
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Figure A.11: Demonstration of the importance of cross-range resolution. (top-left)

scatterer locations (top-right) θa = 1◦ (bottom-left) θa = 2◦ (bottom-right) θa = 3◦.

(A.42), the range resolution is

ρx =
c

2Bω

≈ 0.25m.

Because the separation is approximately .152m apart, the targets in Figure A.12 fall

into the same range bin when Bω = 600MHz, and are therefore indistinguishable.

The targets can be discerned from one another when the bandwidth is increased to

6GHz, that is, when the range resolution becomes ρx ≈ 0.025m.

Discrete Data Model

So far we have described the physics underlying SAR, which is understood in a

continuous-time model framework. However, data are acquired discretely, and hence

we now discuss the corresponding discretized SAR model. Let f̂ ∈ CK×Np be the
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0

Figure A.12: Demonstration of the importance of range resolution. (Left) Two scat-

terers located at the same cross-range location. (Middle) Targets indistinguishable

due to small bandwidth (600MHz). (Right) Targets distinguishable when bandwidth

is increased (6GHz).

discrete data points, withK denoting the number of frequencies considered andNp the

number of pulses or azimuth angles considered [58, 117]. Assume that the reflectivity

field f ∈ CNx×Ny is centered at the origin of a 3D coordinate system, and that the

SAR sensor travels along an arbitrary flight path such that the antenna phase center

is explicitly known and located at x := [xa(τ) ya(τ) za(τ)]T ∈ R3, where τ now

denotes one instance in slow time. If we write the error in measuring the path of

the antenna platform as x̃ := [x̃a(τ) ỹa(τ) z̃a(τ)]T ∈ R3, then the distance from the

antenna center to the scene center is

R(x̃) =
√

(xa(τ) + x̃a(τ))2 + (ya(τ) + ỹa(τ))2 + (za(τ) + z̃a(τ))2.

Assume that for the same slow time instance τ the scatterer is at pixel location

x = [x(τ) y(τ) z(τ)]T ∈ R3, then the distance from the antenna phase center to the

scatterer is

Rs(x) =
√

(xa(τ)− x(τ))2 + (ya(τ)− y(τ))2 + (za(τ)− z(τ))2. (A.44)
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The differential range to this scatterer is defined as the distance between the scene

center to the scatterer and is given by

∆R(τ) = Rs(x)−R(x̃). (A.45)

To estimate (A.45), we use the Taylor expansion of Rs(x) in (A.44) with respect

to the scatterer location about the point x = (0, 0, 0) for a fixed time τ (see [117] for

more in depth analysis). Note that in what follows we have dropped the dependence

on τ for simplicity:

Rs(x) ≈ Rs(x) |x=0 +x∂xRs(x) |x=0 +y∂yRs(x) |x=0 +z∂zRs(x) |x=0

=
√
x2
a + y2

a + z2
a +

−xa√
x2
a + y2

a + z2
a

x+
−ya√

x2
a + y2

a + z2
a

y +
−za√

x2
a + y2

a + z2
a

z.

Similarly for R(x̃) with respect to the measurement error about the point x̃ = (0, 0, 0)

for the same fixed time τ , we obtain

R(x̃) ≈ R(x̃) |x̃=0 +x̃a∂x̃aR(x̃) |x̃=0 +ỹa∂ỹaR(x̃) |x̃=0 +z̃a∂z̃aR(x̃) |x̃=0

=
√
x2
a + y2

a + z2
a +

xa√
x2
a + y2

a + z2
a

x̃a +
ya√

x2
a + y2

a + z2
a

ỹa +
za√

x2
a + y2

a + z2
a

z̃a.

Therefore (A.45) yields

∆R ≈

[√
x2
a + y2

a + z2
a +

−xa√
x2
a + y2

a + z2
a

x+
−ya√

x2
a + y2

a + z2
a

y +
−za√

x2
a + y2

a + z2
a

z

]

−

[√
x2
a + y2

a + z2
a +

xa√
x2
a + y2

a + z2
a

x̃a +
ya√

x2
a + y2

a + z2
a

ỹa +
za√

x2
a + y2

a + z2
a

z̃a

]

=
−xa(x+ x̃a)− ya(y + ỹa)− za(z + z̃a)√

x2
a + y2

a + z2
a

.

We now use the fact that far field assumption implies the emission of plane waves,

so that we can rewrite our coordinate system as

xa = L cos θ cosϕ, ya = L sin θ cosϕ, za = L sinϕ, and L =
√
x2
a + y2

a + z2
a,
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where, as in the continuous-time model, θ is the azimuth angle, ϕ is the elevation (or

depression) angle and L is the radial scene extent (Recall Figure A.9). This yields

∆R ≈ [−L cos θ cosϕ(x+ x̃a)− L sin θ cosϕ(y + ỹa)− L sinϕ(z + z̃a)] /L

= − cos θ cosϕ(x+ x̃a)− sin θ cosϕ(y + ỹa)− sinϕ(z + z̃a).

Assuming no error in measuring the path of the antenna, we arrive at

∆R(τn) = −x cos θn cosϕ− y sin θn cosϕ− z sinϕ, (A.46)

where θn corresponds to the azimuth angle measurement at slow time τn for all n =

1, ..., Np.

Remark A.0.2 Making this first order approximation along with the assumption that

there are no errors in antenna location measurements causes phase errors which blur

and smear the resulting reconstructed image and motivate the necessity of an autofo-

cusing algorithm. We discuss a novel technique for correcting these errors in Chapter

5.

At periodic intervals, the radar is transmitting pulses that reflect off of scatterers

in the scene. The energy is partially reflected back to the radar. In the discrete case,

we assume that a total of Np pulses are transmitted. The two way travel time to the

scatterer located at point [x(τn), y(τn), z(τn)] from the nth azimuth sampling point

is referred to as the slow time of each pulse and is denoted by the sequence {τn}Npn=1.

There are K temporal frequencies (fast times) per pulse, represented by {tk}Kk=1. The

round-trip time of flight to a scatterer is τs = 2Rs
c
, and the total phase change from

the time of emission is Φ = 2πtkτs = 4πtkRs
c

. If a chirped signal (A.6) is transmitted,

the demodulated return from the resolution cell is the superposition of the returns

from each scatterer within the resolution cell

f̂(θn, tk) = A(τn, tk) exp

(
−i4πtk∆R(τn)

c

)
, (A.47)
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where c is again the speed of light in a vacuum and the amplitude A(τn, tk) is related

to the reflectivity f of the scene. Substituting (A.46) into (A.47) yields discrete phase

history data (PHD) of the form

f̂(θn, tk) = A(τn, tk) exp

(
i4πtk(x cos θn cosϕ+ y sin θn cosϕ+ z sinϕ)

c

)
. (A.48)

Note that (A.48) is analogous to (A.40) in the continuous-time model.

Remark A.0.3 If the scatterer is located at the scene origin, then ∆R(τn) = 0,

meaning a scatterer at the scene origin will have zero phase for all k = 1, ..., K.

Correcting for errors to ensure that this is true is called motion compensation.

Accessible Phase History Data Sets

The SAR phase history data provided by the AFRL come arranged in a matrix,

where the rows of the matrix correspond to each frequency emitted, and the columns

correspond to each pulse sent out. If there are K frequencies and Np pulses (azimuth

angles), the SAR phase history is a K ×Np matrix that consists of complex values:

f̂(θ1, t1) f̂(θ2, t1) · · · f̂(θNp , t1)

f̂(θ1, t2) f̂(θ2, t2) · · · f̂(θNp , t2)

...
... . . . ...

f̂(θ1, tK) f̂(θ2, tK) · · · f̂(θNp , tK)


. (A.49)

For each elevation angle ϕ, a new SAR phase history is collected. Note that if the

frequency step size is given by ∆t, then the maximum alias free range extent of the

image is

Wx =
c

2∆t
. (A.50)

The total bandwidth of the received pulse can be written as B = (K − 1)∆t so that

the range resolution (A.42) becomes

ρx =
c

2B
=

c

2(K − 1)∆t
. (A.51)
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Given the azimuth step size of ∆θ and minimum frequency t1, the maximum alias

free cross-range extent of the image is

Wy =
c

2∆θt1
. (A.52)

The total integration angle of the synthetic aperture is θa = (Np − 1)∆θ yielding a

cross-range resolution (A.43) of

ρy =
λ

2θa
=

λ

2(Np − 1)∆θ
, (A.53)

where again, λ = 2πc/ω0.

The SAR data sets provided by the AFRL consist of both measured and synthetic

data. The three different data sets used in this dissertation are

1. the Civilian Vehicle Data Dome [116];

2. the Gotcha Volumetric SAR Data Set, Version 1.0 [23];

3. the MSTAR data set [122].

Each data set is described in more detail below. The measured data sets are acquired

through SAR systems aboard aircraft, and there are often a variety of objects in

the scene exhibiting different reflectivity patterns. Man made objects, such as cars

or tanks, usually result in diffused reflection, where part of the radar energy will be

reflected back to the radar sensor and a large (bright) response will be seen in the

reconstructed image. Smooth surfaces, like paved roads or runways, result in specular

reflection. In this case, most of the incident wave is reflected away from the radar

and there is not a significant amount of return to the receiver. As a consequence,

reconstructed SAR images will contain large, dark and smooth regions. By contrast,

synthetic, or computer generated SAR data, are typically formed using a computer

aided design (CAD) model with user determined input parameters.
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Civilian Vehicle Data Dome

The Civilian Vehicle Data Dome (CV Dome) [116] 1 consists of a library of sim-

ulated X-band (frequencies ranging from 8GHz to 12GHz) scattering data for ten

different civilian vehicles. For the ten facet models, the XPATCH high frequency

electromagnetic scattering code [65] was used to produce fully polarized horizontal-

transmit horizontal-receive (HH), verticle-transmit verticle-receive (VV), horizontal-

transmit verticle-receive (HV), and verticle-transmit horizontal-receive (VH) far field,

mono-static scattering for a 360◦ azimuth sweep and elevation angles from 30 to

60 degrees. Each data dome is stored as a set of elevation files with the file for-

mat [vehicle]_el[elevation angle].mat. Each file contains a structural vari-

able called data, where data.azim is a vector of the azimuths in degrees, data.hh,

data.vv and data.hv are complex phase history arrays, data.elev is the elevation

angle in degrees, and data.FGHz is a vector of frequencies in GHz.

Gotcha Parking Lot

The Gotcha Volumetric SAR Data Set, Version 1.0 [23], consists of measured SAR

phase history data collected at X-band (frequencies ranging from 8GHz to 12GHz)

with 640 MHz bandwidth and full (360◦) azimuth coverage at eight different elevation

angles and full polarization (HH, VV, HV, VH). The scene imaged during this data

collect consists of numerous civilian vehicles and calibration targets, like dihedrals

and trihedrals. Thus, specular and diffuse reflection will be present in the data. The

data are stored as Matlab .mat files. With eight passes, four polarizations per pass,

and 360 degree azimuth sweeps, the data include 360 × 8 × 4 = 11, 520 .mat files.

Each file contains the data for all pulses for a 1◦ azimuth sweep. Loading a file gives a
1One data dome refers to the collection of all data corresponding to a single vehicle.
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single Matlab structure containing the PHD, frequencies, (x, y, z) antenna coordinate

locations, range to scene center, azimuth angles and elevation angles for each pulse.

In addition, a simple autofocus solution is provided for the HH and VV polarizations.

MSTAR

The Moving and Stationary Target and Recognition (MSTAR) program, 1995-

2001, was charged with a mission to “design, construct and demonstrate in the labo-

ratory an accurate and robust automatic target recognition system capable of locating

and recognizing time-critical targets in air-to-ground SAR imagery,” [122]. MSTAR

targets that have been imaged include the T-72 tank, the BMP2 infantry fighting

vehicle and the BTR-70 armored personnel carrier. Each image consists of one vehi-

cle on a homogeneous background, and thus there is distinct separation between the

specular and diffuse reflection regions.

Figure A.13: (left) The image of a T-72 tank provided as a data file in the MSTAR

data set. (right) The MSTAR T-72 image processed using the point and region based

enhancement technique [25] with p = .8, λ1 = 1.7 and λ2 = 2.5 in (A.75).

Each MSTAR data file is constructed with a Phoenix formatted (ASCII) header
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that contains detailed ground truth and sensor information for the specific config-

uration. Following the Phoenix header is the data block, which is written in Sun

floating point format and is divided into two blocks, a magnitude block followed by a

phase block. The data set that is read into a readable file consists of 128× 128 pixel

image data for a variety of azimuth angles. An example of the data given in each

file is displayed in Figure A.13(left). To obtain the phase history data, the image

formation procedure, which is inherent in the data retrieval code, must be undone.

This procedure involves taking the filtered two-dimensional inverse Fourier transform

of zero-padded, phase history data on a rectangular grid. The filter used is a Taylor

window, which approximates the Dolph-Chebyshev function, and is considered to be

an optimal filter in the sense that it produces a frequency response corresponding to

a minimum mainlobe width for a specifed maximimum side lobe level [96, 69]. The

Taylor window is defined in [69] as a finite series of the form

w(ξ) = 1 +
n̄−1∑
m=1

Fm cos(2πmξ), |ξ| ≤ 1

2
, (A.54)

where a discrete set of weighting coefficients is obtained by evaluating (A.54) at N

equally spaced points spanning the interval [−1/2, 1/2]:

wn = w(ξn),

where

ξn =
n+ 1/2

N
− 1

2
, n = 0, 1, ..., N − 1.

The coefficients of the series in (A.54) are given by

Fm =

(−1)m+1

n̄−1∏
n=1

[
1−

m2/σ2
p

A2 + (n+ 1/2)2

]
n̄−1∏
n=1
n6=m

[
1− m2

n2

] ,
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where the parameter A is determined by the specified sidelobe attenuation SL (in dB)

according to

A =
1

π
cosh−1

(
10SL/20

)
,

and σp is the ratio of mainlobe width at 3 dB to the width of the ideal Dolph-

Chebyshev response at 3 dB

σp =
n̄√

A2 + (n̄+ 1/2)2
> 1.

The maximum amount of mainlobe broadening relative to Dolph-Chebshev is

σpm =

√
4A2 + 1

2A

which occurs when

n̄ ≈ 2A2 + 1/2.

As n̄ is made large, we have

lim
n̄→∞

σp = 1,

and thus the Taylor window approaches the ideal Dolph-Chebyshev characteristics of

minimum mainlobe width for a specified sidelobe level.

Each header file contains information about the transmitted signal bandwidth and

the dynamic range of the Taylor window used to form the image. With the bandwidth

information, the size of the new phase history data is determined, and the data are

trimmed. The SL = 35dB and n̄ = 5 Taylor window is then divided out, resulting

in the untapered, trimmed phase history data. The images in Figure A.14 show the

difference in the trimmed, untapered (right) versus the untrimmed, Taylor-windowed

(left) MSTAR phase history data for a T-72 tank with θa = 3◦ and a ϕ = 15◦ elevation

angle.
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Figure A.14: Comparison of (left) the Taylor-windowed, untrimmed MSTAR PHD

and (right) the trimmed, untapered MSTAR PHD for the T-72 Tank with θa = 3◦

and ϕ = 15◦.

Current Two-Dimensional SAR Image Formation Techniques

AFRL usually employs one of three methods to form a two-dimensional SAR im-

age: (1) the matched filter; (2) the back projection algorithm; and (3) the non-uniform

fast Fourier transform (NUFFT) or the Polar Format Algorithm (PFA) [58, 60, 107].

Various types of regularization techniques have also been recently utilized in the SAR

image formation process. Each method has its advantages and disadvantages, which

we discuss in the following subsections for two-dimensional images. Three-dimensional

image reconstruction will be left for future work. Figure A.15 displays the result of

forming the image of a 1993 Jeep from the CV dome data set and the Gotcha parking

lot scene using the four image formation algorithms considered.

The Matched Filter

The simplest, most straightforward SAR image formation tool is the matched

filter [69, 62, 58]. It is a linear filter designed to optimize the signal-to-noise ratio
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Figure A.15: (top) The 1993 Jeep image from the CV Dome data set and (bottom) the

Gotcha parking lot scene reconstructed using (column 1) the matched filter, (column

2) the back projection algorithm, (column 3) the NUFFT and (column 4) a point and

region based enhancement algorithm developed using `p regularization in [25]. Here

the parameters are chosen so that p = .8, λ1 = 1.7 and λ2 = 2.5 in (A.75).

by convolving the returned signal with a version of the transmitted signal in the

frequency domain. Using the SAR phase history data, at a fixed slow time τn, the

matched filter response at pixel (xl, ym) for l = 1, ..., Nx and m = 1, ..., Ny is given by

s(xl, ym, τn) =
1

K

K∑
k=1

f̂(θn, tk) exp

(
i4πtk∆R(τn)

c

)
, l = 1, ..., Nx, m = 1, ..., Ny,

(A.55)

where f̂(θn, tk) is given in (A.48). Note that according to (A.45) ∆R(τn) is in fact

a function of pixel location (xl, ym) for all l = 1, ..., Nx and m = 1, ..., Ny, but

the notational dependence is dropped for simplicity. Ideally this will then return

s(xl, ym, τn) = 1
K

∑K
k=1A(τn, tk) so that the discrete reflectivity field f ∈ CNx×Ny can
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be estimated via the matched filter as the average response over all pulses

f(xl, ym) =
1

Np

Np∑
n=1

s(xl, ym, τn), l = 1, ..., Nx, m = 1, ..., Ny. (A.56)

To form an image using this method, this procedure is applied to every pixel in

the image. The matched filter in this case is then the sum of phase shifted pulses.

This requires calculation of the differential, ∆R, for every pixel for every pulse. Thus

this method is very computationally expensive. In fact, the algorithm requires O(N4)

operations to construct an (N×N) two-dimensional SAR image, which is impractical

for most applications. Figure (A.15)(column 1) shows an example of the Gotcha

parking lot scene and a vehicle from the CV Dome data reconstructed using this

matched filter algorithm. Due to its high computational costs, the matched filter is

rarely used in modern SAR image formation.

Back Projection

The back projection algorithm provides an alternative method to more efficiently

calculate (A.56) by using a tomographic interpretation of the SAR phase history data

in (A.36), [58, 70, 39]. Back projection algorithms, such as the one described below,

are commonly employed in tomography when data are collected as Fourier coefficients

of projections of the underlying scene, [105]. While still computationally expensive,

(O(N3) operations for a (N × N) SAR image), implementing the back projection

algorithm is reasonable for many SAR applications and can be parallelized. One

advantage of the back projection algorithm is that SAR images can be formed as

phase history data are collected, pulse-by-pulse, so that newly obtained information

can be integrated into the SAR image as it becomes available.

Referencing Figure A.9, if given the projections p(θ, u), one can envision the back

projection algorithm as “smearing” these projections back over the illumination patch
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(circle of radius L) to obtain an estimation of the reflectivity function f . Referencing

(A.36) and (A.39), the filtered back projection algorithm calculates the reflectivity f

such that

f(x, y) =

∫ π

0

p̃(θ, x cos θ + y sin θ)dθ (A.57)

where the filtered radon transform (projection) at angle θ along the line u is given by

p̃(θ, u) =

∫ ∞
−∞

f̂θ(t)|t|eiuΩ(t)dt. (A.58)

Here, the multiplication by the ramp filter |t| is incorporated into (A.58) to remove

the blurring by 1/|t| that results otherwise [48]. Substituting (A.58) into (A.57) gives

the back projected reflectivity f : Γ→ C

f(x, y) =

∫ π

0

∫ ∞
−∞

f̂θ(t)|t|eiΩ(t)(x cos θ+y sin θ)dtdθ. (A.59)

To estimate f ∈ CNx×Ny , the discretized back projection algorithm first range

compresses the phase history data (A.48). 2 Numerical integration over the azimuth

dimension is then performed by summing the interpolated samples across this set

of range compressed data, [70]. Essentially, each point in the reconstructed image

is obtained by numerically integrating the values back-projected from the filtered

projection functions. The algorithm makes use of the fact that convolution in the

spatial domain is equivalent to multiplication in the Fourier domain.

When signals are received by the radar, the returns are sorted into a set of range

bins (frequency bins) according to their time of arrival, relative to the transmit pulse.

As discussed before, the information in each range bin is not separable due to the

system’s range resolution. However, because the SAR system transmits long duration

chirps, the returns are mapped across many bins, making the bin size small, thus
2Range compression is the term used for taking the one-dimensional Fourier transform of the

data in the range direction.
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improving resolution. The description of back projection provided below relies heavily

on the one provided in Section 4 of [58].

Given the SAR phase history data, f̂(θn, tk) in (A.49), for n = 1, ..., Np and

k = 1, ..., K, the range profile at a particular range bin b, given a received pulse

at slow time τn, is the superposition of the range compressed data collected at the

corresponding pulse

s(b, τn) =
K∑
k=1

f̂(θn, tk) exp

(
i4πtk∆Rb(τn)

c

)
, n = 1, ..., Np, (A.60)

where ∆Rb is the range to every bin in the range profile. Note that ∆Rb 6= ∆R in

(A.45), but rather is a coarse sampling of ∆R. We derive ∆Rb below (see (A.65)) to

obtain the maximum alias free range extent. Note also that s(b, τn) is the discretized

version of the unfiltered radon transform given in (A.39).

The temporal frequency values can be written as

tk = (k − 1)∆t+ t1, k = 1, ..., K, (A.61)

where ∆t denotes the distance between two consecutive frequency values. Although

the frequencies are assumed to be equally spaced in this derivation, this is not in

general required. Substituting (A.61) into the range profile definition, (A.60), we

obtain

s(b, τn) =
K∑
k=1

f̂(θn, tk) exp

[
i4π(k − 1)∆t∆Rb(τn)

c
+
i4πt1∆Rb(τn)

c

]

=
K∑
k=1

f̂(θn, tk) exp [Φ(∆Rb(τn))(k − 1)] exp

(
i4πt1∆Rb(τn)

c

)
, (A.62)

where

Φ(∆Rb(τn)) =
i4π∆t∆Rb(τn)

c
(A.63)

is the phase function.
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In the discrete setting, Matlab’s fft and ifft functions are used to compute

(A.62) for all range bins b = 1, .., B. Matlab’s built in functions that provide discrete

Fourier transforms between X(k) and x(b) are defined as [140]

X(k) = fft(x(b)) =
B∑
b=1

x(b) exp

(
−i2π(b− 1)(k − 1)

K

)
and

x(b) = ifft(X(k)) =
1

K

K∑
k=1

X(k) exp

(
i2π(b− 1)(k − 1)

K

)
=

1

K

K∑
k=1

X(k) exp [Θ(b)(k − 1)] ,

where

Θ(b) =
i2π(b− 1)

K
. (A.64)

In order to use Matlab’s fft, we require Φ in (A.63) to be equivalent to Θ, yielding

i4π∆t∆Rb(τn)

c
=
i2π(b− 1)

K
,

so that

∆Rb(τn) =
c

2∆t

(b− 1)

K
=

(b− 1)

K
Wx. (A.65)

Here Wx, given in (A.50), is the maximum alias free range extent of the image.

Substituting (A.65) into (A.62) gives the range profiles as

s(b, τn) =
K∑
k=1

f̂(θn, tk) exp

(
i4π∆t(k − 1)

c
∆Rb(τn)

)
exp

(
i4πt1∆Rb(τn)

c

)

=
K∑
k=1

f̂(θn, tk) exp

(
i4π∆t(k − 1)

c

(b− 1)

K

c

2∆t

)
exp

(
i4πt1
c

(b− 1)

K

c

2∆t

)

=
K∑
k=1

f̂(θn, tk) exp

(
i2π(k − 1)(b− 1)

K

)
exp

(
i2πt1(b− 1)

K∆t

)

=
K∑
k=1

f̂(θn, tk) exp (Θ(b)(k − 1)) exp

(
i2πt1(b− 1)

K∆t

)
= K · ifft

[
f̂(θn, tk)

]
exp

(
i2πt1(b− 1)

K∆t

)
.

(A.66)
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We note that the Matlab ifft function by default computes (A.66) from the bin

values 1 ≤ b ≤ B, where b = 1 corresponds to the zero frequency bin and B is the

maximum bin number, chosen as B = K to obtain the maximum alias free range

extent. However, recall from Remark A.0.3 that each pulse is motion compensated.

That is, a scatterer at the scene origin is corrected to appear in the center frequency

bin, with an equal number of bins surrounding it. Specifically, the bins should range

from

− B

2
+ 1 ≤ b ≤ B

2
. (A.67)

Hence we use the fftshift function to shift the bin values to obtain the desired

range in (A.67), and determine the range profiles as

s(b, τn) = K · fftshift{ifft(f̂(θn, tk))} exp

(
i2πt1(b− 1)

K∆t

)
= K · fftshift{ifft(f̂(θn, tk))}Φb(τn) (A.68)

where the phase correction term is given as

Φb(τn) = exp

(
i4πt1∆Rb(τn)

c

)
,

and the constant K in front is needed for the proper normalization of Matlab’s fft.

Armed with the range profiles in (A.68), we are now ready to form a two-dimensional

SAR image via back projection. We first make the following observations:

1. The range compressed data s(b, τn) are actually calculated on ∆Rb(τn), but in

order to use (A.55) we will need to interpolate to obtain the values corresponding

to ∆R(τn) in (A.45). To do this, we linearly interpolate the computed values

of s(b, τn) to obtain sint(xl, ym, τn) via the Matlab interp1 function.

2. The true range profile s(b, τn) should be band limited. However because (A.68)

is a finite Fourier approximation, it is highly oscillatory. To filter out the oscil-

lations and more accurately recover the true range profile, we use zero-padded
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sinc interpolation to obtain

s̃(b, τn) = N · fftshift{ifft(f̂(θn, tk))}Φb(τn), (A.69)

where f̂(θn, tk) = 0 for all k > K. The zero-padding prevents aliasing and,

due to the periodic convolutional properties of the FFT [48], approximates the

filtered radon transform (A.58) on the discrete grid. Following [58], we choose

the length of the ifft as N = 2q ≈ 10K, where q > 0 is an integer. (Note also

that in order to optimize efficiency of the fft, K = 2p, p > 0 an integer.)

We now use (A.69) as the values from which to interpolate, which we denote as

sint(xl, ym, τn). The final image response is then found simply by summing these

values over each pulse τn as

f(xl, ym) =

Np∑
n=1

sint(xl, ym, τn), l = 1, ..., Nx, m = 1, ..., Ny. (A.70)

Note that this result is analogous to (A.59) in the continuous data case.

Figure A.15(column 2) displays the results of the Gotcha parking lot image and a

1993 Jeep being reconstructed using the back projection algorithm. The “smearing”

inherent in the back projection is readily apparent in the CV Dome image. This is

because the car being imaged only returns a large portion of the transmitted signal

at the cardinal angles (0◦, 90◦, 180◦ and 270◦).

Non-Uniform Fast Fourier Transform (NUFFT)

Fast Fourier transforms (FFT) are commonly used in data analysis and inver-

sion when data are sampled on uniform grids. The computational cost of computing

Fourier modes via a FFT is O(N logN) for a function/image sampled at N data

points, rather than the typical O(N2) operations required by comparable methods.

However, when data are irregularly sampled in either the physical or frequency do-

main, as is the case in SAR, the FFT does not apply. Over the past twenty years, a
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number of algorithms have been developed to overcome this limitation [60, 107, 49].

These algorithms are commonly referred to as non-uniform fast Fourier transforms

(NUFFT).

The goal of the NUFFT is to efficiently compute forward and inverse Fourier

transforms when samples are non-uniformly distributed. The inverse NUFFT in-

volves taking the non-uniformly spaced frequency domain data, interpolating it onto

a uniform grid and then performing an inverse FFT. This results in uniformly spaced

data in the spatial/time domain. In SAR, the forward NUFFT takes uniform time

data, performs an FFT, and interpolates onto a non-uniform grid to obtain the non-

uniform frequency data. Figure A.15(column 3) provides an example of using the

inverse NUFFT algorithm devloped in [60, 107] to reconstruct the Gotcha parking lot

scene and an image from the CV dome data set. The inverse NUFFT is besot with

a number of difficulties, mainly coming from interpolation errors in the frequency

domain. However, as is shown in Chapter 5, the NUFFT algorithms are useful in the

`1 regularization setup.

Regularization

Compressed sensing and, more generally, regularization, allows the use of a discrete

forward model and facilitates incorporation of known properties of the SAR sensor

and measurement parameters into the SAR image formation procedure. Such an

approach allows more effective handling of the limitations of the model due to data

quantity, which arise due to restrictions on angular diversity, resolution issues and

missing observations. Regularization techniques also enable the use of statistical

processing methods to reduce the impact of noisy data. In particular, regularization-

based techniques can alleviate problems that arise in cases of incomplete data or

sparse apertures and can produce images with improved resolution, suppressed side
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lobes, and reduced speckle noise [24, 25, 27, 110, 115, 26]. Below, we formulate the

estimation of a SAR image as the solution to a regularization problem originally posed

in [24, 25].

For SAR, the forward model is easily derived from the Fourier relationship inherent

in the SAR phase history data [24]. We note that in using the Fourier projection

algorithm, either the tomographic or classical interpretation of the data can be utilized

with a corresponding change in the forward model. Recall the relationship between

the observed data f̂θ(t) and underlying reflectivity function f(x, y) given in (A.40)

and the discretized phase history data given in (A.48). Let Np be the number of

pulses observed, K be the number of spatial frequencies, Nx be the number of pixels

in the range direction and Ny be the number of pixels in the cross-range direction.

Stacking the rows of the phase history data on top of one another yields f̂ ∈ CNpK

with

f̂n,k =
{
f̂θn(tk)

}Np,K
n=1,k=1

,

where tk are the discrete frequencies and θn are the discrete azimuth locations consid-

ered. Let F be the observation kernel F ∈ CNpK → CNxNy given at elevation angle

ϕ as

F =

{
exp

(
i4πtk(xl cos θn + ym sin θn) cosϕ

c

)}Np,K
p=1,k=1

, (A.71)

for l = 1, ..., Nx, m = 1, ..., Ny and f ∈ CNxNy be the unknown scene reflectivity

discretized as

fl,m = {f(xl, ym)}Nx,Nyl=1,m=1 .

The regularization model is then formulated as [24, 25, 27, 110, 115, 26]:

f = argmin
f

J(f), (A.72)

where

J(f) :=
∣∣∣∣∣∣Ff − f̂ ∣∣∣∣∣∣2

2
+ λ1 ||f ||pp + λ2 ||∇|f |||pp . (A.73)
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Here, || · ||p denotes the `p-norm (here p ≤ 1), ∇ is a discrete approximation to

the two-dimensional derivative operator, |f | denotes the vector of magnitudes of the

complex-valued vector f , and λ1 and λ2 are scalar, real, nonnegative parameters.

The first term in the objective function incorporates the SAR observation model and

thus information about the observation geometry. The second term serves to enhance

point-based features in the image. A smaller p will favor a reflectivity function with a

smaller number of dominant scatterers and better preservation of the scatterers and

their magnitudes. The third term is designed to enhance region-based features. By

including this term, variability in homogeneous regions is reduced while discontinuities

at region boundaries are preserved. This sort of behavior has been obtained in real-

valued image restoration and reconstruction problems by using the constraint ||∇f ||pp,

where p ≈ 1. The direct application of such a constraint to the complex-valued SAR

reflectivity function is problematic, because it separately imposes smoothness on the

real and imaginary parts of the complex field f . Hence the constraint is instead only

enforced on the magnitude of the field |f |.

In [24, 25, 27, 110, 115, 26], a quasi-Newton based algorithm is proposed to solve

(A.72). In order to avoid non-differentiability of the `p-norm around the origin when

p ≤ 1, the following smooth approximation to the `p-norm is made:

||z||pp ≈
Z∑
j=1

(
|zj|2 + ε

)p/2
, (A.74)

where ε ≥ 0 is a small constant and Z is the length of the complex vector z. For

numerical purposes, therefore, the cost function is modified as

Jε(f) :=
∣∣∣∣∣∣Ff − f̂ ∣∣∣∣∣∣2

2
+ λ1

NxNy∑
j=1

(
|fj|2 + ε

)p/2
+ λ2

NxNy∑
j=1

(
|(D|f |)j|2 + ε

)p/2
, (A.75)

where D|f | represents the discrete first derivative approximation of |f |, and it is noted

that Jε(f)→ J(f) as ε→ 0. A simple, closed-form solution for the minimizer of Jε(f)

220



does not exist in general, so a quasi-Newton-based algorithm is used to determine an

optimal estimation of f [24, 156]. Figure A.15(column 4) demonstrates the results

of using this technique to form estimations of the reflectivity fields associated with

the Gotcha parking lot and the CV dome. In Figure A.13(right) the same technique

is applied to the MSTAR data set. In each case, the algorithm uses the optimal

parameters given in [25]. In this thesis we refer to this method as the point and

region based enhancement (PRBE) method.
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STATISTICAL MODEL OF SPECKLE NOISE
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Here we present a thorough description of the statistics of speckle noise. Pieces

of this model have been presented in various sources, [57, 56, 34, 69], and are now

compiled for the readers’ convenience. In particular we describe how to determine

the probability density function of the intensity of a speckled image.

First, let us assume that the amplitude αk/
√
N and phase φk returned to the

radar from the kth scatterer are statistically independent realizations of the random

variables Φ and A, respectively. In each resolution cell, there exist N scatterers, thus

the return from one resolution cell can be written as the random phasor sum

f̂(α, φ) =
1√
N

N∑
k=1

αke
iφk . (B.1)

This process can be illustrated as a Gaussian random walk, as seen in Figure (B.1).

Figure B.1: Example of a Gaussian random walk which describes the summation of

the N complex phasors in (B.1).

If the amplitudes are further assumed to be identically distributed for all k we

have

E [αk] = α, E
[
α2
k

]
= α2.

Moreover if the phases φk are uniformly distributed on (−π, π), the probability density
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function for each φk is given by

pΦ(φ) =


1

2π
, φ ∈ (−π, π)

0, else.
(B.2)

Note that this assumption can easily be relaxed so that the φk are uniformly dis-

tributed over another interval. Observe that (B.2) implies

E[cosφk] = E[sinφk] = 0, k = 1, ..., N.

Now let

R = Re{f̂(α, φ)} =
1√
N

N∑
k=1

αk cosφk (B.3)

I = Im{f̂(α, φ)} =
1√
N

N∑
k=1

αk sinφk. (B.4)

Note that R and I are real, independent random variables because they are sums

of real, independent random variables. Let r and i be realizations of the random

variables R and I. We seek the joint probability density function of these two variables

pR,I(r, i). To do so, we first calculate the mean, variance and correlation coefficient for

R and I. Using the independence of αk and φk along with the identically distributed

assumptions we have

E[R] =
1√
N

N∑
k=1

E [αk cosφk] =
1√
N

N∑
k=1

E [αk]E [cosφk] =
√
NE[α]E[cosφ] = 0

Similarly,

E[I] =
1√
N

N∑
k=1

E [αk sinφk] =
√
NE[α]E[sinφ] = 0.

Thus
V ar(R) = E[R2]− E[R]2 = E[R2] := σ2

R,

V ar(I) = E[I2]− E[I]2 = E[I2] := σ2
I ,
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where

E[R2] =
1√
N

1√
N

N∑
k=1

N∑
n=1

E [αk cosφkαn cosφn] =
1

N

N∑
k=1

N∑
n=1

E[αkαn]E[cosφk cosφn],

and

E[I2] =
1√
N

1√
N

N∑
k=1

N∑
n=1

E [αk sinφkαn sinφn] =
1

N

N∑
k=1

N∑
n=1

E[αkαn]E[sinφk sinφn].

Because

E[cosφk cosφn] = E[sinφk sinφn] =


0, k 6= n

1
2
, k = n,

we can further conclude that

E[R2] = E[I2] =
E[α2]

2
=
α2

2
=: σ2. (B.5)

Next we evaluate the correlation between R and I. Using the trigonometric identity

cosφ sinφ = 1
2

sin 2φ and the independence of the phases,

E[cosφk sinφn] =


E[cosφk]E[sinφn] = 0, k 6= n

1
2
E[sin 2φk] = 0, k = n.

The correlation coefficient is

E[RI] =
1√
N

1√
N

N∑
k=1

N∑
n=1

E [αk cosφkαn sinφn]

=
1

N

N∑
k=1

N∑
n=1

E[αkαn]E[cosφk sinφn] = 0.

Hence the real and imaginary parts of the resultant phasor are uncorrelated. The

zero means, equality of variances and lack of correlation are true for any N , finite or

infinite.

In the limit of very large N , the joint density function of the real and imaginary

parts of the random phasor sum is asymptotically a complex Gaussian random vari-

able. To show this, we rely on the uniform independence of the phases as well as
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the independence of the amplitudes from each other and all phases. The joint char-

acteristic function is defined as the two-dimensional inverse Fourier transform of the

probability density function:

MR,I(ω1, ω2) := E
[
ei(ω1R+ω2I)

]
=

∫∫
R2

pR,I(r, i)e
i(ω1R+ω2I)dRdI. (B.6)

Using (B.3) and (B.4) along with a transformation to polar coordinates

ω1 = Ω cosχ, ω2 = Ω sinχ,

yields

MR,I(ω1, ω2) = E

[
exp

{
i

(
Ω cosχ

1√
N

N∑
k=1

αk cosφk + Ω sinχ
1√
N

N∑
k=1

αk sinφk

)}]

= E

[
exp

{
i

(
1√
N

N∑
k=1

(Ω cosχ cosφk + Ω sinχ sinφk)αk

)}]

= E

[
exp

{
iΩ√
N

N∑
k=1

αk cos(χ− φk)

}]

= E

[
exp

{
iΩ√
N
α1 cos(χ− φ1)

}]
E

[
exp

{
iΩ√
N
α2 cos(χ− φ2)

}]
. . .

E

[
exp

{
iΩ√
N
αN cos(χ− φN)

}]
=

N∏
k=1

E

[
exp

{
iΩ√
N
αk cos(χ− φk)

}]

≈
N∏
k=1

E

[
I0

(
2αkΩ√
N

)]
,

where I0 is the zeroth order, modified Bessel function of the first kind [1]. Here we

have utilized the generating function

ez cos θ = I0(z) + 2
∞∑
k=1

Ik(z) cos θ.

The series representation for I0 is

I0(x) =
∞∑
k=0

(
1
4
x2
)k

(k!)2
. (B.7)
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Notice that as N → ∞,
(
αkΩ√
N

)
→ 0. Thus, the characteristic function can be

approximated by the first two terms of the power series expansion (B.7) about the

origin

MR,I(ω1, ω2) =
N∏
k=1

E

[
1−

(
2αkΩ√
N

)2
]
.

Averaging over the amplitudes αk gives

MR,I(ω1, ω2) =

[
1− 4α2Ω2

N

]N
.

As the number of terms N increases without bound, the joint characteristic function

of the real and imaginary parts of the random phasor sum asymptotically approaches

that of a zero mean, complex Gaussian random variable:

lim
N→∞

MR,I(ω1, ω2) = lim
N→∞

[
1− α2Ω2

N

]N
= e−4α2Ω2

.

Because this is the characteristic function for a complex normal, taking the inverse

Fourier transform of the joint characteristic function yields the joint probability func-

tion:

pR,I(r, i) =
1

4πα2
exp

{
−r

2 + i2

4α2

}
=

1

2πσ2
exp

{
−r

2 + i2

2σ2

}
, (B.8)

where we have used (B.5). Thus, by virtue of the central limit theorem, f̂(α, φ) in

(B.1) is a circular, complex, Gaussian random variable. By assumingN is significantly

large, we are assuming that the speckle is fully developed.

We now discuss the statistics of the magnitude α and phase φ of the resultant

distribution where

α =
√
R2 + I2 (B.9)

φ = tan−1 I

R
. (B.10)

The joint density function pA,Φ(α, φ) is found by mapping into the polar coordinate

system and transforming the joint probability density function given in equation (B.8):

R = α cosφ; I = α sinφ,
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where the corresponding Jacobian is

J =

∣∣∣∣∣∣∣
∂R
∂α

∂R
∂φ

∂I
∂α

∂I
∂φ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
cosφ −α sinφ

sinφ α cosφ

∣∣∣∣∣∣∣ = α. (B.11)

Recall that φ is uniformly distributed on (−π, π) and α > 0 (because it is a magni-

tude). The joint density function is

pA,Φ(α, φ) = J · pR,I (R = α cosφ, I = α sinφ)

=


α

2πσ2 exp
{
− α2

2σ2

}
, −π < φ ≤ π, α > 0

0, else.

(B.12)

Then by marginalization the probability density function of the amplitude is

pA(α) =

∫ π

−π
gA,Φ(α, φ)dφ =

∫ π

−π

α

2πσ2
e−

α2

2σ2 dφ =


α
σ2 e
−α2/2σ2

, α > 0

0, else.
(B.13)

This is the well known Rayleigh density function.

Once again marginalizing (B.12), this time integrating with respect to α and using

the fact that integrating a probability density function over the its entire support

results in unity, we obtain for −π < φ ≤ π:

pΦ(φ) =
1

2π

∫ ∞
0

α

σ2
e−α

2/2σ2

dα =
1

2π
. (B.14)

Thus again we see that the phase is uniformly distributed on (−π, π). Notice that

pA,Φ(α, φ) = pA(α)pΦ(φ),

showing that the amplitude and phase are independent random variables.

Finally, we discuss the properties of the intensity g of the speckled return via the

transformation

g = α2, α =
√
g.
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Here, g is modeled as a realization of the random vector G. Because α obeys a

Rayleigh probability density function (B.13), and the above transformation is mono-

tonic on (0,∞), we have

pG(g) = pG(α =
√
g)

∣∣∣∣dαdg
∣∣∣∣ =

√
g

σ2
e−g/2σ

2 1

2
√
g

=


1

2σ2 e
−g/2σ2

, g ≥ 0

0, else.

The intensity obeys a negative exponential probability density function with the spe-

cial property that its standard deviation is equal to its mean, both of which equal

2σ2:

σg = ḡ = 2σ2.

In a more compact notation,

pG(g) =


1
ḡ
e−g/ḡ, g ≥ 0

0, else.
(B.15)

With this probability density function, we can now say how likely we are to observe

a bright peak or dark null in the intensity of a SAR image. The probability that the

intensity exceeds a given threshold gt is

P (g > gt) = 1− P (g ≤ gt) = 1−
∫ gt

0

pG(g)dν

= 1−
∫ gt

0

1

ḡ
e−g/ḡdν = 1−

[
1− egt/ḡ

]
= e−gt/ḡ.

The analysis provided in this appendix supplements the speckle model provided in

Chapter 5, and we note that many of the details here are interesting, but unnecessary

to understand how speckle manifests in a coherent imaging system like SAR.
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