DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS Math 101 Topics in Algebra: Quadratic Forms Fall 2020

Final Exam (due Friday December 4)

Problems:

1. Prime ideals in the Witt ring. Let F be a field of characteristic not 2 and P a prime ideal of the Witt ring W(F). Prove the following.

- (a) If W(F)/P has characteristic zero, then $W(F)/P \cong \mathbb{Z}$.
- (b) If W(F)/P has characteristic p > 0, then $W(F)/P \cong \mathbb{Z}/p\mathbb{Z}$.
- (c) If W(F)/P has characteristic 2, then P = I is the fundamental ideal.
- (d) If P is not the fundamental ideal, then $\{a \in F \mid \langle a \rangle \equiv 1 \pmod{P}\}$ is the set of positive elements of an ordering on F. If you don't know it, go look up what an *ordered field* is.

Hint. For any $a \in F^{\times}$, prove the relation $(\langle a \rangle + 1)(\langle a \rangle - 1) = 0$ in W(F).

- **2.** Using Hasse–Minkowski.
 - (a) Prove that the quadratic forms $\langle -1, 3, 5 \rangle$ and $\langle 1, 7, -105 \rangle$ are isometric over \mathbb{Q} .
 - (b) Which of the quadratic forms $\langle 1, -2, 5 \rangle$, $\langle 1, -1, 10 \rangle$, and $\langle 3, -1, 30 \rangle$ are isometric over \mathbb{Q} ?
 - (c) Show that $\langle 1, 2, 5, -10 \rangle$ is anisotropic and universal (i.e., represents all nonzero values) over \mathbb{Q} .
 - (d) Show that $\langle 1, 1, 1, 7 \rangle$ is isotropic over \mathbb{Q}_p for every prime p but is anisotropic over \mathbb{R} .

3. An isotropic form. Let p, q, r, s be distinct odd prime numbers such that $pqrs \not\equiv 1 \pmod{8}$. Prove that $\langle p, q, -r, -s \rangle$ is isotropic over \mathbb{Q} . **Hint.** The unique nonsplit quaternion algebra over \mathbb{Q}_2 is (2,5) = (-1,-1) = (-1,-5).

4. Legendre. Let a, b, c be nonzero squarefree integers that are pairwise relatively prime and not all of the same sign. Prove that $\langle a, b, c \rangle$ is isotropic over \mathbb{Q} if and only if -bc is a square modulo a, -ac is a square modulo b, and -ab is a square modulo c.

Historical note. That these conditions are necessary was discovered by Euler; Lagrange studied the case a = 1; Legendre proved that the conditions are sufficient; Gauss gave a second proof.