## Dartmouth College Department of Mathematics

## Math 101 Topics in Algebra: Quadratic Forms

Fall 2020
Final Exam (due Friday December 4)

## Problems:

1. Prime ideals in the Witt ring. Let $F$ be a field of characteristic not 2 and $P$ a prime ideal of the Witt ring $W(F)$. Prove the following.
(a) If $W(F) / P$ has characteristic zero, then $W(F) / P \cong \mathbb{Z}$.
(b) If $W(F) / P$ has characteristic $p>0$, then $W(F) / P \cong \mathbb{Z} / p \mathbb{Z}$.
(c) If $W(F) / P$ has characteristic 2 , then $P=I$ is the fundamental ideal.
(d) If $P$ is not the fundamental ideal, then $\{a \in F \mid\langle a\rangle \equiv 1(\bmod P)\}$ is the set of positive elements of an ordering on $F$. If you don't know it, go look up what an ordered field is.
Hint. For any $a \in F^{\times}$, prove the relation $(\langle a\rangle+1)(\langle a\rangle-1)=0$ in $W(F)$.
2. Using Hasse-Minkowski.
(a) Prove that the quadratic forms $\langle-1,3,5\rangle$ and $\langle 1,7,-105\rangle$ are isometric over $\mathbb{Q}$.
(b) Which of the quadratic forms $\langle 1,-2,5\rangle,\langle 1,-1,10\rangle$, and $\langle 3,-1,30\rangle$ are isometric over $\mathbb{Q}$ ?
(c) Show that $\langle 1,2,5,-10\rangle$ is anisotropic and universal (i.e., represents all nonzero values) over $\mathbb{Q}$.
(d) Show that $\langle 1,1,1,7\rangle$ is isotropic over $\mathbb{Q}_{p}$ for every prime $p$ but is anisotropic over $\mathbb{R}$.
3. An isotropic form. Let $p, q, r, s$ be distinct odd prime numbers such that pqrs $\not \equiv 1(\bmod 8)$. Prove that $\langle p, q,-r,-s\rangle$ is isotropic over $\mathbb{Q}$. Hint. The unique nonsplit quaternion algebra over $\mathbb{Q}_{2}$ is $(2,5)=(-1,-1)=(-1,-5)$.
4. Legendre. Let $a, b, c$ be nonzero squarefree integers that are pairwise relatively prime and not all of the same sign. Prove that $\langle a, b, c\rangle$ is isotropic over $\mathbb{Q}$ if and only if $-b c$ is a square modulo $a,-a c$ is a square modulo $b$, and $-a b$ is a square modulo $c$.
Historical note. That these conditions are necessary was discovered by Euler; Lagrange studied the case $a=1$; Legendre proved that the conditions are sufficient; Gauss gave a second proof.
