
Dartmouth College Department of Mathematics
Math 101 Topics in Algebra: Quadratic Forms
Fall 2020

Problem Set # 1 (due Monday October 19)

Problems:

1. Write down a bilinear form whose left and right kernels are not equal. Write down a nonde-
generate bilinear form that is neither symmetric nor skew-symmetric such that the left and right
kernels are equal.

2. Let V and W be finite dimensional F -vector spaces.

(a) Prove that dimF (V ⊗W ) = dimF V · dimF W .

(b) If x = {x1, . . . , xn} and y = {y1, . . . , ym} are bases for V and W , respectively, prove that
x⊗ y = {xi ⊗ yj | 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis for V ⊗W .

(c) For vectors v1, v2 ∈ V , we write v1 v2 for the coset of v1 ⊗ v2 in S2V . If x = {x1, . . . , xn} is
a basis for V , prove that S2x = {xi xj | 1 ≤ i ≤ j ≤ n} is a basis for S2V .

(d) For vectors v1, v2 ∈ V , we write v1 ∧ v2 for the coset of v1 ⊗ v2 in
∧2V . If x = {x1, . . . , xn}

is a basis for V , prove that ∧2x = {xi ∧ xj | 1 ≤ i < j ≤ n} is a basis for
∧2V .

(e) Prove that the map V ∨ ⊗ W → HomF (V,W ) defined by f ⊗ w 7→
(
u 7→ f(u)w

)
is an

isomorphism is F -vector spaces.

(f) Prove that the map V ∨ ⊗W∨ → (V ⊗W )∨ defined by f ⊗ g 7→
(
v ⊗ w 7→ f(v)g(w)

)
is an

isomorphism of F -vector spaces.

(g) Prove that the map
∧2(V ∨)→ (∧2V

)∨ defined by f ∧ g 7→
(
v∧w 7→ f(v)g(w)− f(w)g(v)

)
is an isomorphism of F -vector spaces.

(h) Prove that the map S2
(
V ∨
)
→
(
S2V

)∨ defined by f g 7→
(
v ⊗ v 7→ f(v)g(v)

)
is an isomor-

phism of F -vector spaces.

(i) Prove that the map V ⊗W → W ⊗ V defined by v ⊗ w 7→ w ⊗ v is an isomorphism of
F -vector spaces.

For all these maps, you should understand (if not explain), why they can even be defined as they
are.

3. Let f : V → W be an F -linear map between finite dimensional F -vector spaces and let x =
{x1, . . . , xn} and y = {y1, . . . , ym} be bases for V and W , respectively. Let M be the matrix
representing f with respect to the bases x and y.

(a) Consider the F -linear map f ⊗ f : V ⊗V →W ⊗W defined by v1⊗ v2 7→ f(v1)⊗ f(v2) and
describe the matrix representing f ⊗ f with respect to the bases x⊗ x and y ⊗ y in terms
of the matrix M .

(b) Prove that f ⊗ f induces an the F -linear map S2f : S2V → S2W and describe the matrix
representing S2f with respect to the bases S2x and S2y in terms of the matrix M .

(c) Prove that f ⊗ f induces an the F -linear map
∧2f :

∧2V →
∧2W and describe the matrix

representing
∧2f with respect to the bases ∧2x and ∧2y in terms of the matrix M .



4. Let (V, q) be a quadratic form, v ∈ V such that q(v) 6= 0, and rv : V → V the reflection defined

by rv(w) = w − bq(v,w)
q(v) v.

(a) Prove that rv ∈ O(q).

(b) Assume that q is nondegenerate and char(F ) 6= 2. Prove that if w ∈ V satisfies q(v) = q(w),
then there exists a reflection r such that r(v) = ±w. Hint. Reflect through v ± w.

5. Characteristic 2, scary! Let F be a field of characteristic 2 and a, b ∈ F . Define the quadratic
form [a, b] on F 2 by (x, y) 7→ ax2 + xy + by2. Let h be the hyperbolic form on F 2 defined by
(x, y) 7→ xy.

(a) Prove that if a binary quadratic form q over F has a nondegenerate associated bilinear form
bq, then q is isometric to [a, b] for some a, b ∈ F .

(b) Prove that h ∼= [0, 0] ∼= [0, a] for any a ∈ F .

(c) Let ℘ : F → F be the Artin–Schreier map x 7→ x2 + x. For a ∈ F prove that [1, a] is
isotropic if and only if a ∈ ℘(F ). As an example, prove that over F = F2(t) the quadratic
form x2 + xy + ty2 is anisotropic. Note. The group F/℘(F ) plays the role of the group of
square classes.

(d) Prove that if q is a quadratic form over F with bq is nondegenerate then q can be written
as an orthogonal sum ⊥m

i=1 [ai, bi]. This is “diagonalization” in characteristic 2.

6. Let F be an arbitrary field. Consider the hyperbolic quadratic form h(x, y) = xy on F 2 and
it’s associated symmetric bilinear form b((x, y), (x′, y′)) = xy′ + x′y. Also consider the alternating
bilinear form a((x, y), (x′, y′)) = xy′−x′y on F 2. The group of isometries of an alternating bilinear
form a is called the symplectic group of a and is denoted Sp(a).

(a) Prove that O(h) is isomorphic to the semi-direct product F× o C2, where C2 is a group of
order 2.

(b) Prove that Sp(a) = SL2(F ), the group of 2× 2 matrices of determinant 1 over F .

(c) Prove that if F has characteristic 6= 2, then O(b) = O(h). Hint. A proof of a more general
result was indicated in lecture.

(d) Prove that if F has characteristic 2, then O(b) = Sp(a).

So really, in characteristic 2, we should think of the associated bilinear form as an alternating form
and not a symmetric form, since it’s orthogonal group is actually a symplectic group!

7. Subgroups of fields. You only need to work on this problem if you have not solved a similar one
before in your life (but please let me know this). Let F be a field.

(a) Let G be a finite abelian group. Prove that G is cyclic if and only if G has at most m
elements of order dividing m for each m | #G. Hint. You’ll need the structure theorem of
finite abelian groups?

(b) Prove that every finite subgroup G of the multiplicative group F× = F r {0} is cyclic.
Hint. You’ll need to use the fact that a polynomial of degree m has at most m roots in F ,
which you can prove using the division algorithm for polynomials.

(c) Deduce that if F is a finite field then F× is cyclic. For each field F having at most 7
elements, find an explicit generator of F×.

(d) Prove that for any finite field of odd characteristic F×/F×2 is a group of order 2.


