Dartmouth College Department of Mathematics

Math 101 Topics in Algebra: Quadratic Forms
Fall 2020
Problem Set \# 1 (due Monday October 19)

Problems:

1. Write down a bilinear form whose left and right kernels are not equal. Write down a nondegenerate bilinear form that is neither symmetric nor skew-symmetric such that the left and right kernels are equal.
2. Let V and W be finite dimensional F-vector spaces.
(a) Prove that $\operatorname{dim}_{F}(V \otimes W)=\operatorname{dim}_{F} V \cdot \operatorname{dim}_{F} W$.
(b) If $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ and $\boldsymbol{y}=\left\{y_{1}, \ldots, y_{m}\right\}$ are bases for V and W, respectively, prove that $\boldsymbol{x} \otimes \boldsymbol{y}=\left\{x_{i} \otimes y_{j} \mid 1 \leq i \leq n, 1 \leq j \leq m\right\}$ is a basis for $V \otimes W$.
(c) For vectors $v_{1}, v_{2} \in V$, we write $v_{1} v_{2}$ for the coset of $v_{1} \otimes v_{2}$ in $S^{2} V$. If $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for V, prove that $S^{2} \boldsymbol{x}=\left\{x_{i} x_{j} \mid 1 \leq i \leq j \leq n\right\}$ is a basis for $S^{2} V$.
(d) For vectors $v_{1}, v_{2} \in V$, we write $v_{1} \wedge v_{2}$ for the coset of $v_{1} \otimes v_{2}$ in $\bigwedge^{2} V$. If $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{n}\right\}$ is a basis for V, prove that $\wedge^{2} \boldsymbol{x}=\left\{x_{i} \wedge x_{j} \mid 1 \leq i<j \leq n\right\}$ is a basis for $\wedge^{2} V$.
(e) Prove that the map $V^{\vee} \otimes W \rightarrow \operatorname{Hom}_{F}(V, W)$ defined by $f \otimes w \mapsto(u \mapsto f(u) w)$ is an isomorphism is F-vector spaces.
(f) Prove that the map $V^{\vee} \otimes W^{\vee} \rightarrow(V \otimes W)^{\vee}$ defined by $f \otimes g \mapsto(v \otimes w \mapsto f(v) g(w))$ is an isomorphism of F-vector spaces.
(g) Prove that the map $\bigwedge^{2}\left(V^{\vee}\right) \rightarrow\left(\bigwedge^{2} V\right)^{\vee}$ defined by $f \wedge g \mapsto(v \wedge w \mapsto f(v) g(w)-f(w) g(v))$ is an isomorphism of F-vector spaces.
(h) Prove that the map $S^{2}\left(V^{\vee}\right) \rightarrow\left(S_{2} V\right)^{\vee}$ defined by $f g \mapsto(v \otimes v \mapsto f(v) g(v))$ is an isomorphism of F-vector spaces.
(i) Prove that the map $V \otimes W \rightarrow W \otimes V$ defined by $v \otimes w \mapsto w \otimes v$ is an isomorphism of F-vector spaces.

For all these maps, you should understand (if not explain), why they can even be defined as they are.
3. Let $f: V \rightarrow W$ be an F-linear map between finite dimensional F-vector spaces and let $\boldsymbol{x}=$ $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\boldsymbol{y}=\left\{y_{1}, \ldots, y_{m}\right\}$ be bases for V and W, respectively. Let M be the matrix representing f with respect to the bases \boldsymbol{x} and \boldsymbol{y}.
(a) Consider the F-linear map $f \otimes f: V \otimes V \rightarrow W \otimes W$ defined by $v_{1} \otimes v_{2} \mapsto f\left(v_{1}\right) \otimes f\left(v_{2}\right)$ and describe the matrix representing $f \otimes f$ with respect to the bases $\boldsymbol{x} \otimes \boldsymbol{x}$ and $\boldsymbol{y} \otimes \boldsymbol{y}$ in terms of the matrix M.
(b) Prove that $f \otimes f$ induces an the F-linear map $S^{2} f: S^{2} V \rightarrow S^{2} W$ and describe the matrix representing $S^{2} f$ with respect to the bases $S^{2} \boldsymbol{x}$ and $S^{2} \boldsymbol{y}$ in terms of the matrix M.
(c) Prove that $f \otimes f$ induces an the F-linear map $\bigwedge^{2} f: \Lambda^{2} V \rightarrow \bigwedge^{2} W$ and describe the matrix representing $\bigwedge^{2} f$ with respect to the bases $\wedge^{2} \boldsymbol{x}$ and $\wedge^{2} \boldsymbol{y}$ in terms of the matrix M.
4. Let (V, q) be a quadratic form, $v \in V$ such that $q(v) \neq 0$, and $r_{v}: V \rightarrow V$ the reflection defined by $r_{v}(w)=w-\frac{b_{q}(v, w)}{q(v)} v$.
(a) Prove that $r_{v} \in O(q)$.
(b) Assume that q is nondegenerate and $\operatorname{char}(F) \neq 2$. Prove that if $w \in V$ satisfies $q(v)=q(w)$, then there exists a reflection r such that $r(v)= \pm w$. Hint. Reflect through $v \pm w$.
5. Characteristic 2, scary! Let F be a field of characteristic 2 and $a, b \in F$. Define the quadratic form $[a, b]$ on F^{2} by $(x, y) \mapsto a x^{2}+x y+b y^{2}$. Let h be the hyperbolic form on F^{2} defined by $(x, y) \mapsto x y$.
(a) Prove that if a binary quadratic form q over F has a nondegenerate associated bilinear form b_{q}, then q is isometric to $[a, b]$ for some $a, b \in F$.
(b) Prove that $h \cong[0,0] \cong[0, a]$ for any $a \in F$.
(c) Let $\wp: F \rightarrow F$ be the Artin-Schreier map $x \mapsto x^{2}+x$. For $a \in F$ prove that $[1, a]$ is isotropic if and only if $a \in \wp(F)$. As an example, prove that over $F=\mathbb{F}_{2}(t)$ the quadratic form $x^{2}+x y+t y^{2}$ is anisotropic. Note. The group $F / \wp(F)$ plays the role of the group of square classes.
(d) Prove that if q is a quadratic form over F with b_{q} is nondegenerate then q can be written as an orthogonal sum $\perp_{i=1}^{m}\left[a_{i}, b_{i}\right]$. This is "diagonalization" in characteristic 2 .
6. Let F be an arbitrary field. Consider the hyperbolic quadratic form $h(x, y)=x y$ on F^{2} and it's associated symmetric bilinear form $b\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=x y^{\prime}+x^{\prime} y$. Also consider the alternating bilinear form $a\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=x y^{\prime}-x^{\prime} y$ on F^{2}. The group of isometries of an alternating bilinear form a is called the symplectic group of a and is denoted $\mathrm{Sp}(a)$.
(a) Prove that $\mathrm{O}(h)$ is isomorphic to the semi-direct product $F^{\times} \rtimes C_{2}$, where C_{2} is a group of order 2.
(b) Prove that $\mathrm{Sp}(a)=\mathrm{SL}_{2}(F)$, the group of 2×2 matrices of determinant 1 over F.
(c) Prove that if F has characteristic $\neq 2$, then $\mathrm{O}(b)=\mathrm{O}(h)$. Hint. A proof of a more general result was indicated in lecture.
(d) Prove that if F has characteristic 2, then $\mathrm{O}(b)=\mathrm{Sp}(a)$.

So really, in characteristic 2, we should think of the associated bilinear form as an alternating form and not a symmetric form, since it's orthogonal group is actually a symplectic group!
7. Subgroups of fields. You only need to work on this problem if you have not solved a similar one before in your life (but please let me know this). Let F be a field.
(a) Let G be a finite abelian group. Prove that G is cyclic if and only if G has at most m elements of order dividing m for each $m \mid \# G$. Hint. You'll need the structure theorem of finite abelian groups?
(b) Prove that every finite subgroup G of the multiplicative group $F^{\times}=F \backslash\{0\}$ is cyclic.

Hint. You'll need to use the fact that a polynomial of degree m has at most m roots in F, which you can prove using the division algorithm for polynomials.
(c) Deduce that if F is a finite field then F^{\times}is cyclic. For each field F having at most 7 elements, find an explicit generator of F^{\times}.
(d) Prove that for any finite field of odd characteristic $F^{\times} / F^{\times 2}$ is a group of order 2 .

