Dartmouth College Department of Mathematics

Math 101 Topics in Algebra: Quadratic Forms

Fall 2020
Problem Set \# 2 (due Friday October 30)

Problems:

1. Let F be a finite field of odd order q and $W(F)$ be the Witt ring of quadratic forms over F. Prove that as rings $W(F) \cong \mathbb{Z} / 4 \mathbb{Z}$ if $q \equiv 3(\bmod 4)$ and $W(F) \cong \mathbb{Z} / 2 \mathbb{Z}\left[F^{\times} / F^{\times 2}\right]$ if $q \equiv 1(\bmod 4)$, where $\mathbb{Z} / 2 \mathbb{Z}\left[F^{\times} / F^{\times 2}\right] \cong \mathbb{Z} / 2 \mathbb{Z}[u] /\left(u^{2}-1\right)$ is the group ring of $F^{\times} / F^{\times 2}$ over $\mathbb{Z} / 2 \mathbb{Z}$.
2. Prove that $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to $\mathbb{C} \times \mathbb{C}$ as \mathbb{R}-algebras. Are they isomorphic as \mathbb{C}-algebras? Hint. Recall that an idempotent in a ring R is an element $e \in R$ such that $e^{2}=e$. Given an idempotent $e \neq 1$ and letting $f=1-e$, we have a product decomposition $R \cong R e \times R f$.
3. Prove that if F is an algebraically closed field (i.e., every nonconstant polynomial over F has a root), then the only finite dimensional division F-algebra is F itself. Hint. Let A be any finite dimensional F-algebra and prove that the linear map $l_{x}: A \rightarrow A$ defined by left multiplication by $x \in A \backslash F$ has an eigenvalue $\lambda \in F$, and that $x-\lambda 1_{D}$ is a zero-divisor in A.
4. Let W be an F-vector space of dimension m. We defined the exterior algebra of W to be $\wedge W=T(W) / I$ where I is the two-sided ideal generated by $w \otimes w$ for all $w \in W$. The product of $\alpha, \beta \in \bigwedge W$ is denoted $\alpha \wedge \beta \in \bigwedge W$ and is often called the exterior product.
(a) Prove that ΛW is a graded algebra. The graded pieces are the exterior powers $\wedge^{k} W$ of W

$$
\Lambda W=\bigoplus_{k \geq 0} \wedge^{k} W
$$

where $\bigwedge^{0} W=F$ and $\bigwedge^{1} W=W$.
(b) Prove that the map $\bigwedge^{k}\left(W^{\vee}\right) \times \bigwedge^{k} W \rightarrow F$ defined by

$$
\left(f_{1} \wedge \cdots \wedge f_{k}, w_{1} \wedge \cdots \wedge w_{k}\right) \mapsto \operatorname{det}\left(f_{i}\left(w_{j}\right)\right)_{1 \leq i, j \leq k}
$$

is a bilinear pairing. Prove that this pairing induces a linear map $\bigwedge^{k}\left(W^{\vee}\right) \rightarrow\left(\bigwedge^{k} W\right)^{\vee}$ that is an isomorphism. You'll need to prove this in conjunction with the next part.
(c) If $\boldsymbol{x}=\left\{x_{1}, \ldots, x_{m}\right\}$ is a basis of W, prove that

$$
\wedge^{k} \boldsymbol{x}=\left\{x_{i_{1}} \wedge \cdots \wedge x_{i_{k}} \mid 1 \leq i_{1}<\cdots<i_{k} \leq m\right\}
$$

is a basis of $\bigwedge^{k} W$. In particular, prove that $\bigwedge^{k} W$ has dimension $\binom{n}{k}$, in particular, is trivial for $k>m$ or $k<0$. You'll need to prove this in conjection with the previous part. Hint. To prove that a finite set of vectors w_{1}, \ldots, w_{m} is linearly independent, why is it sufficient to find elements g_{1}, \ldots, g_{m} of the dual space such that $g_{i}\left(w_{j}\right)=\delta_{i j}$? To help with the notation, you can call $x_{I}=x_{i_{1}} \wedge \cdots \wedge x_{i_{k}}$ where $I=\left\{i_{1}, \ldots, i_{k}\right\}$ is a k-element subset of $\{1, \ldots, m\}$.
(d) Prove that if the dimension of W is ≤ 3, then $\alpha \wedge \alpha=0$ for all $\alpha \in \wedge^{k} W$ with $k>0$, however, if the dimension of W is ≥ 4, then there always exists $\alpha \in \bigwedge^{k} W, k>0$, with $\alpha \wedge \alpha \neq 0$.
(e) Given a linear operator $\varphi: W \rightarrow W$, prove that the induced map $\bigwedge^{m} \varphi: \bigwedge^{m} W \rightarrow \bigwedge^{m} W$ is multiplication by a scalar. Convince yourself that this scalar is the determinant of φ. (Some authors use this as the definition of the determinant.)
(f) Prove that the map $\bigwedge^{k} W \times \bigwedge^{m-k} W \rightarrow \bigwedge^{m} W$ defined by the exterior product is bilinear pairing. Prove that this pairing induces a linear map $\bigwedge^{k} W \rightarrow\left(\bigwedge^{m-k} W\right)^{\vee} \otimes \bigwedge^{m} W$ that is an isomorphism.
5. Let W be a finite dimensional F-vector space and let $V=W^{\vee} \oplus W$.
(a) Prove that the map $h: V \rightarrow F$ defined by $(f, w) \mapsto f(w)$ is a hyperbolic quadratic form.
(b) For any $f \in W^{\vee}$ and any $k \in \mathbb{Z}$ define the contraction map $d_{f}: \bigwedge^{k} W \rightarrow \bigwedge^{k-1} W$ by

$$
d_{f}\left(w_{1} \wedge \ldots \wedge w_{k}\right)=\sum_{j=1}^{k}(-1)^{j+1} f\left(w_{j}\right) w_{1} \wedge \cdots \wedge w_{j-1} \wedge w_{j+1} \wedge \cdots \wedge w_{k}
$$

Prove that the family of maps $d_{f}: \bigwedge^{k} W \rightarrow \bigwedge^{k-1} W$, ranging over $k \in \mathbb{Z}$, are uniquely determined by the properties that $d_{f}(w)=f(w)$ for $w \in W=\Lambda^{1} W$ and

$$
d_{f}(\alpha \wedge \beta)=d_{f}(\alpha) \wedge \beta+(-1)^{a} \alpha \wedge d_{f}(\beta)
$$

for $\alpha \in \bigwedge^{a} W$ and $\beta \in \bigwedge^{b} W$. This is sometimes called a derivation of degree -1 .
(c) For any $w \in W$ and any $k \in \mathbb{Z}$ define the map $l_{w}: \Lambda^{k} W \rightarrow \bigwedge^{k+1} W$ by $l_{w}(\alpha)=w \wedge \alpha$. For any $w \in W$ and $f \in W^{\vee}$ prove that $l_{w} \circ l_{w}=0, d_{f} \circ d_{f}=0$, and that $l_{w} \circ d_{f}+d_{f} \circ l_{w}$ is multiplication by $f(w)$.
(d) Prove that the map $L: V \rightarrow \operatorname{End}_{F}(\bigwedge W)$ defined by $L(f, w)=d_{f}+l_{w}$ is F-linear, and that it induces, via the universal property of the Clifford algebra, an F-algebra isomorphism $C(V, h) \rightarrow \operatorname{End}_{F}(\bigwedge W)$.
(e) Let $E=E_{0} \oplus E_{1}$ be a direct sum decomposition of a finite dimensional F-vector space E. Understand why we can consider elements of $\operatorname{End}_{F}(E)$ as " 2×2 matrices"
$\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), \quad a \in \operatorname{End}_{F}\left(P_{0}\right), \quad b \in \operatorname{Hom}_{F}\left(P_{1}, P_{0}\right), \quad c \in \operatorname{Hom}_{F}\left(P_{0}, P_{1}\right), \quad d \in \operatorname{End}_{F}\left(P_{1}\right)$.
We can then consider the decomposition $\operatorname{End}_{F}(E)=\operatorname{End}_{F}(E)_{0} \oplus \operatorname{End}_{F}(E)_{1}$, where $\operatorname{End}_{F}(E)_{0}$ is the subspace of "diagonal matrices," and $\operatorname{End}_{F}(E)_{1}$ is the subspace of "off-diagonal matrices," i.e., having the form

$$
\left(\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right), \quad\left(\begin{array}{ll}
0 & b \\
c & 0
\end{array}\right),
$$

respectively. Prove that this decomposition gives $\operatorname{End}_{F}(E)$ the structure of a $\mathbb{Z} / 2 \mathbb{Z}$-graded F-algebra. This is called the checkerboard grading.
(f) Consider the decomposition $\bigwedge W=\bigwedge^{\text {even }} W \oplus \bigwedge^{\text {odd }} W$, where

$$
\bigwedge^{\text {even }} W=\bigoplus_{k \text { even }} \bigwedge^{k} W, \quad \bigwedge^{\text {odd }} W=\bigoplus_{k \text { odd }} \bigwedge^{k} W
$$

Prove that the F-algebra isomorphism $C(V, h) \rightarrow \operatorname{End}_{F}(\bigwedge W)$ considered above is an isomorphism of $\mathbb{Z} / 2 \mathbb{Z}$-graded algebras if we consider $\operatorname{End}_{F}(\Lambda W)$ with the checkerboard grading determined by the decomposition $\Lambda W=\bigwedge^{\text {even }} W \oplus \bigwedge^{\text {odd }} W$.
(g) Prove that there is an F-algebra isomorphism $C_{0}(V, h) \cong \operatorname{End}_{F}\left(\bigwedge^{\text {even }} W\right) \times \operatorname{End}_{F}\left(\bigwedge^{\text {odd }} W\right)$ and that the center of $C_{0}(V, h)$ is isomorphic to $F \times F$.

