DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS Math 101 Linear and Multilinear Algebra Fall 2024

Problem Set # 3 (due via Canvas upload by 5 pm, Monday, October 14)

1. Let V be a k-vector space of dimension n and let $b: V \times V \to k$ be a nondegenerate alternating bilinear form on V.

- (a) Let $W \subseteq V$ be a subspace such that the restriction $b_W := b|_{W \times W} : W \times W \to k$ is nondegenerate. Show that $V = W \oplus W^{\perp}$.
- (b) Show that n = 2m must be even, and there exists a basis $\beta = \{e_1, \ldots, e_m, f_1, \ldots, f_m\}$ for V such that $b(e_i, e_j) = b(f_i, f_j) = 0$ for all $i, j = 1, \ldots, m$ and $b(e_i, f_j) = 1, 0$ whether i = j or not. Such a basis is often called a symplectic basis. Hint. Mimic the Gram-Schmidt procedure.
- (c) What is the Gram matrix $[b]_{\beta}$ with respect to a symplectic basis, and what if char k = 2?
- **2.** A quadratic form on a finite dimensional k-vector space V is a map $q: V \to k$ such that:
 - (i) For all $\lambda \in k$ and $x \in V$ we have $q(\lambda x) = \lambda^2 q(x)$, and
 - (ii) the map

$$b = b_q \colon V \times V \to k$$
$$(x, y) \mapsto q(x + y) - q(x) - q(y)$$

is a (symmetric) bilinear form, often called the associated bilinear form to q. Note that the set of quadratic forms on V is a k-vector space under addition of maps. An isometry between quadratic forms q on V and q' on V' is a k-linear isomorphism $\phi: V \to V'$ such that $q'(\phi(x)) = q(x)$ for all $x \in V$, and we define the orthogonal group O(q) of a quadratic form as the group of self-isometries.

- (a) The map $q \mapsto b_q$ from quadratic forms to symmetric bilinear forms is k-linear, and is an isomorphism (that preserves orthogonal groups) when char $k \neq 2$. Hint. In the other direction, consider the map $b \mapsto q_b : x \mapsto b(x, x)$.
- (b) When char k = 2, show, by way of examples, that the map $q \mapsto b_q$ from quadratic forms to symmetric bilinear forms is neither injective nor surjective in general and it does not generally preserve orthogonal groups.
- (c) When char k = 2, show that b_q is, in fact, an alternating bilinear form, and show that the map $q \mapsto b_q$ from quadratic forms to alternating bilinear forms, is surjective.
- (d) Over any k, show that the map $b \mapsto q_b$ from all bilinear forms to quadratic forms is a k-linear surjection, and its kernel is the subspace of alternating bilinear forms.
- (e) When char $k \neq 2$ prove that any quadratic form is isometric to a diagonal quadratic form $\sum a_i x_i^2$ with $a_i \in k$. Show, by way of example, that not every quadratic form is diagonalizable when char k = 2.
- **3.** Consider the surface in \mathbb{R}^3 defined by

$$q(x, y, z) = x^{2} + y^{2} + z^{2} - 2xy - 2xz - 2yz = 1.$$

- (a) Show that any quadratic form over \mathbb{R} is isometric to a diagonal quadratic form $\sum a_i x_i^2$ with $a_i \in \{0, \pm 1\}$. For the above quadratic form q, how many of each of -1, 0, and 1 are there?
- (b) Determine if the surface is an ellipsoid (an ellipse rotated about one of its axes), a hyperboloid (a hyperbola rotated about one of its axes), or a paraboloid (a parabola rotated about its axis).

4. Suppose char $k \neq 2$ and let b be a symmetric bilinear form on a finite dimensional k-vector space. We say that $v \in V$ is anisotropic for b if $b(v, v) \neq 0$. For $v \in V$ anisotropic, define the orthogonal reflection along v by

$$\tau_v \colon V \to V$$

$$\tau_v(x) = x - 2\frac{b(v, x)}{b(v, v)}v$$

- (a) How does this relate to the orthogonal projection used in the Gram–Schmidt procedure?
- (b) Show that $\tau_v(v) = -v$ and that τ_v is the identity when restricted to v^{\perp} . Show that $\tau_v \in O(b)$.
- (c) Let $V = \mathbb{R}^3$ and b be the standard dot product. For $v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ compute the matrix of τ_v with

respect to the standard basis.

- (d) Show that the set of reflections is closed under conjugation in O(b).
- (e) If $x, y \in V$ have $b(x, x) = b(y, y) \neq 0$, show there exists $\phi \in O(b)$ such that $\phi(x) = y$. What does this say about the orbits of O(b) acting on V? **Hint.** Reflect along either v = x + y or v = x y.
- (f) Is there a theory of orthogonal reflections for quadratic forms in characteristic 2?

5. In this exercise, we explore adjoints beyond the case of symmetric bilinear forms. Let $b: V \times W \to k$ and $b': V' \times W' \to k$ be k-bilinear. For a k-linear map $\phi: V \to V'$, a k-linear map $\phi^*: W' \to W$ is said to be adjoint to ϕ (with respect to b and b') if

$$b(v, \phi^*(w')) = b'(\phi(v), w')$$

for all $v \in V$ and $w' \in W'$.

(a) Recall the tautological bilinear form

$$e \colon V \times V^{\vee} \to k$$
$$(v, f) \mapsto f(v),$$

defining e' similarly for V'. Show that $\phi^* = \phi^{\vee}$, i.e., the adjoint with respect to the tautological bilinear form is the dual.

- (b) Show that if b is right nondegenerate, then an adjoint is unique.
- (c) Show that if b is right nondegenerate and dim $V = \dim W < \infty$, then a (unique) adjoint exists.