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Problem Set # 5 (due via Canvas upload by 5 pm, Monday, October 28)

1. Let V,W,X be k-vector spaces.

(a) For k-vector spaces V ′ and W ′ and k-linear maps α : V ′ → V and β : W →W ′, show that the
map Hom(α, β) : Hom(V,W )→ Hom(V ′,W ′), defined by φ 7→ β ◦ φ ◦ α, is a k-linear map.

(b) Prove that there is a unique isomorphism

Hom(V ⊗X,W )
∼−→ Hom(V,Hom(X,W ))

with the property that φ 7→ (v 7→ (x 7→ φ(v ⊗ x))). This is called the tensor-hom adjunction
isomorphism. Hint. Under the isomorphism Bilk(V,X;W ) ∼= Hom(V ⊗X,W ) the map is just
taking the left polar.

(c) Prove that the tensor-hom adjunction isomorphism is “natural” i.e., given k-vector spaces
V ′,W ′, X ′ and k-linear maps α : V ′ → V , β : W →W ′, and γ : X ′ → X, the following diagram
is commutative

Hom(V ⊗X,W )
∼ //

Hom(α⊗γ,β)
��

Hom(V,Hom(X,W ))

Hom(α,Hom(γ,β))
��

Hom(V ′ ⊗X ′,W ′) ∼ // Hom(V ′,Hom(X ′,W ′)

(d) Recall the k-linear map

Hom(V,W )⊗X �
� (∼) // Hom(V,W ⊗X) ,

determined by φ ⊗ x 7→ (v 7→ φ(v) ⊗ x), which is injective and is an isomorphism whenever
V,W,X are finite-dimensional. This is called the hom-tensor adjunction map. Prove that the
hom-tensor adjunction map is “natural”, i.e., given k-vector spaces V ′,W ′, X ′ and k-linear
maps α : V ′ → V , β : W →W ′, and γ : X → X ′, the following diagram is commutative

Hom(V,W )⊗X �
� (∼) //

Hom(α,β)⊗γ
��

Hom(V,W ⊗X)

Hom(α,β⊗γ)
��

Hom(V ′,W ′)⊗X ′ �
� (∼) // Hom(V ′,W ′ ⊗X ′)

So apparently tensor-hom adjunction is better-behaved than hom-tensor adjunction?

2. Let V be an k-vector space and let d ≥ 1. The symmetric power SdV is defined as a quotient of the
tensor power V ⊗d, from which it acquires an appropriate universal property. We can also work with a
subspace of symmetric tensors. For each σ ∈ Sd, where Sd is the symmetric group on {1, . . . , d}, we
have an induced k-linear map σ : V ⊗d → V ⊗d determined on simple tensors by

σ(v1 ⊗ · · · ⊗ vd) = vσ−1(1) ⊗ · · · ⊗ vσ−1(d)

obtained by permuting coordinates. A tensor α ∈ V ⊗d is called symmetric if σ(α) = α for all σ ∈ Sd.
Write SdV ⊆ V ⊗d for the k-subspace of symmetric tensors.

(a) Suppose that d! ∈ k×, i.e., that char(k) > d. Show that the map

s : Sd(V )→ Sd(V )

α 7→ 1

d!

∑
σ∈Sd

σ(α)

is a well-defined k-linear isomorphism.

(b) Formulate and prove a similar statement for the subspace of skew-symmetric tensors, which
satisfy σ(α) = (sgnσ)α for all σ ∈ Sd.



3. Let V be an k-vector space with dimV = n, and let φ : V → V be k-linear. Recall that we
defined a unique determinant map det : V n → k (as a normalized, multilinear alternating form), and
that we define det(φ) by choosing a basis v1, . . . , vn for V and taking det(φ) : det(φ(v1), . . . , φ(vn))
(independent of the choice of basis, by uniqueness).

(a) Observe that φ induces a map
∧
nφ :

∧
nV →

∧
nV defined by v1∧ · · · ∧ vn 7→ φ(v1)∧ · · · ∧φ(vn).

(b) Recalling that dim(
∧
nV ) = 1, explain why Hom(

∧
nV,

∧
nV ) ∼= k and

∧
nφ is multiplication by

some d(φ) ∈ k.

(c) Show that d(φ) = det(φ). Hint. Show that the mapD : V n → k which starts with (x1, . . . , xn) ∈
V n, makes the linear map φ ∈ End(V ) by φ(vi) = xi, and then associates d(φ) ∈ k, is a deter-
minant function!

(d) Prove that det(ψ ◦ φ) = det(ψ) det(φ) = det(φ ◦ ψ) for all ψ : V → V .

4. Let V be a k-vector space of finite dimension n.

(a) Prove that the k-bilinear map
∧
iV ×

∧
n−iV →

∧
nV , defined on simple wedges by the “wedging”

(v1 ∧ · · · ∧ vi, vi+1 ∧ · · · ∧ vn) 7→ v1 ∧ · · · ∧ vn, induces an isomorphism
∧
iV ∼= (

∧
n−iV )∨⊗k

∧
nV .

What combinatorial formula do you derive by computing the dimensions of both sides?

(b) Let 0 → W
φ−→ V

f−→ L → 0 be a short exact sequence of k-vector spaces with L being
1-dimensional. Prove that the sequence

0→
∧iW ∧iφ−−→

∧iV df−→ L⊗
∧i−1W → 0

is short exact, where df :
∧
iV → L⊗

∧
i−1W is the k-linear map uniquely determined on simple

wedges by

df (v1 ∧ · · · ∧ vi) =

i∑
j=1

(−1)jf(vj)⊗ v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vi,

where v1 ∧ · · · ∧ v̂j ∧ · · · ∧ vi means the wedge monomial obtained by omitting the jth term.
What combinatorial formula do you derive by computing the dimensions via rank-nullity?

5. Recall that if A,B are k-algebras (with 1) then there is a unique structure of k-algebra on A⊗k B
with the property that

(a⊗ b) · (a′ ⊗ b′) = aa′ ⊗ bb′

for all a, a′ ∈ A and b, b′ ∈ B. Furthermore, if k ⊂ K is a field extension, recall the extension of scalars
AK = A⊗k K, which has a unique structure of K-algebra with the property that

λ · (a⊗ α) = a⊗ λα
for all a ∈ A and λ, α ∈ K. For a K-algebra B, recall the restriction of scalars kB, which is a k-algebra
by restricting the scalar multiplication from K to k.

(a) For k-algebras A and B, verify (whenever it makes sense) that

dimk(A⊗k B) = dimk A · dimk B

(b) For a k-algebra A and a K-algebra B, verify (whenever they make sense) that

dimK(AK) = dimk A, dimk(kB) = dimkK · dimK B

(c) Consider the R-algebra C ⊗R C. Prove that C ⊗R C ' C × C as R-algebras. Hint. Define
the map Φ: C× C→ C× C by (z, w) 7→ (zw, zw) and use it to get an R-algebra isomorphism
C⊗R C→ C× C.

(d) Let σ : K → K be a k-algebra automorphism and W a K-vector space. Define a new K-vector
space σW on the same underlying abelian group W with scalar multiplication λ · w = σ(λ)w
for all λ ∈ K and w ∈ W . This is called the σ-twist of W . Prove that dimK(σW ) = dimKW .
Prove that to give a K-linear map φ : W → σW ′ is the same as to give a k-linear map
φ : kW → kW

′ such that φ(λw) = σ(λ)φ(w) for all λ ∈ K and w ∈W . Such φ are often called
σ-semilinear.

(e) When k = R, K = C, and σ is complex conjugation, σW is often denoted by W . Prove that
C⊗R C ' C× C as C-algebras.


