DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS
Math 101 Linear and Multilinear Algebra
Fall 2024

Problem Set # 6 (due via Canvas upload by 5 pm, Friday, November 8)

1. To prove that a pair of functors F' : C — D and G : D — C are an adjoint pair, it suffices to construct
natural transformations n: Ic =& Go F and € : F o G — Ip called the unit and counit of adjunction
such that the following counit-unit equations are satisfies: for every X € Ob(C) and Y € Ob(D) we
have
dpoy =epx)y o Fnx),  idg) = Gley) o ngy)-
(a) Practice constructing the unit and counit of adjunction and using the counit-unit equations to
prove that the free vector space functor F'(—) : Set — Vectr is left adjoint to the forgetful
functor Vectyp — Set.

(b) Let K/k be a field extension. Prove that the extension of scalars functor (—)x : k-Alg — K-Alg
is left adjoint to the restriction of scalars functor x(—) : K-Alg — k-Alg.

(c) Let G be a group and H C G be a subgroup. Recall from the daily homework that the category
Rep of representations of G is isomorphic to the category Z(G)-Mod of modules over the
group ring. The restriction functor resg : Rep; — Repy is defined by simply viewing a G-
representation as an H-representation by restricting the action, and similarly on morphisms.
The induction functor indg : Repy — Repg; is defined, for an H-representation W, as

indG(W)={f:G—=W : f(gh™)=h-f(g) forallge G,he H}

where the G-action on ind% (W) is (g - f)(z) = f(g~'z) for g € G and ind%(¢)(f) = o f on
morphisms ¢ : W — V between H-representations. Prove Frobenius reciprocity, the statement
that indg if left adjoint to resg. Hint. Use the fact that, via the isomorphism of categories
Rep; — Z(G)-Mod the induction functor is identified with the functor M — Z(G) Qg M.

Do you see a similarity between the later two?

2. Let R be a commutative ring. Let J be an ideal of R.
(a) For M a R-module, let

JM = {Zaixi:aiGJ,xiEM}.

i=1
Show that JM is an R-submodule of M.

(b) If : M — N is an isomorphism of R-modules, show that ¢|;; induces an isomorphism
JM ~ JN.

(c) Let {M;};er be R-modules and let N; C M; be R-submodules for all i. Prove that

(2+)/ (o) @

i€l i€l i€l
(d) If M ~@,.; R is a free R-module, show that

M/JIM ~EPR/J
el
as R-modules.
(e) Suppose that R is not the zero ring. Prove that two free R-modules are isomorphic if and only

if they have R-bases of the same cardinality, in particular R® ~ R™ if and only if n = m.
Hint. Apply (d) with J a maximal ideal of R.

3. Let R be an integral domain and let M be a finitely generated R-module. The rank of M is the
maximal number of R-linearly independent elements of M.

We already defined the rank of a free R-module with basis 8 to be #3, and in the previous exercise
we showed it is well-defined. But if we are going to use the same word rank, we should show that the



two notions concide when M is free (over a domain)! (If this is confusing to you, use the term free
rank for free modules while you work on this exercise, then afterwards you can drop the “free”.)

(a) Suppose that M has rank n and that x1,...,x, is any maximal set of R-linearly independent
elements of M. Let N = Rx1 + -+ Rx, be the R-submodule generated by z1,...,z,. Prove
that N is isomorphic to R"™ and that the quotient M /N is a torsion R-module. Hint. Show
that the map R™ — N which sends the ith standard basis vector to x; is an isomorphism of
R-modules.

(b) Prove conversely that if M contains a submodule NN that is free of rank n (i.e., N ~ R™) such
that the quotient M/N is a torsion R-module then M has rank n. Hint. Let yi,...,yn+1 be
any n+ 1 elements of M. Use the fact that M/N is torsion to write r;y; as a linear combination
of a basis for IV for some nonzero elements r; of R. Show that the r;3;, and hence also the y;,
are linearly dependent, working over the field of fractions.

(c) Conclude that M = R"™ has rank n, i.e., that the maximum number of R-linear independent
elements in R" is n (the same as the cardinality of the standard basis).

(d) Let 0 = M - M — M"” — 0 be an exact sequence of finitely generated R-modules. Prove
that the rank of M is the sum of the ranks of M’ and M".

4. Let R be a commutative ring. A unimodular row (of length n over R) is a row vector a = (ay,...,ay)
such that a; € R collectively generate R.

(a) Define a map ¢, : R™ — R by ¢4(v) = av, where av denotes the usual product of a row by a
column to get an element of R. Prove that P, = ker ¢, is a projective R-module of rank n — 1.
Hint. Check that a is a unimodular row if and only if there exist b; € R with Z?:l a;b; = 1.

(b) For unimodular rows a, b of length n over R, prove that P, = P, if and only if there exists
G € GL,(R) such that aG = b, in which case we write a ~ b. This determines an equivalence
relation on unimodular rows.

(c) We say that a unimodular row a is trivial if a ~ e, where e; € R™ is the first standard basis
vector. Prove that a unimodular row a is trivial if and only if P, is a free R-module.

(d) A vector v € R" is called completable if v can be completed to an R-basis of R™. Prove that

v € R™ is completable if and only if v is the first column of an element of GL,(R) if and only
if v=a' for a trivial unimodular row a.

(e) Prove that any unimodular row (ai,az) of length 2 over R is trivial. Hint. Consider (—be, b1).
(f) Prove that if R is a PID then every unimodular row is trivial.

The topology of the 2-sphere can be used to prove that over R = Rlx,y,2]/(z? + y? + 22 — 1), the
unimodular row (x,y, z) is not trivial. History. In 1976, Quillen and Suslin independently proved that
any unimodular row over k[z1,...,x,] is trivial, settling a problem posed by Serre in 1955. Quillen’s
1978 Fields Medal was given in part for this work.

5. Let V be a k-vector space of finite dimension n and ¢: V — V an k-linear endomorphism, which
gives V the structure of a k[z]-module. The point of this problem is to describe this k[z]-module by
generators and relations, i.e., as the quotient of a free module.

Fixing a basis § = {v1,...,v,} of V, we consider the surjective R-module homomorphism

m: k[z](B8) -V
V; = U
Then identifying k[z](8) = k[z]|", we have an isomorphism of k[z]-modules V = k[x]"/ ker 7.
(a) Show that the elements xv; — ¢(v;) for i = 1,...,n belong to kerw. Here ¢(v;) is considered
via the inclusion V' = k(3) — k[z](8).

(b) Let N = (zv; — ¢(v;))i=1,..n be the k[z]-submodule of k[z](3) generated by the elements
zv; — ¢(v;) for i = 1,...,n. Show that N = kerw. Hint. Let > ., fi(z)v; € kerm. If all
the fi(x) = ¢; € k are constant, conclude that ¢; = 0 for all . Finish by induction on the
maximum degree of the f;(z) by writing fi(z) = xgi(z) + ¢; with ¢; € F, by noting that
doiey filx)vi = 300 v = D0 gi(w)p(vi) € N.

(¢) Conclude that the invariant factors of V' as a k[x]-module are obtained from the Smith normal
form of the relations matrix [¢ — zidy]g € M, (k[z]).



