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Problem Set # 6 (due via Canvas upload by 5 pm, Friday, November 8)

1. To prove that a pair of functors F : C → D and G : D → C are an adjoint pair, it suffices to construct
natural transformations η : IC → G ◦ F and ε : F ◦ G → ID called the unit and counit of adjunction
such that the following counit-unit equations are satisfies: for every X ∈ Ob(C) and Y ∈ Ob(D) we
have

idF (X) = εF (X) ◦ F (ηX), idG(Y ) = G(εY ) ◦ ηG(Y ).

(a) Practice constructing the unit and counit of adjunction and using the counit-unit equations to
prove that the free vector space functor F 〈−〉 : Set → VectF is left adjoint to the forgetful
functor VectF → Set.

(b) Let K/k be a field extension. Prove that the extension of scalars functor (−)K : k-Alg→ K-Alg
is left adjoint to the restriction of scalars functor k(−) : K-Alg→ k-Alg.

(c) Let G be a group and H ⊂ G be a subgroup. Recall from the daily homework that the category
RepG of representations of G is isomorphic to the category Z〈G〉-Mod of modules over the
group ring. The restriction functor resGH : RepG → RepH is defined by simply viewing a G-
representation as an H-representation by restricting the action, and similarly on morphisms.
The induction functor indGH : RepH → RepG is defined, for an H-representation W , as

indGH(W ) = {f : G→W : f(gh−1) = h · f(g) for all g ∈ G, h ∈ H}

where the G-action on indGH(W ) is (g · f)(x) = f(g−1x) for g ∈ G and indGH(φ)(f) = φ ◦ f on
morphisms φ : W → V between H-representations. Prove Frobenius reciprocity, the statement
that indGH if left adjoint to resGH . Hint. Use the fact that, via the isomorphism of categories
RepG → Z〈G〉-Mod the induction functor is identified with the functor M 7→ Z〈G〉 ⊗Z〈H〉M .

Do you see a similarity between the later two?

2. Let R be a commutative ring. Let J be an ideal of R.

(a) For M a R-module, let

JM =

{
n∑
i=1

aixi : ai ∈ J, xi ∈M

}
.

Show that JM is an R-submodule of M .

(b) If φ : M → N is an isomorphism of R-modules, show that φ|JM induces an isomorphism
JM ' JN .

(c) Let {Mi}i∈I be R-modules and let Ni ⊂Mi be R-submodules for all i. Prove that(⊕
i∈I

Mi

)/(⊕
i∈I

Ni

)
'
⊕
i∈I

Mi/Ni.

(d) If M '
⊕

i∈I R is a free R-module, show that

M/JM '
⊕
i∈I

R/J

as R-modules.

(e) Suppose that R is not the zero ring. Prove that two free R-modules are isomorphic if and only
if they have R-bases of the same cardinality, in particular Rn ' Rm if and only if n = m.
Hint. Apply (d) with J a maximal ideal of R.

3. Let R be an integral domain and let M be a finitely generated R-module. The rank of M is the
maximal number of R-linearly independent elements of M .

We already defined the rank of a free R-module with basis β to be #β, and in the previous exercise
we showed it is well-defined. But if we are going to use the same word rank, we should show that the



two notions concide when M is free (over a domain)! (If this is confusing to you, use the term free
rank for free modules while you work on this exercise, then afterwards you can drop the “free”.)

(a) Suppose that M has rank n and that x1, . . . , xn is any maximal set of R-linearly independent
elements of M . Let N = Rx1 + · · ·+Rxn be the R-submodule generated by x1, . . . , xn. Prove
that N is isomorphic to Rn and that the quotient M/N is a torsion R-module. Hint. Show
that the map Rn → N which sends the ith standard basis vector to xi is an isomorphism of
R-modules.

(b) Prove conversely that if M contains a submodule N that is free of rank n (i.e., N ' Rn) such
that the quotient M/N is a torsion R-module then M has rank n. Hint. Let y1, . . . , yn+1 be
any n+1 elements of M . Use the fact that M/N is torsion to write riyi as a linear combination
of a basis for N for some nonzero elements ri of R. Show that the riyi, and hence also the yi,
are linearly dependent, working over the field of fractions.

(c) Conclude that M = Rn has rank n, i.e., that the maximum number of R-linear independent
elements in Rn is n (the same as the cardinality of the standard basis).

(d) Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of finitely generated R-modules. Prove
that the rank of M is the sum of the ranks of M ′ and M ′′.

4. Let R be a commutative ring. A unimodular row (of length n over R) is a row vector a = (a1, . . . , an)
such that ai ∈ R collectively generate R.

(a) Define a map φa : Rn → R by φa(v) = av, where av denotes the usual product of a row by a
column to get an element of R. Prove that Pa = kerφa is a projective R-module of rank n− 1.
Hint. Check that a is a unimodular row if and only if there exist bi ∈ R with

∑n
i=1 aibi = 1.

(b) For unimodular rows a, b of length n over R, prove that Pa ∼= Pb if and only if there exists
G ∈ GLn(R) such that aG = b, in which case we write a ∼ b. This determines an equivalence
relation on unimodular rows.

(c) We say that a unimodular row a is trivial if a ∼ e1, where e1 ∈ Rn is the first standard basis
vector. Prove that a unimodular row a is trivial if and only if Pa is a free R-module.

(d) A vector v ∈ Rn is called completable if v can be completed to an R-basis of Rn. Prove that
v ∈ Rn is completable if and only if v is the first column of an element of GLn(R) if and only
if v = aT for a trivial unimodular row a.

(e) Prove that any unimodular row (a1, a2) of length 2 over R is trivial. Hint. Consider (−b2, b1).
(f) Prove that if R is a PID then every unimodular row is trivial.

The topology of the 2-sphere can be used to prove that over R = R[x, y, z]/(x2 + y2 + z2 − 1), the
unimodular row (x, y, z) is not trivial. History. In 1976, Quillen and Suslin independently proved that
any unimodular row over k[x1, . . . , xn] is trivial, settling a problem posed by Serre in 1955. Quillen’s
1978 Fields Medal was given in part for this work.

5. Let V be a k-vector space of finite dimension n and φ : V → V an k-linear endomorphism, which
gives V the structure of a k[x]-module. The point of this problem is to describe this k[x]-module by
generators and relations, i.e., as the quotient of a free module.

Fixing a basis β = {v1, . . . , vn} of V , we consider the surjective R-module homomorphism

π : k[x]〈β〉 → V

vi 7→ vi

Then identifying k[x]〈β〉 = k[x]n, we have an isomorphism of k[x]-modules V ∼= k[x]n/ kerπ.

(a) Show that the elements xvi − φ(vi) for i = 1, . . . , n belong to kerπ. Here φ(vi) is considered
via the inclusion V ∼= k〈β〉 ↪→ k[x]〈β〉.

(b) Let N = 〈xvi − φ(vi)〉i=1,...,n be the k[x]-submodule of k[x]〈β〉 generated by the elements
xvi − φ(vi) for i = 1, . . . , n. Show that N = kerπ. Hint. Let

∑n
i=1 fi(x)vi ∈ kerπ. If all

the fi(x) = ci ∈ k are constant, conclude that ci = 0 for all i. Finish by induction on the
maximum degree of the fi(x) by writing fi(x) = xgi(x) + ci with ci ∈ F , by noting that∑n

i=1 fi(x)vi −
∑n

i=1 civi −
∑n

i=1 gi(x)φ(vi) ∈ N .

(c) Conclude that the invariant factors of V as a k[x]-module are obtained from the Smith normal
form of the relations matrix [φ− x idV ]β ∈Mn(k[x]).


