DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS
Math 115 Number Theory:

Galois Cohomology and Descent

Spring 2024

Group Work # 1 (Friday, April 5th and 12th)
Reading: [M] Ch. 7, [GS] §4.1, [S] §1.1-1.4, [Sh] Ch. I, IV.1
Group Work: To be discussed during the X-hour, with the discussion led by a student

selected ahead of time.

1. Understand the following facts about subgroups H of a topological group G.

(a) The closure H of any subgroup H of G is a subgroup.
(b) The closure H of any normal subgroup H of G is a normal subgroup.

(c) The coset space G/H, with the quotient topology, is a topological group if H is a
normal subgroup of G.

(d) The trivial subgroup {1} is closed if and only if G is Hausdorff. Thus G/{1s} is a
Hausdorff topological group (called the Kolmogorov quotient).

(e) The coset space G/H, with the quotient topology, is Hausdorff if and only if H
is closed in G. (This is why one generally sticks to closed subgroups when taking
quotients of topological groups.)

(f) The connected component of the identity G° in G is a closed normal subgroup. The
quotient G/G° is a totally disconnected Hausdorff topological group.

(g) If G is a connected topological group, then G does not contain any proper open
subgroups.

(h) Every open subgroup H of G is closed.
(i) Every finite index closed subgroup H of G is open.

(j) If G is compact then every open subgroup H has finite index in G. In particular, a
subgroup H of GG is open if and only if it is closed and of finite index.

It is a highly nontrivial theorem of Nikolov and Segal, whose proof depends on the classi-
fication of finite simple groups, that if G is a topologically finitely generated (i.e., contains
a finitely generated dense subgroup) profinite group, then any subgroup of finite index is
open. On the other hand, the absolute Galois group Gg = Gal(Q/Q) has uncountably
many nonopen normal finite index subgroups (see [M] Chapter 7 page 103)!

2. Let X be a set and B a set of subsets of X. Then B is called a base or basis for a
topology on X if B covers X and any intersection of a finite collection of elements of B is
a union of elements of B.

(a) Verify that the set 7 of all unions of elements of B is a topology on X, called the
topology generated by B.

(b) Prove that the set of bounded open intervals in R is a base for the standard Euclidean
topology. Prove that the set of bounded open intervals in R whose endpoints are
rational is also a base for the standard Euclidean topology.



(c) Let G be a abstract group. Prove that the set of all left cosets of all subgroups of
finite index is a basis for a topology on G. The topology generated is called the
profinite topology on GG. Prove that the set of all cosets of normal subgroups of
finite index is also a base for the profinite topology on G.

(d) Describe the profinite topology on the additive groups Z and R?

3. The profinite completion G of an abstract group G is defined to be the inverse limit
lim N G/N over the inverse system of quotients G/N indexed by the normal subgroups N
of finite index in G, ordered so that for any inclusion N < N’ we consider the induced
quotient G/N' — G/N.
(a) Prove that there is a canonical homomorphism G — C:‘, which is universal for ho-
momorphisms from G to profinite groups.

(b) Describe the profinite completion of the additive group R?

(c) Prove that 7 ~ [ 1, Zp and is topologically generated by 1.

4. Prove that the following statements are equivalent for an abstract group G.
(a) The profinite topology on G is Hausdorff.

(b) The intersection (U, taken over all finite index normal subgroups U of G, is the
trivial subgroup {1g}.

(¢) The canonical homomorphism G — G is injective.

A group G satisfying these conditions is called residually finite. Any profinite group
(hence, any Galois group) is residually finite. Prove that any free group is residually finite.

As a warning, if G is profinite (hence residually finite), then the injection G — G may fail
to be an isomorphism (i.e., a profinite group may not be equal to to profinite completion)!
However, by the result of Nikolov and Segal mentioned above, any topologically generated
profinite group is isomorphic to its profinite completion.

Residually finite groups are important in geometric group theory, as they contain the
class of fundamental groups of compact 3-manifolds.

5. Let G be a locally compact (i.e., every point has a compact neighborhood) Hausdorff
topological group. Examples include any discrete group, any profinite group, Q,, and R.
Let U < C* be the unit circle, which is a locally compact topological group. Define the
Pontryagin dual G to be the group of all continuous homomorphisms ¢ : G — U, and
equip G with the compact-open topology.

(a) Prove that 7 =~ U and that U = Z. This underlies the theory of Fourier coefficients.

(b) Prove that R =~ R via a map (in the other direction) & — (y — €2#¥). This underlies
the classical theory of Fourier transform.

(¢c) Prove that if G is a finite abelian group, then G =~ G. This underlies the class of
“Fast Fourier Transform” algorithms.

(d) Prove that if G is a discrete torsion group, then Gis a profinite group.

(e) Prove that (@//Z ~ 7. Hint. View Q/Z as a direct limit.
Pontryagin duality is the statement that for an topological abelian group, the canonical

evaluation map G — G defined by g — (¢ — ¢(g)) is an isomorphism of topological groups.



6. Let GG be a topological group and X a set. Then G acts continuously on X if the action
map G x X — X is continuous.

(a) Assume that X has the discrete topology. Prove that G acts continuously on X if
and only if the stabilizer subgroup G, < G is open for every z € X. A discrete set
with a continous action of GG is called a discrete G-set.

(b) Prove that if G is compact and X is a discrete G-set then all orbits of G in X are
finite.

(c) Let K/F be a Galois extension with Galois group G. Verify that K is a discrete
G-set, and more generally, that the K-vector space K™ is a discrete G-set with
the diagonal action o(ay,...,a,) = (0(a1),...,0(ay)). Describe the G-orbit of
(a1,...,ap) € K™

7. Let F be a field, Algy be the category of commutative unital F-algebras, and Set the
category of sets. We introduce affine n-space A" over F' as the functor Algp, — Set
defined on objects by A"(R) = R" for all R € Algy and on morphisms ¢ : R — S by
A(p) =" : R — S™.

Given a system of polynomials fi,..., f,, € Flz1,...,x,], the associated affine F-
variety V =V (f1,..., fn) is the subfunctor V : Algp — Set of A" defined by
V(R) ={(r1,...,tn) € R" ¢ fi(ri,...,rn) =+ = fu(ri,...,ry) = 0}.

We say that V is a closed subvariety of A" and often write V' — A™. Affine varieties are
convenient tools for talking about solutions to systems of polynomial equations. Technically,
we are considering the functor of points viewpoint of the F-variety V; later on, you may
learn about the scheme theory viewpoint.

(a) Let V < A? be the affine Q-variety defined by x? 4+ y? — 1. Show that V(Q) can be
described in terms of Pythagorean triples, that V(R) is a unit circle, and that V' (C)
is a punctured 2-sphere.

(b) Prove that the affine F-variety V(zy — 1) < A? is isomorphic (as functors) to the
multiplicative group functor G,, : Algy — Set defined by G,,(R) = R* for all

(c) Let g € F[x1,...,7,]. Prove that the affine F-variety V(gz,11 — 1) < A" is
isomorphic (as functors) to the functor A™ \ V(g) : Algp — Set defined by
(A" NV (g)(R)={(r1,...,mn) € R™ : g(r1,...,7) € R*}
In particular, for any field extension K/F', we have that
(A" N\ V(9))(K) = A"(K) \ V(g)(K),

which justifies the notation. The F-varieties A" \V(g) < A™ are called basic open,
standard open, or distinguished open subsets.

(d) Prove that a finite intersection of affine F-varieties in A" is an affine F-variety.

(e) Let V< A™ be an affine F-variety and K/F be a Galois extension with group G.
Prove that V(K) is a discrete G-set with respect the the action of G on K".
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