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Group Work # 2 (Thursday, April 26)

Reading: [GS] §1.1-1.2, 2.1-2.2, 4.1, [S] §1.1-1.4, [Sh] Ch. I, IV.1

Group Work: To be discussed during the X-hour, with the discussion led by a student
selected ahead of time.

1. Let A be an (associative unital) F -algebra. We say that an F -linear map : AÑ A is an
involution if 1 “ 1, a “ a for all a P A, and ab “ ba for all a, b P A. An involution is called
standard if aa P F for all a P A. As usual, we consider F Ă A as the F -subspace spanned
by the identity in A.

(a) Prove that if is a standard involution on an F -algebra A then a ` a P F for all
a P A. Hint. Consider p1` aqp1` aq.

(b) If is a standard involution on an F -algebra A, define the (involution) trace t :
AÑ F by a ÞÑ a` a and the (involution) norm n : AÑ F by a ÞÑ aa. Prove that
any a P A satisfies a2´ tpaqa`npaq “ 0. This is an analogue of the Cayley–Hamilton
theorem and one often calls x2 ´ tpaqx ` npaq P F rxs the involution characteristic
polynomial of a P A.

(c) Prove that if K is an F -algebra of dimension 2, then K is commutative and admits a
unique standard involution. What is this in the case that K{F is a separable extension
of degree 2? What about K “ F ˆF? What about the dual numbers K “ F rxs{px2q?

(d) Prove that if A is a quaternion algebra over F , then A has a unique standard involu-
tion. Hint. Restrict to a quadratic extension contained in A.

2. About division algebras.

(a) Over an algebraically closed field F , the only finite dimensional central division F -
algebra if F itself. Hint. Use the existence of eigenvalues of linear operators on finite
dimensional vector spaces over algebraically closed fields as indicated in class.

(b) Let Cptq be the rational function field over the complex numbers. Then Cptq is an
infinite dimensional division C-algebra (but clearly far from central). Where does
your previous argument break down for A? Remark. it turns out that there are
no nontrivial central division Cptq-algebras, this is a consequence of Tsen’s Theorem.
Can you find a new proof of this fact?

(c) The Weyl algebra is the unital associative C-algebra generated by t and Bt, with the
relation (coming from the chain rule) t Bt ´ Bt t “ 1. This algebra acts by differential
operators, with t acting by multiplication and Bt acting by taking the formal derivative
with respect to t, on the polynomial ring Crts, e.g., pBt tqfptq “ Btptfptqq “ fptq`tf 1ptq.
Prove that the Weyl algebra is an infinite dimensional central simple C-algebra. Where
does the argument in part (a) break down?

(d) Prove that if A is a quaternion algebra over a field F (of characteristic not 2) and
K{F is a quadratic extension with K Ă A a sub F -algebra, then A bF K is split.
Show that M2pF q contains any quadratic extension K{F as an F -subalgebra.

(e) Read the proof of [GS] Theorem 2.2.1, really Lemma 2.2.2. This was not as easy as I
made it appear in class!



3. Let G be a group and A an abelian G-group. The fact that G acts on A via automorphisms
can be expressed via a homomorphism ϕ : G Ñ AutpAq. Thus we can form the semidirect
product F “ A ¸ϕ G with respect to this action, i.e., F is the set A ˆ G with operation
pa, gq ¨ pa1, g1q “ pa gpa1q, gg1q. Let f : F Ñ G be the projection homomorphism. A section
of F is a set map s : G Ñ F such that f ˝ s “ idG. A splitting of F is section that is a
homomorphism.

(a) Prove that Z1pG,Aq is an abelian group under the usual addition of maps. Show that
the map d : A Ñ Z1pG,Aq defined by c ÞÑ pσ ÞÑ c ´ σpcqq is a well-defined homo-
morphism and denote by B1pG,Aq Ă Z1pG,Aq its image. Prove that H1pG,Aq –
Z1pG,Aq{B1pG,Aq, hence is an abelian group.

(b) For a section s : GÑ F write spgq “ pαpgq, gq for a set map α : GÑ A. Prove that s
is a splitting if and only if α is a crossed homomorphism. Conclude that this provides
a bijection between Z1pG,Aq and the set of splittings of F .

(c) We define two splittings s, s1 : GÑ F to be equivalent if there exists a P A Ă F such
that s1pgq “ as1pgqa´1 for all g P G. Prove that this provides a bijection between
H1pG,Aq and the the set of equivalence classes of splittings of F .

(d) More generally, consider any group extension

1 Ñ AÑ F
f
ÝÑ GÑ 1

of G by A that is compatible with the action of G on A, i.e., gpaq “ g̃ag̃´1 for
any lift g̃ P F of g (why does this condition not depend on the choice of lift?).
An automorphism of the extension is an automorphism φ : F Ñ F that restricts
to an automorphism φ|A : A Ñ A. This defines a subgroup Autpfq Ă AutpF q.
Any a P A determines an inner automorphism ada of the extension by conjugation
by a. This defines a subgroup Innpfq Ă Autpfq. Consider the right coset space
Outpfq “ InnpfqzAutpfq, equivalently, the set of equivalence classes of automorphisms
of the extension, where automorphisms φ and φ1 are equivalent if φ1 “ ada ˝ φ for
some a P A. For a crossed homomorphism α : G Ñ A and an automorphism φ of
the extension, define α.φ by pα.φqpxq “ αpfpxqqφpxq for x P F . Prove that α.φ is
an automorphism of the extension and that this descends to a well-defined action
of H1pG,Aq on Outpfq, and that this action is simply transitive. Conclude that
H1pG,Aq and Outpfq have the same cardinality.

(e) Now let G “ A “ C2 be the cyclic group of order 2. Let G act on A trivially. Prove
that H1pC2, C2q is cyclic of order 2. You know that the two extensions of C2 by C2

are
1 Ñ C2 Ñ V4 Ñ C2 Ñ 1

1 Ñ C2 Ñ C4 Ñ C2 Ñ 1

where V4 is the Klein four group. Explicitly describe the automorphism groups of
these two extensions as subgroups of the automorphism groups AutpV4q “ GL2pF2q

and AutpC4q “ t˘1u, and show how the outer automorphism groups of the extensions
explicitly correspond to H1pC2, C2q.

Thus “the first cohomology group of G with coefficients in A corresponds to automorphisms
of any group extension of G by A.”



4. Let F be a field, AlgF be the category of commutative unital F -algebras, and Set the
category of sets. We introduce projective n-space Pn over F as the functor AlgF Ñ Set
defined on objects R P AlgF as the set PnpRq of pairs pL, iq where L is a projective R-
module of rank 1 and i : L Ñ Rn`1 is a direct summand R-module homomorphism, i.e.,
there exists a projective R-module P of rank n (called the complement of L) and an R-
module homomorphism p : P Ñ Rn`1 so that i ` p : L ‘ P Ñ Rn`1 is an R-module
isomorphism, and where we consider pL, iq equivalent to pL1, i1q if i “ i1 ˝ l for some R-
module isomorphism l : L Ñ L1. On morphisms ϕ : R Ñ S, the functor is defined by
PnpϕqpL, iq “ pLbRS, ibR idSq. I don’t begrudge you if this appears to be a crazy definition!

(a) A unimodular row over R is a vector a “ pa0, . . . , anq P R
n`1 such that there exists

b “ pb0, . . . , bnq P R
n`1 with

řn
i“0 aibi “ 1. Prove that if a P Rn`1 is a unimodular

row, then Ra Ă Rn`1 is a free rank 1 direct summand, hence the pR, iaq gives an
element of PnpRq where ia : R Ñ Rn`1 is the given by scalar multiplying a. (Hint.
Use b to define a surjection Rn`1 Ñ R, whose kernel will be the complement.) Prove
that two unimodular rows a, b P Rn`1 give the same element of PnpRq if and only if
a “ λ b for some λ P Rˆ. Letting Umn`1pRq be the set of unimodular rows over R,
this gives a well-defined map Umn`1pRq{R

ˆ Ñ PnpRq.

(b) Show that for any field extension K{F , the map Umn`1pKq{K
ˆ Ñ PnpKq is a bijec-

tion and that PnpKq is in bijection with the set of lines through the origin in Kn`1.
This recovers the usual notion of projective space PnpKq “ pKn`1 r t0uq{Kˆ.

(c) Let R “ Rrx, ys{px2`y2´1q and consider the ideal L “ p1`x, yq Ă R. Prove that L2

is a principal ideal but that L is not principal. (Hint. You may want to use the norm

on the quadratic ring extension Rrxs Ă R “ Rrxsr
?

1´ x2s. Remark. Evidently,
R is not a PID, though it turns out to be a Dedekind domain, and you can see the
nonunique factorization p1` xqp1´ xq “ y2.) Consider the 2ˆ 2 matrix

M “
1

2

ˆ

1` x y
y 1´ x

˙

and the associated R-module homomorphism M : R2 Ñ R2 defined by matrix multi-
plication. Prove that the map i : L Ñ R2 defined by ipuq “ pu, 1´xy uq is well-defined

and determines an R-module isomorphism L Ñ impMq. Prove that there is a direct
sum decomposition impMq ‘ kerpMq “ R2, and that kerpMq “ impI ´Mq is also iso-
morphic to L. (Hint. Use that M2 “ M .) In partiular, L is a projective R-module
of rank 1 that is not free. Conclude that pL, iq P P1pRq but is not determined by a
unimodular row over R. Remark. Geometrically, L corresponds to the Möbius line
bundle on the circle.

(d) Consider the two localizations R1 “ Rr 1
1`x s and R2 “ Rr 1y s, and for j “ 1, 2 let Lj Ă

Rj be the ideal extended from L Ă R and ij : Lj Ñ R2
j the inclusion extended from

i : LÑ R2. Prove that each Lj is principal and find a unimodular row aj P Um2pRjq

that corresponds to the point pLj , ijq P P1pRjq. Letting R12 “ Rr 1
1`x ,

1
y s, prove that

under the functorial maps P1pRjq Ñ P1pR12q the images of pLj , ijq agree and verify
that the your unimodular rows a1 and a2 become equal in Um2pR12q{R

ˆ
12. This gives

an example where unimodular rows on R1 and R2 that agree (up to scaling) over R12

can fail to come from a unimodular row over R, whereas this property holds for the
functor P1. Remark. In other words the functor R ÞÑ Um2pRq is a presheaf but not
a sheaf, whereas P1 is a sheaf, which provides some motivation for the crazy definition
of Pn.


