Dartmouth College Department of Mathematics
Math 125 Current Problems in Number Theory:

Galois Cohomology and Descent

Winter 2022
Group Work \# 2 (Thursday, April 26)
Reading: [GS] §1.1-1.2, 2.1-2.2, 4.1, [S] §1.1-1.4, [Sh] Ch. I, IV. 1
Group Work: To be discussed during the X-hour, with the discussion led by a student selected ahead of time.

1. Let A be an (associative unital) F-algebra. We say that an F-linear map ${ }^{-}: A \rightarrow A$ is an involution if $\overline{1}=1, \overline{\bar{a}}=a$ for all $a \in A$, and $\overline{a b}=\bar{b} \bar{a}$ for all $a, b \in A$. An involution is called standard if $a \bar{a} \in F$ for all $a \in A$. As usual, we consider $F \subset A$ as the F-subspace spanned by the identity in A.
(a) Prove that if ${ }^{-}$is a standard involution on an F-algebra A then $a+\bar{a} \in F$ for all $a \in A$. Hint. Consider $(1+a)(\overline{1+a})$.
(b) If ${ }^{-}$is a standard involution on an F-algebra A, define the (involution) trace t : $A \rightarrow F$ by $a \mapsto a+\bar{a}$ and the (involution) norm $n: A \rightarrow F$ by $a \mapsto a \bar{a}$. Prove that any $a \in A$ satisfies $a^{2}-t(a) a+n(a)=0$. This is an analogue of the Cayley-Hamilton theorem and one often calls $x^{2}-t(a) x+n(a) \in F[x]$ the involution characteristic polynomial of $a \in A$.
(c) Prove that if K is an F-algebra of dimension 2, then K is commutative and admits a unique standard involution. What is this in the case that K / F is a separable extension of degree 2 ? What about $K=F \times F$? What about the dual numbers $K=F[x] /\left(x^{2}\right)$?
(d) Prove that if A is a quaternion algebra over F, then A has a unique standard involution. Hint. Restrict to a quadratic extension contained in A.
2. About division algebras.
(a) Over an algebraically closed field F, the only finite dimensional central division F algebra if F itself. Hint. Use the existence of eigenvalues of linear operators on finite dimensional vector spaces over algebraically closed fields as indicated in class.
(b) Let $\mathbb{C}(t)$ be the rational function field over the complex numbers. Then $\mathbb{C}(t)$ is an infinite dimensional division \mathbb{C}-algebra (but clearly far from central). Where does your previous argument break down for A ? Remark. it turns out that there are no nontrivial central division $\mathbb{C}(t)$-algebras, this is a consequence of Tsen's Theorem. Can you find a new proof of this fact?
(c) The Weyl algebra is the unital associative \mathbb{C}-algebra generated by t and ∂_{t}, with the relation (coming from the chain rule) $t \partial_{t}-\partial_{t} t=1$. This algebra acts by differential operators, with t acting by multiplication and ∂_{t} acting by taking the formal derivative with respect to t, on the polynomial ring $\mathbb{C}[t]$, e.g., $\left(\partial_{t} t\right) f(t)=\partial_{t}(t f(t))=f(t)+t f^{\prime}(t)$. Prove that the Weyl algebra is an infinite dimensional central simple \mathbb{C}-algebra. Where does the argument in part (a) break down?
(d) Prove that if A is a quaternion algebra over a field F (of characteristic not 2) and K / F is a quadratic extension with $K \subset A$ a sub F-algebra, then $A \otimes_{F} K$ is split. Show that $M_{2}(F)$ contains any quadratic extension K / F as an F-subalgebra.
(e) Read the proof of [GS] Theorem 2.2.1, really Lemma 2.2.2. This was not as easy as I made it appear in class!
3. Let G be a group and A an abelian G-group. The fact that G acts on A via automorphisms can be expressed via a homomorphism $\varphi: G \rightarrow \operatorname{Aut}(A)$. Thus we can form the semidirect product $F=A \rtimes_{\varphi} G$ with respect to this action, i.e., F is the set $A \times G$ with operation $(a, g) \cdot\left(a^{\prime}, g^{\prime}\right)=\left(a g\left(a^{\prime}\right), g g^{\prime}\right)$. Let $f: F \rightarrow G$ be the projection homomorphism. A section of F is a set map $s: G \rightarrow F$ such that $f \circ s=\operatorname{id}_{G}$. A splitting of F is section that is a homomorphism.
(a) Prove that $Z^{1}(G, A)$ is an abelian group under the usual addition of maps. Show that the map $d: A \rightarrow Z^{1}(G, A)$ defined by $c \mapsto(\sigma \mapsto c-\sigma(c))$ is a well-defined homomorphism and denote by $B^{1}(G, A) \subset Z^{1}(G, A)$ its image. Prove that $H^{1}(G, A) \cong$ $Z^{1}(G, A) / B^{1}(G, A)$, hence is an abelian group.
(b) For a section $s: G \rightarrow F$ write $s(g)=(\alpha(g), g)$ for a set map $\alpha: G \rightarrow A$. Prove that s is a splitting if and only if α is a crossed homomorphism. Conclude that this provides a bijection between $Z^{1}(G, A)$ and the set of splittings of F.
(c) We define two splittings $s, s^{\prime}: G \rightarrow F$ to be equivalent if there exists $a \in A \subset F$ such that $s^{\prime}(g)=a s^{\prime}(g) a^{-1}$ for all $g \in G$. Prove that this provides a bijection between $H^{1}(G, A)$ and the the set of equivalence classes of splittings of F.
(d) More generally, consider any group extension

$$
1 \rightarrow A \rightarrow F \xrightarrow{f} G \rightarrow 1
$$

of G by A that is compatible with the action of G on A, i.e., $g(a)=\tilde{g} a \tilde{g}^{-1}$ for any lift $\tilde{g} \in F$ of g (why does this condition not depend on the choice of lift?). An automorphism of the extension is an automorphism $\phi: F \rightarrow F$ that restricts to an automorphism $\left.\phi\right|_{A}: A \rightarrow A$. This defines a subgroup $\operatorname{Aut}(f) \subset \operatorname{Aut}(F)$. Any $a \in A$ determines an inner automorphism ad_{a} of the extension by conjugation by a. This defines a subgroup $\operatorname{Inn}(f) \subset \operatorname{Aut}(f)$. Consider the right coset space $\operatorname{Out}(f)=\operatorname{Inn}(f) \backslash \operatorname{Aut}(f)$, equivalently, the set of equivalence classes of automorphisms of the extension, where automorphisms ϕ and ϕ^{\prime} are equivalent if $\phi^{\prime}=\operatorname{ad}_{a} \circ \phi$ for some $a \in A$. For a crossed homomorphism $\alpha: G \rightarrow A$ and an automorphism ϕ of the extension, define $\alpha . \phi$ by $(\alpha . \phi)(x)=\alpha(f(x)) \phi(x)$ for $x \in F$. Prove that $\alpha . \phi$ is an automorphism of the extension and that this descends to a well-defined action of $H^{1}(G, A)$ on $\operatorname{Out}(f)$, and that this action is simply transitive. Conclude that $H^{1}(G, A)$ and $\operatorname{Out}(f)$ have the same cardinality.
(e) Now let $G=A=C_{2}$ be the cyclic group of order 2 . Let G act on A trivially. Prove that $H^{1}\left(C_{2}, C_{2}\right)$ is cyclic of order 2. You know that the two extensions of C_{2} by C_{2} are

$$
\begin{aligned}
& 1 \rightarrow C_{2} \rightarrow V_{4} \rightarrow C_{2} \rightarrow 1 \\
& 1 \rightarrow C_{2} \rightarrow C_{4} \rightarrow C_{2} \rightarrow 1
\end{aligned}
$$

where V_{4} is the Klein four group. Explicitly describe the automorphism groups of these two extensions as subgroups of the automorphism groups Aut $\left(V_{4}\right)=\mathrm{GL}_{2}\left(\mathbb{F}_{2}\right)$ and $\operatorname{Aut}\left(C_{4}\right)=\{ \pm 1\}$, and show how the outer automorphism groups of the extensions explicitly correspond to $H^{1}\left(C_{2}, C_{2}\right)$.
Thus "the first cohomology group of G with coefficients in A corresponds to automorphisms of any group extension of G by A."
4. Let F be a field, Alg_{F} be the category of commutative unital F-algebras, and Set the category of sets. We introduce projective n-space \mathbb{P}^{n} over F as the functor $\mathrm{Alg}_{F} \rightarrow$ Set defined on objects $R \in \operatorname{Alg}_{F}$ as the set $\mathbb{P}^{n}(R)$ of pairs (L, i) where L is a projective R module of rank 1 and $i: L \rightarrow R^{n+1}$ is a direct summand R-module homomorphism, i.e., there exists a projective R-module P of rank n (called the complement of L) and an R module homomorphism $p: P \rightarrow R^{n+1}$ so that $i+p: L \oplus P \rightarrow R^{n+1}$ is an R-module isomorphism, and where we consider (L, i) equivalent to $\left(L^{\prime}, i^{\prime}\right)$ if $i=i^{\prime} \circ l$ for some R module isomorphism $l: L \rightarrow L^{\prime}$. On morphisms $\varphi: R \rightarrow S$, the functor is defined by $\mathbb{P}^{n}(\varphi)(L, i)=\left(L \otimes_{R} S, i \otimes_{R} \mathrm{id}_{S}\right)$. I don't begrudge you if this appears to be a crazy definition!
(a) A unimodular row over R is a vector $a=\left(a_{0}, \ldots, a_{n}\right) \in R^{n+1}$ such that there exists $b=\left(b_{0}, \ldots, b_{n}\right) \in R^{n+1}$ with $\sum_{i=0}^{n} a_{i} b_{i}=1$. Prove that if $a \in R^{n+1}$ is a unimodular row, then $R a \subset R^{n+1}$ is a free rank 1 direct summand, hence the $\left(R, i_{a}\right)$ gives an element of $\mathbb{P}^{n}(R)$ where $i_{a}: R \rightarrow R^{n+1}$ is the given by scalar multiplying a. (Hint. Use b to define a surjection $R^{n+1} \rightarrow R$, whose kernel will be the complement.) Prove that two unimodular rows $a, b \in R^{n+1}$ give the same element of $\mathbb{P}^{n}(R)$ if and only if $a=\lambda b$ for some $\lambda \in R^{\times}$. Letting $\operatorname{Um}_{n+1}(R)$ be the set of unimodular rows over R, this gives a well-defined map $\operatorname{Um}_{n+1}(R) / R^{\times} \rightarrow \mathbb{P}^{n}(R)$.
(b) Show that for any field extension K / F, the map $\operatorname{Um}_{n+1}(K) / K^{\times} \rightarrow \mathbb{P}^{n}(K)$ is a bijection and that $\mathbb{P}^{n}(K)$ is in bijection with the set of lines through the origin in K^{n+1}. This recovers the usual notion of projective space $\mathbb{P}^{n}(K)=\left(K^{n+1} \backslash\{0\}\right) / K^{\times}$.
(c) Let $R=\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)$ and consider the ideal $L=(1+x, y) \subset R$. Prove that L^{2} is a principal ideal but that L is not principal. (Hint. You may want to use the norm on the quadratic ring extension $R[x] \subset R=R[x]\left[\sqrt{1-x^{2}}\right]$. Remark. Evidently, R is not a PID, though it turns out to be a Dedekind domain, and you can see the nonunique factorization $(1+x)(1-x)=y^{2}$.) Consider the 2×2 matrix

$$
M=\frac{1}{2}\left(\begin{array}{cc}
1+x & y \\
y & 1-x
\end{array}\right)
$$

and the associated R-module homomorphism $M: R^{2} \rightarrow R^{2}$ defined by matrix multiplication. Prove that the map $i: L \rightarrow R^{2}$ defined by $i(u)=\left(u, \frac{1-x}{y} u\right)$ is well-defined and determines an R-module isomorphism $L \rightarrow \operatorname{im}(M)$. Prove that there is a direct sum decomposition $\operatorname{im}(M) \oplus \operatorname{ker}(M)=R^{2}$, and that $\operatorname{ker}(M)=\operatorname{im}(I-M)$ is also isomorphic to L. (Hint. Use that $M^{2}=M$.) In partiular, L is a projective R-module of rank 1 that is not free. Conclude that $(L, i) \in \mathbb{P}^{1}(R)$ but is not determined by a unimodular row over R. Remark. Geometrically, L corresponds to the Möbius line bundle on the circle.
(d) Consider the two localizations $R_{1}=R\left[\frac{1}{1+x}\right]$ and $R_{2}=R\left[\frac{1}{y}\right]$, and for $j=1,2$ let $L_{j} \subset$ R_{j} be the ideal extended from $L \subset R$ and $i_{j}: L_{j} \rightarrow R_{j}^{2}$ the inclusion extended from $i: L \rightarrow R^{2}$. Prove that each L_{j} is principal and find a unimodular row $a_{j} \in \operatorname{Um}_{2}\left(R_{j}\right)$ that corresponds to the point $\left(L_{j}, i_{j}\right) \in \mathbb{P}^{1}\left(R_{j}\right)$. Letting $R_{12}=R\left[\frac{1}{1+x}, \frac{1}{y}\right]$, prove that under the functorial maps $\mathbb{P}^{1}\left(R_{j}\right) \rightarrow \mathbb{P}^{1}\left(R_{12}\right)$ the images of $\left(L_{j}, i_{j}\right)$ agree and verify that the your unimodular rows a_{1} and a_{2} become equal in $\operatorname{Um}_{2}\left(R_{12}\right) / R_{12}^{\times}$. This gives an example where unimodular rows on R_{1} and R_{2} that agree (up to scaling) over R_{12} can fail to come from a unimodular row over R, whereas this property holds for the functor \mathbb{P}^{1}. Remark. In other words the functor $R \mapsto \operatorname{Um}_{2}(R)$ is a presheaf but not a sheaf, whereas \mathbb{P}^{1} is a sheaf, which provides some motivation for the crazy definition of \mathbb{P}^{n}.

