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Group Work # 3 (Friday, May 10, 17, 24)

Reading: Gill–Szamuely §2.3, 3.2, 3.4, 4.1, Serre §1.1-1.4, Shatz Ch. I, IV.1

Group Work: To be discussed during the X-hour, with the discussion led by a student
selected ahead of time.

1. Extension class. Learn how group extensions 1 Ñ A Ñ E Ñ G Ñ 1 of G by A are
classified by H2pG,Aq, see [GS] Example 3.2.6. Learn about the Baer sum of extensions,
and how this gives an explicit way of representing the abelian group structure on H2pG,Aq.

2. Let G be a finite cyclic group of order n and fix a generator σ. Let A be a G-module.
Consider the maps N : AÑ A and σ ´ 1 : AÑ A defined by

Npxq “
n´1
ÿ

i“0

σipxq and pσ ´ 1qpxq “ σpxq ´ x.

(a) Verify that the ZrGs-module Z has a free resolution

¨ ¨ ¨
N
ÝÑ ZrGs σ´1

ÝÝÑ ZrGs N
ÝÑ ZrGs σ´1

ÝÝÑ ZrGs ε
ÝÑ ZÑ 0

where ε : ZrGs Ñ Z is the usual augmentation map sending every group element
to 1. Hint. Finally learn about homotopy retractions.

(b) Show that this resolution gives the following periodicity on the level of cohomology

H0pG,Aq “ AG and H ipG,Aq “

#

NA{pσ ´ 1qA if i is odd

AG{NA if i is even

for i ą 0, where NA “ kerpN : AÑ Aq.

(c) Give formulas for H ipG,Aq when G acts trivially on A. For example, for G acting
trivially on Z and on Z{nZ, compute H2pG,Zq and H2pG,Z{nZq. What is the
interpretation in terms of group extensions?

(d) Now, do the above three parts when G is infinite cyclic (e.g., G “ Z). Hint. The
free resolution, as above, is quite short, hence the cohomology is no longer periodic,
but vanishes in high degree!

3. Let L{K be a finite Galois extension with cyclic Galois group G. Recall that the usual
field-theoretic norm map NL{K : LÑ K is given by NL{Kpxq “

ś

σPG σpxq.

(a) Use the cohomology of cyclic groups to show that the cohomological form of Hilbert’s
Theorem 90, namely H1pG,Lˆq “ 1, is equivalent to the classical form: that x P Lˆ

satisfies NL{Kpxq “ 1 if and only if x “ σpyq{y for some y P Lˆ.

(b) Use the cohomology of cyclic groups to prove that H2pG,Lˆq – Kˆ{NL{KpL
ˆq.

(c) Conclude that H2pGalpC{Rq,Cˆq – t˘1u and that H2pGalpFp2{Fpq,Fˆp2q is trivial.



4. Let K be a field of characteristic 0 with algebraic (also separable) closure K. Assume
that the absolute Galois group GK “ GalpK{Kq is cyclic of prime order p.

(a) Prove that H2pK,K
ˆ
q – Kˆ{Kˆp. Hint. Use the long exact sequence in Galois

cohomology associated to the Kummer sequence, along with Hilbert’s Theorem 90,
and the periodicity of the cohomology of cyclic groups.

(b) Conclude that NK{KpK
ˆq “ Kˆp and hence that the only possibility is p “ 2 and

K “ Kp
?
´1q. Hint. Show that K contains a primitive pth root of unity (if not

try adjoining it), hence that the cyclic extension K{K is a Kummer extension, i.e.,
K “ Kpαq where αp “ y for some y P Kˆ rKˆp, then try computing NK{Kpαq.

(c) Show that declaring the squares in Kˆ to be positive will equip K with the structure
of an ordered field.

(d) (Artin–Schreier) Prove that if K is a field of characteristic 0 whose absolute Galois
group is a nontrivial finite group, then K “ Kp

?
´1q and K is an ordered field where

the squares are positive. Hint. Take a p-Sylow subgroup of the Galois group and
use the fact that p-groups are solvable, then iteratively apply the previous results.

Remark. Such fields are called real closed. In fact, Artin and Schreier proved
that in positive characteristic, the absolute Galois group is either trivial or infinite.

5. Artin–Schreier theory. [GS] 4.4. Let F be a field of characteristic p ą 0 and F s a
separable closure.

(a) Let K{F be a finite Galois extension of fields with group G. Show that the normal
basis theorem implies that K – FrGs as G-modules.

(b) Prove that H ipF, F sq “ 0 for all i ą 0. Hint. Use the above, together with the
adjunct property

H ipG,F rGsq “ ExtiZrGspZ, F rGsq “ ExtiF rGspF, F rGsq

together with the fact that FrGs is a free FrGs-module, to prove that H ipG,Kq “ 0
if K{F is a Galois extension with group G, then take a limit.

(c) Prove that the map ℘ : F s Ñ F s defined by ℘pxq “ xp ´ x is a surjective homo-
morphism of GF -modules whose kernel is the group Z{pZ with trivial action. Hence
there is, in the language of group schemes above, an exact sequence

0 Ñ Z{pZÑ Ga
℘
ÝÑ Ga Ñ 0

(d) Use the long exact sequence to prove that the map

F {℘pF q Ñ H1pF,Z{pZq

defined by a ÞÑ pσ ÞÑ σpαq ´ αq where α is a root of xp ´ x´ a, is an isomorphism
of abelian groups.

(e) Conclude that every Z{pZ-Galois extension K{F is of the form K “ F pαq where α
is a root of xp ´ x´ a for some a P F . In this case, determine an explicit generator
for the Galois group. What happens when a “ 0?



6. Group schemes. Let F be a field, AlgF the category of commutative unital F -algebras,
and Grp the category of groups. An F -group functor is a functor G : AlgF Ñ Grp.
For example, take the functor GLn : AlgF Ñ Grp where GLnpRq is the set of invertible
n ˆ n matrices over R. Here GLn can be replaced with SLn or PGLn or your favorite
linear algebraic group, but it could also be given be the functor of points of an elliptic
curve or abelian variety. We write Gm “ GL1 for the functor GmpRq “ Rˆ, called the
multiplicative group, and Ga for the functor GapRq “ pR,`q, called the additive group.

An F -group functor G is an affine F -group scheme if there exists A P AlgF and an
isomorphism of functors G – HomAlgF pA,´q, where we consider G : AlgF Ñ Set as a
functor to the category of sets via the forgetful functor GrpÑ Set. Such an F -algebra A is
said to represent G, and G is called a representable functor.

(a) Show that Ga is represented by F rxs and that Gm is represented by F rx, x´1s. Think
about why the group functors determined by all of your favorite linear algebraic
groups defined over F , e.g., GLn, SLn, PGLn, On, µn, are representable by finitely
generated F -algebras.

(b) Let G be an F -group functor. Show that if K{F is a Galois extension then GalpK{F q
acts on GpKq. Show that if G is represented by an F -algebra A, then the isomor-
phism GpKq – HomAlgF pA,Kq is GalpK{F q-equivariant, with the action on the
Hom group being given by postcomposition as usual.

(c) Show that if G is represented by a finitely generated F -algebra A, then the action of
GalpK{F q on GpKq is continuous. In this case, we write H ipF,Gq :“ H ipF,GpF sqq,
where only i “ 0, 1 is possible when G is nonabelian, so that, for exampe, Hilbert 90
reads H1pF,GLnq “ 0. Hint. Use the fact that a profinite group acts on a discrete
set continuously if and only if all stabilizers are open subgroups.

(d) For a separable quadratic extension K{F , define

GK
mpRq “ kerpN : pRbF Kq

ˆ Ñ Rˆq

where Nprbαq “ r2NK{F pαq. Prove that if F “ R then GC
m “ S1 is the “unit circle”

S1pRq “ tpx, yq P R2 : x2 ` y2 “ 1u. Prove that if K “ F ˆ F , then GK
m – Gm,

and hence that the base change of GK
m to the separable closure of F is isomorphic

to Gm. Thus GK
m is a twisted form of Gm. Use Galois descent and twisting, and the

fact that AutpGmq “ Z{2Z, to show that every twisted form of Gm is isomorphic to
GK
m for some separable quadrtic K{F . These are called the rank 1 tori over F .

7. Induced modules. Let G be a profinite group, H Ă G a closed subgroup, and B an
H-module. Consider the abelian group

IndGHpBq “ tf : GÑ B | f continuous and fpτσq “ τfpσq for all τ P H, σ P Gu

(a) Prove that IndGHpBq is a G-module via pρ ¨fqpσq “ fpσρq for ρ P G. Hint. The hard
part is to show that G acts continuously. Use the fact that a profinite group acts
on a discrete set continuously if and only if all stabilizers are open subgroups. For
this, note that since each f is continuous from a compact space to a discrete space,
it has only finitely many values, so that f is a finite sum of characteristic functions
of open sets. Reduce to f being a single characteristic function of an open set and
handle this case by itself.



(b) Recall that if A is a G-module, we have the restriction ResGHpAq, which is just A

considered as an H-module with the restricted action. Prove that IndGH and ResGH
are adjoint functors between the categories of H-modules and G-modules, i.e., that
for any G-module A and any H-module B the map

HomGpA, IndGHpBqq Ñ HomHpResGHpAq, Bq

defined by ϕ ÞÑ pa ÞÑ ϕpaqp1qq, is an isomorphism. Hint. Besides proving that
this map makes sense, you need to prove it is an isomorphism. For this, prove that
ψ ÞÑ pa ÞÑ pσ ÞÑ ψpσaqqq, whatever that means, is an inverse.

(c) Prove Shapiro’s Lemma, that for any G-module A and any H-module B, the map

H ipG, IndGHpBqq Ñ H ipH,Bq

induced from the compatibility of the map IndGHpBq Ñ B, defined by f ÞÑ fp1q,
with the natural inclusion H ãÑ G, is an isomorphism of cohomology groups. Hint.
For G finite, use the fact that the standard resolution of Z by ZrGs-modules is also
a resolution by ZrHs-modules since ZrGs is a free ZrHs-module. Then apply the
above adjoint property for A “ Z to get Shapiro’s Lemma for finite groups G, using
the fact that cohomology is an Ext group, then take limits.

(d) Assume that H Ă G is an open subgroup, so in particular, has finite index. For any
G-module A consider the map IndGHpResGHpAqq Ñ A defined by f ÞÑ

ř

ρ ρpfpρ
´1qq

where the sum ranges over coset representatives ρ for H in G. Show that this
map is independent of the choice of coset representatives and is a homomorphism of
G-modules. The corestriction map is then defined to be the composition

cor : H ipH,ResGHpAqq – H ipG, IndGHpResGHpAqqq Ñ H ipG,Aq

of the isomorphism in Shapiro’s Lemma and the map on cohomology induced from
the above map.

(e) Prove that the composition

H ipG,Aq
res
ÝÝÑ H ipH,ResGHpAqq

cor
ÝÝÑÑ H ipG,Aq

of restriction and corestriction is multiplication by the index rG : Hs. Conclude, as
in class, that any cohomology group H ipG,Aq is a torsion group for i ą 0.

8. Cup products. [GS] 3.4, [Sh] II.3. Let G be a profinite group and A, B, and C be
G-modules. A pairing θ : AˆB Ñ C is called G-bilinear if it is a Z-bilinear map such that
θpσpaq, σpbqq “ σpθpa, bqq for all σ P G, a P A, and b P B.

(a) Review the construction of the associated cup product map

H ipG,Aq ˆHjpG,Bq Ñ H i`jpG,Cq.

(b) Let Γ be a profinite group. Prove that if 1 Ñ A Ñ B Ñ C Ñ 1 is a short exact
sequence of discrete Γ-groups, with A mapping into the center of B, then the longish
exact sequence can be extended by a coboundary map δ2 : H1pF,Cq Ñ H2pF,Aq.

(c) Let F be a field of characteristic ‰ 2. Consider the short exact sequence of affine
F -group schemes

1 Ñ µ2 Ñ SL2 Ñ PGL2 Ñ 1



using the group scheme language from the sixth problem. Recall that H1pF,PGL2q

is in bijection with the set of quaternion algebras over F up to isomorphism. Prove
that the coboundary map δ2 : H1pF,PGL2q Ñ H2pF, µ2q from the previous part is
injective.

(d) For a P Fˆ denote by paq P Fˆ{Fˆ2 – H1pF, µ2q the associated class. Prove
that, under the cup product H1pF, µ2q ˆH1pF, µ2q Ñ H2pF, µ2q associated to the
multiplication pairing µ2 ˆ µ2 Ñ µ2, we have

paq Y pbq “ δ2pa, bq

where pa, bq is the usual quaternion algebra and δ2 is the coboundary map from the
previous part. Hint. See the heavy homological algebra and cohomology computa-
tions in GS Propositions 3.4.9 and 4.7.3 for inspiration. Can you prove this in an
elementary way purely on the level of cocycles?

9. Fourier transforms. Cf. Ramakrishnan and Valenza, Fourier analysis on number fields,

§1.2, 3.1–3.4. Recall, from GW1, the notion of the Pontryagin dual group qG, the group
of continuous homomorphisms χ : G Ñ U where U Ă Cˆ is the unit circle, of a locally
compact topological group G.

(a) Make sure you understand the following facts: qG is an abelian locally compact

topological group; if G is a profinite group then qG is a discrete torsion group and

vice versa; }Q{Z – pZ and
q

pZ – Q{Z. Hint. For a profinite group G, convince yourself
that any continuous homomorphism from G to the unit circle has finite image.

(b) Understand the canonical evaluation homomorphism G Ñ
q

qG. The Pontryagin du-
ality theorem states that the evaluation homomorphism induces an isomorphism

Gab Ñ
q

qG from the abelianization. Note that the Pontryagin dual of G and Gab are
the same.

(c) Understand the existence and uniqueness of a (left-invariant) Haar measure µ on
any locally compact topological group G. Let L1pGq be the space of µ-integrable

complex-valued functions f : GÑ C. Define the Fourier transform f̌ : qGÑ C by

qfpχq “

ż

G
fpxqχpxq dx

for χ P qG. Understand the existence of the dual Haar measure µ̌ on qG and the
Fourier inversion formula.

(d) Recall that if F “ Fp and G “ GF , then G – pZ with the Frobenius automorphism

φ P GF defined by φpxq “ xp corresponding to 1 P pZ. Letting K “ Fpn , then the
extensionK{F is Galois with group Z{nZ generated by Frobenius, and the associated

quotient ψ : pZ “ G Ñ GalpK{F q “ Z{nZ defined by restricting an automorphism
to K coincides with the quotient appearing in the inverse limit.

Define a function f : G Ñ C by fpxq “ e2πiψpxq{n. Prove that
ş

G fpxq dx “ 0.

Compute the Fourier transform as a function F̌ : Q{Z “ qGÑ C.
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