DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS Math 125 Current Problems in Number Theory: Galois Cohomology and Descent Winter 2022

Group Work # 2 (Thursday, February 3)

Reading: Gill-Szamuely §1.1-1.2, 2.1-2.2, 4.1, Serre §1.1-1.4, Shatz Ch. I, IV.1

Group Work: To be discussed during the second half of class on Thursday, with the discussion led by a student selected ahead of time.

1. Pontryagin duality Let G be a locally compact (i.e., every point has a compact neighborhood) Hausdorff topological group. For example, \mathbb{R} or any compact group or any discrete group is locally compact. Let $U \subset \mathbb{C}^{\times}$ be the unit circle, which is a locally compact topological group. Define the **Pontryagin dual** \check{G} to be the group of all continuous homomorphisms $\phi: G \to U$ equipped with the compact-open topology (look this up if you don't know what it is).

- (a) Prove that $\check{\mathbb{Z}} \cong U$ and that $\check{U} \cong \mathbb{Z}$.
- (b) Prove that $\check{\mathbb{R}} \cong \mathbb{R}$ via a map (in the other direction) $x \mapsto (y \mapsto e^{2ixy})$.
- (c) Prove that if G is a finite abelian group, then $\check{G} \cong G$.
- (d) Prove that if G is a discrete torsion group, then \check{G} is a profinite group.
- (e) Prove that $\widetilde{\mathbb{Q}/\mathbb{Z}} \cong \widehat{\mathbb{Z}}$. **Hint.** \mathbb{Q}/\mathbb{Z} is a direct limit of cyclic groups.

2. Let A be an (associative unital) F-algebra. We say that an F-linear map $\overline{}: A \to A$ is an **involution** if $\overline{1} = 1$, $\overline{\overline{a}} = a$ for all $a \in A$, and $\overline{ab} = \overline{ba}$ for all $a, b \in A$. An involution is called **standard** if $a\overline{a} \in F$ for all $a \in A$. As usual, we consider $F \subset A$ as the F-subspace spanned by the identity in A.

- (a) Prove that if $\overline{}$ is a standard involution on an *F*-algebra *A* then $a + \overline{a} \in F$ for all $a \in A$. Hint. Consider $(1 + a)(\overline{1 + a})$.
- (b) If $\overline{}$ is a standard involution on an *F*-algebra *A*, define the **(involution) trace** T: $A \to F$ by $a \mapsto a + \overline{a}$ and the **(involution) norm** N: $A \to F$ by $a \mapsto a\overline{a}$. Prove that any $a \in A$ satisfies $a^2 - T(a)a + N(a) = 0$. This is an analogue of the Cayley–Hamilton theorem and one often calls $x^2 - T(a)x + N(a) \in F[x]$ the involution characteristic polynomial of $a \in A$.
- (c) Prove that if K is an F-algebra of dimension 2, then K is commutative and admits a unique standard involution. What is this in the case that K/F is a separable extension of degree 2? What about $K = F \times F$? What about the dual numbers $K = F[x]/(x^2)$?
- (d) Prove that if A is a quaternion algebra over F, then A has a unique standard involution. **Hint.** Restrict to a quadratic extension contained in A.

- **3.** About division algebras.
 - (a) Over an algebraically closed field F, the only finite dimensional division F-algebra if F itself. **Hint.** Use the existence of eigenvalues of linear operators on finite dimensional vector spaces over algebraically closed fields as indicated in class.
 - (b) Let $A = \mathbb{C}(t)$ the rational function field over the complex numbers. Then A is an infinite dimensional division \mathbb{C} -algebra (but clearly far from central). Where does your previous argument break down for A? (Fun fact: it turns out that there are no nontrivial central division $\mathbb{C}(t)$ -algebras, this is a consequence of Tsen's Theorem. Can you find a new proof of this fact?)
 - (c) Prove that if A is a (nonsplit) quaternion algebra over a field F (of characteristic not 2) and K/F is a quadratic extension with $K \subset A$ a sub F-algebra, then $A \otimes_F K$ is split.
 - (d) Read the proof of *Gille–Szamuely* Lemma 2.4.4, really Theorem 2.2.1, really Lemma 2.2.2. This was not as easy as I made it appear in class!