DARTMOUTH COLLEGE DEPARTMENT OF MATHEMATICS Math 125 Current Problems in Number Theory: Galois Cohomology and Descent Winter 2022

Group Work # 4 (Thursday, February 17)

Reading: Gill-Szamuely §3.2, 4.1

Group Work: To be discussed during the second half of class on Thursday, with the discussion led by a student selected ahead of time.

Notation: Let L/K be a finite Galois extension with Galois group G. Recall that the usual field-theoretic norm map $N_{L/K}: L \to K$ is given by $N_{L/K}(x) = \prod_{\sigma \in G} \sigma(x)$.

1. Let G be a finite cyclic group of order n and fix a generator σ . Let A be a G-module. Consider the maps $N: A \to A$ and $\sigma - 1: A \to A$ defined by

$$N(x) = \sum_{i=0}^{n-1} \sigma^{i}(x) \quad \text{and} \quad (\sigma - 1)(x) = \sigma(x) - x$$

(a) Verify that the $\mathbb{Z}[G]$ -module \mathbb{Z} has a free resolution

$$\cdots \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{\sigma-1} \mathbb{Z}[G] \xrightarrow{N} \mathbb{Z}[G] \xrightarrow{\sigma-1} \mathbb{Z}[G] \xrightarrow{\epsilon} \mathbb{Z} \to 0$$

where $\epsilon : \mathbb{Z}[G] \to \mathbb{Z}$ is the usual **augmentation** map sending every group element to 1. Hint: Finally learn about homotopy retractions.

(b) Show that this resolution gives the following periodicity on the level of cohomology

$$H^{0}(G, A) = A^{G}$$
 and $H^{i}(G, A) = \begin{cases} {}_{N}A/(\sigma - 1)A & \text{if } i \text{ is odd} \\ {}_{A}G/NA & \text{if } i \text{ is even} \end{cases}$

for i > 0, where $_{N}A = \ker(N : A \to A)$.

- (c) Give formulas for $H^i(G, A)$ when G acts trivially on A. For example, for G acting trivially on \mathbb{Z} and on $\mathbb{Z}/n\mathbb{Z}$, compute $H^2(G, \mathbb{Z})$ and $H^2(G, \mathbb{Z}/n\mathbb{Z})$. What is the interpretation in terms of group extensions?
- (d) Now, do the above three parts when G is infinite cyclic (e.g., $G = \mathbb{Z}$). Hint: The free resolution, as above, is quite short, hence the cohomology is no longer periodic, but vanishes in high degree!
- **2.** Let L/K be a finite Galois extension with cyclic Galois group G.
 - (a) Use the cohomology of cyclic groups to show that the cohomological form of Hilbert's Theorem 90, namely $H^1(G, L^{\times}) = 1$, is equivalent to the classical form: that $x \in L^{\times}$ satisfies $N_{L/K}(x) = 1$ if and only if $x = \sigma(y)/y$ for some $y \in L^{\times}$.
 - (b) Use the cohomology of cyclic groups to prove that $H^2(G, L^{\times}) \cong K^{\times}/N_{L/K}(L^{\times})$.

3. Let K be a field of characteristic 0 with algebraic (also separable) closure \overline{K} . Assume that the absolute Galois group $G_K = \operatorname{Gal}(\overline{K}/K)$ is cyclic of prime order p.

- (a) Prove that $H^2(K, \overline{K}^{\times}) \cong K^{\times}/K^{\times p}$. Hint: Use the long exact sequence in Galois cohomology associated to the Kummer sequence, along with Hilbert's Theorem 90, and the periodicity of the cohomology of cyclic groups.
- (b) Conclude that $N_{\overline{K}/K}(\overline{K}^{\times}) = K^{\times p}$ and hence that the only possibility is p = 2 and $\overline{K} = K(\sqrt{-1})$. Hint: Show that K contains a primitive pth root of unity (if not try adjoining it), hence that the cyclic extension \overline{K}/K is a Kummer extension, i.e., $\overline{K} = K(\alpha)$ where $\alpha^p = y$ for some $y \in K^{\times} \smallsetminus K^{\times p}$, then try computing $N_{\overline{K}/K}(\alpha)$.
- (c) Show that declaring the squares in K^{\times} to be positive will equip K with the structure of an ordered field.
- (d) (Artin–Schreier) Prove that if K is a field of characteristic 0 whose absolute Galois group is a nontrivial finite group, then $\overline{K} = K(\sqrt{-1})$ and K is an ordered field where the squares are positive. Hint: Take a *p*-Sylow subgroup of the Galois group and use the fact that *p*-groups are solvable, then iteratively apply the previous results.

Remark. Such fields are called **real closed**. In fact, Artin and Schreier proved that in positive characteristic, the absolute Galois group is either trivial or infinite.