
1. HPS 5.12: Elliptic Curve Pollard ρ

Read the abstraction of Pollard ρ given in HPS 4.5 and how it can be used to solve the Discrete Log
Problem on Fp. Adapt this material to create a Pollard ρ algorithm to solve the ECDLP.

2. HPS 5.27: Well-Definedness of the Weil Pairing

Here, we will show that the Weil pairing is well-defined! Let E/F be an elliptic curve over a field F such
that char(F ) does not divide m, and let P,Q ∈ E[m].

(a) Prove that em(P,Q) is independent of the choice of rational functions fP and fQ.

(b) Prove that em(P,Q) is independent of the auxiliary point S. (Hint: Fix P and Q and consider the
quantity

F (S) =
fP (Q+ S)

fP (S)

/
fQ(P − S)

fQ(S)

as a function of S. Compute the divisor of F and use the fact that every nonconstant function on E
has at least one zero.)

3. The Tate-Lichtenbaum Pairing

Let E/Fp be an elliptic curve. One shortcoming of the Weil pairing on E[m] is that it can be somewhat
cumbersome to work with computationally (as will be explored in lecture). An alternative for it is the
Tate-Lichtenbaum Pairing, which is defined as follows:

Let ℓ be prime not equal to p, let P ∈ E[ℓ], and let Q ∈ E(Fp). Choose a rational function fP on E such
that div(fP ) = ℓ[P ]− ℓ[O]. Then, the Tate-Lichtenbaum Pairing of P and Q is

τ(P,Q) =
fP (Q+ S)

fP (S)
∈ F×

p

where S is any point such that fP (Q+ S) and fP (S) are well-defined and non-zero.

(a) Show that the Tate Pairing is well-defined using a method similar to problem 2 parts a) and b).

(b) Show that there is the following relationship between the Tate-Lichtenbaum Pairing and the Weil
Pairing, assuming Q ∈ E[ℓ]:

eℓ(P,Q) =
τ(P,Q)

τ(Q,P )

Hence, we can recover the Weil Pairing from the Tate-Lichtenbaum Pairing! This is helpful since the
Tate-Lichtenbaum pairing is easier to calculate (cf. Silverman XI.9).

EXTRA CREDIT: The following problems build some key theory of elliptic curves that we did not have
time to discuss in class. It is reliant on some detailed and difficult concepts that are too time-consuming for
the general problem set. Do/think about these if you want a fun extra challenge or are generally interested!

4. Inverse Limits and Adic Completions

Let (J,≤) be a directed set with partial order ≤. By this, we mean that for every i, j ∈ J , there exists
some k such that i ≤ k and j ≤ k. We say that a set of algebraic objects {S}j∈J (groups, abelian groups,
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rings, etc.) indexed by J forms an inverse system if for every Si and Sk such that i ≤ k, there exists a
morphism fki : Sk → Si such that fki = fji ◦ fkj for all i ≤ j ≤ k. We form the inverse limit as

lim←−
j

Sj = {(sj)j | fki(sk) = si} ⊆
∏
j

Sj

Here, we are requiring a condition that going down in indexing via the maps fki is equivalent to going
down in indexing in the natural way.

(a) Show that inverse limits are functorial: for two inverse systems of groups or rings ({Ai}i∈I , fij), ({Bi}i∈I , gij)
indexed by the same indexing set I, show that if there exists a homomorphism ϕi : Ai → Bi for all i
such that fij ◦ ϕj = ϕi ◦ gij, there exists a unique morphism lim←−ϕ : lim←−Ai → lim←−Bi.

(b) Show that on a general ring R and an ideal I, there is a natural topology whose basis is given by
x+ InR for each x ∈ R.

(c) We define R’s I-adic completion to be the inverse limit

R̂ = lim←−
n

R/In.

with respect to the inverse system induced by the natural projections R/In+1 → R/In. Show that
R̂ is complete in the topology that R’s I-adic topology induces on it (Hint: how can you relate this
construction to Cauchy sequences?).

(d) Let R[x] be the polynomial ring of R. Exhibit an explicit isomorphism between the (x)-adic comple-
tion of R[x] and the ring of formal power series R[|x|].

(e) Choose a prime number p. We define the p-adic integers Zp to be the completion of Z at the prime
ideal (p) with fraction field Qp, the p-adic numbers. Show that Qp is locally compact and totally
disconnected with respect to the p-adic topology (Hint: can you find a connection between Qp and
the Cantor set?).

5. Direct Limits, Algebraic Closure, and the Absolute Galois Group

Let J be a directed set as in Problem 2. We say that a set of algebraic {S}j∈J indexed by J forms a
directed system if for every Si and Sk such that i ≤ k, there exists a morphism fik : Si → Sk such that
fik = fjk ◦ fij for all i ≤ j ≤ k. This extends to any other category that is built upon sets (topological
spaces, vector spaces, abelian groups, etc.), substituting maps of sets with the appropriate morphisms.

For any directed system, we can form its direct limit as

lim−→
j

Sj =
⊔
j

Sj/ ∼

where two elements (sj, Sj) ∼ (si, Si) if and only if there exists some i, j ≤ k such that fjk(sj) = fik(si).
Essentially, we are quotienting out by a condition that elements are “eventually equal” in a larger element
of the ordering.

(a) Let F be a perfect field, and choose an algebraic closure F̃ . Show that the set of finite subextensions

F̃ /K/F form a directed system with respect to inclusion (Hint: compositum!).
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(b) Show that F̃ can be identified with the direct limit lim−→K, whereK ranges over the finite subextensions

of F̃ /F as defined in part a). Note that here we replace the disjoint union in the definition of disjoint
union with the compositum of field extensions.

(c) Show that Gal(F̃ /F ) ∼= lim←−Gal(K/F ), where Gal(K/F ) ranges over the finite extensions of F with
respect to the natural restrictions (Hint: contravariance of the Galois correspondence and how it acts
on compositums).

6. Profinite Groups and the Profinite Topology

A group G is called profinite if it can be written as

G = lim←−
i

Hi

where Hi are finite groups. Any finite group is obviously profinite. We saw in the last problem that
Gal(F̃ /F ) for a field F is a nontrivial example of a profinite group!

(a) Show that a profinite group G has a natural topology with basis given by finite index normal sub-
groups. We call this topology the profinite topology.

(b) Show that Gal(F̃p/Fp) is topologically generated by the arithmetic Frobenius

FrobF̃p
= (1,FrobFp2

,FrobFp3
,FrobFp4

, ...)

where FrobFpn
is the Frobenius generator of Gal(Fpn/Fp). By this, we mean that the closure of the

subgroup ⟨FrobF̃p
⟩ is isomorphic to Gal(F̃p/Fp). We say that Gal(F̃p/Fp) is a pro-cyclic group.

(c) (OPTIONAL CHALLENGE:) Show that any profinite group with the profinite topology is compact,
Hausdorff, and totally disconnected (you will need some technical knowledge of topological groups!).

7. Galois representations: The l-adic Tate Module

Trying to flesh out the structure of Gal(F̃ /F ) for perfect fields F is one of the main objectives of algebraic
number theory and arithmetic geometry. The best course of action is to study Galois representations,
i.e. continuous group homomorphisms

Gal(F̃ /F ) −→ GLn(K)

for some topological field K, or a continuous action of Gal(F̃ /F ) on some topological K-vector space V .
In this problem, we will explore why Qℓ for some prime ℓ is a good choice for a base field, and how we can
generate these representations from elliptic curves!

(a) Show that any complex Galois representation Gal(Q̃/Q)→ GLn(C) must necessarily factor through
a map Gal(K/Q)→ GLn(C) with K/Q a finite extension (Hint: what can you say about the kernel

given the respective topologies of GLn(C) and Gal(Q̃/Q)?). Hence, a complex Galois representation
is simply a representation of a finite group! We call these representations Artin representations.
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(b) Let E be an elliptic curve defined over a perfect field F , and let ℓ be a prime number not equal to the

characteristic of F . Show that the natural action of Gal(F̃ /F ) on F [ℓn](F̃ ) gives rise to a Zℓ-module

with a natural action of Gal(F̃ /F ). Show that this forms a Galois representation upon tensoring
with Qℓ. We call the associated vector space the ℓ-adic Tate module and denote it Vℓ(E).

(c) Recall in lecture that we discussed the Frobenius map of an elliptic curve E/Fp, which was defined
as

Frobp : E(F̃p)→ E(F̃p), (x, y)→ (xp, yp).

Show that this is gives a well-defined endomorphism on E[ℓn](F̃p), inducing a linear map Vℓ(E) →
Vℓ(E). How can you interpret this in terms of the Galois action given what we know about

Gal(F̃p/Fp)?

(d) Read Silverman V.1 and V.2 and understand why the quantity a = p + 1 −#E(Fp) is the trace of
the above Frobenius map.
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