Math 170 Ideas in Mathematics (Summer 2006) Problem Set 7: Peeking into TNT.

Due in class Thursday, June 8th

1. A bit more $P C$

Answer the following questions:
a. For the following strings, decide if they are theorems of $P C$:

- $\lll P \Rightarrow Q>\Rightarrow Q>\Rightarrow \neg P \Rightarrow Q \gg$
- $\lll P \Rightarrow Q>\wedge<P \Rightarrow \neg Q \gg \Rightarrow \neg P \gg$

The last string is a statement usually called reductio ad absurdum. Why?
b. Prove the following (axiom-like) metatheorems about $P C$. If x and y are any wellformed strings, then
i. if x is any well-formed string then $\langle x \vee \neg x>$ is a theorem
ii. if x is a theorem and y is any well-formed string then $\langle x \vee y>$ is a theorem
iii. if both $\neg y$ and $<x \Rightarrow y>$ are theorems then so is $\neg x$
$i v$. if both $\neg x$ and $<x \vee y>$ are theorems then so is y
v. $<x \wedge y>$ is interchangeable with $<y \wedge x>$
vi. $\langle x \vee y>$ is interchangeable with $\langle y \vee x\rangle$
vii. $\neg<x \wedge y>$ is interchangeable with $<\neg x \vee \neg y>$

2. Beginning $T N T$

Note: the set of all non-negative integers $0,1,2, \ldots$ will be denoted the natural numbers. Note that the natural numbers are the "universe" for the quantifiers \forall and \exists in $T N T$.

Answer the following:
a. Express the following sentences in the language of $T N T$ as bounded strings:

- Every natural number is equal to 3 .
- No natural number squared is equal to itself.
- No natural number plus 1 is equal to itself.
- There exist even natural numbers.
- There exist odd natural numbers.
- No natural number is both even and odd.
- If a natural number is odd then it plus 1 is even.

Which of these bounded strings are true?
b. Express the following sentences in the language of $T N T$ as unbounded strings:

- a plus 3 is an odd number.
- a is a prime number.
- a is divisible by 5 .
- a is not divisible by 7 .
- a has remainder 1 when divided by 3 .
- a is a power of 2 .

