MATH 170 IDEAS IN MATHEMATICS (SUMMER 2006) **Problem Set 7:** Peeking into TNT.

Due in class Thursday, June 8th

1. A bit more PC

Answer the following questions:

- **a.** For the following strings, decide if they are theorems of *PC*:
 - $<<< P \Rightarrow Q >\Rightarrow Q >\Rightarrow < \neg P \Rightarrow Q >>$

The last string is a statement usually called reductio ad absurdum. Why?

- **b.** Prove the following (axiom-like) metatheorems about PC. If x and y are any well-formed strings, then
 - *i.* if x is any well-formed string then $\langle x \lor \neg x \rangle$ is a theorem
 - *ii.* if x is a theorem and y is any well-formed string then $\langle x \lor y \rangle$ is a theorem
 - *iii.* if both $\neg y$ and $\langle x \Rightarrow y \rangle$ are theorems then so is $\neg x$
 - *iv.* if both $\neg x$ and $\langle x \lor y \rangle$ are theorems then so is y
 - v. $\langle x \land y \rangle$ is interchangeable with $\langle y \land x \rangle$
 - vi. $\langle x \lor y \rangle$ is interchangeable with $\langle y \lor x \rangle$
 - *vii.* $\neg < x \land y >$ is interchangeable with $< \neg x \lor \neg y >$

2. Beginning TNT

Note: the set of all non-negative integers 0, 1, 2, ... will be denoted the *natural numbers*. Note that the natural numbers are the "universe" for the quantifiers \forall and \exists in TNT.

Answer the following:

- **a.** Express the following sentences in the language of TNT as bounded strings:
 - Every natural number is equal to 3.
 - No natural number squared is equal to itself.
 - No natural number plus 1 is equal to itself.
 - There exist even natural numbers.
 - There exist odd natural numbers.
 - No natural number is both even and odd.
 - If a natural number is odd then it plus 1 is even.

Which of these bounded strings are true?

b. Express the following sentences in the language of TNT as unbounded strings:

- *a* plus 3 is an odd number.
- *a* is a prime number.
- *a* is divisible by 5.
- *a* is not divisible by 7.
- *a* has remainder 1 when divided by 3.
- *a* is a power of 2.