Emory University Department of Mathematics & CS **Math 211 Multivariable Calculus** Fall 2011

Problem Set # 1 (due Friday 02 Sep 2011)

Notations: If S is a set of elements (points, numbers, elephants, ...) then the notation " $s \in S$ " means "s is an element of the set S." If T is another set, then the notation " $T \subset S$ " means "every element of T is an element of S" or "T is a subset of S." For example, the set of squares is a subset of the set of rectangles.

Recall that we have notations for the following sets:

- \mathbb{R} is the real 1-dimensional "number line"
- \mathbb{R}^2 is the real 2-dimensional "Cartesian plane"
- \mathbb{R}^3 is the real 3-space
- \mathbb{R}^n is the real *n*-space.

We can express a point $v \in \mathbb{R}^n$ as an *n*-tuple (x_1, \dots, x_n) of real numbers.

A multivariable mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ is a recipe, which given any element $v \in \mathbb{R}^n$, produces an element $f(v) \in \mathbb{R}^m$. For certain cases of n and m such mappings have other names:

- n = 1 and m = 1, called single variable function,
- n=1 and m>1, called parametrized curve (in \mathbb{R}^m),
- n > 1 and m > 1, called vector field,
- $n \ge 1$ and m = 1, called function (on \mathbb{R}^n).

More generally, given subsets $V \subset \mathbb{R}^n$ and $W \subset \mathbb{R}^m$, a (multivariable) mapping $f: V \to W$ is a recipe, which given any element $v \in V$ produces an element $f(v) \in W$. We call V the *domain* and W the *codomain* of f. The *image* $\operatorname{im}(f) \subset W$ of f is the subset of the codomain consisting of all elements "hit by f" i.e. all elements $w \in W$ such that w = f(v) for some $v \in V$ in the domain.

Definition. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be a multivariable mapping, then the graph of f is the subset $\Gamma_f: \mathbb{R}^{n+m}$ consisting of all points $(v, f(v)) \in \mathbb{R}^{n+m}$ where $v \in \mathbb{R}^n$, i.e. all points $(x_1, \ldots, x_n, f_1(x), \ldots, f_m(x))$ where we write $v = (x_1, \ldots, x_n) \in \mathbb{R}^n$ and $f(v) = (f_1(v), \ldots, f_m(v)) \in \mathbb{R}^m$.

- 1. Graphs of Multivariable Functions
 - a) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function on \mathbb{R}^2 . Give \mathbb{R}^3 the standard (x, y, z) coordinates. Describe the intersection of Γ_f with the x-y-plane by an implicit equation in terms of the function f. Draw this set for $f(x, y) = x^2 xy$.
 - b) Now let $f(x,y) = x^2 + y$. Draw the intersection of Γ_f with the x-z-plane and find both an implicit equation and a parameterization describing it.
 - c) Again, let $f(x,y) = x^2 + y$. For each $\theta \in [0,\pi]$, let P_{θ} be the plane through the z-axis and the point $(\cos \theta, \sin \theta, 0)$. Describe (in words and by writing both an implicit equation and a parameterization) the intersection of P_{θ} and Γ_f for each θ (descriptions will depend on θ).
- **2.** CM Problem 12.1.29 (it turns out to be a surface in \mathbb{R}^3 , write an implicit equation for it)
- **3.** CM Problems 12.2.15 and 12.2.24
- **4.** CM Exercise 12.3.14 and Problem 12.3.33
- **5.** CM Problem 12.5.30
- **6.** CM Problem 13.1.33
- 7. CM Problems 13.3.37, 13.3.39, and 13.3.40
- **8.** CM Problems 13.4.25 and 13.4.28