EMORY UNIVERSITY DEPARTMENT OF MATHEMATICS & CS Math 211 Multivariable Calculus Fall 2011

Problem Set # 10 (due Friday 18 November 2011)

Reading: CM 16.4-7

1. CM 16.5 Problems 34, 37 (above the cone, below the sphere), 49

2. CM 16.7 Exercise 2, 4, 6 Problems 16, 20, 26,

3. Sketch, and find the volume of, the region (if in doubt, the region that's smaller) between the surfaces $x^2 + y^2 = 4z$ and $x^2 + y^2 + z^2 = 5$.

4. (Extra Credit) Define

 $R_1 = \{ (\rho, \theta, \phi) : 0 \le \theta \le 2\pi, 0 \le \phi \le \pi/2, 0 \le \rho \le \cos(\phi) \}$

and

$$R_{1} = \{(\rho, \theta, \phi) : 0 \le \theta \le 2\pi, 0 \le \phi \le \pi/2, 0 \le \rho \le \sin(\phi)\}$$

and let Φ be the spherical coordinate mapping. Sketch $\Phi(R_1)$ and $\Phi(R_2)$ and compute their volumes.

5. (Extra Credit) Let T in \mathbb{R}^3 be the solid torus (i.e. doughnut) formed by spinning around the z-axis a disk of radius r centered at (a, 0, 0) in the x-z-plane. Of course, assume 0 < r < a otherwise you don't get a torus. Compute the volume of T. Hint: try cylindrical coordinates.

E-mail address: auel@mathcs.emory.edu

Emory University, Department of Mathematics & CS, 400 Dowman Dr NE W401, Atlanta, GA 30322