Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus
Fall 2011
Problem Set \# 10 (due Friday 18 November 2011)

Reading: CM 16.4-7

1. CM 16.5 Problems 34, 37 (above the cone, below the sphere), 49
2. CM 16.7 Exercise 2, 4, 6

Problems 16, 20, 26,
3. Sketch, and find the volume of, the region (if in doubt, the region that's smaller) between the surfaces $x^{2}+y^{2}=4 z$ and $x^{2}+y^{2}+z^{2}=5$.
4. (Extra Credit) Define

$$
R_{1}=\{(\rho, \theta, \phi): 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 2,0 \leq \rho \leq \cos (\phi)\}
$$

and

$$
R_{1}=\{(\rho, \theta, \phi): 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 2,0 \leq \rho \leq \sin (\phi)\}
$$

and let Φ be the spherical coordinate mapping. Sketch $\Phi\left(R_{1}\right)$ and $\Phi\left(R_{2}\right)$ and compute their volumes.
5. (Extra Credit) Let T in \mathbb{R}^{3} be the solid torus (i.e. doughnut) formed by spinning around the z-axis a disk of radius r centered at $(a, 0,0)$ in the x - z-plane. Of course, assume $0<r<a$ otherwise you don't get a torus. Compute the volume of T.
Hint: try cylindrical coordinates.

[^0]
[^0]: Emory University, Department of Mathematics \& CS, 400 Dowman Dr NE W401, AtLanta, GA 30322

 E-mail address: auel@mathcs.emory.edu

