Emory University Department of Mathematics & CS Math 211 Multivariable Calculus Fall 2011

Problem Set # 4 (due Friday 23 September 2011)

Recall: If $\gamma : \mathbb{R} \to \mathbb{R}^2$ is a parameterized curve in the *x-y*-plane given by $\gamma(t) = (\gamma_1(t), \gamma_2(t))$, and $f : \mathbb{R}^2 \to \mathbb{R}$ is a function, then the *lift* of γ to the graph of f is a new parameterized curve $\alpha : \mathbb{R} \to \mathbb{R}^3$ in 3-space defined by $\alpha(t) = (\gamma_1(t), \gamma_2(t), f(\gamma_1(t), \gamma_2(t)))$.

In CM 17.2, there's a formula for the length of a segment of a parameterized curve. If $\beta : \mathbb{R} \to \mathbb{R}^n$ is any parameterized curve in *n*-space, and if $a \leq b$ are real numbers, then we have:

(length of
$$\beta$$
 from $t = a$ to $t = b$) = $\int_{a}^{b} \|\vec{\beta}'(t)\| dt$

Since for each t, $\|\beta(t)\|$ is a number, the integral above is just a standard single-variable definite integral.

Reading: CM 17.1-3

1. Let P be a point in \mathbb{R}^3 and let \vec{v} be a direction vector at P. Find a parameterization of the line through P in the direction \vec{v} and with constant speed 1. (Hint: Look at the section "Unit vectors" in chapter 13.1, page 692.) How many other parameterizations of this line exist with constant speed 1?

- **2.** Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by f(x, y) = xy. Let P = (1, 2, 2).
 - a) For each angle θ from 0 to 2π , find a parameterization $\gamma_{\theta} : \mathbb{R} \to \mathbb{R}^2$ for the line starting at (1, 2) in the *x-y*-plane at time t = 0, and heading out at an angle θ from *x*-axis with constant speed 1.

- b) For each θ , let α_{θ} be the lift of your γ_{θ} to the graph of f. Write $\alpha_{\theta}(t)$.
- c) As a function of θ , calculate the length of α_{θ} from t = 0 to t = 1. This is the length travelled on the graph of f in one time unit walking at a compass angle θ .
- d) For which θ is the length of this path maximal/minimal? Only set up/explain what you need to do! You don't need to evaluate anything!
 (For extra credit: actually find the θs giving maximal/minimal length travelled! You can even use a computer!)
- e) Find the direction vectors (in the plane) you have to start walking in from P to achieve the greatest ascent and descent on the graph (use the gradient). Calculate the angle this vector makes with the x-axis (i.e. with the vector \vec{i}).

(For extra credit, continue: how do these angles compare with what you computed above? Should they necessarily be the same?)

- **3.** CM 17.1 Problems 44, 48, 68
- 4. CM 17.2 Problems 37
- 5. CM 17.3 Problem 21-28 (you don't need to explain your answers).

Emory University, Department of Mathematics & CS, 400 Dowman Dr NE W401, Atlanta, GA 30322 E-mail address: auel@mathcs.emory.edu