Emory University Department of Mathematics \& CS
Math 211 Multivariable Calculus
Fall 2011
Problem Set \# 7 (due Friday 21 October 2011)
Material: Let $a \leq b$ be real numbers, and let $l(x)$ and $u(x)$ be continuous real functions satisfying $l(x) \leq u(x)$ for all $x \in[a, b]$. Consider $[a, b] \subset \mathbb{R}^{2}$ as an interval on the x-axis and the region R of \mathbb{R}^{2} "above the interval [a, b] and between the graphs of $l(x)$ and $u(x) "$ defined by

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b, l(x) \leq y \leq u(x)\right\}
$$

For example, if $l(x)=c$ and $u(x)=d$ are constant functions, then R is the box with corners $(a, c),(b, c),(a, d)$, and (b, d). If $a=0, b=1, l(x)=0$ and $u(x)=x$, then R is a triangle with vertices $(0,0),(1,0)$, and (1,1). If $a=-1, b=1, l(x)=-\sqrt{1-x^{2}}$, and $u(x)=\sqrt{1-x^{2}}$, then R is a circle of radius 1 centered at the origin.

For each region R in \mathbb{R}^{2} and each continuous function $f: R \rightarrow \mathbb{R}$, we introduced a multivariable integral of f over R

$$
\int_{R} f
$$

satisfying the property that if $f(x, y) \geq 0$, then $\int_{R} f$ is the volume of the region above R (thought of in the x - y-plane) and below the graph of f.

If the region R in \mathbb{R}^{2} is defined by $a, b, l(x)$, and $u(x)$ as above, then we write the multivariable integral of f over R as

$$
\int_{R} f=\int_{x=a}^{b} \int_{y=l(x)}^{u(x)} f(x, y) d y d x
$$

and we can perform "iterated integration" just as in Fubini's theorem: first find an antiderivative of $f(x, y)$ with respect to y, i.e. a function $g(x, y)$ so that $\frac{\partial g}{\partial y}=f(x, y)$, then

$$
\begin{aligned}
\int_{x=a}^{b} \int_{y=l(x)}^{u(x)} f(x, y) d y d x & =\int_{x=a}^{b}\left(\left.g(x, y)\right|_{y=l(x)} ^{u(x)}\right) d x \\
& =\int_{x=a}^{b}(g(x, u(x))-g(x, l(x))) d x
\end{aligned}
$$

and then integrate with respect to x in the usual way.
We can also define regions R in \mathbb{R}^{2} "in the other direction" by

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: c \leq y \leq d, p(y) \leq x \leq q(y)\right\}
$$

where $c \leq d$ and $p(y) \leq q(y)$ for all $y \in[c, d]$. Then we write the multivariable integral of f over R as

$$
\int_{R} f=\int_{y=c}^{d} \int_{x=p(y)}^{q(y)} f(x, y) d x d y
$$

and we can perform "iterated integration" in the same way, by first finding an antiderivative of $f(x, y)$ with respect to x. You can find worked out examples of this in CM 16.2. This homework assignment is a mild introduction to this concept.

Reading: CM 16.1-2.

0. (Don't hand these in, but make sure you know how to do them.) CM 16.1 Problems 9-24
1. CM 16.1 Problem 26
2. CM 16.2 Exercises 2, 4, 6, 8, 10, 12, 14, 16, 18

For $12-16$ write the iterated integral in both forms $\int_{x=?}^{?} \int_{y=?}^{?} f(x, y) d y d x$ and $\int_{y=?}^{?} \int_{x=?}^{?} f(x, y) d x d y$. For 16 you might have to write a sum of two integrals for one of these forms.

3. CM 16.2 Problems 29

