Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus

Fall 2011
Problem Set \# 8 (due Friday 28 October 2011)
Material: Let $a \leq b$ be real numbers, and let $l(x)$ and $u(x)$ be continuous real functions satisfying $l(x) \leq u(x)$ for all $x \in[a, b]$. Consider $[a, b] \subset \mathbb{R}^{2}$ as an interval on the x-axis and the region R of \mathbb{R}^{2} "above the interval $[a, b]$ and between the graphs of $l(x)$ and $u(x)$ " defined by

$$
R=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b, l(x) \leq y \leq u(x)\right\}
$$

For example, if $l(x)=c$ and $u(x)=d$ are constant functions, then R is the box with corners $(a, c),(b, c)$, (a, d), and (b, d). If $a=0, b=1, l(x)=0$ and $u(x)=x$, then R is a triangle with vertices $(0,0),(1,0)$, and $(1,1)$. If $a=-1, b=1, l(x)=-\sqrt{1-x^{2}}$, and $u(x)=\sqrt{1-x^{2}}$, then R is a circle of radius 1 centered at the origin.

For each region R in \mathbb{R}^{2} and each continuous function $f: R \rightarrow \mathbb{R}$, we introduced a multivariable integral of f over R, which is equal to the iterated integral

$$
\int_{R} f=\int_{x=a}^{b} \int_{y=l(x)}^{u(x)} f(x, y) d y d x .
$$

and satisfies the following property: if $f(x, y) \geq 0$, then $\int_{R} f$ is the volume of the region above R (thought of in the $x-y$-plane) and below the graph of f.

Another way of computing volumes is using three-dimensional integrals. Let $a \leq b$ be real numbers, $l_{y}(x)$ and $u_{y}(x)$ be continuous single-variable real valued functions satisfying $l_{y}(x) \leq u_{y}(x)$ for all x in [a, b], and $l_{z}(x, y)$ and $u_{z}(x, y)$ be continuous two-variable real valued functions satisfying $l_{z}(x, y) \leq l_{z}(x, y)$ for all points (x, y) in the region $\left\{(x, y): a \leq x \leq b, l_{y}(x) \leq y \leq u_{u}(x)\right\}$ of the x - y-plane. Finally let

$$
R=\left\{(x, y, z) \in \mathbb{R}^{3}: a \leq x \leq b, l_{y}(x) \leq y \leq u_{y}(x), l_{z}(x, y) \leq z \leq u_{z}(x, y)\right\}
$$

and $f: R \rightarrow \mathbb{R}$ be a continous function on the region R. Then there's a multivariable integral of f over R, which is equal to the iterated integral

$$
\int_{R} f=\int_{x=a}^{b} \int_{y=l_{y}(x)}^{u_{y}(x)} \int_{z=l_{z}(x, y)}^{u_{z}(x, y)} f(x, y, z) d z d y d x .
$$

satisfying the following property: thinking of f as the "density" function of the solid region R, then $\int_{R} f$ is the mass of R, in particular, $\int_{R} 1$ is the volume of R.

Reading: CM 16.1-3.

1. CM 16.2 Exercise 20

Problems 32, 34, 35, 37, 36, 38, 42, 44, 48, 50
2. CM 16.3 Exercises 2 (note: a, b, c are arbitrary real constants; your answer should be expressed in terms of them!), 6, 8, 10

Problems 16 (note that above the first quadrant ($x \geq 0$ and $y \geq 0$) of the $x-y$-plane, the plane $3 x+4 y+z=6$ is below the plane $2 x+2 y+z=6$ and you are interested in finding the volume of the region between the two planes over the given triangle $x+y \leq 1$ in the x - y-plane),

Problems 18 ("Under the sphere" really means "Inside the sphere").

