Emory University Department of Mathematics \& CS

Math 211 Multivariable Calculus

Fall 2011
Problem Set \# 9 (due Friday 04 November 2011)

Reading: CM 16.4-5.

1. CM 16.4 Exercise $6,8,12,14,16$

Problems 20, 22, 34
2. CM 16.5 Exercises $12,13,14,18$ (place these regions anywhere you find most convenient in \mathbb{R}^{3}) Problems 32 (only parts a and b), 33, 38, 40
3. (Extra credit) During the course of this problem, you will compute the "improper integral"

$$
G=\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

which is defined as the following limit

$$
\lim _{r \rightarrow \infty} \int_{-r}^{r} e^{-x^{2}} d x
$$

Let $G(r)=\int_{-r}^{r} e^{-x^{2}} d x$ for any $r \geq 0$.
a) Let $f(x, y)=e^{-x^{2}-y^{2}}$ and $R(r)$ be the box with corners $(r,-r),(r, r),(-r, r)$, and $(-r,-r)$. Use Fubini's Theorem to show that $G(r)^{2}=\int_{R(r)} f$.
b) Let $C(r)$ be the disk of radius r centered at the origin. Show that

$$
\int_{C(r)} f \leq \int_{R(r)} f \leq \int_{C(\sqrt{2} r)} f
$$

c) Change to polar coordinates to compute $\int_{C(r)} f$ and $\int_{C(\sqrt{2} r)} f$.
d) Now calculate the limits

$$
\lim _{r \rightarrow \infty} \int_{C(r)} f, \quad \text { and } \quad \lim _{r \rightarrow \infty} \int_{C(\sqrt{2} r)} f
$$

e) From this, what do you conclude is the value of $\lim _{r \rightarrow \infty} G(r)^{2}$.
f) Finally, what do you conclude is the value of G ?

Note: to make the final two steps really rigorous, you'll have to take Math 411 (or they might cover it in Math 250, depending on the instructor)!

